DD.java

/*
 * Copyright (c) 2016 Martin Davis.
 *
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License 2.0
 * and Eclipse Distribution License v. 1.0 which accompanies this distribution.
 * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v20.html
 * and the Eclipse Distribution License is available at
 *
 * http://www.eclipse.org/org/documents/edl-v10.php.
 */
package org.locationtech.jts.math;

import java.io.Serializable;

/**
 * Implements extended-precision floating-point numbers 
 * which maintain 106 bits (approximately 30 decimal digits) of precision. 
 * <p>
 * A DoubleDouble uses a representation containing two double-precision values.
 * A number x is represented as a pair of doubles, x.hi and x.lo,
 * such that the number represented by x is x.hi + x.lo, where
 * <pre>
 *    |x.lo| &lt;= 0.5*ulp(x.hi)
 * </pre>
 * and ulp(y) means "unit in the last place of y".  
 * The basic arithmetic operations are implemented using 
 * convenient properties of IEEE-754 floating-point arithmetic.
 * <p>
 * The range of values which can be represented is the same as in IEEE-754.  
 * The precision of the representable numbers 
 * is twice as great as IEEE-754 double precision.
 * <p>
 * The correctness of the arithmetic algorithms relies on operations
 * being performed with standard IEEE-754 double precision and rounding.
 * This is the Java standard arithmetic model, but for performance reasons 
 * Java implementations are not
 * constrained to using this standard by default.  
 * Some processors (notably the Intel Pentium architecture) perform
 * floating point operations in (non-IEEE-754-standard) extended-precision.
 * A JVM implementation may choose to use the non-standard extended-precision
 * as its default arithmetic mode.
 * To prevent this from happening, this code uses the
 * Java <tt>strictfp</tt> modifier, 
 * which forces all operations to take place in the standard IEEE-754 rounding model. 
 * <p>
 * The API provides both a set of value-oriented operations 
 * and a set of mutating operations.
 * Value-oriented operations treat DoubleDouble values as 
 * immutable; operations on them return new objects carrying the result
 * of the operation.  This provides a simple and safe semantics for
 * writing DoubleDouble expressions.  However, there is a performance
 * penalty for the object allocations required.
 * The mutable interface updates object values in-place.
 * It provides optimum memory performance, but requires
 * care to ensure that aliasing errors are not created
 * and constant values are not changed.
 * <p>
 * For example, the following code example constructs three DD instances:
 * two to hold the input values and one to hold the result of the addition.
 * <pre>
 *     DD a = new DD(2.0);
 *     DD b = new DD(3.0);
 *     DD c = a.add(b);
 * </pre>
 * In contrast, the following approach uses only one object:
 * <pre>
 *     DD a = new DD(2.0);
 *     a.selfAdd(3.0);
 * </pre>
 * <p>
 * This implementation uses algorithms originally designed variously by 
 * Knuth, Kahan, Dekker, and Linnainmaa.  
 * Douglas Priest developed the first C implementation of these techniques. 
 * Other more recent C++ implementation are due to Keith M. Briggs and David Bailey et al.
 * 
 * <h3>References</h3>
 * <ul>
 * <li>Priest, D., <i>Algorithms for Arbitrary Precision Floating Point Arithmetic</i>,
 * in P. Kornerup and D. Matula, Eds., Proc. 10th Symposium on Computer Arithmetic, 
 * IEEE Computer Society Press, Los Alamitos, Calif., 1991.
 * <li>Yozo Hida, Xiaoye S. Li and David H. Bailey, 
 * <i>Quad-Double Arithmetic: Algorithms, Implementation, and Application</i>, 
 * manuscript, Oct 2000; Lawrence Berkeley National Laboratory Report BNL-46996.
 * <li>David Bailey, <i>High Precision Software Directory</i>; 
 * <tt>http://crd.lbl.gov/~dhbailey/mpdist/index.html</tt>
 * </ul>
 * 
 * 
 * @author Martin Davis
 *
 */
public strictfp final class DD 
  implements Serializable, Comparable, Cloneable
{
  /**
   * The value nearest to the constant Pi.
   */
  public static final DD PI = new DD(
      3.141592653589793116e+00,
      1.224646799147353207e-16);
  
  /**
   * The value nearest to the constant 2 * Pi.
   */ 
  public static final DD TWO_PI = new DD(
      6.283185307179586232e+00,
      2.449293598294706414e-16);
  
  /**
   * The value nearest to the constant Pi / 2.
   */
  public static final DD PI_2 = new DD(
      1.570796326794896558e+00,
      6.123233995736766036e-17);
  
  /**
   * The value nearest to the constant e (the natural logarithm base). 
   */
  public static final DD E = new DD(
      2.718281828459045091e+00,
      1.445646891729250158e-16);
  
  /**
   * A value representing the result of an operation which does not return a valid number.
   */
  public static final DD NaN = new DD(Double.NaN, Double.NaN);
  
  /**
   * The smallest representable relative difference between two {link @ DoubleDouble} values
   */
  public static final double EPS = 1.23259516440783e-32;  /* = 2^-106 */
  
  private static DD createNaN()
  {
    return new DD(Double.NaN, Double.NaN); 
  }
  
  /**
   * Converts the string argument to a DoubleDouble number.
   * 
   * @param str a string containing a representation of a numeric value
   * @return the extended precision version of the value
   * @throws NumberFormatException if <tt>s</tt> is not a valid representation of a number
   */
  public static DD valueOf(String str) 
  throws NumberFormatException
  { 
    return parse(str); 
    }
  
  /**
   * Converts the <tt>double</tt> argument to a DoubleDouble number.
   * 
   * @param x a numeric value
   * @return the extended precision version of the value
   */
  public static DD valueOf(double x) { return new DD(x); }
  
  /**
   * The value to split a double-precision value on during multiplication
   */
  private static final double SPLIT = 134217729.0D; // 2^27+1, for IEEE double
  
  /**
   * The high-order component of the double-double precision value.
   */
  private double hi = 0.0;
  
  /**
   * The low-order component of the double-double precision value.
   */
  private double lo = 0.0;
  
  /**
   * Creates a new DoubleDouble with value 0.0.
   */
  public DD()
  {
    init(0.0);
  }
  
  /**
   * Creates a new DoubleDouble with value x.
   * 
   * @param x the value to initialize
   */
  public DD(double x)
  {
    init(x);
  }
  
  /**
   * Creates a new DoubleDouble with value (hi, lo).
   * 
   * @param hi the high-order component 
   * @param lo the high-order component 
   */
  public DD(double hi, double lo)
  {
    init(hi, lo);
  }
  
  /**
   * Creates a new DoubleDouble with value equal to the argument.
   * 
   * @param dd the value to initialize
   */
  public DD(DD dd)
  {
    init(dd);
  }
  
  /**
   * Creates a new DoubleDouble with value equal to the argument.
   * 
   * @param str the value to initialize by
   * @throws NumberFormatException if <tt>str</tt> is not a valid representation of a number
   */
  public DD(String str)
    throws NumberFormatException
  {
    this(parse(str));
  }
  
  /**
   * Creates a new DoubleDouble with the value of the argument.
   * 
   * @param dd the DoubleDouble value to copy
   * @return a copy of the input value
   */
  public static DD copy(DD dd)
  {
    return new DD(dd);
  }
  
  /**
   * Creates and returns a copy of this value.
   * 
   * @return a copy of this value
   */
  public Object clone()
  {
    try {
      return super.clone();
    }
    catch (CloneNotSupportedException ex) {
      // should never reach here
      return null;
    }
  }
  
  private final void init(double x)
  {
    this.hi = x;
    this.lo = 0.0;
  }
  
  private final void init(double hi, double lo)
  {
    this.hi = hi;
    this.lo = lo;   
  }
  
  private final void init(DD dd)
  {
    hi = dd.hi;
    lo = dd.lo;
  }
  
  /*
  double getHighComponent() { return hi; }
  
  double getLowComponent() { return lo; }
  */
  
  // Testing only - should not be public
  /*
  public void RENORM()
  {
    double s = hi + lo;
    double err = lo - (s - hi);
    hi = s;
    lo = err;
  }
  */
  
  /**
   * Set the value for the DD object. This method supports the mutating
   * operations concept described in the class documentation (see above).
   * @param value a DD instance supplying an extended-precision value.
   * @return a self-reference to the DD instance.
   */
  public DD setValue(DD value) {
    init(value);
    return this;
  }
  
  /**
   * Set the value for the DD object. This method supports the mutating
   * operations concept described in the class documentation (see above).
   * @param value a floating point value to be stored in the instance.
   * @return a self-reference to the DD instance.
   */
  public DD setValue(double value) {
    init(value);
    return this;
  }
  

  /**
   * Returns a new DoubleDouble whose value is <tt>(this + y)</tt>.
   * 
   * @param y the addend
   * @return <tt>(this + y)</tt>
   */ 
  public final DD add(DD y)
  {
    return copy(this).selfAdd(y);
  }
  
  /**
   * Returns a new DoubleDouble whose value is <tt>(this + y)</tt>.
   * 
   * @param y the addend
   * @return <tt>(this + y)</tt>
   */ 
  public final DD add(double y)
  {
    return copy(this).selfAdd(y);
  }
  
  /**
   * Adds the argument to the value of <tt>this</tt>.
   * To prevent altering constants, 
   * this method <b>must only</b> be used on values known to 
   * be newly created. 
   * 
   * @param y the addend
   * @return this object, increased by y
   */
  public final DD selfAdd(DD y)
  {
    return selfAdd(y.hi, y.lo);
  }
  
  /**
   * Adds the argument to the value of <tt>this</tt>.
   * To prevent altering constants, 
   * this method <b>must only</b> be used on values known to 
   * be newly created. 
   * 
   * @param y the addend
   * @return this object, increased by y
   */
  public final DD selfAdd(double y)
  {
    double H, h, S, s, e, f;
    S = hi + y;
    e = S - hi;
    s = S - e;
    s = (y - e) + (hi - s);
    f = s + lo;
    H = S + f;
    h = f + (S - H);
    hi = H + h;
    lo = h + (H - hi);
    return this;
    // return selfAdd(y, 0.0);
  }
  
  private final DD selfAdd(double yhi, double ylo)
  {
    double H, h, T, t, S, s, e, f;
    S = hi + yhi; 
    T = lo + ylo; 
    e = S - hi; 
    f = T - lo; 
    s = S-e; 
    t = T-f; 
    s = (yhi-e)+(hi-s); 
    t = (ylo-f)+(lo-t); 
    e = s+T; H = S+e; h = e+(S-H); e = t+h;
  
    double zhi = H + e;
    double zlo = e + (H - zhi);
    hi = zhi;
    lo = zlo;
    return this;
  }
  
  /**
   * Computes a new DoubleDouble object whose value is <tt>(this - y)</tt>.
   * 
   * @param y the subtrahend
   * @return <tt>(this - y)</tt>
   */
  public final DD subtract(DD y)
  {
    return add(y.negate());
  }
  
  /**
   * Computes a new DoubleDouble object whose value is <tt>(this - y)</tt>.
   * 
   * @param y the subtrahend
   * @return <tt>(this - y)</tt>
   */
  public final DD subtract(double y)
  {
    return add(-y);
  }
  
  
  /**
   * Subtracts the argument from the value of <tt>this</tt>.
   * To prevent altering constants, 
   * this method <b>must only</b> be used on values known to 
   * be newly created. 
   * 
   * @param y the addend
   * @return this object, decreased by y
   */
  public final DD selfSubtract(DD y)
  {
    if (isNaN()) return this;
    return selfAdd(-y.hi, -y.lo);
  }
  
  /**
   * Subtracts the argument from the value of <tt>this</tt>.
   * To prevent altering constants, 
   * this method <b>must only</b> be used on values known to 
   * be newly created. 
   * 
   * @param y the addend
   * @return this object, decreased by y
   */
  public final DD selfSubtract(double y)
  {
    if (isNaN()) return this;
    return selfAdd(-y, 0.0);
  }
  
  /**
   * Returns a new DoubleDouble whose value is <tt>-this</tt>.
   * 
   * @return <tt>-this</tt>
   */
  public final DD negate()
  {
    if (isNaN()) return this;
    return new DD(-hi, -lo);
  }
  
  /**
   * Returns a new DoubleDouble whose value is <tt>(this * y)</tt>.
   * 
   * @param y the multiplicand
   * @return <tt>(this * y)</tt>
   */
  public final DD multiply(DD y)
  {
    if (y.isNaN()) return createNaN();
    return copy(this).selfMultiply(y);
  }
  
  /**
   * Returns a new DoubleDouble whose value is <tt>(this * y)</tt>.
   * 
   * @param y the multiplicand
   * @return <tt>(this * y)</tt>
   */
  public final DD multiply(double y)
  {
    if (Double.isNaN(y)) return createNaN();
    return copy(this).selfMultiply(y, 0.0);
  }
  
  /**
   * Multiplies this object by the argument, returning <tt>this</tt>.
   * To prevent altering constants, 
   * this method <b>must only</b> be used on values known to 
   * be newly created. 
   * 
   * @param y the value to multiply by
   * @return this object, multiplied by y
   */
  public final DD selfMultiply(DD y)
  {
    return selfMultiply(y.hi, y.lo);
  }
  
  /**
   * Multiplies this object by the argument, returning <tt>this</tt>.
   * To prevent altering constants, 
   * this method <b>must only</b> be used on values known to 
   * be newly created. 
   * 
   * @param y the value to multiply by
   * @return this object, multiplied by y
   */
  public final DD selfMultiply(double y)
  {
    return selfMultiply(y, 0.0);
  }
  
  private final DD selfMultiply(double yhi, double ylo)
  {
    double hx, tx, hy, ty, C, c;
    C = SPLIT * hi; hx = C-hi; c = SPLIT * yhi;
    hx = C-hx; tx = hi-hx; hy = c-yhi; 
    C = hi*yhi; hy = c-hy; ty = yhi-hy;
    c = ((((hx*hy-C)+hx*ty)+tx*hy)+tx*ty)+(hi*ylo+lo*yhi);
    double zhi = C+c; hx = C-zhi; 
    double zlo = c+hx;
    hi = zhi;
    lo = zlo;
    return this;
  }
  
  /**
   * Computes a new DoubleDouble whose value is <tt>(this / y)</tt>.
   * 
   * @param y the divisor
   * @return a new object with the value <tt>(this / y)</tt>
   */
  public final DD divide(DD y)
  {
    double hc, tc, hy, ty, C, c, U, u;
    C = hi/y.hi; c = SPLIT*C; hc =c-C;  u = SPLIT*y.hi; hc = c-hc;
    tc = C-hc; hy = u-y.hi; U = C * y.hi; hy = u-hy; ty = y.hi-hy;
    u = (((hc*hy-U)+hc*ty)+tc*hy)+tc*ty;
    c = ((((hi-U)-u)+lo)-C*y.lo)/y.hi;
    u = C+c; 
    
    double zhi = u; 
    double zlo = (C-u)+c;
    return new DD(zhi, zlo);
  }
  
  /**
   * Computes a new DoubleDouble whose value is <tt>(this / y)</tt>.
   * 
   * @param y the divisor
   * @return a new object with the value <tt>(this / y)</tt>
   */
  public final DD divide(double y)
  {
    if (Double.isNaN(y)) return createNaN();
    return copy(this).selfDivide(y, 0.0);  
  }

  /**
   * Divides this object by the argument, returning <tt>this</tt>.
   * To prevent altering constants, 
   * this method <b>must only</b> be used on values known to 
   * be newly created. 
   * 
   * @param y the value to divide by
   * @return this object, divided by y
   */
  public final DD selfDivide(DD y)
  {
    return selfDivide(y.hi, y.lo);
  }
  
  /**
   * Divides this object by the argument, returning <tt>this</tt>.
   * To prevent altering constants, 
   * this method <b>must only</b> be used on values known to 
   * be newly created. 
   * 
   * @param y the value to divide by
   * @return this object, divided by y
   */
  public final DD selfDivide(double y)
  {
    return selfDivide(y, 0.0);
  }
  
  private final DD selfDivide(double yhi, double ylo)
  {
    double hc, tc, hy, ty, C, c, U, u;
    C = hi/yhi; c = SPLIT*C; hc =c-C;  u = SPLIT*yhi; hc = c-hc;
    tc = C-hc; hy = u-yhi; U = C * yhi; hy = u-hy; ty = yhi-hy;
    u = (((hc*hy-U)+hc*ty)+tc*hy)+tc*ty;
    c = ((((hi-U)-u)+lo)-C*ylo)/yhi;
    u = C+c; 
    
    hi = u; 
    lo = (C-u)+c;
    return this;
  }
  
  /**
   * Returns a DoubleDouble whose value is  <tt>1 / this</tt>.
   * 
   * @return the reciprocal of this value
   */
  public final DD reciprocal()
  {
    double  hc, tc, hy, ty, C, c, U, u;
    C = 1.0/hi; 
    c = SPLIT*C; 
    hc =c-C;  
    u = SPLIT*hi;
    hc = c-hc; tc = C-hc; hy = u-hi; U = C*hi; hy = u-hy; ty = hi-hy;
    u = (((hc*hy-U)+hc*ty)+tc*hy)+tc*ty;
    c = ((((1.0-U)-u))-C*lo)/hi;
    
    double  zhi = C+c; 
    double  zlo = (C-zhi)+c;
    return new DD(zhi, zlo);
  }
  
  /**
   * Returns the largest (closest to positive infinity) 
   * value that is not greater than the argument 
   * and is equal to a mathematical integer.
   * Special cases:
   * <ul>
   * <li>If this value is NaN, returns NaN.
   * </ul>
   * 
   * @return the largest (closest to positive infinity) 
   * value that is not greater than the argument 
   * and is equal to a mathematical integer.
   */
  public DD floor()
  {
    if (isNaN()) return NaN;
    double fhi=Math.floor(hi);
    double flo = 0.0;
    // Hi is already integral.  Floor the low word
    if (fhi == hi) {
      flo = Math.floor(lo);
    }
      // do we need to renormalize here?    
    return new DD(fhi, flo); 
  }
  
  /**
   * Returns the smallest (closest to negative infinity) value 
   * that is not less than the argument and is equal to a mathematical integer. 
   * Special cases:
   * <ul>
   * <li>If this value is NaN, returns NaN.
   * </ul>
   * 
   * @return the smallest (closest to negative infinity) value 
   * that is not less than the argument and is equal to a mathematical integer. 
   */
  public DD ceil()
  {
    if (isNaN()) return NaN;
    double fhi=Math.ceil(hi);
    double flo = 0.0;
    // Hi is already integral.  Ceil the low word
    if (fhi == hi) {
      flo = Math.ceil(lo);
      // do we need to renormalize here?
    }
    return new DD(fhi, flo); 
  }
  
  /**
   * Returns an integer indicating the sign of this value.
   * <ul>
   * <li>if this value is &gt; 0, returns 1
   * <li>if this value is &lt; 0, returns -1
   * <li>if this value is = 0, returns 0
   * <li>if this value is NaN, returns 0
   * </ul>
   * 
   * @return an integer indicating the sign of this value
   */
  public int signum()
  {
    if (hi > 0) return 1;
    if (hi < 0) return -1;
    if (lo > 0) return 1;
    if (lo < 0) return -1;
    return 0;
  }
  
  /**
   * Rounds this value to the nearest integer.
   * The value is rounded to an integer by adding 1/2 and taking the floor of the result.
   * Special cases:
   * <ul>
   * <li>If this value is NaN, returns NaN.
   * </ul>
   *
   * @return this value rounded to the nearest integer
   */
  public DD rint()
  {
    if (isNaN()) return this;
    // may not be 100% correct
    DD plus5 = this.add(0.5);
    return plus5.floor();
  }
  
  /**
   * Returns the integer which is largest in absolute value and not further
   * from zero than this value.  
   * Special cases:
   * <ul>
   * <li>If this value is NaN, returns NaN.
   * </ul>
   *  
   * @return the integer which is largest in absolute value and not further from zero than this value
   */
  public DD trunc()
  {
    if (isNaN()) return NaN;
    if (isPositive()) 
      return floor();
    else 
      return ceil();
  }
  
  /**
   * Returns the absolute value of this value.
   * Special cases:
   * <ul>
   * <li>If this value is NaN, it is returned.
   * </ul>
   * 
   * @return the absolute value of this value
   */
  public DD abs()
  {
    if (isNaN()) return NaN;
    if (isNegative())
      return negate();
    return new DD(this);
  }
  
  /**
   * Computes the square of this value.
   * 
   * @return the square of this value.
   */
  public DD sqr()
  {
    return this.multiply(this);
  }
  
  /**
   * Squares this object.
   * To prevent altering constants, 
   * this method <b>must only</b> be used on values known to 
   * be newly created. 
   * 
   * @return the square of this value.
   */
  public DD selfSqr()
  {
    return this.selfMultiply(this);
  }
  
  /**
   * Computes the square of this value.
   * 
   * @return the square of this value.
   */
  public static DD sqr(double x)
  {
    return valueOf(x).selfMultiply(x);
  }
  
  /**
   * Computes the positive square root of this value.
   * If the number is NaN or negative, NaN is returned.
   * 
   * @return the positive square root of this number. 
   * If the argument is NaN or less than zero, the result is NaN.
   */
  public DD sqrt()
  {
    /* Strategy:  Use Karp's trick:  if x is an approximation
    to sqrt(a), then

       sqrt(a) = a*x + [a - (a*x)^2] * x / 2   (approx)

    The approximation is accurate to twice the accuracy of x.
    Also, the multiplication (a*x) and [-]*x can be done with
    only half the precision.
 */

    if (isZero())
      return valueOf(0.0);

    if (isNegative()) {
      return NaN;
    }

    double x = 1.0 / Math.sqrt(hi);
    double ax = hi * x;
    
    DD axdd = valueOf(ax);
    DD diffSq = this.subtract(axdd.sqr());
    double d2 = diffSq.hi * (x * 0.5);
    
    return axdd.add(d2);
  }
  
  public static DD sqrt(double x)
  {
    return valueOf(x).sqrt();
  }
  
  /**
   * Computes the value of this number raised to an integral power.
   * Follows semantics of Java Math.pow as closely as possible.
   * 
   * @param exp the integer exponent
   * @return x raised to the integral power exp
   */
  public DD pow(int exp)
  {
    if (exp == 0.0)
      return valueOf(1.0);
    
    DD r = new DD(this);
    DD s = valueOf(1.0);
    int n = Math.abs(exp);

    if (n > 1) {
      /* Use binary exponentiation */
      while (n > 0) {
        if (n % 2 == 1) {
          s.selfMultiply(r);
        }
        n /= 2;
        if (n > 0)
          r = r.sqr();
      }
    } else {
      s = r;
    }

    /* Compute the reciprocal if n is negative. */
    if (exp < 0)
      return s.reciprocal();
    return s;
  }
  
  /**
   * Computes the determinant of the 2x2 matrix with the given entries.
   * 
   * @param x1 a double value
   * @param y1 a double value
   * @param x2 a double value
   * @param y2 a double value
   * @return the determinant of the values
   */
  public static DD determinant(double x1, double y1, double x2, double y2)
  {
    return determinant(valueOf(x1), valueOf(y1), valueOf(x2), valueOf(y2) );
  }
  
  /**
   * Computes the determinant of the 2x2 matrix with the given entries.
   * 
   * @param x1 a matrix entry
   * @param y1 a matrix entry
   * @param x2 a matrix entry
   * @param y2 a matrix entry
   * @return the determinant of the matrix of values
   */
  public static DD determinant(DD x1, DD y1, DD x2, DD y2)
  {
    DD det = x1.multiply(y2).selfSubtract(y1.multiply(x2));
    return det;
  }
  
  /*------------------------------------------------------------
   *   Ordering Functions
   *------------------------------------------------------------
   */

  /**
   * Computes the minimum of this and another DD number.
   * 
   * @param x a DD number
   * @return the minimum of the two numbers
   */
  public DD min(DD x) {
    if (this.le(x)) {
      return this;
    }
    else {
      return x;
    }
  }
  
  /**
   * Computes the maximum of this and another DD number.
   * 
   * @param x a DD number
   * @return the maximum of the two numbers
   */
  public DD max(DD x) {
    if (this.ge(x)) {
      return this;
    }
    else {
      return x;
    }
  }

  /*------------------------------------------------------------
   *   Conversion Functions
   *------------------------------------------------------------
   */
  
  /**
   * Converts this value to the nearest double-precision number.
   * 
   * @return the nearest double-precision number to this value
   */
  public double doubleValue()
  {
    return hi + lo;
  }
     
  /**
   * Converts this value to the nearest integer.
   * 
   * @return the nearest integer to this value
   */
  public int intValue()
  {
    return (int) hi;
  }
  
  /*------------------------------------------------------------
   *   Predicates
   *------------------------------------------------------------
   */
  
  /**
   * Tests whether this value is equal to 0.
   * 
   * @return true if this value is equal to 0
   */
  public boolean isZero() 
  {
    return hi == 0.0 && lo == 0.0;
  }

  /**
   * Tests whether this value is less than 0.
   * 
   * @return true if this value is less than 0
   */
  public boolean isNegative()
  {
    return hi < 0.0 || (hi == 0.0 && lo < 0.0);
  }
  
  /**
   * Tests whether this value is greater than 0.
   * 
   * @return true if this value is greater than 0
   */
  public boolean isPositive()
  {
    return hi > 0.0 || (hi == 0.0 && lo > 0.0);
  }
  
  /**
   * Tests whether this value is NaN.
   * 
   * @return true if this value is NaN
   */
  public boolean isNaN() { return Double.isNaN(hi); }
  
  /**
   * Tests whether this value is equal to another <tt>DoubleDouble</tt> value.
   * 
   * @param y a DoubleDouble value
   * @return true if this value = y
   */
  public boolean equals(DD y)
  {
    return hi == y.hi && lo == y.lo;
  }
  
  /**
   * Tests whether this value is greater than another <tt>DoubleDouble</tt> value.
   * @param y a DoubleDouble value
   * @return true if this value &gt; y
   */
  public boolean gt(DD y)
  {
    return (hi > y.hi) || (hi == y.hi && lo > y.lo);
  }
  /**
   * Tests whether this value is greater than or equals to another <tt>DoubleDouble</tt> value.
   * @param y a DoubleDouble value
   * @return true if this value &gt;= y
   */
  public boolean ge(DD y)
  {
    return (hi > y.hi) || (hi == y.hi && lo >= y.lo);
  }
  /**
   * Tests whether this value is less than another <tt>DoubleDouble</tt> value.
   * @param y a DoubleDouble value
   * @return true if this value &lt; y
   */
  public boolean lt(DD y)
  {
    return (hi < y.hi) || (hi == y.hi && lo < y.lo);
  }
  /**
   * Tests whether this value is less than or equal to another <tt>DoubleDouble</tt> value.
   * @param y a DoubleDouble value
   * @return true if this value &lt;= y
   */
  public boolean le(DD y)
  {
    return (hi < y.hi) || (hi == y.hi && lo <= y.lo);
  }
  
  /**
   * Compares two DoubleDouble objects numerically.
   * 
   * @return -1,0 or 1 depending on whether this value is less than, equal to
   * or greater than the value of <tt>o</tt>
   */
  public int compareTo(Object o) 
  {
    DD other = (DD) o;

    if (hi < other.hi) return -1;
    if (hi > other.hi) return 1;
    if (lo < other.lo) return -1;
    if (lo > other.lo) return 1;
    return 0;
  }
  
  
  /*------------------------------------------------------------
   *   Output
   *------------------------------------------------------------
   */

  private static final int MAX_PRINT_DIGITS = 32;
  private static final DD TEN = DD.valueOf(10.0);
  private static final DD ONE = DD.valueOf(1.0);
  private static final String SCI_NOT_EXPONENT_CHAR = "E";
  private static final String SCI_NOT_ZERO = "0.0E0";
  
  /**
   * Dumps the components of this number to a string.
   * 
   * @return a string showing the components of the number
   */
  public String dump()
  {
    return "DD<" + hi + ", " + lo + ">";
  }
  
  /**
   * Returns a string representation of this number, in either standard or scientific notation.
   * If the magnitude of the number is in the range [ 10<sup>-3</sup>, 10<sup>8</sup> ]
   * standard notation will be used.  Otherwise, scientific notation will be used.
   * 
   * @return a string representation of this number
   */
  public String toString()
  {
    int mag = magnitude(hi);
    if (mag >= -3 && mag <= 20)
      return toStandardNotation();
    return toSciNotation();
  }
  
  /**
   * Returns the string representation of this value in standard notation.
   * 
   * @return the string representation in standard notation 
   */
  public String toStandardNotation()
  {
    String specialStr = getSpecialNumberString();
    if (specialStr != null)
      return specialStr;
    
    int[] magnitude = new int[1];
    String sigDigits = extractSignificantDigits(true, magnitude);
    int decimalPointPos = magnitude[0] + 1;

    String num = sigDigits;
    // add a leading 0 if the decimal point is the first char
    if (sigDigits.charAt(0) == '.') {
      num = "0" + sigDigits;
    }
    else if (decimalPointPos < 0) {
      num = "0." + stringOfChar('0', -decimalPointPos) + sigDigits;
    }
    else if (sigDigits.indexOf('.') == -1) {
      // no point inserted - sig digits must be smaller than magnitude of number
      // add zeroes to end to make number the correct size
      int numZeroes = decimalPointPos - sigDigits.length();
      String zeroes = stringOfChar('0', numZeroes);
      num = sigDigits + zeroes + ".0";
    }
    
    if (this.isNegative())
      return "-" + num;
    return num;
  }
  
  /**
   * Returns the string representation of this value in scientific notation.
   * 
   * @return the string representation in scientific notation 
   */
  public String toSciNotation()
  {
    // special case zero, to allow as
    if (isZero())
      return SCI_NOT_ZERO;
    
    String specialStr = getSpecialNumberString();
    if (specialStr != null)
      return specialStr;
    
    int[] magnitude = new int[1];
    String digits = extractSignificantDigits(false, magnitude);
    String expStr = SCI_NOT_EXPONENT_CHAR + magnitude[0];
    
    // should never have leading zeroes
    // MD - is this correct?  Or should we simply strip them if they are present?
    if (digits.charAt(0) == '0') {
      throw new IllegalStateException("Found leading zero: " + digits);
    }
    
    // add decimal point
    String trailingDigits = "";
    if (digits.length() > 1)
      trailingDigits = digits.substring(1);
    String digitsWithDecimal = digits.charAt(0) + "." + trailingDigits;
    
    if (this.isNegative())
      return "-" + digitsWithDecimal + expStr;
    return digitsWithDecimal + expStr;
  }
  
  
  /**
   * Extracts the significant digits in the decimal representation of the argument.
   * A decimal point may be optionally inserted in the string of digits
   * (as long as its position lies within the extracted digits
   * - if not, the caller must prepend or append the appropriate zeroes and decimal point).
   * 
   * @param y the number to extract ( >= 0)
   * @param decimalPointPos the position in which to insert a decimal point
   * @return the string containing the significant digits and possibly a decimal point
   */
  private String extractSignificantDigits(boolean insertDecimalPoint, int[] magnitude)
  {
    DD y = this.abs();
    // compute *correct* magnitude of y
    int mag = magnitude(y.hi);
    DD scale = TEN.pow(mag);
    y = y.divide(scale);
    
    // fix magnitude if off by one
    if (y.gt(TEN)) {
      y = y.divide(TEN);
      mag += 1;
    }
    else if (y.lt(ONE)) {
      y = y.multiply(TEN);
      mag -= 1;   
    }
    
    int decimalPointPos = mag + 1;
    StringBuffer buf = new StringBuffer();
    int numDigits = MAX_PRINT_DIGITS - 1;
    for (int i = 0; i <= numDigits; i++) {
      if (insertDecimalPoint && i == decimalPointPos) {
        buf.append('.');
      }
      int digit = (int) y.hi;
//      System.out.println("printDump: [" + i + "] digit: " + digit + "  y: " + y.dump() + "  buf: " + buf);

      /**
       * This should never happen, due to heuristic checks on remainder below
       */
      if (digit < 0 || digit > 9) {
//        System.out.println("digit > 10 : " + digit);
//        throw new IllegalStateException("Internal errror: found digit = " + digit);
      }
      /**
       * If a negative remainder is encountered, simply terminate the extraction.  
       * This is robust, but maybe slightly inaccurate.
       * My current hypothesis is that negative remainders only occur for very small lo components, 
       * so the inaccuracy is tolerable
       */
      if (digit < 0) {
        break;
        // throw new IllegalStateException("Internal errror: found digit = " + digit);
      }
      boolean rebiasBy10 = false;
      char digitChar = 0;
      if (digit > 9) {
        // set flag to re-bias after next 10-shift
        rebiasBy10 = true;
        // output digit will end up being '9'
        digitChar = '9';
      }
      else {
       digitChar = (char) ('0' + digit);
      }
      buf.append(digitChar);
      y = (y.subtract(DD.valueOf(digit))
          .multiply(TEN));
      if (rebiasBy10)
        y.selfAdd(TEN);
      
      boolean continueExtractingDigits = true;
      /**
       * Heuristic check: if the remaining portion of 
       * y is non-positive, assume that output is complete
       */
//      if (y.hi <= 0.0)
//        if (y.hi < 0.0)
//        continueExtractingDigits = false;
      /**
       * Check if remaining digits will be 0, and if so don't output them.
       * Do this by comparing the magnitude of the remainder with the expected precision.
       */
      int remMag = magnitude(y.hi);
      if (remMag < 0 && Math.abs(remMag) >= (numDigits - i)) 
        continueExtractingDigits = false;
      if (! continueExtractingDigits)
        break;
    }
    magnitude[0] = mag;
    return buf.toString();
  }


  /**
   * Creates a string of a given length containing the given character
   * 
   * @param ch the character to be repeated
   * @param len the len of the desired string
   * @return the string 
   */
  private static String stringOfChar(char ch, int len)
  {
    StringBuffer buf = new StringBuffer();
    for (int i = 0; i < len; i++) {
      buf.append(ch);
    }
    return buf.toString();
  }
  
  /**
   * Returns the string for this value if it has a known representation.
   * (E.g. NaN or 0.0)
   * 
   * @return the string for this special number
   * or null if the number is not a special number
   */
  private String getSpecialNumberString()
  {
    if (isZero()) return "0.0";
    if (isNaN())  return "NaN ";
    return null;
  }
  

  
  /**
   * Determines the decimal magnitude of a number.
   * The magnitude is the exponent of the greatest power of 10 which is less than
   * or equal to the number.
   * 
   * @param x the number to find the magnitude of
   * @return the decimal magnitude of x
   */
  private static int magnitude(double x)
  {
    double xAbs = Math.abs(x);
    double xLog10 = Math.log(xAbs) / Math.log(10);
    int xMag = (int) Math.floor(xLog10); 
    /**
     * Since log computation is inexact, there may be an off-by-one error
     * in the computed magnitude. 
     * Following tests that magnitude is correct, and adjusts it if not
     */
    double xApprox = Math.pow(10, xMag);
    if (xApprox * 10 <= xAbs)
      xMag += 1;
    
    return xMag;
  }
  

  /*------------------------------------------------------------
   *   Input
   *------------------------------------------------------------
   */

  /**
   * Converts a string representation of a real number into a DoubleDouble value.
   * The format accepted is similar to the standard Java real number syntax.  
   * It is defined by the following regular expression:
   * <pre>
   * [<tt>+</tt>|<tt>-</tt>] {<i>digit</i>} [ <tt>.</tt> {<i>digit</i>} ] [ ( <tt>e</tt> | <tt>E</tt> ) [<tt>+</tt>|<tt>-</tt>] {<i>digit</i>}+
   * </pre>
   * 
   * @param str the string to parse
   * @return the value of the parsed number
   * @throws NumberFormatException if <tt>str</tt> is not a valid representation of a number
   */
  public static DD parse(String str)
    throws NumberFormatException
  {
    int i = 0;
    int strlen = str.length();
    
    // skip leading whitespace
    while (Character.isWhitespace(str.charAt(i)))
      i++;
    
    // check for sign
    boolean isNegative = false;
    if (i < strlen) {
      char signCh = str.charAt(i);
      if (signCh == '-' || signCh == '+') {
        i++;
        if (signCh == '-') isNegative = true;
      }
    }
    
    // scan all digits and accumulate into an integral value
    // Keep track of the location of the decimal point (if any) to allow scaling later
    DD val = new DD();

    int numDigits = 0;
    int numBeforeDec = 0;
    int exp = 0;
    boolean hasDecimalChar = false;
    while (true) {
      if (i >= strlen)
        break;
      char ch = str.charAt(i);
      i++;
      if (Character.isDigit(ch)) {
        double d = ch - '0';
        val.selfMultiply(TEN);
        // MD: need to optimize this
        val.selfAdd(d);
        numDigits++;
        continue;
      }
      if (ch == '.') {
        numBeforeDec = numDigits;
        hasDecimalChar = true;
        continue;
      }
      if (ch == 'e' || ch == 'E') {
        String expStr = str.substring(i);
        // this should catch any format problems with the exponent
        try {
          exp = Integer.parseInt(expStr);
        }
        catch (NumberFormatException ex) {
          throw new NumberFormatException("Invalid exponent " + expStr + " in string " + str);  
        }
        break;
      }
      throw new NumberFormatException("Unexpected character '" + ch 
          + "' at position " + i 
          + " in string " + str);
    }
    DD val2 = val;

    // correct number of digits before decimal sign if we don't have a decimal sign in the string
    if (!hasDecimalChar) numBeforeDec = numDigits;

    // scale the number correctly
    int numDecPlaces = numDigits - numBeforeDec - exp;
    if (numDecPlaces == 0) {
      val2 = val;
    }
    else if (numDecPlaces > 0) {  
      DD scale = TEN.pow(numDecPlaces);
      val2 = val.divide(scale);
    }
    else if (numDecPlaces < 0) {
      DD scale = TEN.pow(-numDecPlaces);    
      val2 = val.multiply(scale);
    }
    // apply leading sign, if any
    if (isNegative) {
      return val2.negate();
    }
    return val2;

  }
}