Coverage Report

Created: 2025-03-15 06:58

/src/zlib/trees.c
Line
Count
Source (jump to first uncovered line)
1
/* trees.c -- output deflated data using Huffman coding
2
 * Copyright (C) 1995-2024 Jean-loup Gailly
3
 * detect_data_type() function provided freely by Cosmin Truta, 2006
4
 * For conditions of distribution and use, see copyright notice in zlib.h
5
 */
6
7
/*
8
 *  ALGORITHM
9
 *
10
 *      The "deflation" process uses several Huffman trees. The more
11
 *      common source values are represented by shorter bit sequences.
12
 *
13
 *      Each code tree is stored in a compressed form which is itself
14
 * a Huffman encoding of the lengths of all the code strings (in
15
 * ascending order by source values).  The actual code strings are
16
 * reconstructed from the lengths in the inflate process, as described
17
 * in the deflate specification.
18
 *
19
 *  REFERENCES
20
 *
21
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23
 *
24
 *      Storer, James A.
25
 *          Data Compression:  Methods and Theory, pp. 49-50.
26
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27
 *
28
 *      Sedgewick, R.
29
 *          Algorithms, p290.
30
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31
 */
32
33
/* @(#) $Id$ */
34
35
/* #define GEN_TREES_H */
36
37
#include "deflate.h"
38
39
#ifdef ZLIB_DEBUG
40
#  include <ctype.h>
41
#endif
42
43
/* ===========================================================================
44
 * Constants
45
 */
46
47
#define MAX_BL_BITS 7
48
/* Bit length codes must not exceed MAX_BL_BITS bits */
49
50
0
#define END_BLOCK 256
51
/* end of block literal code */
52
53
0
#define REP_3_6      16
54
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
56
0
#define REPZ_3_10    17
57
/* repeat a zero length 3-10 times  (3 bits of repeat count) */
58
59
0
#define REPZ_11_138  18
60
/* repeat a zero length 11-138 times  (7 bits of repeat count) */
61
62
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
65
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
68
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
71
local const uch bl_order[BL_CODES]
72
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73
/* The lengths of the bit length codes are sent in order of decreasing
74
 * probability, to avoid transmitting the lengths for unused bit length codes.
75
 */
76
77
/* ===========================================================================
78
 * Local data. These are initialized only once.
79
 */
80
81
#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
82
83
#if defined(GEN_TREES_H) || !defined(STDC)
84
/* non ANSI compilers may not accept trees.h */
85
86
local ct_data static_ltree[L_CODES+2];
87
/* The static literal tree. Since the bit lengths are imposed, there is no
88
 * need for the L_CODES extra codes used during heap construction. However
89
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90
 * below).
91
 */
92
93
local ct_data static_dtree[D_CODES];
94
/* The static distance tree. (Actually a trivial tree since all codes use
95
 * 5 bits.)
96
 */
97
98
uch _dist_code[DIST_CODE_LEN];
99
/* Distance codes. The first 256 values correspond to the distances
100
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
101
 * the 15 bit distances.
102
 */
103
104
uch _length_code[MAX_MATCH-MIN_MATCH+1];
105
/* length code for each normalized match length (0 == MIN_MATCH) */
106
107
local int base_length[LENGTH_CODES];
108
/* First normalized length for each code (0 = MIN_MATCH) */
109
110
local int base_dist[D_CODES];
111
/* First normalized distance for each code (0 = distance of 1) */
112
113
#else
114
#  include "trees.h"
115
#endif /* GEN_TREES_H */
116
117
struct static_tree_desc_s {
118
    const ct_data *static_tree;  /* static tree or NULL */
119
    const intf *extra_bits;      /* extra bits for each code or NULL */
120
    int     extra_base;          /* base index for extra_bits */
121
    int     elems;               /* max number of elements in the tree */
122
    int     max_length;          /* max bit length for the codes */
123
};
124
125
#ifdef NO_INIT_GLOBAL_POINTERS
126
#  define TCONST
127
#else
128
#  define TCONST const
129
#endif
130
131
local TCONST static_tree_desc static_l_desc =
132
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
133
134
local TCONST static_tree_desc static_d_desc =
135
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
136
137
local TCONST static_tree_desc static_bl_desc =
138
{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
139
140
/* ===========================================================================
141
 * Output a short LSB first on the stream.
142
 * IN assertion: there is enough room in pendingBuf.
143
 */
144
0
#define put_short(s, w) { \
145
0
    put_byte(s, (uch)((w) & 0xff)); \
146
0
    put_byte(s, (uch)((ush)(w) >> 8)); \
147
0
}
148
149
/* ===========================================================================
150
 * Reverse the first len bits of a code, using straightforward code (a faster
151
 * method would use a table)
152
 * IN assertion: 1 <= len <= 15
153
 */
154
0
local unsigned bi_reverse(unsigned code, int len) {
155
0
    register unsigned res = 0;
156
0
    do {
157
0
        res |= code & 1;
158
0
        code >>= 1, res <<= 1;
159
0
    } while (--len > 0);
160
0
    return res >> 1;
161
0
}
162
163
/* ===========================================================================
164
 * Flush the bit buffer, keeping at most 7 bits in it.
165
 */
166
0
local void bi_flush(deflate_state *s) {
167
0
    if (s->bi_valid == 16) {
168
0
        put_short(s, s->bi_buf);
169
0
        s->bi_buf = 0;
170
0
        s->bi_valid = 0;
171
0
    } else if (s->bi_valid >= 8) {
172
0
        put_byte(s, (Byte)s->bi_buf);
173
0
        s->bi_buf >>= 8;
174
0
        s->bi_valid -= 8;
175
0
    }
176
0
}
177
178
/* ===========================================================================
179
 * Flush the bit buffer and align the output on a byte boundary
180
 */
181
0
local void bi_windup(deflate_state *s) {
182
0
    if (s->bi_valid > 8) {
183
0
        put_short(s, s->bi_buf);
184
0
    } else if (s->bi_valid > 0) {
185
0
        put_byte(s, (Byte)s->bi_buf);
186
0
    }
187
0
    s->bi_used = ((s->bi_valid - 1) & 7) + 1;
188
0
    s->bi_buf = 0;
189
0
    s->bi_valid = 0;
190
#ifdef ZLIB_DEBUG
191
    s->bits_sent = (s->bits_sent + 7) & ~7;
192
#endif
193
0
}
194
195
/* ===========================================================================
196
 * Generate the codes for a given tree and bit counts (which need not be
197
 * optimal).
198
 * IN assertion: the array bl_count contains the bit length statistics for
199
 * the given tree and the field len is set for all tree elements.
200
 * OUT assertion: the field code is set for all tree elements of non
201
 *     zero code length.
202
 */
203
0
local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
204
0
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
205
0
    unsigned code = 0;         /* running code value */
206
0
    int bits;                  /* bit index */
207
0
    int n;                     /* code index */
208
209
    /* The distribution counts are first used to generate the code values
210
     * without bit reversal.
211
     */
212
0
    for (bits = 1; bits <= MAX_BITS; bits++) {
213
0
        code = (code + bl_count[bits - 1]) << 1;
214
0
        next_code[bits] = (ush)code;
215
0
    }
216
    /* Check that the bit counts in bl_count are consistent. The last code
217
     * must be all ones.
218
     */
219
0
    Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
220
0
            "inconsistent bit counts");
221
0
    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
222
223
0
    for (n = 0;  n <= max_code; n++) {
224
0
        int len = tree[n].Len;
225
0
        if (len == 0) continue;
226
        /* Now reverse the bits */
227
0
        tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
228
229
0
        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
230
0
            n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
231
0
    }
232
0
}
233
234
#ifdef GEN_TREES_H
235
local void gen_trees_header(void);
236
#endif
237
238
#ifndef ZLIB_DEBUG
239
0
#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
240
   /* Send a code of the given tree. c and tree must not have side effects */
241
242
#else /* !ZLIB_DEBUG */
243
#  define send_code(s, c, tree) \
244
     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
245
       send_bits(s, tree[c].Code, tree[c].Len); }
246
#endif
247
248
/* ===========================================================================
249
 * Send a value on a given number of bits.
250
 * IN assertion: length <= 16 and value fits in length bits.
251
 */
252
#ifdef ZLIB_DEBUG
253
local void send_bits(deflate_state *s, int value, int length) {
254
    Tracevv((stderr," l %2d v %4x ", length, value));
255
    Assert(length > 0 && length <= 15, "invalid length");
256
    s->bits_sent += (ulg)length;
257
258
    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
259
     * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
260
     * unused bits in value.
261
     */
262
    if (s->bi_valid > (int)Buf_size - length) {
263
        s->bi_buf |= (ush)value << s->bi_valid;
264
        put_short(s, s->bi_buf);
265
        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
266
        s->bi_valid += length - Buf_size;
267
    } else {
268
        s->bi_buf |= (ush)value << s->bi_valid;
269
        s->bi_valid += length;
270
    }
271
}
272
#else /* !ZLIB_DEBUG */
273
274
0
#define send_bits(s, value, length) \
275
0
{ int len = length;\
276
0
  if (s->bi_valid > (int)Buf_size - len) {\
277
0
    int val = (int)value;\
278
0
    s->bi_buf |= (ush)val << s->bi_valid;\
279
0
    put_short(s, s->bi_buf);\
280
0
    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
281
0
    s->bi_valid += len - Buf_size;\
282
0
  } else {\
283
0
    s->bi_buf |= (ush)(value) << s->bi_valid;\
284
0
    s->bi_valid += len;\
285
0
  }\
286
0
}
287
#endif /* ZLIB_DEBUG */
288
289
290
/* the arguments must not have side effects */
291
292
/* ===========================================================================
293
 * Initialize the various 'constant' tables.
294
 */
295
0
local void tr_static_init(void) {
296
#if defined(GEN_TREES_H) || !defined(STDC)
297
    static int static_init_done = 0;
298
    int n;        /* iterates over tree elements */
299
    int bits;     /* bit counter */
300
    int length;   /* length value */
301
    int code;     /* code value */
302
    int dist;     /* distance index */
303
    ush bl_count[MAX_BITS+1];
304
    /* number of codes at each bit length for an optimal tree */
305
306
    if (static_init_done) return;
307
308
    /* For some embedded targets, global variables are not initialized: */
309
#ifdef NO_INIT_GLOBAL_POINTERS
310
    static_l_desc.static_tree = static_ltree;
311
    static_l_desc.extra_bits = extra_lbits;
312
    static_d_desc.static_tree = static_dtree;
313
    static_d_desc.extra_bits = extra_dbits;
314
    static_bl_desc.extra_bits = extra_blbits;
315
#endif
316
317
    /* Initialize the mapping length (0..255) -> length code (0..28) */
318
    length = 0;
319
    for (code = 0; code < LENGTH_CODES-1; code++) {
320
        base_length[code] = length;
321
        for (n = 0; n < (1 << extra_lbits[code]); n++) {
322
            _length_code[length++] = (uch)code;
323
        }
324
    }
325
    Assert (length == 256, "tr_static_init: length != 256");
326
    /* Note that the length 255 (match length 258) can be represented
327
     * in two different ways: code 284 + 5 bits or code 285, so we
328
     * overwrite length_code[255] to use the best encoding:
329
     */
330
    _length_code[length - 1] = (uch)code;
331
332
    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
333
    dist = 0;
334
    for (code = 0 ; code < 16; code++) {
335
        base_dist[code] = dist;
336
        for (n = 0; n < (1 << extra_dbits[code]); n++) {
337
            _dist_code[dist++] = (uch)code;
338
        }
339
    }
340
    Assert (dist == 256, "tr_static_init: dist != 256");
341
    dist >>= 7; /* from now on, all distances are divided by 128 */
342
    for ( ; code < D_CODES; code++) {
343
        base_dist[code] = dist << 7;
344
        for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
345
            _dist_code[256 + dist++] = (uch)code;
346
        }
347
    }
348
    Assert (dist == 256, "tr_static_init: 256 + dist != 512");
349
350
    /* Construct the codes of the static literal tree */
351
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
352
    n = 0;
353
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
354
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
355
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
356
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
357
    /* Codes 286 and 287 do not exist, but we must include them in the
358
     * tree construction to get a canonical Huffman tree (longest code
359
     * all ones)
360
     */
361
    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
362
363
    /* The static distance tree is trivial: */
364
    for (n = 0; n < D_CODES; n++) {
365
        static_dtree[n].Len = 5;
366
        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
367
    }
368
    static_init_done = 1;
369
370
#  ifdef GEN_TREES_H
371
    gen_trees_header();
372
#  endif
373
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
374
0
}
375
376
/* ===========================================================================
377
 * Generate the file trees.h describing the static trees.
378
 */
379
#ifdef GEN_TREES_H
380
#  ifndef ZLIB_DEBUG
381
#    include <stdio.h>
382
#  endif
383
384
#  define SEPARATOR(i, last, width) \
385
      ((i) == (last)? "\n};\n\n" :    \
386
       ((i) % (width) == (width) - 1 ? ",\n" : ", "))
387
388
void gen_trees_header(void) {
389
    FILE *header = fopen("trees.h", "w");
390
    int i;
391
392
    Assert (header != NULL, "Can't open trees.h");
393
    fprintf(header,
394
            "/* header created automatically with -DGEN_TREES_H */\n\n");
395
396
    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
397
    for (i = 0; i < L_CODES+2; i++) {
398
        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
399
                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
400
    }
401
402
    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
403
    for (i = 0; i < D_CODES; i++) {
404
        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
405
                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
406
    }
407
408
    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
409
    for (i = 0; i < DIST_CODE_LEN; i++) {
410
        fprintf(header, "%2u%s", _dist_code[i],
411
                SEPARATOR(i, DIST_CODE_LEN-1, 20));
412
    }
413
414
    fprintf(header,
415
        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
416
    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
417
        fprintf(header, "%2u%s", _length_code[i],
418
                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
419
    }
420
421
    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
422
    for (i = 0; i < LENGTH_CODES; i++) {
423
        fprintf(header, "%1u%s", base_length[i],
424
                SEPARATOR(i, LENGTH_CODES-1, 20));
425
    }
426
427
    fprintf(header, "local const int base_dist[D_CODES] = {\n");
428
    for (i = 0; i < D_CODES; i++) {
429
        fprintf(header, "%5u%s", base_dist[i],
430
                SEPARATOR(i, D_CODES-1, 10));
431
    }
432
433
    fclose(header);
434
}
435
#endif /* GEN_TREES_H */
436
437
/* ===========================================================================
438
 * Initialize a new block.
439
 */
440
0
local void init_block(deflate_state *s) {
441
0
    int n; /* iterates over tree elements */
442
443
    /* Initialize the trees. */
444
0
    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
445
0
    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
446
0
    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
447
448
0
    s->dyn_ltree[END_BLOCK].Freq = 1;
449
0
    s->opt_len = s->static_len = 0L;
450
0
    s->sym_next = s->matches = 0;
451
0
}
452
453
/* ===========================================================================
454
 * Initialize the tree data structures for a new zlib stream.
455
 */
456
0
void ZLIB_INTERNAL _tr_init(deflate_state *s) {
457
0
    tr_static_init();
458
459
0
    s->l_desc.dyn_tree = s->dyn_ltree;
460
0
    s->l_desc.stat_desc = &static_l_desc;
461
462
0
    s->d_desc.dyn_tree = s->dyn_dtree;
463
0
    s->d_desc.stat_desc = &static_d_desc;
464
465
0
    s->bl_desc.dyn_tree = s->bl_tree;
466
0
    s->bl_desc.stat_desc = &static_bl_desc;
467
468
0
    s->bi_buf = 0;
469
0
    s->bi_valid = 0;
470
0
    s->bi_used = 0;
471
#ifdef ZLIB_DEBUG
472
    s->compressed_len = 0L;
473
    s->bits_sent = 0L;
474
#endif
475
476
    /* Initialize the first block of the first file: */
477
0
    init_block(s);
478
0
}
479
480
0
#define SMALLEST 1
481
/* Index within the heap array of least frequent node in the Huffman tree */
482
483
484
/* ===========================================================================
485
 * Remove the smallest element from the heap and recreate the heap with
486
 * one less element. Updates heap and heap_len.
487
 */
488
0
#define pqremove(s, tree, top) \
489
0
{\
490
0
    top = s->heap[SMALLEST]; \
491
0
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
492
0
    pqdownheap(s, tree, SMALLEST); \
493
0
}
494
495
/* ===========================================================================
496
 * Compares to subtrees, using the tree depth as tie breaker when
497
 * the subtrees have equal frequency. This minimizes the worst case length.
498
 */
499
#define smaller(tree, n, m, depth) \
500
0
   (tree[n].Freq < tree[m].Freq || \
501
0
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
502
503
/* ===========================================================================
504
 * Restore the heap property by moving down the tree starting at node k,
505
 * exchanging a node with the smallest of its two sons if necessary, stopping
506
 * when the heap property is re-established (each father smaller than its
507
 * two sons).
508
 */
509
0
local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
510
0
    int v = s->heap[k];
511
0
    int j = k << 1;  /* left son of k */
512
0
    while (j <= s->heap_len) {
513
        /* Set j to the smallest of the two sons: */
514
0
        if (j < s->heap_len &&
515
0
            smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
516
0
            j++;
517
0
        }
518
        /* Exit if v is smaller than both sons */
519
0
        if (smaller(tree, v, s->heap[j], s->depth)) break;
520
521
        /* Exchange v with the smallest son */
522
0
        s->heap[k] = s->heap[j];  k = j;
523
524
        /* And continue down the tree, setting j to the left son of k */
525
0
        j <<= 1;
526
0
    }
527
0
    s->heap[k] = v;
528
0
}
529
530
/* ===========================================================================
531
 * Compute the optimal bit lengths for a tree and update the total bit length
532
 * for the current block.
533
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
534
 *    above are the tree nodes sorted by increasing frequency.
535
 * OUT assertions: the field len is set to the optimal bit length, the
536
 *     array bl_count contains the frequencies for each bit length.
537
 *     The length opt_len is updated; static_len is also updated if stree is
538
 *     not null.
539
 */
540
0
local void gen_bitlen(deflate_state *s, tree_desc *desc) {
541
0
    ct_data *tree        = desc->dyn_tree;
542
0
    int max_code         = desc->max_code;
543
0
    const ct_data *stree = desc->stat_desc->static_tree;
544
0
    const intf *extra    = desc->stat_desc->extra_bits;
545
0
    int base             = desc->stat_desc->extra_base;
546
0
    int max_length       = desc->stat_desc->max_length;
547
0
    int h;              /* heap index */
548
0
    int n, m;           /* iterate over the tree elements */
549
0
    int bits;           /* bit length */
550
0
    int xbits;          /* extra bits */
551
0
    ush f;              /* frequency */
552
0
    int overflow = 0;   /* number of elements with bit length too large */
553
554
0
    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
555
556
    /* In a first pass, compute the optimal bit lengths (which may
557
     * overflow in the case of the bit length tree).
558
     */
559
0
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
560
561
0
    for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
562
0
        n = s->heap[h];
563
0
        bits = tree[tree[n].Dad].Len + 1;
564
0
        if (bits > max_length) bits = max_length, overflow++;
565
0
        tree[n].Len = (ush)bits;
566
        /* We overwrite tree[n].Dad which is no longer needed */
567
568
0
        if (n > max_code) continue; /* not a leaf node */
569
570
0
        s->bl_count[bits]++;
571
0
        xbits = 0;
572
0
        if (n >= base) xbits = extra[n - base];
573
0
        f = tree[n].Freq;
574
0
        s->opt_len += (ulg)f * (unsigned)(bits + xbits);
575
0
        if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
576
0
    }
577
0
    if (overflow == 0) return;
578
579
0
    Tracev((stderr,"\nbit length overflow\n"));
580
    /* This happens for example on obj2 and pic of the Calgary corpus */
581
582
    /* Find the first bit length which could increase: */
583
0
    do {
584
0
        bits = max_length - 1;
585
0
        while (s->bl_count[bits] == 0) bits--;
586
0
        s->bl_count[bits]--;        /* move one leaf down the tree */
587
0
        s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
588
0
        s->bl_count[max_length]--;
589
        /* The brother of the overflow item also moves one step up,
590
         * but this does not affect bl_count[max_length]
591
         */
592
0
        overflow -= 2;
593
0
    } while (overflow > 0);
594
595
    /* Now recompute all bit lengths, scanning in increasing frequency.
596
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
597
     * lengths instead of fixing only the wrong ones. This idea is taken
598
     * from 'ar' written by Haruhiko Okumura.)
599
     */
600
0
    for (bits = max_length; bits != 0; bits--) {
601
0
        n = s->bl_count[bits];
602
0
        while (n != 0) {
603
0
            m = s->heap[--h];
604
0
            if (m > max_code) continue;
605
0
            if ((unsigned) tree[m].Len != (unsigned) bits) {
606
0
                Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
607
0
                s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
608
0
                tree[m].Len = (ush)bits;
609
0
            }
610
0
            n--;
611
0
        }
612
0
    }
613
0
}
614
615
#ifdef DUMP_BL_TREE
616
#  include <stdio.h>
617
#endif
618
619
/* ===========================================================================
620
 * Construct one Huffman tree and assigns the code bit strings and lengths.
621
 * Update the total bit length for the current block.
622
 * IN assertion: the field freq is set for all tree elements.
623
 * OUT assertions: the fields len and code are set to the optimal bit length
624
 *     and corresponding code. The length opt_len is updated; static_len is
625
 *     also updated if stree is not null. The field max_code is set.
626
 */
627
0
local void build_tree(deflate_state *s, tree_desc *desc) {
628
0
    ct_data *tree         = desc->dyn_tree;
629
0
    const ct_data *stree  = desc->stat_desc->static_tree;
630
0
    int elems             = desc->stat_desc->elems;
631
0
    int n, m;          /* iterate over heap elements */
632
0
    int max_code = -1; /* largest code with non zero frequency */
633
0
    int node;          /* new node being created */
634
635
    /* Construct the initial heap, with least frequent element in
636
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
637
     * heap[0] is not used.
638
     */
639
0
    s->heap_len = 0, s->heap_max = HEAP_SIZE;
640
641
0
    for (n = 0; n < elems; n++) {
642
0
        if (tree[n].Freq != 0) {
643
0
            s->heap[++(s->heap_len)] = max_code = n;
644
0
            s->depth[n] = 0;
645
0
        } else {
646
0
            tree[n].Len = 0;
647
0
        }
648
0
    }
649
650
    /* The pkzip format requires that at least one distance code exists,
651
     * and that at least one bit should be sent even if there is only one
652
     * possible code. So to avoid special checks later on we force at least
653
     * two codes of non zero frequency.
654
     */
655
0
    while (s->heap_len < 2) {
656
0
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
657
0
        tree[node].Freq = 1;
658
0
        s->depth[node] = 0;
659
0
        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
660
        /* node is 0 or 1 so it does not have extra bits */
661
0
    }
662
0
    desc->max_code = max_code;
663
664
    /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
665
     * establish sub-heaps of increasing lengths:
666
     */
667
0
    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
668
669
    /* Construct the Huffman tree by repeatedly combining the least two
670
     * frequent nodes.
671
     */
672
0
    node = elems;              /* next internal node of the tree */
673
0
    do {
674
0
        pqremove(s, tree, n);  /* n = node of least frequency */
675
0
        m = s->heap[SMALLEST]; /* m = node of next least frequency */
676
677
0
        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
678
0
        s->heap[--(s->heap_max)] = m;
679
680
        /* Create a new node father of n and m */
681
0
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
682
0
        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
683
0
                                s->depth[n] : s->depth[m]) + 1);
684
0
        tree[n].Dad = tree[m].Dad = (ush)node;
685
#ifdef DUMP_BL_TREE
686
        if (tree == s->bl_tree) {
687
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
688
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
689
        }
690
#endif
691
        /* and insert the new node in the heap */
692
0
        s->heap[SMALLEST] = node++;
693
0
        pqdownheap(s, tree, SMALLEST);
694
695
0
    } while (s->heap_len >= 2);
696
697
0
    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
698
699
    /* At this point, the fields freq and dad are set. We can now
700
     * generate the bit lengths.
701
     */
702
0
    gen_bitlen(s, (tree_desc *)desc);
703
704
    /* The field len is now set, we can generate the bit codes */
705
0
    gen_codes ((ct_data *)tree, max_code, s->bl_count);
706
0
}
707
708
/* ===========================================================================
709
 * Scan a literal or distance tree to determine the frequencies of the codes
710
 * in the bit length tree.
711
 */
712
0
local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
713
0
    int n;                     /* iterates over all tree elements */
714
0
    int prevlen = -1;          /* last emitted length */
715
0
    int curlen;                /* length of current code */
716
0
    int nextlen = tree[0].Len; /* length of next code */
717
0
    int count = 0;             /* repeat count of the current code */
718
0
    int max_count = 7;         /* max repeat count */
719
0
    int min_count = 4;         /* min repeat count */
720
721
0
    if (nextlen == 0) max_count = 138, min_count = 3;
722
0
    tree[max_code + 1].Len = (ush)0xffff; /* guard */
723
724
0
    for (n = 0; n <= max_code; n++) {
725
0
        curlen = nextlen; nextlen = tree[n + 1].Len;
726
0
        if (++count < max_count && curlen == nextlen) {
727
0
            continue;
728
0
        } else if (count < min_count) {
729
0
            s->bl_tree[curlen].Freq += (ush)count;
730
0
        } else if (curlen != 0) {
731
0
            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
732
0
            s->bl_tree[REP_3_6].Freq++;
733
0
        } else if (count <= 10) {
734
0
            s->bl_tree[REPZ_3_10].Freq++;
735
0
        } else {
736
0
            s->bl_tree[REPZ_11_138].Freq++;
737
0
        }
738
0
        count = 0; prevlen = curlen;
739
0
        if (nextlen == 0) {
740
0
            max_count = 138, min_count = 3;
741
0
        } else if (curlen == nextlen) {
742
0
            max_count = 6, min_count = 3;
743
0
        } else {
744
0
            max_count = 7, min_count = 4;
745
0
        }
746
0
    }
747
0
}
748
749
/* ===========================================================================
750
 * Send a literal or distance tree in compressed form, using the codes in
751
 * bl_tree.
752
 */
753
0
local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
754
0
    int n;                     /* iterates over all tree elements */
755
0
    int prevlen = -1;          /* last emitted length */
756
0
    int curlen;                /* length of current code */
757
0
    int nextlen = tree[0].Len; /* length of next code */
758
0
    int count = 0;             /* repeat count of the current code */
759
0
    int max_count = 7;         /* max repeat count */
760
0
    int min_count = 4;         /* min repeat count */
761
762
    /* tree[max_code + 1].Len = -1; */  /* guard already set */
763
0
    if (nextlen == 0) max_count = 138, min_count = 3;
764
765
0
    for (n = 0; n <= max_code; n++) {
766
0
        curlen = nextlen; nextlen = tree[n + 1].Len;
767
0
        if (++count < max_count && curlen == nextlen) {
768
0
            continue;
769
0
        } else if (count < min_count) {
770
0
            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
771
772
0
        } else if (curlen != 0) {
773
0
            if (curlen != prevlen) {
774
0
                send_code(s, curlen, s->bl_tree); count--;
775
0
            }
776
0
            Assert(count >= 3 && count <= 6, " 3_6?");
777
0
            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
778
779
0
        } else if (count <= 10) {
780
0
            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
781
782
0
        } else {
783
0
            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
784
0
        }
785
0
        count = 0; prevlen = curlen;
786
0
        if (nextlen == 0) {
787
0
            max_count = 138, min_count = 3;
788
0
        } else if (curlen == nextlen) {
789
0
            max_count = 6, min_count = 3;
790
0
        } else {
791
0
            max_count = 7, min_count = 4;
792
0
        }
793
0
    }
794
0
}
795
796
/* ===========================================================================
797
 * Construct the Huffman tree for the bit lengths and return the index in
798
 * bl_order of the last bit length code to send.
799
 */
800
0
local int build_bl_tree(deflate_state *s) {
801
0
    int max_blindex;  /* index of last bit length code of non zero freq */
802
803
    /* Determine the bit length frequencies for literal and distance trees */
804
0
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
805
0
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
806
807
    /* Build the bit length tree: */
808
0
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
809
    /* opt_len now includes the length of the tree representations, except the
810
     * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
811
     */
812
813
    /* Determine the number of bit length codes to send. The pkzip format
814
     * requires that at least 4 bit length codes be sent. (appnote.txt says
815
     * 3 but the actual value used is 4.)
816
     */
817
0
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
818
0
        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
819
0
    }
820
    /* Update opt_len to include the bit length tree and counts */
821
0
    s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
822
0
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
823
0
            s->opt_len, s->static_len));
824
825
0
    return max_blindex;
826
0
}
827
828
/* ===========================================================================
829
 * Send the header for a block using dynamic Huffman trees: the counts, the
830
 * lengths of the bit length codes, the literal tree and the distance tree.
831
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
832
 */
833
local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
834
0
                          int blcodes) {
835
0
    int rank;                    /* index in bl_order */
836
837
0
    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
838
0
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
839
0
            "too many codes");
840
0
    Tracev((stderr, "\nbl counts: "));
841
0
    send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
842
0
    send_bits(s, dcodes - 1,   5);
843
0
    send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
844
0
    for (rank = 0; rank < blcodes; rank++) {
845
0
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
846
0
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
847
0
    }
848
0
    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
849
850
0
    send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
851
0
    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
852
853
0
    send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
854
0
    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
855
0
}
856
857
/* ===========================================================================
858
 * Send a stored block
859
 */
860
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
861
0
                                    ulg stored_len, int last) {
862
0
    send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
863
0
    bi_windup(s);        /* align on byte boundary */
864
0
    put_short(s, (ush)stored_len);
865
0
    put_short(s, (ush)~stored_len);
866
0
    if (stored_len)
867
0
        zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
868
0
    s->pending += stored_len;
869
#ifdef ZLIB_DEBUG
870
    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
871
    s->compressed_len += (stored_len + 4) << 3;
872
    s->bits_sent += 2*16;
873
    s->bits_sent += stored_len << 3;
874
#endif
875
0
}
876
877
/* ===========================================================================
878
 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
879
 */
880
0
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
881
0
    bi_flush(s);
882
0
}
883
884
/* ===========================================================================
885
 * Send one empty static block to give enough lookahead for inflate.
886
 * This takes 10 bits, of which 7 may remain in the bit buffer.
887
 */
888
0
void ZLIB_INTERNAL _tr_align(deflate_state *s) {
889
0
    send_bits(s, STATIC_TREES<<1, 3);
890
0
    send_code(s, END_BLOCK, static_ltree);
891
#ifdef ZLIB_DEBUG
892
    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
893
#endif
894
0
    bi_flush(s);
895
0
}
896
897
/* ===========================================================================
898
 * Send the block data compressed using the given Huffman trees
899
 */
900
local void compress_block(deflate_state *s, const ct_data *ltree,
901
0
                          const ct_data *dtree) {
902
0
    unsigned dist;      /* distance of matched string */
903
0
    int lc;             /* match length or unmatched char (if dist == 0) */
904
0
    unsigned sx = 0;    /* running index in symbol buffers */
905
0
    unsigned code;      /* the code to send */
906
0
    int extra;          /* number of extra bits to send */
907
908
0
    if (s->sym_next != 0) do {
909
#ifdef LIT_MEM
910
        dist = s->d_buf[sx];
911
        lc = s->l_buf[sx++];
912
#else
913
0
        dist = s->sym_buf[sx++] & 0xff;
914
0
        dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
915
0
        lc = s->sym_buf[sx++];
916
0
#endif
917
0
        if (dist == 0) {
918
0
            send_code(s, lc, ltree); /* send a literal byte */
919
0
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
920
0
        } else {
921
            /* Here, lc is the match length - MIN_MATCH */
922
0
            code = _length_code[lc];
923
0
            send_code(s, code + LITERALS + 1, ltree);   /* send length code */
924
0
            extra = extra_lbits[code];
925
0
            if (extra != 0) {
926
0
                lc -= base_length[code];
927
0
                send_bits(s, lc, extra);       /* send the extra length bits */
928
0
            }
929
0
            dist--; /* dist is now the match distance - 1 */
930
0
            code = d_code(dist);
931
0
            Assert (code < D_CODES, "bad d_code");
932
933
0
            send_code(s, code, dtree);       /* send the distance code */
934
0
            extra = extra_dbits[code];
935
0
            if (extra != 0) {
936
0
                dist -= (unsigned)base_dist[code];
937
0
                send_bits(s, dist, extra);   /* send the extra distance bits */
938
0
            }
939
0
        } /* literal or match pair ? */
940
941
        /* Check for no overlay of pending_buf on needed symbols */
942
#ifdef LIT_MEM
943
        Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
944
#else
945
0
        Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
946
0
#endif
947
948
0
    } while (sx < s->sym_next);
949
950
0
    send_code(s, END_BLOCK, ltree);
951
0
}
952
953
/* ===========================================================================
954
 * Check if the data type is TEXT or BINARY, using the following algorithm:
955
 * - TEXT if the two conditions below are satisfied:
956
 *    a) There are no non-portable control characters belonging to the
957
 *       "block list" (0..6, 14..25, 28..31).
958
 *    b) There is at least one printable character belonging to the
959
 *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
960
 * - BINARY otherwise.
961
 * - The following partially-portable control characters form a
962
 *   "gray list" that is ignored in this detection algorithm:
963
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
964
 * IN assertion: the fields Freq of dyn_ltree are set.
965
 */
966
0
local int detect_data_type(deflate_state *s) {
967
    /* block_mask is the bit mask of block-listed bytes
968
     * set bits 0..6, 14..25, and 28..31
969
     * 0xf3ffc07f = binary 11110011111111111100000001111111
970
     */
971
0
    unsigned long block_mask = 0xf3ffc07fUL;
972
0
    int n;
973
974
    /* Check for non-textual ("block-listed") bytes. */
975
0
    for (n = 0; n <= 31; n++, block_mask >>= 1)
976
0
        if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
977
0
            return Z_BINARY;
978
979
    /* Check for textual ("allow-listed") bytes. */
980
0
    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
981
0
            || s->dyn_ltree[13].Freq != 0)
982
0
        return Z_TEXT;
983
0
    for (n = 32; n < LITERALS; n++)
984
0
        if (s->dyn_ltree[n].Freq != 0)
985
0
            return Z_TEXT;
986
987
    /* There are no "block-listed" or "allow-listed" bytes:
988
     * this stream either is empty or has tolerated ("gray-listed") bytes only.
989
     */
990
0
    return Z_BINARY;
991
0
}
992
993
/* ===========================================================================
994
 * Determine the best encoding for the current block: dynamic trees, static
995
 * trees or store, and write out the encoded block.
996
 */
997
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
998
0
                                   ulg stored_len, int last) {
999
0
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1000
0
    int max_blindex = 0;  /* index of last bit length code of non zero freq */
1001
1002
    /* Build the Huffman trees unless a stored block is forced */
1003
0
    if (s->level > 0) {
1004
1005
        /* Check if the file is binary or text */
1006
0
        if (s->strm->data_type == Z_UNKNOWN)
1007
0
            s->strm->data_type = detect_data_type(s);
1008
1009
        /* Construct the literal and distance trees */
1010
0
        build_tree(s, (tree_desc *)(&(s->l_desc)));
1011
0
        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1012
0
                s->static_len));
1013
1014
0
        build_tree(s, (tree_desc *)(&(s->d_desc)));
1015
0
        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1016
0
                s->static_len));
1017
        /* At this point, opt_len and static_len are the total bit lengths of
1018
         * the compressed block data, excluding the tree representations.
1019
         */
1020
1021
        /* Build the bit length tree for the above two trees, and get the index
1022
         * in bl_order of the last bit length code to send.
1023
         */
1024
0
        max_blindex = build_bl_tree(s);
1025
1026
        /* Determine the best encoding. Compute the block lengths in bytes. */
1027
0
        opt_lenb = (s->opt_len + 3 + 7) >> 3;
1028
0
        static_lenb = (s->static_len + 3 + 7) >> 3;
1029
1030
0
        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1031
0
                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1032
0
                s->sym_next / 3));
1033
1034
0
#ifndef FORCE_STATIC
1035
0
        if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1036
0
#endif
1037
0
            opt_lenb = static_lenb;
1038
1039
0
    } else {
1040
0
        Assert(buf != (char*)0, "lost buf");
1041
0
        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1042
0
    }
1043
1044
#ifdef FORCE_STORED
1045
    if (buf != (char*)0) { /* force stored block */
1046
#else
1047
0
    if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1048
                       /* 4: two words for the lengths */
1049
0
#endif
1050
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1051
         * Otherwise we can't have processed more than WSIZE input bytes since
1052
         * the last block flush, because compression would have been
1053
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1054
         * transform a block into a stored block.
1055
         */
1056
0
        _tr_stored_block(s, buf, stored_len, last);
1057
1058
0
    } else if (static_lenb == opt_lenb) {
1059
0
        send_bits(s, (STATIC_TREES<<1) + last, 3);
1060
0
        compress_block(s, (const ct_data *)static_ltree,
1061
0
                       (const ct_data *)static_dtree);
1062
#ifdef ZLIB_DEBUG
1063
        s->compressed_len += 3 + s->static_len;
1064
#endif
1065
0
    } else {
1066
0
        send_bits(s, (DYN_TREES<<1) + last, 3);
1067
0
        send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1068
0
                       max_blindex + 1);
1069
0
        compress_block(s, (const ct_data *)s->dyn_ltree,
1070
0
                       (const ct_data *)s->dyn_dtree);
1071
#ifdef ZLIB_DEBUG
1072
        s->compressed_len += 3 + s->opt_len;
1073
#endif
1074
0
    }
1075
0
    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1076
    /* The above check is made mod 2^32, for files larger than 512 MB
1077
     * and uLong implemented on 32 bits.
1078
     */
1079
0
    init_block(s);
1080
1081
0
    if (last) {
1082
0
        bi_windup(s);
1083
#ifdef ZLIB_DEBUG
1084
        s->compressed_len += 7;  /* align on byte boundary */
1085
#endif
1086
0
    }
1087
0
    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1088
0
           s->compressed_len - 7*last));
1089
0
}
1090
1091
/* ===========================================================================
1092
 * Save the match info and tally the frequency counts. Return true if
1093
 * the current block must be flushed.
1094
 */
1095
0
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1096
#ifdef LIT_MEM
1097
    s->d_buf[s->sym_next] = (ush)dist;
1098
    s->l_buf[s->sym_next++] = (uch)lc;
1099
#else
1100
0
    s->sym_buf[s->sym_next++] = (uch)dist;
1101
0
    s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1102
0
    s->sym_buf[s->sym_next++] = (uch)lc;
1103
0
#endif
1104
0
    if (dist == 0) {
1105
        /* lc is the unmatched char */
1106
0
        s->dyn_ltree[lc].Freq++;
1107
0
    } else {
1108
0
        s->matches++;
1109
        /* Here, lc is the match length - MIN_MATCH */
1110
0
        dist--;             /* dist = match distance - 1 */
1111
0
        Assert((ush)dist < (ush)MAX_DIST(s) &&
1112
0
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1113
0
               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1114
1115
0
        s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1116
0
        s->dyn_dtree[d_code(dist)].Freq++;
1117
0
    }
1118
0
    return (s->sym_next == s->sym_end);
1119
0
}