/src/zstd/lib/compress/zstd_ldm.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) Meta Platforms, Inc. and affiliates. |
3 | | * All rights reserved. |
4 | | * |
5 | | * This source code is licensed under both the BSD-style license (found in the |
6 | | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
7 | | * in the COPYING file in the root directory of this source tree). |
8 | | * You may select, at your option, one of the above-listed licenses. |
9 | | */ |
10 | | |
11 | | #include "zstd_ldm.h" |
12 | | |
13 | | #include "../common/debug.h" |
14 | | #include "../common/xxhash.h" |
15 | | #include "zstd_fast.h" /* ZSTD_fillHashTable() */ |
16 | | #include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */ |
17 | | #include "zstd_ldm_geartab.h" |
18 | | |
19 | | #define LDM_BUCKET_SIZE_LOG 4 |
20 | 0 | #define LDM_MIN_MATCH_LENGTH 64 |
21 | | #define LDM_HASH_RLOG 7 |
22 | | |
23 | | typedef struct { |
24 | | U64 rolling; |
25 | | U64 stopMask; |
26 | | } ldmRollingHashState_t; |
27 | | |
28 | | /** ZSTD_ldm_gear_init(): |
29 | | * |
30 | | * Initializes the rolling hash state such that it will honor the |
31 | | * settings in params. */ |
32 | | static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params) |
33 | 0 | { |
34 | 0 | unsigned maxBitsInMask = MIN(params->minMatchLength, 64); |
35 | 0 | unsigned hashRateLog = params->hashRateLog; |
36 | |
|
37 | 0 | state->rolling = ~(U32)0; |
38 | | |
39 | | /* The choice of the splitting criterion is subject to two conditions: |
40 | | * 1. it has to trigger on average every 2^(hashRateLog) bytes; |
41 | | * 2. ideally, it has to depend on a window of minMatchLength bytes. |
42 | | * |
43 | | * In the gear hash algorithm, bit n depends on the last n bytes; |
44 | | * so in order to obtain a good quality splitting criterion it is |
45 | | * preferable to use bits with high weight. |
46 | | * |
47 | | * To match condition 1 we use a mask with hashRateLog bits set |
48 | | * and, because of the previous remark, we make sure these bits |
49 | | * have the highest possible weight while still respecting |
50 | | * condition 2. |
51 | | */ |
52 | 0 | if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) { |
53 | 0 | state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog); |
54 | 0 | } else { |
55 | | /* In this degenerate case we simply honor the hash rate. */ |
56 | 0 | state->stopMask = ((U64)1 << hashRateLog) - 1; |
57 | 0 | } |
58 | 0 | } |
59 | | |
60 | | /** ZSTD_ldm_gear_reset() |
61 | | * Feeds [data, data + minMatchLength) into the hash without registering any |
62 | | * splits. This effectively resets the hash state. This is used when skipping |
63 | | * over data, either at the beginning of a block, or skipping sections. |
64 | | */ |
65 | | static void ZSTD_ldm_gear_reset(ldmRollingHashState_t* state, |
66 | | BYTE const* data, size_t minMatchLength) |
67 | 0 | { |
68 | 0 | U64 hash = state->rolling; |
69 | 0 | size_t n = 0; |
70 | |
|
71 | 0 | #define GEAR_ITER_ONCE() do { \ |
72 | 0 | hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \ |
73 | 0 | n += 1; \ |
74 | 0 | } while (0) |
75 | 0 | while (n + 3 < minMatchLength) { |
76 | 0 | GEAR_ITER_ONCE(); |
77 | 0 | GEAR_ITER_ONCE(); |
78 | 0 | GEAR_ITER_ONCE(); |
79 | 0 | GEAR_ITER_ONCE(); |
80 | 0 | } |
81 | 0 | while (n < minMatchLength) { |
82 | 0 | GEAR_ITER_ONCE(); |
83 | 0 | } |
84 | 0 | #undef GEAR_ITER_ONCE |
85 | 0 | } |
86 | | |
87 | | /** ZSTD_ldm_gear_feed(): |
88 | | * |
89 | | * Registers in the splits array all the split points found in the first |
90 | | * size bytes following the data pointer. This function terminates when |
91 | | * either all the data has been processed or LDM_BATCH_SIZE splits are |
92 | | * present in the splits array. |
93 | | * |
94 | | * Precondition: The splits array must not be full. |
95 | | * Returns: The number of bytes processed. */ |
96 | | static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state, |
97 | | BYTE const* data, size_t size, |
98 | | size_t* splits, unsigned* numSplits) |
99 | 0 | { |
100 | 0 | size_t n; |
101 | 0 | U64 hash, mask; |
102 | |
|
103 | 0 | hash = state->rolling; |
104 | 0 | mask = state->stopMask; |
105 | 0 | n = 0; |
106 | |
|
107 | 0 | #define GEAR_ITER_ONCE() do { \ |
108 | 0 | hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \ |
109 | 0 | n += 1; \ |
110 | 0 | if (UNLIKELY((hash & mask) == 0)) { \ |
111 | 0 | splits[*numSplits] = n; \ |
112 | 0 | *numSplits += 1; \ |
113 | 0 | if (*numSplits == LDM_BATCH_SIZE) \ |
114 | 0 | goto done; \ |
115 | 0 | } \ |
116 | 0 | } while (0) |
117 | |
|
118 | 0 | while (n + 3 < size) { |
119 | 0 | GEAR_ITER_ONCE(); |
120 | 0 | GEAR_ITER_ONCE(); |
121 | 0 | GEAR_ITER_ONCE(); |
122 | 0 | GEAR_ITER_ONCE(); |
123 | 0 | } |
124 | 0 | while (n < size) { |
125 | 0 | GEAR_ITER_ONCE(); |
126 | 0 | } |
127 | | |
128 | 0 | #undef GEAR_ITER_ONCE |
129 | | |
130 | 0 | done: |
131 | 0 | state->rolling = hash; |
132 | 0 | return n; |
133 | 0 | } |
134 | | |
135 | | void ZSTD_ldm_adjustParameters(ldmParams_t* params, |
136 | | const ZSTD_compressionParameters* cParams) |
137 | 0 | { |
138 | 0 | params->windowLog = cParams->windowLog; |
139 | 0 | ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX); |
140 | 0 | DEBUGLOG(4, "ZSTD_ldm_adjustParameters"); |
141 | 0 | if (params->hashRateLog == 0) { |
142 | 0 | if (params->hashLog > 0) { |
143 | | /* if params->hashLog is set, derive hashRateLog from it */ |
144 | 0 | assert(params->hashLog <= ZSTD_HASHLOG_MAX); |
145 | 0 | if (params->windowLog > params->hashLog) { |
146 | 0 | params->hashRateLog = params->windowLog - params->hashLog; |
147 | 0 | } |
148 | 0 | } else { |
149 | 0 | assert(1 <= (int)cParams->strategy && (int)cParams->strategy <= 9); |
150 | | /* mapping from [fast, rate7] to [btultra2, rate4] */ |
151 | 0 | params->hashRateLog = 7 - (cParams->strategy/3); |
152 | 0 | } |
153 | 0 | } |
154 | 0 | if (params->hashLog == 0) { |
155 | 0 | params->hashLog = BOUNDED(ZSTD_HASHLOG_MIN, params->windowLog - params->hashRateLog, ZSTD_HASHLOG_MAX); |
156 | 0 | } |
157 | 0 | if (params->minMatchLength == 0) { |
158 | 0 | params->minMatchLength = LDM_MIN_MATCH_LENGTH; |
159 | 0 | if (cParams->strategy >= ZSTD_btultra) |
160 | 0 | params->minMatchLength /= 2; |
161 | 0 | } |
162 | 0 | if (params->bucketSizeLog==0) { |
163 | 0 | assert(1 <= (int)cParams->strategy && (int)cParams->strategy <= 9); |
164 | 0 | params->bucketSizeLog = BOUNDED(LDM_BUCKET_SIZE_LOG, (U32)cParams->strategy, ZSTD_LDM_BUCKETSIZELOG_MAX); |
165 | 0 | } |
166 | 0 | params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog); |
167 | 0 | } |
168 | | |
169 | | size_t ZSTD_ldm_getTableSize(ldmParams_t params) |
170 | 0 | { |
171 | 0 | size_t const ldmHSize = ((size_t)1) << params.hashLog; |
172 | 0 | size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog); |
173 | 0 | size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog); |
174 | 0 | size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize) |
175 | 0 | + ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t)); |
176 | 0 | return params.enableLdm == ZSTD_ps_enable ? totalSize : 0; |
177 | 0 | } |
178 | | |
179 | | size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize) |
180 | 0 | { |
181 | 0 | return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0; |
182 | 0 | } |
183 | | |
184 | | /** ZSTD_ldm_getBucket() : |
185 | | * Returns a pointer to the start of the bucket associated with hash. */ |
186 | | static ldmEntry_t* ZSTD_ldm_getBucket( |
187 | | const ldmState_t* ldmState, size_t hash, U32 const bucketSizeLog) |
188 | 0 | { |
189 | 0 | return ldmState->hashTable + (hash << bucketSizeLog); |
190 | 0 | } |
191 | | |
192 | | /** ZSTD_ldm_insertEntry() : |
193 | | * Insert the entry with corresponding hash into the hash table */ |
194 | | static void ZSTD_ldm_insertEntry(ldmState_t* ldmState, |
195 | | size_t const hash, const ldmEntry_t entry, |
196 | | U32 const bucketSizeLog) |
197 | 0 | { |
198 | 0 | BYTE* const pOffset = ldmState->bucketOffsets + hash; |
199 | 0 | unsigned const offset = *pOffset; |
200 | |
|
201 | 0 | *(ZSTD_ldm_getBucket(ldmState, hash, bucketSizeLog) + offset) = entry; |
202 | 0 | *pOffset = (BYTE)((offset + 1) & ((1u << bucketSizeLog) - 1)); |
203 | |
|
204 | 0 | } |
205 | | |
206 | | /** ZSTD_ldm_countBackwardsMatch() : |
207 | | * Returns the number of bytes that match backwards before pIn and pMatch. |
208 | | * |
209 | | * We count only bytes where pMatch >= pBase and pIn >= pAnchor. */ |
210 | | static size_t ZSTD_ldm_countBackwardsMatch( |
211 | | const BYTE* pIn, const BYTE* pAnchor, |
212 | | const BYTE* pMatch, const BYTE* pMatchBase) |
213 | 0 | { |
214 | 0 | size_t matchLength = 0; |
215 | 0 | while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) { |
216 | 0 | pIn--; |
217 | 0 | pMatch--; |
218 | 0 | matchLength++; |
219 | 0 | } |
220 | 0 | return matchLength; |
221 | 0 | } |
222 | | |
223 | | /** ZSTD_ldm_countBackwardsMatch_2segments() : |
224 | | * Returns the number of bytes that match backwards from pMatch, |
225 | | * even with the backwards match spanning 2 different segments. |
226 | | * |
227 | | * On reaching `pMatchBase`, start counting from mEnd */ |
228 | | static size_t ZSTD_ldm_countBackwardsMatch_2segments( |
229 | | const BYTE* pIn, const BYTE* pAnchor, |
230 | | const BYTE* pMatch, const BYTE* pMatchBase, |
231 | | const BYTE* pExtDictStart, const BYTE* pExtDictEnd) |
232 | 0 | { |
233 | 0 | size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase); |
234 | 0 | if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) { |
235 | | /* If backwards match is entirely in the extDict or prefix, immediately return */ |
236 | 0 | return matchLength; |
237 | 0 | } |
238 | 0 | DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength); |
239 | 0 | matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart); |
240 | 0 | DEBUGLOG(7, "final backwards match length = %zu", matchLength); |
241 | 0 | return matchLength; |
242 | 0 | } |
243 | | |
244 | | /** ZSTD_ldm_fillFastTables() : |
245 | | * |
246 | | * Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies. |
247 | | * This is similar to ZSTD_loadDictionaryContent. |
248 | | * |
249 | | * The tables for the other strategies are filled within their |
250 | | * block compressors. */ |
251 | | static size_t ZSTD_ldm_fillFastTables(ZSTD_MatchState_t* ms, |
252 | | void const* end) |
253 | 0 | { |
254 | 0 | const BYTE* const iend = (const BYTE*)end; |
255 | |
|
256 | 0 | switch(ms->cParams.strategy) |
257 | 0 | { |
258 | 0 | case ZSTD_fast: |
259 | 0 | ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx); |
260 | 0 | break; |
261 | | |
262 | 0 | case ZSTD_dfast: |
263 | 0 | #ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR |
264 | 0 | ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx); |
265 | | #else |
266 | | assert(0); /* shouldn't be called: cparams should've been adjusted. */ |
267 | | #endif |
268 | 0 | break; |
269 | | |
270 | 0 | case ZSTD_greedy: |
271 | 0 | case ZSTD_lazy: |
272 | 0 | case ZSTD_lazy2: |
273 | 0 | case ZSTD_btlazy2: |
274 | 0 | case ZSTD_btopt: |
275 | 0 | case ZSTD_btultra: |
276 | 0 | case ZSTD_btultra2: |
277 | 0 | break; |
278 | 0 | default: |
279 | 0 | assert(0); /* not possible : not a valid strategy id */ |
280 | 0 | } |
281 | | |
282 | 0 | return 0; |
283 | 0 | } |
284 | | |
285 | | void ZSTD_ldm_fillHashTable( |
286 | | ldmState_t* ldmState, const BYTE* ip, |
287 | | const BYTE* iend, ldmParams_t const* params) |
288 | 0 | { |
289 | 0 | U32 const minMatchLength = params->minMatchLength; |
290 | 0 | U32 const bucketSizeLog = params->bucketSizeLog; |
291 | 0 | U32 const hBits = params->hashLog - bucketSizeLog; |
292 | 0 | BYTE const* const base = ldmState->window.base; |
293 | 0 | BYTE const* const istart = ip; |
294 | 0 | ldmRollingHashState_t hashState; |
295 | 0 | size_t* const splits = ldmState->splitIndices; |
296 | 0 | unsigned numSplits; |
297 | |
|
298 | 0 | DEBUGLOG(5, "ZSTD_ldm_fillHashTable"); |
299 | |
|
300 | 0 | ZSTD_ldm_gear_init(&hashState, params); |
301 | 0 | while (ip < iend) { |
302 | 0 | size_t hashed; |
303 | 0 | unsigned n; |
304 | |
|
305 | 0 | numSplits = 0; |
306 | 0 | hashed = ZSTD_ldm_gear_feed(&hashState, ip, (size_t)(iend - ip), splits, &numSplits); |
307 | |
|
308 | 0 | for (n = 0; n < numSplits; n++) { |
309 | 0 | if (ip + splits[n] >= istart + minMatchLength) { |
310 | 0 | BYTE const* const split = ip + splits[n] - minMatchLength; |
311 | 0 | U64 const xxhash = XXH64(split, minMatchLength, 0); |
312 | 0 | U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1)); |
313 | 0 | ldmEntry_t entry; |
314 | |
|
315 | 0 | entry.offset = (U32)(split - base); |
316 | 0 | entry.checksum = (U32)(xxhash >> 32); |
317 | 0 | ZSTD_ldm_insertEntry(ldmState, hash, entry, params->bucketSizeLog); |
318 | 0 | } |
319 | 0 | } |
320 | |
|
321 | 0 | ip += hashed; |
322 | 0 | } |
323 | 0 | } |
324 | | |
325 | | |
326 | | /** ZSTD_ldm_limitTableUpdate() : |
327 | | * |
328 | | * Sets cctx->nextToUpdate to a position corresponding closer to anchor |
329 | | * if it is far way |
330 | | * (after a long match, only update tables a limited amount). */ |
331 | | static void ZSTD_ldm_limitTableUpdate(ZSTD_MatchState_t* ms, const BYTE* anchor) |
332 | 0 | { |
333 | 0 | U32 const curr = (U32)(anchor - ms->window.base); |
334 | 0 | if (curr > ms->nextToUpdate + 1024) { |
335 | 0 | ms->nextToUpdate = |
336 | 0 | curr - MIN(512, curr - ms->nextToUpdate - 1024); |
337 | 0 | } |
338 | 0 | } |
339 | | |
340 | | static |
341 | | ZSTD_ALLOW_POINTER_OVERFLOW_ATTR |
342 | | size_t ZSTD_ldm_generateSequences_internal( |
343 | | ldmState_t* ldmState, RawSeqStore_t* rawSeqStore, |
344 | | ldmParams_t const* params, void const* src, size_t srcSize) |
345 | 0 | { |
346 | | /* LDM parameters */ |
347 | 0 | int const extDict = ZSTD_window_hasExtDict(ldmState->window); |
348 | 0 | U32 const minMatchLength = params->minMatchLength; |
349 | 0 | U32 const entsPerBucket = 1U << params->bucketSizeLog; |
350 | 0 | U32 const hBits = params->hashLog - params->bucketSizeLog; |
351 | | /* Prefix and extDict parameters */ |
352 | 0 | U32 const dictLimit = ldmState->window.dictLimit; |
353 | 0 | U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit; |
354 | 0 | BYTE const* const base = ldmState->window.base; |
355 | 0 | BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL; |
356 | 0 | BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL; |
357 | 0 | BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL; |
358 | 0 | BYTE const* const lowPrefixPtr = base + dictLimit; |
359 | | /* Input bounds */ |
360 | 0 | BYTE const* const istart = (BYTE const*)src; |
361 | 0 | BYTE const* const iend = istart + srcSize; |
362 | 0 | BYTE const* const ilimit = iend - HASH_READ_SIZE; |
363 | | /* Input positions */ |
364 | 0 | BYTE const* anchor = istart; |
365 | 0 | BYTE const* ip = istart; |
366 | | /* Rolling hash state */ |
367 | 0 | ldmRollingHashState_t hashState; |
368 | | /* Arrays for staged-processing */ |
369 | 0 | size_t* const splits = ldmState->splitIndices; |
370 | 0 | ldmMatchCandidate_t* const candidates = ldmState->matchCandidates; |
371 | 0 | unsigned numSplits; |
372 | |
|
373 | 0 | if (srcSize < minMatchLength) |
374 | 0 | return iend - anchor; |
375 | | |
376 | | /* Initialize the rolling hash state with the first minMatchLength bytes */ |
377 | 0 | ZSTD_ldm_gear_init(&hashState, params); |
378 | 0 | ZSTD_ldm_gear_reset(&hashState, ip, minMatchLength); |
379 | 0 | ip += minMatchLength; |
380 | |
|
381 | 0 | while (ip < ilimit) { |
382 | 0 | size_t hashed; |
383 | 0 | unsigned n; |
384 | |
|
385 | 0 | numSplits = 0; |
386 | 0 | hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip, |
387 | 0 | splits, &numSplits); |
388 | |
|
389 | 0 | for (n = 0; n < numSplits; n++) { |
390 | 0 | BYTE const* const split = ip + splits[n] - minMatchLength; |
391 | 0 | U64 const xxhash = XXH64(split, minMatchLength, 0); |
392 | 0 | U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1)); |
393 | |
|
394 | 0 | candidates[n].split = split; |
395 | 0 | candidates[n].hash = hash; |
396 | 0 | candidates[n].checksum = (U32)(xxhash >> 32); |
397 | 0 | candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, params->bucketSizeLog); |
398 | 0 | PREFETCH_L1(candidates[n].bucket); |
399 | 0 | } |
400 | |
|
401 | 0 | for (n = 0; n < numSplits; n++) { |
402 | 0 | size_t forwardMatchLength = 0, backwardMatchLength = 0, |
403 | 0 | bestMatchLength = 0, mLength; |
404 | 0 | U32 offset; |
405 | 0 | BYTE const* const split = candidates[n].split; |
406 | 0 | U32 const checksum = candidates[n].checksum; |
407 | 0 | U32 const hash = candidates[n].hash; |
408 | 0 | ldmEntry_t* const bucket = candidates[n].bucket; |
409 | 0 | ldmEntry_t const* cur; |
410 | 0 | ldmEntry_t const* bestEntry = NULL; |
411 | 0 | ldmEntry_t newEntry; |
412 | |
|
413 | 0 | newEntry.offset = (U32)(split - base); |
414 | 0 | newEntry.checksum = checksum; |
415 | | |
416 | | /* If a split point would generate a sequence overlapping with |
417 | | * the previous one, we merely register it in the hash table and |
418 | | * move on */ |
419 | 0 | if (split < anchor) { |
420 | 0 | ZSTD_ldm_insertEntry(ldmState, hash, newEntry, params->bucketSizeLog); |
421 | 0 | continue; |
422 | 0 | } |
423 | | |
424 | 0 | for (cur = bucket; cur < bucket + entsPerBucket; cur++) { |
425 | 0 | size_t curForwardMatchLength, curBackwardMatchLength, |
426 | 0 | curTotalMatchLength; |
427 | 0 | if (cur->checksum != checksum || cur->offset <= lowestIndex) { |
428 | 0 | continue; |
429 | 0 | } |
430 | 0 | if (extDict) { |
431 | 0 | BYTE const* const curMatchBase = |
432 | 0 | cur->offset < dictLimit ? dictBase : base; |
433 | 0 | BYTE const* const pMatch = curMatchBase + cur->offset; |
434 | 0 | BYTE const* const matchEnd = |
435 | 0 | cur->offset < dictLimit ? dictEnd : iend; |
436 | 0 | BYTE const* const lowMatchPtr = |
437 | 0 | cur->offset < dictLimit ? dictStart : lowPrefixPtr; |
438 | 0 | curForwardMatchLength = |
439 | 0 | ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr); |
440 | 0 | if (curForwardMatchLength < minMatchLength) { |
441 | 0 | continue; |
442 | 0 | } |
443 | 0 | curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments( |
444 | 0 | split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd); |
445 | 0 | } else { /* !extDict */ |
446 | 0 | BYTE const* const pMatch = base + cur->offset; |
447 | 0 | curForwardMatchLength = ZSTD_count(split, pMatch, iend); |
448 | 0 | if (curForwardMatchLength < minMatchLength) { |
449 | 0 | continue; |
450 | 0 | } |
451 | 0 | curBackwardMatchLength = |
452 | 0 | ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr); |
453 | 0 | } |
454 | 0 | curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength; |
455 | |
|
456 | 0 | if (curTotalMatchLength > bestMatchLength) { |
457 | 0 | bestMatchLength = curTotalMatchLength; |
458 | 0 | forwardMatchLength = curForwardMatchLength; |
459 | 0 | backwardMatchLength = curBackwardMatchLength; |
460 | 0 | bestEntry = cur; |
461 | 0 | } |
462 | 0 | } |
463 | | |
464 | | /* No match found -- insert an entry into the hash table |
465 | | * and process the next candidate match */ |
466 | 0 | if (bestEntry == NULL) { |
467 | 0 | ZSTD_ldm_insertEntry(ldmState, hash, newEntry, params->bucketSizeLog); |
468 | 0 | continue; |
469 | 0 | } |
470 | | |
471 | | /* Match found */ |
472 | 0 | offset = (U32)(split - base) - bestEntry->offset; |
473 | 0 | mLength = forwardMatchLength + backwardMatchLength; |
474 | 0 | { |
475 | 0 | rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size; |
476 | | |
477 | | /* Out of sequence storage */ |
478 | 0 | if (rawSeqStore->size == rawSeqStore->capacity) |
479 | 0 | return ERROR(dstSize_tooSmall); |
480 | 0 | seq->litLength = (U32)(split - backwardMatchLength - anchor); |
481 | 0 | seq->matchLength = (U32)mLength; |
482 | 0 | seq->offset = offset; |
483 | 0 | rawSeqStore->size++; |
484 | 0 | } |
485 | | |
486 | | /* Insert the current entry into the hash table --- it must be |
487 | | * done after the previous block to avoid clobbering bestEntry */ |
488 | 0 | ZSTD_ldm_insertEntry(ldmState, hash, newEntry, params->bucketSizeLog); |
489 | |
|
490 | 0 | anchor = split + forwardMatchLength; |
491 | | |
492 | | /* If we find a match that ends after the data that we've hashed |
493 | | * then we have a repeating, overlapping, pattern. E.g. all zeros. |
494 | | * If one repetition of the pattern matches our `stopMask` then all |
495 | | * repetitions will. We don't need to insert them all into out table, |
496 | | * only the first one. So skip over overlapping matches. |
497 | | * This is a major speed boost (20x) for compressing a single byte |
498 | | * repeated, when that byte ends up in the table. |
499 | | */ |
500 | 0 | if (anchor > ip + hashed) { |
501 | 0 | ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength); |
502 | | /* Continue the outer loop at anchor (ip + hashed == anchor). */ |
503 | 0 | ip = anchor - hashed; |
504 | 0 | break; |
505 | 0 | } |
506 | 0 | } |
507 | | |
508 | 0 | ip += hashed; |
509 | 0 | } |
510 | | |
511 | 0 | return iend - anchor; |
512 | 0 | } |
513 | | |
514 | | /*! ZSTD_ldm_reduceTable() : |
515 | | * reduce table indexes by `reducerValue` */ |
516 | | static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size, |
517 | | U32 const reducerValue) |
518 | 0 | { |
519 | 0 | U32 u; |
520 | 0 | for (u = 0; u < size; u++) { |
521 | 0 | if (table[u].offset < reducerValue) table[u].offset = 0; |
522 | 0 | else table[u].offset -= reducerValue; |
523 | 0 | } |
524 | 0 | } |
525 | | |
526 | | size_t ZSTD_ldm_generateSequences( |
527 | | ldmState_t* ldmState, RawSeqStore_t* sequences, |
528 | | ldmParams_t const* params, void const* src, size_t srcSize) |
529 | 0 | { |
530 | 0 | U32 const maxDist = 1U << params->windowLog; |
531 | 0 | BYTE const* const istart = (BYTE const*)src; |
532 | 0 | BYTE const* const iend = istart + srcSize; |
533 | 0 | size_t const kMaxChunkSize = 1 << 20; |
534 | 0 | size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0); |
535 | 0 | size_t chunk; |
536 | 0 | size_t leftoverSize = 0; |
537 | |
|
538 | 0 | assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize); |
539 | | /* Check that ZSTD_window_update() has been called for this chunk prior |
540 | | * to passing it to this function. |
541 | | */ |
542 | 0 | assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize); |
543 | | /* The input could be very large (in zstdmt), so it must be broken up into |
544 | | * chunks to enforce the maximum distance and handle overflow correction. |
545 | | */ |
546 | 0 | assert(sequences->pos <= sequences->size); |
547 | 0 | assert(sequences->size <= sequences->capacity); |
548 | 0 | for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) { |
549 | 0 | BYTE const* const chunkStart = istart + chunk * kMaxChunkSize; |
550 | 0 | size_t const remaining = (size_t)(iend - chunkStart); |
551 | 0 | BYTE const *const chunkEnd = |
552 | 0 | (remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize; |
553 | 0 | size_t const chunkSize = chunkEnd - chunkStart; |
554 | 0 | size_t newLeftoverSize; |
555 | 0 | size_t const prevSize = sequences->size; |
556 | |
|
557 | 0 | assert(chunkStart < iend); |
558 | | /* 1. Perform overflow correction if necessary. */ |
559 | 0 | if (ZSTD_window_needOverflowCorrection(ldmState->window, 0, maxDist, ldmState->loadedDictEnd, chunkStart, chunkEnd)) { |
560 | 0 | U32 const ldmHSize = 1U << params->hashLog; |
561 | 0 | U32 const correction = ZSTD_window_correctOverflow( |
562 | 0 | &ldmState->window, /* cycleLog */ 0, maxDist, chunkStart); |
563 | 0 | ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction); |
564 | | /* invalidate dictionaries on overflow correction */ |
565 | 0 | ldmState->loadedDictEnd = 0; |
566 | 0 | } |
567 | | /* 2. We enforce the maximum offset allowed. |
568 | | * |
569 | | * kMaxChunkSize should be small enough that we don't lose too much of |
570 | | * the window through early invalidation. |
571 | | * TODO: * Test the chunk size. |
572 | | * * Try invalidation after the sequence generation and test the |
573 | | * offset against maxDist directly. |
574 | | * |
575 | | * NOTE: Because of dictionaries + sequence splitting we MUST make sure |
576 | | * that any offset used is valid at the END of the sequence, since it may |
577 | | * be split into two sequences. This condition holds when using |
578 | | * ZSTD_window_enforceMaxDist(), but if we move to checking offsets |
579 | | * against maxDist directly, we'll have to carefully handle that case. |
580 | | */ |
581 | 0 | ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL); |
582 | | /* 3. Generate the sequences for the chunk, and get newLeftoverSize. */ |
583 | 0 | newLeftoverSize = ZSTD_ldm_generateSequences_internal( |
584 | 0 | ldmState, sequences, params, chunkStart, chunkSize); |
585 | 0 | if (ZSTD_isError(newLeftoverSize)) |
586 | 0 | return newLeftoverSize; |
587 | | /* 4. We add the leftover literals from previous iterations to the first |
588 | | * newly generated sequence, or add the `newLeftoverSize` if none are |
589 | | * generated. |
590 | | */ |
591 | | /* Prepend the leftover literals from the last call */ |
592 | 0 | if (prevSize < sequences->size) { |
593 | 0 | sequences->seq[prevSize].litLength += (U32)leftoverSize; |
594 | 0 | leftoverSize = newLeftoverSize; |
595 | 0 | } else { |
596 | 0 | assert(newLeftoverSize == chunkSize); |
597 | 0 | leftoverSize += chunkSize; |
598 | 0 | } |
599 | 0 | } |
600 | 0 | return 0; |
601 | 0 | } |
602 | | |
603 | | void |
604 | | ZSTD_ldm_skipSequences(RawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) |
605 | 0 | { |
606 | 0 | while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) { |
607 | 0 | rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos; |
608 | 0 | if (srcSize <= seq->litLength) { |
609 | | /* Skip past srcSize literals */ |
610 | 0 | seq->litLength -= (U32)srcSize; |
611 | 0 | return; |
612 | 0 | } |
613 | 0 | srcSize -= seq->litLength; |
614 | 0 | seq->litLength = 0; |
615 | 0 | if (srcSize < seq->matchLength) { |
616 | | /* Skip past the first srcSize of the match */ |
617 | 0 | seq->matchLength -= (U32)srcSize; |
618 | 0 | if (seq->matchLength < minMatch) { |
619 | | /* The match is too short, omit it */ |
620 | 0 | if (rawSeqStore->pos + 1 < rawSeqStore->size) { |
621 | 0 | seq[1].litLength += seq[0].matchLength; |
622 | 0 | } |
623 | 0 | rawSeqStore->pos++; |
624 | 0 | } |
625 | 0 | return; |
626 | 0 | } |
627 | 0 | srcSize -= seq->matchLength; |
628 | 0 | seq->matchLength = 0; |
629 | 0 | rawSeqStore->pos++; |
630 | 0 | } |
631 | 0 | } |
632 | | |
633 | | /** |
634 | | * If the sequence length is longer than remaining then the sequence is split |
635 | | * between this block and the next. |
636 | | * |
637 | | * Returns the current sequence to handle, or if the rest of the block should |
638 | | * be literals, it returns a sequence with offset == 0. |
639 | | */ |
640 | | static rawSeq maybeSplitSequence(RawSeqStore_t* rawSeqStore, |
641 | | U32 const remaining, U32 const minMatch) |
642 | 0 | { |
643 | 0 | rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos]; |
644 | 0 | assert(sequence.offset > 0); |
645 | | /* Likely: No partial sequence */ |
646 | 0 | if (remaining >= sequence.litLength + sequence.matchLength) { |
647 | 0 | rawSeqStore->pos++; |
648 | 0 | return sequence; |
649 | 0 | } |
650 | | /* Cut the sequence short (offset == 0 ==> rest is literals). */ |
651 | 0 | if (remaining <= sequence.litLength) { |
652 | 0 | sequence.offset = 0; |
653 | 0 | } else if (remaining < sequence.litLength + sequence.matchLength) { |
654 | 0 | sequence.matchLength = remaining - sequence.litLength; |
655 | 0 | if (sequence.matchLength < minMatch) { |
656 | 0 | sequence.offset = 0; |
657 | 0 | } |
658 | 0 | } |
659 | | /* Skip past `remaining` bytes for the future sequences. */ |
660 | 0 | ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch); |
661 | 0 | return sequence; |
662 | 0 | } |
663 | | |
664 | 0 | void ZSTD_ldm_skipRawSeqStoreBytes(RawSeqStore_t* rawSeqStore, size_t nbBytes) { |
665 | 0 | U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes); |
666 | 0 | while (currPos && rawSeqStore->pos < rawSeqStore->size) { |
667 | 0 | rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos]; |
668 | 0 | if (currPos >= currSeq.litLength + currSeq.matchLength) { |
669 | 0 | currPos -= currSeq.litLength + currSeq.matchLength; |
670 | 0 | rawSeqStore->pos++; |
671 | 0 | } else { |
672 | 0 | rawSeqStore->posInSequence = currPos; |
673 | 0 | break; |
674 | 0 | } |
675 | 0 | } |
676 | 0 | if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) { |
677 | 0 | rawSeqStore->posInSequence = 0; |
678 | 0 | } |
679 | 0 | } |
680 | | |
681 | | size_t ZSTD_ldm_blockCompress(RawSeqStore_t* rawSeqStore, |
682 | | ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
683 | | ZSTD_ParamSwitch_e useRowMatchFinder, |
684 | | void const* src, size_t srcSize) |
685 | 0 | { |
686 | 0 | const ZSTD_compressionParameters* const cParams = &ms->cParams; |
687 | 0 | unsigned const minMatch = cParams->minMatch; |
688 | 0 | ZSTD_BlockCompressor_f const blockCompressor = |
689 | 0 | ZSTD_selectBlockCompressor(cParams->strategy, useRowMatchFinder, ZSTD_matchState_dictMode(ms)); |
690 | | /* Input bounds */ |
691 | 0 | BYTE const* const istart = (BYTE const*)src; |
692 | 0 | BYTE const* const iend = istart + srcSize; |
693 | | /* Input positions */ |
694 | 0 | BYTE const* ip = istart; |
695 | |
|
696 | 0 | DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize); |
697 | | /* If using opt parser, use LDMs only as candidates rather than always accepting them */ |
698 | 0 | if (cParams->strategy >= ZSTD_btopt) { |
699 | 0 | size_t lastLLSize; |
700 | 0 | ms->ldmSeqStore = rawSeqStore; |
701 | 0 | lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize); |
702 | 0 | ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize); |
703 | 0 | return lastLLSize; |
704 | 0 | } |
705 | | |
706 | 0 | assert(rawSeqStore->pos <= rawSeqStore->size); |
707 | 0 | assert(rawSeqStore->size <= rawSeqStore->capacity); |
708 | | /* Loop through each sequence and apply the block compressor to the literals */ |
709 | 0 | while (rawSeqStore->pos < rawSeqStore->size && ip < iend) { |
710 | | /* maybeSplitSequence updates rawSeqStore->pos */ |
711 | 0 | rawSeq const sequence = maybeSplitSequence(rawSeqStore, |
712 | 0 | (U32)(iend - ip), minMatch); |
713 | | /* End signal */ |
714 | 0 | if (sequence.offset == 0) |
715 | 0 | break; |
716 | | |
717 | 0 | assert(ip + sequence.litLength + sequence.matchLength <= iend); |
718 | | |
719 | | /* Fill tables for block compressor */ |
720 | 0 | ZSTD_ldm_limitTableUpdate(ms, ip); |
721 | 0 | ZSTD_ldm_fillFastTables(ms, ip); |
722 | | /* Run the block compressor */ |
723 | 0 | DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength); |
724 | 0 | { |
725 | 0 | int i; |
726 | 0 | size_t const newLitLength = |
727 | 0 | blockCompressor(ms, seqStore, rep, ip, sequence.litLength); |
728 | 0 | ip += sequence.litLength; |
729 | | /* Update the repcodes */ |
730 | 0 | for (i = ZSTD_REP_NUM - 1; i > 0; i--) |
731 | 0 | rep[i] = rep[i-1]; |
732 | 0 | rep[0] = sequence.offset; |
733 | | /* Store the sequence */ |
734 | 0 | ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend, |
735 | 0 | OFFSET_TO_OFFBASE(sequence.offset), |
736 | 0 | sequence.matchLength); |
737 | 0 | ip += sequence.matchLength; |
738 | 0 | } |
739 | 0 | } |
740 | | /* Fill the tables for the block compressor */ |
741 | 0 | ZSTD_ldm_limitTableUpdate(ms, ip); |
742 | 0 | ZSTD_ldm_fillFastTables(ms, ip); |
743 | | /* Compress the last literals */ |
744 | 0 | return blockCompressor(ms, seqStore, rep, ip, iend - ip); |
745 | 0 | } |