/src/zstd/lib/decompress/huf_decompress.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* ****************************************************************** |
2 | | * huff0 huffman decoder, |
3 | | * part of Finite State Entropy library |
4 | | * Copyright (c) Meta Platforms, Inc. and affiliates. |
5 | | * |
6 | | * You can contact the author at : |
7 | | * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy |
8 | | * |
9 | | * This source code is licensed under both the BSD-style license (found in the |
10 | | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
11 | | * in the COPYING file in the root directory of this source tree). |
12 | | * You may select, at your option, one of the above-listed licenses. |
13 | | ****************************************************************** */ |
14 | | |
15 | | /* ************************************************************** |
16 | | * Dependencies |
17 | | ****************************************************************/ |
18 | | #include <stddef.h> /* size_t */ |
19 | | #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ |
20 | | #include "../common/compiler.h" |
21 | | #include "../common/bitstream.h" /* BIT_* */ |
22 | | #include "../common/fse.h" /* to compress headers */ |
23 | | #include "../common/huf.h" |
24 | | #include "../common/error_private.h" |
25 | | #include "../common/zstd_internal.h" |
26 | | #include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */ |
27 | | |
28 | | /* ************************************************************** |
29 | | * Constants |
30 | | ****************************************************************/ |
31 | | |
32 | 42.7k | #define HUF_DECODER_FAST_TABLELOG 11 |
33 | | |
34 | | /* ************************************************************** |
35 | | * Macros |
36 | | ****************************************************************/ |
37 | | |
38 | | #ifdef HUF_DISABLE_FAST_DECODE |
39 | | # define HUF_ENABLE_FAST_DECODE 0 |
40 | | #else |
41 | 18.9k | # define HUF_ENABLE_FAST_DECODE 1 |
42 | | #endif |
43 | | |
44 | | /* These two optional macros force the use one way or another of the two |
45 | | * Huffman decompression implementations. You can't force in both directions |
46 | | * at the same time. |
47 | | */ |
48 | | #if defined(HUF_FORCE_DECOMPRESS_X1) && \ |
49 | | defined(HUF_FORCE_DECOMPRESS_X2) |
50 | | #error "Cannot force the use of the X1 and X2 decoders at the same time!" |
51 | | #endif |
52 | | |
53 | | /* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is |
54 | | * supported at runtime, so we can add the BMI2 target attribute. |
55 | | * When it is disabled, we will still get BMI2 if it is enabled statically. |
56 | | */ |
57 | | #if DYNAMIC_BMI2 |
58 | | # define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE |
59 | | #else |
60 | | # define HUF_FAST_BMI2_ATTRS |
61 | | #endif |
62 | | |
63 | | #ifdef __cplusplus |
64 | | # define HUF_EXTERN_C extern "C" |
65 | | #else |
66 | | # define HUF_EXTERN_C |
67 | | #endif |
68 | | #define HUF_ASM_DECL HUF_EXTERN_C |
69 | | |
70 | | #if DYNAMIC_BMI2 |
71 | | # define HUF_NEED_BMI2_FUNCTION 1 |
72 | | #else |
73 | | # define HUF_NEED_BMI2_FUNCTION 0 |
74 | | #endif |
75 | | |
76 | | /* ************************************************************** |
77 | | * Error Management |
78 | | ****************************************************************/ |
79 | 22.1k | #define HUF_isError ERR_isError |
80 | | |
81 | | |
82 | | /* ************************************************************** |
83 | | * Byte alignment for workSpace management |
84 | | ****************************************************************/ |
85 | | #define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1) |
86 | | #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) |
87 | | |
88 | | |
89 | | /* ************************************************************** |
90 | | * BMI2 Variant Wrappers |
91 | | ****************************************************************/ |
92 | | typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize, |
93 | | const void *cSrc, |
94 | | size_t cSrcSize, |
95 | | const HUF_DTable *DTable); |
96 | | |
97 | | #if DYNAMIC_BMI2 |
98 | | |
99 | | #define HUF_DGEN(fn) \ |
100 | | \ |
101 | | static size_t fn##_default( \ |
102 | | void* dst, size_t dstSize, \ |
103 | | const void* cSrc, size_t cSrcSize, \ |
104 | | const HUF_DTable* DTable) \ |
105 | 0 | { \ |
106 | 0 | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
107 | 0 | } \ Unexecuted instantiation: huf_decompress.c:HUF_decompress1X2_usingDTable_internal_default Unexecuted instantiation: huf_decompress.c:HUF_decompress1X1_usingDTable_internal_default |
108 | | \ |
109 | | static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \ |
110 | | void* dst, size_t dstSize, \ |
111 | | const void* cSrc, size_t cSrcSize, \ |
112 | | const HUF_DTable* DTable) \ |
113 | 234 | { \ |
114 | 234 | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
115 | 234 | } \ Unexecuted instantiation: huf_decompress.c:HUF_decompress1X2_usingDTable_internal_bmi2 huf_decompress.c:HUF_decompress1X1_usingDTable_internal_bmi2 Line | Count | Source | 113 | 234 | { \ | 114 | 234 | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ | 115 | 234 | } \ |
|
116 | | \ |
117 | | static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
118 | | size_t cSrcSize, HUF_DTable const* DTable, int flags) \ |
119 | 234 | { \ |
120 | 234 | if (flags & HUF_flags_bmi2) { \ |
121 | 234 | return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ |
122 | 234 | } \ |
123 | 234 | return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ |
124 | 234 | } Unexecuted instantiation: huf_decompress.c:HUF_decompress1X2_usingDTable_internal huf_decompress.c:HUF_decompress1X1_usingDTable_internal Line | Count | Source | 119 | 234 | { \ | 120 | 234 | if (flags & HUF_flags_bmi2) { \ | 121 | 234 | return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ | 122 | 234 | } \ | 123 | 234 | return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ | 124 | 234 | } |
|
125 | | |
126 | | #else |
127 | | |
128 | | #define HUF_DGEN(fn) \ |
129 | | static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
130 | | size_t cSrcSize, HUF_DTable const* DTable, int flags) \ |
131 | | { \ |
132 | | (void)flags; \ |
133 | | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
134 | | } |
135 | | |
136 | | #endif |
137 | | |
138 | | |
139 | | /*-***************************/ |
140 | | /* generic DTableDesc */ |
141 | | /*-***************************/ |
142 | | typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; |
143 | | |
144 | | static DTableDesc HUF_getDTableDesc(const HUF_DTable* table) |
145 | 22.3k | { |
146 | 22.3k | DTableDesc dtd; |
147 | 22.3k | ZSTD_memcpy(&dtd, table, sizeof(dtd)); |
148 | 22.3k | return dtd; |
149 | 22.3k | } |
150 | | |
151 | 26.6k | static size_t HUF_initFastDStream(BYTE const* ip) { |
152 | 26.6k | BYTE const lastByte = ip[7]; |
153 | 26.6k | size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0; |
154 | 26.6k | size_t const value = MEM_readLEST(ip) | 1; |
155 | 26.6k | assert(bitsConsumed <= 8); |
156 | 26.6k | assert(sizeof(size_t) == 8); |
157 | 26.6k | return value << bitsConsumed; |
158 | 26.6k | } |
159 | | |
160 | | |
161 | | /** |
162 | | * The input/output arguments to the Huffman fast decoding loop: |
163 | | * |
164 | | * ip [in/out] - The input pointers, must be updated to reflect what is consumed. |
165 | | * op [in/out] - The output pointers, must be updated to reflect what is written. |
166 | | * bits [in/out] - The bitstream containers, must be updated to reflect the current state. |
167 | | * dt [in] - The decoding table. |
168 | | * ilowest [in] - The beginning of the valid range of the input. Decoders may read |
169 | | * down to this pointer. It may be below iend[0]. |
170 | | * oend [in] - The end of the output stream. op[3] must not cross oend. |
171 | | * iend [in] - The end of each input stream. ip[i] may cross iend[i], |
172 | | * as long as it is above ilowest, but that indicates corruption. |
173 | | */ |
174 | | typedef struct { |
175 | | BYTE const* ip[4]; |
176 | | BYTE* op[4]; |
177 | | U64 bits[4]; |
178 | | void const* dt; |
179 | | BYTE const* ilowest; |
180 | | BYTE* oend; |
181 | | BYTE const* iend[4]; |
182 | | } HUF_DecompressFastArgs; |
183 | | |
184 | | typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*); |
185 | | |
186 | | /** |
187 | | * Initializes args for the fast decoding loop. |
188 | | * @returns 1 on success |
189 | | * 0 if the fallback implementation should be used. |
190 | | * Or an error code on failure. |
191 | | */ |
192 | | static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable) |
193 | 9.46k | { |
194 | 9.46k | void const* dt = DTable + 1; |
195 | 9.46k | U32 const dtLog = HUF_getDTableDesc(DTable).tableLog; |
196 | | |
197 | 9.46k | const BYTE* const istart = (const BYTE*)src; |
198 | | |
199 | 9.46k | BYTE* const oend = (BYTE*)ZSTD_maybeNullPtrAdd(dst, (ptrdiff_t)dstSize); |
200 | | |
201 | | /* The fast decoding loop assumes 64-bit little-endian. |
202 | | * This condition is false on x32. |
203 | | */ |
204 | 9.46k | if (!MEM_isLittleEndian() || MEM_32bits()) |
205 | 0 | return 0; |
206 | | |
207 | | /* Avoid nullptr addition */ |
208 | 9.46k | if (dstSize == 0) |
209 | 0 | return 0; |
210 | 9.46k | assert(dst != NULL); |
211 | | |
212 | | /* strict minimum : jump table + 1 byte per stream */ |
213 | 9.46k | if (srcSize < 10) |
214 | 66 | return ERROR(corruption_detected); |
215 | | |
216 | | /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers. |
217 | | * If table log is not correct at this point, fallback to the old decoder. |
218 | | * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder. |
219 | | */ |
220 | 9.40k | if (dtLog != HUF_DECODER_FAST_TABLELOG) |
221 | 721 | return 0; |
222 | | |
223 | | /* Read the jump table. */ |
224 | 8.68k | { |
225 | 8.68k | size_t const length1 = MEM_readLE16(istart); |
226 | 8.68k | size_t const length2 = MEM_readLE16(istart+2); |
227 | 8.68k | size_t const length3 = MEM_readLE16(istart+4); |
228 | 8.68k | size_t const length4 = srcSize - (length1 + length2 + length3 + 6); |
229 | 8.68k | args->iend[0] = istart + 6; /* jumpTable */ |
230 | 8.68k | args->iend[1] = args->iend[0] + length1; |
231 | 8.68k | args->iend[2] = args->iend[1] + length2; |
232 | 8.68k | args->iend[3] = args->iend[2] + length3; |
233 | | |
234 | | /* HUF_initFastDStream() requires this, and this small of an input |
235 | | * won't benefit from the ASM loop anyways. |
236 | | */ |
237 | 8.68k | if (length1 < 8 || length2 < 8 || length3 < 8 || length4 < 8) |
238 | 1.76k | return 0; |
239 | 6.92k | if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */ |
240 | 6.92k | } |
241 | | /* ip[] contains the position that is currently loaded into bits[]. */ |
242 | 6.66k | args->ip[0] = args->iend[1] - sizeof(U64); |
243 | 6.66k | args->ip[1] = args->iend[2] - sizeof(U64); |
244 | 6.66k | args->ip[2] = args->iend[3] - sizeof(U64); |
245 | 6.66k | args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64); |
246 | | |
247 | | /* op[] contains the output pointers. */ |
248 | 6.66k | args->op[0] = (BYTE*)dst; |
249 | 6.66k | args->op[1] = args->op[0] + (dstSize+3)/4; |
250 | 6.66k | args->op[2] = args->op[1] + (dstSize+3)/4; |
251 | 6.66k | args->op[3] = args->op[2] + (dstSize+3)/4; |
252 | | |
253 | | /* No point to call the ASM loop for tiny outputs. */ |
254 | 6.66k | if (args->op[3] >= oend) |
255 | 1 | return 0; |
256 | | |
257 | | /* bits[] is the bit container. |
258 | | * It is read from the MSB down to the LSB. |
259 | | * It is shifted left as it is read, and zeros are |
260 | | * shifted in. After the lowest valid bit a 1 is |
261 | | * set, so that CountTrailingZeros(bits[]) can be used |
262 | | * to count how many bits we've consumed. |
263 | | */ |
264 | 6.66k | args->bits[0] = HUF_initFastDStream(args->ip[0]); |
265 | 6.66k | args->bits[1] = HUF_initFastDStream(args->ip[1]); |
266 | 6.66k | args->bits[2] = HUF_initFastDStream(args->ip[2]); |
267 | 6.66k | args->bits[3] = HUF_initFastDStream(args->ip[3]); |
268 | | |
269 | | /* The decoders must be sure to never read beyond ilowest. |
270 | | * This is lower than iend[0], but allowing decoders to read |
271 | | * down to ilowest can allow an extra iteration or two in the |
272 | | * fast loop. |
273 | | */ |
274 | 6.66k | args->ilowest = istart; |
275 | | |
276 | 6.66k | args->oend = oend; |
277 | 6.66k | args->dt = dt; |
278 | | |
279 | 6.66k | return 1; |
280 | 6.66k | } |
281 | | |
282 | | static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd) |
283 | 26.4k | { |
284 | | /* Validate that we haven't overwritten. */ |
285 | 26.4k | if (args->op[stream] > segmentEnd) |
286 | 0 | return ERROR(corruption_detected); |
287 | | /* Validate that we haven't read beyond iend[]. |
288 | | * Note that ip[] may be < iend[] because the MSB is |
289 | | * the next bit to read, and we may have consumed 100% |
290 | | * of the stream, so down to iend[i] - 8 is valid. |
291 | | */ |
292 | 26.4k | if (args->ip[stream] < args->iend[stream] - 8) |
293 | 135 | return ERROR(corruption_detected); |
294 | | |
295 | | /* Construct the BIT_DStream_t. */ |
296 | 26.3k | assert(sizeof(size_t) == 8); |
297 | 26.3k | bit->bitContainer = MEM_readLEST(args->ip[stream]); |
298 | 26.3k | bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]); |
299 | 26.3k | bit->start = (const char*)args->ilowest; |
300 | 26.3k | bit->limitPtr = bit->start + sizeof(size_t); |
301 | 26.3k | bit->ptr = (const char*)args->ip[stream]; |
302 | | |
303 | 26.3k | return 0; |
304 | 26.4k | } |
305 | | |
306 | | /* Calls X(N) for each stream 0, 1, 2, 3. */ |
307 | | #define HUF_4X_FOR_EACH_STREAM(X) \ |
308 | 0 | do { \ |
309 | 0 | X(0); \ |
310 | 0 | X(1); \ |
311 | 0 | X(2); \ |
312 | 0 | X(3); \ |
313 | 0 | } while (0) |
314 | | |
315 | | /* Calls X(N, var) for each stream 0, 1, 2, 3. */ |
316 | | #define HUF_4X_FOR_EACH_STREAM_WITH_VAR(X, var) \ |
317 | 0 | do { \ |
318 | 0 | X(0, (var)); \ |
319 | 0 | X(1, (var)); \ |
320 | 0 | X(2, (var)); \ |
321 | 0 | X(3, (var)); \ |
322 | 0 | } while (0) |
323 | | |
324 | | |
325 | | #ifndef HUF_FORCE_DECOMPRESS_X2 |
326 | | |
327 | | /*-***************************/ |
328 | | /* single-symbol decoding */ |
329 | | /*-***************************/ |
330 | | typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */ |
331 | | |
332 | | /** |
333 | | * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at |
334 | | * a time. |
335 | | */ |
336 | 123k | static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) { |
337 | 123k | U64 D4; |
338 | 123k | if (MEM_isLittleEndian()) { |
339 | 123k | D4 = (U64)((symbol << 8) + nbBits); |
340 | 123k | } else { |
341 | 0 | D4 = (U64)(symbol + (nbBits << 8)); |
342 | 0 | } |
343 | 123k | assert(D4 < (1U << 16)); |
344 | 123k | D4 *= 0x0001000100010001ULL; |
345 | 123k | return D4; |
346 | 123k | } |
347 | | |
348 | | /** |
349 | | * Increase the tableLog to targetTableLog and rescales the stats. |
350 | | * If tableLog > targetTableLog this is a no-op. |
351 | | * @returns New tableLog |
352 | | */ |
353 | | static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog) |
354 | 7.55k | { |
355 | 7.55k | if (tableLog > targetTableLog) |
356 | 144 | return tableLog; |
357 | 7.40k | if (tableLog < targetTableLog) { |
358 | 7.36k | U32 const scale = targetTableLog - tableLog; |
359 | 7.36k | U32 s; |
360 | | /* Increase the weight for all non-zero probability symbols by scale. */ |
361 | 173k | for (s = 0; s < nbSymbols; ++s) { |
362 | 166k | huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale); |
363 | 166k | } |
364 | | /* Update rankVal to reflect the new weights. |
365 | | * All weights except 0 get moved to weight + scale. |
366 | | * Weights [1, scale] are empty. |
367 | | */ |
368 | 33.1k | for (s = targetTableLog; s > scale; --s) { |
369 | 25.8k | rankVal[s] = rankVal[s - scale]; |
370 | 25.8k | } |
371 | 62.5k | for (s = scale; s > 0; --s) { |
372 | 55.1k | rankVal[s] = 0; |
373 | 55.1k | } |
374 | 7.36k | } |
375 | 7.40k | return targetTableLog; |
376 | 7.55k | } |
377 | | |
378 | | typedef struct { |
379 | | U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
380 | | U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
381 | | U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
382 | | BYTE symbols[HUF_SYMBOLVALUE_MAX + 1]; |
383 | | BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; |
384 | | } HUF_ReadDTableX1_Workspace; |
385 | | |
386 | | size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags) |
387 | 8.60k | { |
388 | 8.60k | U32 tableLog = 0; |
389 | 8.60k | U32 nbSymbols = 0; |
390 | 8.60k | size_t iSize; |
391 | 8.60k | void* const dtPtr = DTable + 1; |
392 | 8.60k | HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr; |
393 | 8.60k | HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace; |
394 | | |
395 | 8.60k | DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp)); |
396 | 8.60k | if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge); |
397 | | |
398 | 8.60k | DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); |
399 | | /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ |
400 | | |
401 | 8.60k | iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags); |
402 | 8.60k | if (HUF_isError(iSize)) return iSize; |
403 | | |
404 | | |
405 | | /* Table header */ |
406 | 7.55k | { DTableDesc dtd = HUF_getDTableDesc(DTable); |
407 | 7.55k | U32 const maxTableLog = dtd.maxTableLog + 1; |
408 | 7.55k | U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG); |
409 | 7.55k | tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog); |
410 | 7.55k | if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ |
411 | 7.55k | dtd.tableType = 0; |
412 | 7.55k | dtd.tableLog = (BYTE)tableLog; |
413 | 7.55k | ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
414 | 7.55k | } |
415 | | |
416 | | /* Compute symbols and rankStart given rankVal: |
417 | | * |
418 | | * rankVal already contains the number of values of each weight. |
419 | | * |
420 | | * symbols contains the symbols ordered by weight. First are the rankVal[0] |
421 | | * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on. |
422 | | * symbols[0] is filled (but unused) to avoid a branch. |
423 | | * |
424 | | * rankStart contains the offset where each rank belongs in the DTable. |
425 | | * rankStart[0] is not filled because there are no entries in the table for |
426 | | * weight 0. |
427 | | */ |
428 | 0 | { int n; |
429 | 7.55k | U32 nextRankStart = 0; |
430 | 7.55k | int const unroll = 4; |
431 | 7.55k | int const nLimit = (int)nbSymbols - unroll + 1; |
432 | 98.2k | for (n=0; n<(int)tableLog+1; n++) { |
433 | 90.7k | U32 const curr = nextRankStart; |
434 | 90.7k | nextRankStart += wksp->rankVal[n]; |
435 | 90.7k | wksp->rankStart[n] = curr; |
436 | 90.7k | } |
437 | 51.1k | for (n=0; n < nLimit; n += unroll) { |
438 | 43.6k | int u; |
439 | 218k | for (u=0; u < unroll; ++u) { |
440 | 174k | size_t const w = wksp->huffWeight[n+u]; |
441 | 174k | wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u); |
442 | 174k | } |
443 | 43.6k | } |
444 | 20.6k | for (; n < (int)nbSymbols; ++n) { |
445 | 13.1k | size_t const w = wksp->huffWeight[n]; |
446 | 13.1k | wksp->symbols[wksp->rankStart[w]++] = (BYTE)n; |
447 | 13.1k | } |
448 | 7.55k | } |
449 | | |
450 | | /* fill DTable |
451 | | * We fill all entries of each weight in order. |
452 | | * That way length is a constant for each iteration of the outer loop. |
453 | | * We can switch based on the length to a different inner loop which is |
454 | | * optimized for that particular case. |
455 | | */ |
456 | 7.55k | { U32 w; |
457 | 7.55k | int symbol = wksp->rankVal[0]; |
458 | 7.55k | int rankStart = 0; |
459 | 90.7k | for (w=1; w<tableLog+1; ++w) { |
460 | 83.1k | int const symbolCount = wksp->rankVal[w]; |
461 | 83.1k | int const length = (1 << w) >> 1; |
462 | 83.1k | int uStart = rankStart; |
463 | 83.1k | BYTE const nbBits = (BYTE)(tableLog + 1 - w); |
464 | 83.1k | int s; |
465 | 83.1k | int u; |
466 | 83.1k | switch (length) { |
467 | 7.55k | case 1: |
468 | 14.4k | for (s=0; s<symbolCount; ++s) { |
469 | 6.93k | HUF_DEltX1 D; |
470 | 6.93k | D.byte = wksp->symbols[symbol + s]; |
471 | 6.93k | D.nbBits = nbBits; |
472 | 6.93k | dt[uStart] = D; |
473 | 6.93k | uStart += 1; |
474 | 6.93k | } |
475 | 7.55k | break; |
476 | 7.55k | case 2: |
477 | 9.10k | for (s=0; s<symbolCount; ++s) { |
478 | 1.55k | HUF_DEltX1 D; |
479 | 1.55k | D.byte = wksp->symbols[symbol + s]; |
480 | 1.55k | D.nbBits = nbBits; |
481 | 1.55k | dt[uStart+0] = D; |
482 | 1.55k | dt[uStart+1] = D; |
483 | 1.55k | uStart += 2; |
484 | 1.55k | } |
485 | 7.55k | break; |
486 | 7.55k | case 4: |
487 | 9.15k | for (s=0; s<symbolCount; ++s) { |
488 | 1.60k | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
489 | 1.60k | MEM_write64(dt + uStart, D4); |
490 | 1.60k | uStart += 4; |
491 | 1.60k | } |
492 | 7.55k | break; |
493 | 7.55k | case 8: |
494 | 50.0k | for (s=0; s<symbolCount; ++s) { |
495 | 42.4k | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
496 | 42.4k | MEM_write64(dt + uStart, D4); |
497 | 42.4k | MEM_write64(dt + uStart + 4, D4); |
498 | 42.4k | uStart += 8; |
499 | 42.4k | } |
500 | 7.55k | break; |
501 | 52.9k | default: |
502 | 132k | for (s=0; s<symbolCount; ++s) { |
503 | 79.4k | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
504 | 1.04M | for (u=0; u < length; u += 16) { |
505 | 962k | MEM_write64(dt + uStart + u + 0, D4); |
506 | 962k | MEM_write64(dt + uStart + u + 4, D4); |
507 | 962k | MEM_write64(dt + uStart + u + 8, D4); |
508 | 962k | MEM_write64(dt + uStart + u + 12, D4); |
509 | 962k | } |
510 | 79.4k | assert(u == length); |
511 | 79.4k | uStart += length; |
512 | 79.4k | } |
513 | 52.9k | break; |
514 | 83.1k | } |
515 | 83.1k | symbol += symbolCount; |
516 | 83.1k | rankStart += symbolCount * length; |
517 | 83.1k | } |
518 | 7.55k | } |
519 | 7.55k | return iSize; |
520 | 7.55k | } |
521 | | |
522 | | FORCE_INLINE_TEMPLATE BYTE |
523 | | HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog) |
524 | 1.55M | { |
525 | 1.55M | size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ |
526 | 1.55M | BYTE const c = dt[val].byte; |
527 | 1.55M | BIT_skipBits(Dstream, dt[val].nbBits); |
528 | 1.55M | return c; |
529 | 1.55M | } |
530 | | |
531 | | #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \ |
532 | 1.55M | do { *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog); } while (0) |
533 | | |
534 | | #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \ |
535 | 225k | do { \ |
536 | 225k | if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
537 | 225k | HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \ |
538 | 225k | } while (0) |
539 | | |
540 | | #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \ |
541 | 450k | do { \ |
542 | 450k | if (MEM_64bits()) \ |
543 | 450k | HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \ |
544 | 450k | } while (0) |
545 | | |
546 | | HINT_INLINE size_t |
547 | | HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog) |
548 | 27.6k | { |
549 | 27.6k | BYTE* const pStart = p; |
550 | | |
551 | | /* up to 4 symbols at a time */ |
552 | 27.6k | if ((pEnd - p) > 3) { |
553 | 249k | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) { |
554 | 223k | HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
555 | 223k | HUF_DECODE_SYMBOLX1_1(p, bitDPtr); |
556 | 223k | HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
557 | 223k | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
558 | 223k | } |
559 | 26.1k | } else { |
560 | 1.42k | BIT_reloadDStream(bitDPtr); |
561 | 1.42k | } |
562 | | |
563 | | /* [0-3] symbols remaining */ |
564 | 27.6k | if (MEM_32bits()) |
565 | 0 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd)) |
566 | 0 | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
567 | | |
568 | | /* no more data to retrieve from bitstream, no need to reload */ |
569 | 679k | while (p < pEnd) |
570 | 652k | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
571 | | |
572 | 27.6k | return (size_t)(pEnd-pStart); |
573 | 27.6k | } |
574 | | |
575 | | FORCE_INLINE_TEMPLATE size_t |
576 | | HUF_decompress1X1_usingDTable_internal_body( |
577 | | void* dst, size_t dstSize, |
578 | | const void* cSrc, size_t cSrcSize, |
579 | | const HUF_DTable* DTable) |
580 | 234 | { |
581 | 234 | BYTE* op = (BYTE*)dst; |
582 | 234 | BYTE* const oend = (BYTE*)ZSTD_maybeNullPtrAdd(op, (ptrdiff_t)dstSize); |
583 | 234 | const void* dtPtr = DTable + 1; |
584 | 234 | const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
585 | 234 | BIT_DStream_t bitD; |
586 | 234 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
587 | 234 | U32 const dtLog = dtd.tableLog; |
588 | | |
589 | 234 | CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
590 | | |
591 | 161 | HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog); |
592 | | |
593 | 161 | if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
594 | | |
595 | 33 | return dstSize; |
596 | 161 | } |
597 | | |
598 | | /* HUF_decompress4X1_usingDTable_internal_body(): |
599 | | * Conditions : |
600 | | * @dstSize >= 6 |
601 | | */ |
602 | | FORCE_INLINE_TEMPLATE size_t |
603 | | HUF_decompress4X1_usingDTable_internal_body( |
604 | | void* dst, size_t dstSize, |
605 | | const void* cSrc, size_t cSrcSize, |
606 | | const HUF_DTable* DTable) |
607 | 772 | { |
608 | | /* Check */ |
609 | 772 | if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
610 | 772 | if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */ |
611 | | |
612 | 772 | { const BYTE* const istart = (const BYTE*) cSrc; |
613 | 772 | BYTE* const ostart = (BYTE*) dst; |
614 | 772 | BYTE* const oend = ostart + dstSize; |
615 | 772 | BYTE* const olimit = oend - 3; |
616 | 772 | const void* const dtPtr = DTable + 1; |
617 | 772 | const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
618 | | |
619 | | /* Init */ |
620 | 772 | BIT_DStream_t bitD1; |
621 | 772 | BIT_DStream_t bitD2; |
622 | 772 | BIT_DStream_t bitD3; |
623 | 772 | BIT_DStream_t bitD4; |
624 | 772 | size_t const length1 = MEM_readLE16(istart); |
625 | 772 | size_t const length2 = MEM_readLE16(istart+2); |
626 | 772 | size_t const length3 = MEM_readLE16(istart+4); |
627 | 772 | size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
628 | 772 | const BYTE* const istart1 = istart + 6; /* jumpTable */ |
629 | 772 | const BYTE* const istart2 = istart1 + length1; |
630 | 772 | const BYTE* const istart3 = istart2 + length2; |
631 | 772 | const BYTE* const istart4 = istart3 + length3; |
632 | 772 | const size_t segmentSize = (dstSize+3) / 4; |
633 | 772 | BYTE* const opStart2 = ostart + segmentSize; |
634 | 772 | BYTE* const opStart3 = opStart2 + segmentSize; |
635 | 772 | BYTE* const opStart4 = opStart3 + segmentSize; |
636 | 772 | BYTE* op1 = ostart; |
637 | 772 | BYTE* op2 = opStart2; |
638 | 772 | BYTE* op3 = opStart3; |
639 | 772 | BYTE* op4 = opStart4; |
640 | 772 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
641 | 772 | U32 const dtLog = dtd.tableLog; |
642 | 772 | U32 endSignal = 1; |
643 | | |
644 | 772 | if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
645 | 716 | if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ |
646 | 716 | assert(dstSize >= 6); /* validated above */ |
647 | 716 | CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
648 | 665 | CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
649 | 562 | CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
650 | 472 | CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
651 | | |
652 | | /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */ |
653 | 396 | if ((size_t)(oend - op4) >= sizeof(size_t)) { |
654 | 642 | for ( ; (endSignal) & (op4 < olimit) ; ) { |
655 | 360 | HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
656 | 360 | HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
657 | 360 | HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
658 | 360 | HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
659 | 360 | HUF_DECODE_SYMBOLX1_1(op1, &bitD1); |
660 | 360 | HUF_DECODE_SYMBOLX1_1(op2, &bitD2); |
661 | 360 | HUF_DECODE_SYMBOLX1_1(op3, &bitD3); |
662 | 360 | HUF_DECODE_SYMBOLX1_1(op4, &bitD4); |
663 | 360 | HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
664 | 360 | HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
665 | 360 | HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
666 | 360 | HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
667 | 360 | HUF_DECODE_SYMBOLX1_0(op1, &bitD1); |
668 | 360 | HUF_DECODE_SYMBOLX1_0(op2, &bitD2); |
669 | 360 | HUF_DECODE_SYMBOLX1_0(op3, &bitD3); |
670 | 360 | HUF_DECODE_SYMBOLX1_0(op4, &bitD4); |
671 | 360 | endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
672 | 360 | endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
673 | 360 | endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
674 | 360 | endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
675 | 360 | } |
676 | 282 | } |
677 | | |
678 | | /* check corruption */ |
679 | | /* note : should not be necessary : op# advance in lock step, and we control op4. |
680 | | * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */ |
681 | 396 | if (op1 > opStart2) return ERROR(corruption_detected); |
682 | 396 | if (op2 > opStart3) return ERROR(corruption_detected); |
683 | 396 | if (op3 > opStart4) return ERROR(corruption_detected); |
684 | | /* note : op4 supposed already verified within main loop */ |
685 | | |
686 | | /* finish bitStreams one by one */ |
687 | 396 | HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog); |
688 | 396 | HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog); |
689 | 396 | HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog); |
690 | 396 | HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog); |
691 | | |
692 | | /* check */ |
693 | 396 | { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
694 | 396 | if (!endCheck) return ERROR(corruption_detected); } |
695 | | |
696 | | /* decoded size */ |
697 | 0 | return dstSize; |
698 | 396 | } |
699 | 396 | } |
700 | | |
701 | | #if HUF_NEED_BMI2_FUNCTION |
702 | | static BMI2_TARGET_ATTRIBUTE |
703 | | size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, |
704 | 772 | size_t cSrcSize, HUF_DTable const* DTable) { |
705 | 772 | return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
706 | 772 | } |
707 | | #endif |
708 | | |
709 | | static |
710 | | size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, |
711 | 0 | size_t cSrcSize, HUF_DTable const* DTable) { |
712 | 0 | return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
713 | 0 | } |
714 | | |
715 | | #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
716 | | |
717 | | HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN; |
718 | | |
719 | | #endif |
720 | | |
721 | | static HUF_FAST_BMI2_ATTRS |
722 | | void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args) |
723 | 0 | { |
724 | 0 | U64 bits[4]; |
725 | 0 | BYTE const* ip[4]; |
726 | 0 | BYTE* op[4]; |
727 | 0 | U16 const* const dtable = (U16 const*)args->dt; |
728 | 0 | BYTE* const oend = args->oend; |
729 | 0 | BYTE const* const ilowest = args->ilowest; |
730 | | |
731 | | /* Copy the arguments to local variables */ |
732 | 0 | ZSTD_memcpy(&bits, &args->bits, sizeof(bits)); |
733 | 0 | ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip)); |
734 | 0 | ZSTD_memcpy(&op, &args->op, sizeof(op)); |
735 | |
|
736 | 0 | assert(MEM_isLittleEndian()); |
737 | 0 | assert(!MEM_32bits()); |
738 | |
|
739 | 0 | for (;;) { |
740 | 0 | BYTE* olimit; |
741 | 0 | int stream; |
742 | | |
743 | | /* Assert loop preconditions */ |
744 | | #ifndef NDEBUG |
745 | | for (stream = 0; stream < 4; ++stream) { |
746 | | assert(op[stream] <= (stream == 3 ? oend : op[stream + 1])); |
747 | | assert(ip[stream] >= ilowest); |
748 | | } |
749 | | #endif |
750 | | /* Compute olimit */ |
751 | 0 | { |
752 | | /* Each iteration produces 5 output symbols per stream */ |
753 | 0 | size_t const oiters = (size_t)(oend - op[3]) / 5; |
754 | | /* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes |
755 | | * per stream. |
756 | | */ |
757 | 0 | size_t const iiters = (size_t)(ip[0] - ilowest) / 7; |
758 | | /* We can safely run iters iterations before running bounds checks */ |
759 | 0 | size_t const iters = MIN(oiters, iiters); |
760 | 0 | size_t const symbols = iters * 5; |
761 | | |
762 | | /* We can simply check that op[3] < olimit, instead of checking all |
763 | | * of our bounds, since we can't hit the other bounds until we've run |
764 | | * iters iterations, which only happens when op[3] == olimit. |
765 | | */ |
766 | 0 | olimit = op[3] + symbols; |
767 | | |
768 | | /* Exit fast decoding loop once we reach the end. */ |
769 | 0 | if (op[3] == olimit) |
770 | 0 | break; |
771 | | |
772 | | /* Exit the decoding loop if any input pointer has crossed the |
773 | | * previous one. This indicates corruption, and a precondition |
774 | | * to our loop is that ip[i] >= ip[0]. |
775 | | */ |
776 | 0 | for (stream = 1; stream < 4; ++stream) { |
777 | 0 | if (ip[stream] < ip[stream - 1]) |
778 | 0 | goto _out; |
779 | 0 | } |
780 | 0 | } |
781 | | |
782 | | #ifndef NDEBUG |
783 | | for (stream = 1; stream < 4; ++stream) { |
784 | | assert(ip[stream] >= ip[stream - 1]); |
785 | | } |
786 | | #endif |
787 | | |
788 | 0 | #define HUF_4X1_DECODE_SYMBOL(_stream, _symbol) \ |
789 | 0 | do { \ |
790 | 0 | int const index = (int)(bits[(_stream)] >> 53); \ |
791 | 0 | int const entry = (int)dtable[index]; \ |
792 | 0 | bits[(_stream)] <<= (entry & 0x3F); \ |
793 | 0 | op[(_stream)][(_symbol)] = (BYTE)((entry >> 8) & 0xFF); \ |
794 | 0 | } while (0) |
795 | | |
796 | 0 | #define HUF_4X1_RELOAD_STREAM(_stream) \ |
797 | 0 | do { \ |
798 | 0 | int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \ |
799 | 0 | int const nbBits = ctz & 7; \ |
800 | 0 | int const nbBytes = ctz >> 3; \ |
801 | 0 | op[(_stream)] += 5; \ |
802 | 0 | ip[(_stream)] -= nbBytes; \ |
803 | 0 | bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \ |
804 | 0 | bits[(_stream)] <<= nbBits; \ |
805 | 0 | } while (0) |
806 | | |
807 | | /* Manually unroll the loop because compilers don't consistently |
808 | | * unroll the inner loops, which destroys performance. |
809 | | */ |
810 | 0 | do { |
811 | | /* Decode 5 symbols in each of the 4 streams */ |
812 | 0 | HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 0); |
813 | 0 | HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 1); |
814 | 0 | HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 2); |
815 | 0 | HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 3); |
816 | 0 | HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 4); |
817 | | |
818 | | /* Reload each of the 4 the bitstreams */ |
819 | 0 | HUF_4X_FOR_EACH_STREAM(HUF_4X1_RELOAD_STREAM); |
820 | 0 | } while (op[3] < olimit); |
821 | |
|
822 | 0 | #undef HUF_4X1_DECODE_SYMBOL |
823 | 0 | #undef HUF_4X1_RELOAD_STREAM |
824 | 0 | } |
825 | | |
826 | 0 | _out: |
827 | | |
828 | | /* Save the final values of each of the state variables back to args. */ |
829 | 0 | ZSTD_memcpy(&args->bits, &bits, sizeof(bits)); |
830 | 0 | ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip)); |
831 | 0 | ZSTD_memcpy(&args->op, &op, sizeof(op)); |
832 | 0 | } |
833 | | |
834 | | /** |
835 | | * @returns @p dstSize on success (>= 6) |
836 | | * 0 if the fallback implementation should be used |
837 | | * An error if an error occurred |
838 | | */ |
839 | | static HUF_FAST_BMI2_ATTRS |
840 | | size_t |
841 | | HUF_decompress4X1_usingDTable_internal_fast( |
842 | | void* dst, size_t dstSize, |
843 | | const void* cSrc, size_t cSrcSize, |
844 | | const HUF_DTable* DTable, |
845 | | HUF_DecompressFastLoopFn loopFn) |
846 | 7.41k | { |
847 | 7.41k | void const* dt = DTable + 1; |
848 | 7.41k | BYTE const* const ilowest = (BYTE const*)cSrc; |
849 | 7.41k | BYTE* const oend = (BYTE*)ZSTD_maybeNullPtrAdd(dst, (ptrdiff_t)dstSize); |
850 | 7.41k | HUF_DecompressFastArgs args; |
851 | 7.41k | { size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); |
852 | 7.41k | FORWARD_IF_ERROR(ret, "Failed to init fast loop args"); |
853 | 7.26k | if (ret == 0) |
854 | 772 | return 0; |
855 | 7.26k | } |
856 | | |
857 | 6.49k | assert(args.ip[0] >= args.ilowest); |
858 | 6.49k | loopFn(&args); |
859 | | |
860 | | /* Our loop guarantees that ip[] >= ilowest and that we haven't |
861 | | * overwritten any op[]. |
862 | | */ |
863 | 6.49k | assert(args.ip[0] >= ilowest); |
864 | 6.49k | assert(args.ip[0] >= ilowest); |
865 | 6.49k | assert(args.ip[1] >= ilowest); |
866 | 6.49k | assert(args.ip[2] >= ilowest); |
867 | 6.49k | assert(args.ip[3] >= ilowest); |
868 | 6.49k | assert(args.op[3] <= oend); |
869 | | |
870 | 6.49k | assert(ilowest == args.ilowest); |
871 | 6.49k | assert(ilowest + 6 == args.iend[0]); |
872 | 6.49k | (void)ilowest; |
873 | | |
874 | | /* finish bit streams one by one. */ |
875 | 6.49k | { size_t const segmentSize = (dstSize+3) / 4; |
876 | 6.49k | BYTE* segmentEnd = (BYTE*)dst; |
877 | 6.49k | int i; |
878 | 32.3k | for (i = 0; i < 4; ++i) { |
879 | 25.9k | BIT_DStream_t bit; |
880 | 25.9k | if (segmentSize <= (size_t)(oend - segmentEnd)) |
881 | 25.0k | segmentEnd += segmentSize; |
882 | 867 | else |
883 | 867 | segmentEnd = oend; |
884 | 25.9k | FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); |
885 | | /* Decompress and validate that we've produced exactly the expected length. */ |
886 | 25.8k | args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG); |
887 | 25.8k | if (args.op[i] != segmentEnd) return ERROR(corruption_detected); |
888 | 25.8k | } |
889 | 6.49k | } |
890 | | |
891 | | /* decoded size */ |
892 | 6.44k | assert(dstSize != 0); |
893 | 6.44k | return dstSize; |
894 | 6.49k | } |
895 | | |
896 | | HUF_DGEN(HUF_decompress1X1_usingDTable_internal) |
897 | | |
898 | | static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, |
899 | | size_t cSrcSize, HUF_DTable const* DTable, int flags) |
900 | 7.41k | { |
901 | 7.41k | HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default; |
902 | 7.41k | HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop; |
903 | | |
904 | 7.41k | #if DYNAMIC_BMI2 |
905 | 7.41k | if (flags & HUF_flags_bmi2) { |
906 | 7.41k | fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2; |
907 | 7.41k | # if ZSTD_ENABLE_ASM_X86_64_BMI2 |
908 | 7.41k | if (!(flags & HUF_flags_disableAsm)) { |
909 | 7.41k | loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop; |
910 | 7.41k | } |
911 | 7.41k | # endif |
912 | 7.41k | } else { |
913 | 0 | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
914 | 0 | } |
915 | 7.41k | #endif |
916 | | |
917 | | #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) |
918 | | if (!(flags & HUF_flags_disableAsm)) { |
919 | | loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop; |
920 | | } |
921 | | #endif |
922 | | |
923 | 7.41k | if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) { |
924 | 7.41k | size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn); |
925 | 7.41k | if (ret != 0) |
926 | 6.64k | return ret; |
927 | 7.41k | } |
928 | 772 | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
929 | 7.41k | } |
930 | | |
931 | | static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
932 | | const void* cSrc, size_t cSrcSize, |
933 | | void* workSpace, size_t wkspSize, int flags) |
934 | 8.29k | { |
935 | 8.29k | const BYTE* ip = (const BYTE*) cSrc; |
936 | | |
937 | 8.29k | size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); |
938 | 8.29k | if (HUF_isError(hSize)) return hSize; |
939 | 7.40k | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
940 | 7.38k | ip += hSize; cSrcSize -= hSize; |
941 | | |
942 | 7.38k | return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); |
943 | 7.40k | } |
944 | | |
945 | | #endif /* HUF_FORCE_DECOMPRESS_X2 */ |
946 | | |
947 | | |
948 | | #ifndef HUF_FORCE_DECOMPRESS_X1 |
949 | | |
950 | | /* *************************/ |
951 | | /* double-symbols decoding */ |
952 | | /* *************************/ |
953 | | |
954 | | typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */ |
955 | | typedef struct { BYTE symbol; } sortedSymbol_t; |
956 | | typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; |
957 | | typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX]; |
958 | | |
959 | | /** |
960 | | * Constructs a HUF_DEltX2 in a U32. |
961 | | */ |
962 | | static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level) |
963 | 657k | { |
964 | 657k | U32 seq; |
965 | 657k | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0); |
966 | 657k | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2); |
967 | 657k | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3); |
968 | 657k | DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32)); |
969 | 657k | if (MEM_isLittleEndian()) { |
970 | 657k | seq = level == 1 ? symbol : (baseSeq + (symbol << 8)); |
971 | 657k | return seq + (nbBits << 16) + ((U32)level << 24); |
972 | 657k | } else { |
973 | 0 | seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol); |
974 | 0 | return (seq << 16) + (nbBits << 8) + (U32)level; |
975 | 0 | } |
976 | 657k | } |
977 | | |
978 | | /** |
979 | | * Constructs a HUF_DEltX2. |
980 | | */ |
981 | | static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level) |
982 | 325k | { |
983 | 325k | HUF_DEltX2 DElt; |
984 | 325k | U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); |
985 | 325k | DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val)); |
986 | 325k | ZSTD_memcpy(&DElt, &val, sizeof(val)); |
987 | 325k | return DElt; |
988 | 325k | } |
989 | | |
990 | | /** |
991 | | * Constructs 2 HUF_DEltX2s and packs them into a U64. |
992 | | */ |
993 | | static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level) |
994 | 331k | { |
995 | 331k | U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); |
996 | 331k | return (U64)DElt + ((U64)DElt << 32); |
997 | 331k | } |
998 | | |
999 | | /** |
1000 | | * Fills the DTable rank with all the symbols from [begin, end) that are each |
1001 | | * nbBits long. |
1002 | | * |
1003 | | * @param DTableRank The start of the rank in the DTable. |
1004 | | * @param begin The first symbol to fill (inclusive). |
1005 | | * @param end The last symbol to fill (exclusive). |
1006 | | * @param nbBits Each symbol is nbBits long. |
1007 | | * @param tableLog The table log. |
1008 | | * @param baseSeq If level == 1 { 0 } else { the first level symbol } |
1009 | | * @param level The level in the table. Must be 1 or 2. |
1010 | | */ |
1011 | | static void HUF_fillDTableX2ForWeight( |
1012 | | HUF_DEltX2* DTableRank, |
1013 | | sortedSymbol_t const* begin, sortedSymbol_t const* end, |
1014 | | U32 nbBits, U32 tableLog, |
1015 | | U16 baseSeq, int const level) |
1016 | 350k | { |
1017 | 350k | U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */); |
1018 | 350k | const sortedSymbol_t* ptr; |
1019 | 350k | assert(level >= 1 && level <= 2); |
1020 | 350k | switch (length) { |
1021 | 78.1k | case 1: |
1022 | 283k | for (ptr = begin; ptr != end; ++ptr) { |
1023 | 204k | HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); |
1024 | 204k | *DTableRank++ = DElt; |
1025 | 204k | } |
1026 | 78.1k | break; |
1027 | 76.4k | case 2: |
1028 | 197k | for (ptr = begin; ptr != end; ++ptr) { |
1029 | 120k | HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); |
1030 | 120k | DTableRank[0] = DElt; |
1031 | 120k | DTableRank[1] = DElt; |
1032 | 120k | DTableRank += 2; |
1033 | 120k | } |
1034 | 76.4k | break; |
1035 | 71.6k | case 4: |
1036 | 177k | for (ptr = begin; ptr != end; ++ptr) { |
1037 | 106k | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
1038 | 106k | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
1039 | 106k | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
1040 | 106k | DTableRank += 4; |
1041 | 106k | } |
1042 | 71.6k | break; |
1043 | 62.1k | case 8: |
1044 | 119k | for (ptr = begin; ptr != end; ++ptr) { |
1045 | 57.2k | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
1046 | 57.2k | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
1047 | 57.2k | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
1048 | 57.2k | ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); |
1049 | 57.2k | ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); |
1050 | 57.2k | DTableRank += 8; |
1051 | 57.2k | } |
1052 | 62.1k | break; |
1053 | 62.5k | default: |
1054 | 156k | for (ptr = begin; ptr != end; ++ptr) { |
1055 | 93.7k | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
1056 | 93.7k | HUF_DEltX2* const DTableRankEnd = DTableRank + length; |
1057 | 500k | for (; DTableRank != DTableRankEnd; DTableRank += 8) { |
1058 | 406k | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
1059 | 406k | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
1060 | 406k | ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); |
1061 | 406k | ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); |
1062 | 406k | } |
1063 | 93.7k | } |
1064 | 62.5k | break; |
1065 | 350k | } |
1066 | 350k | } |
1067 | | |
1068 | | /* HUF_fillDTableX2Level2() : |
1069 | | * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ |
1070 | | static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits, |
1071 | | const U32* rankVal, const int minWeight, const int maxWeight1, |
1072 | | const sortedSymbol_t* sortedSymbols, U32 const* rankStart, |
1073 | | U32 nbBitsBaseline, U16 baseSeq) |
1074 | 82.9k | { |
1075 | | /* Fill skipped values (all positions up to rankVal[minWeight]). |
1076 | | * These are positions only get a single symbol because the combined weight |
1077 | | * is too large. |
1078 | | */ |
1079 | 82.9k | if (minWeight>1) { |
1080 | 74.8k | U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */); |
1081 | 74.8k | U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1); |
1082 | 74.8k | int const skipSize = rankVal[minWeight]; |
1083 | 74.8k | assert(length > 1); |
1084 | 74.8k | assert((U32)skipSize < length); |
1085 | 74.8k | switch (length) { |
1086 | 524 | case 2: |
1087 | 524 | assert(skipSize == 1); |
1088 | 524 | ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2)); |
1089 | 524 | break; |
1090 | 4.87k | case 4: |
1091 | 4.87k | assert(skipSize <= 4); |
1092 | 4.87k | ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2)); |
1093 | 4.87k | ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2)); |
1094 | 4.87k | break; |
1095 | 69.4k | default: |
1096 | 69.4k | { |
1097 | 69.4k | int i; |
1098 | 205k | for (i = 0; i < skipSize; i += 8) { |
1099 | 136k | ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2)); |
1100 | 136k | ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2)); |
1101 | 136k | ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2)); |
1102 | 136k | ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2)); |
1103 | 136k | } |
1104 | 69.4k | } |
1105 | 74.8k | } |
1106 | 74.8k | } |
1107 | | |
1108 | | /* Fill each of the second level symbols by weight. */ |
1109 | 82.9k | { |
1110 | 82.9k | int w; |
1111 | 432k | for (w = minWeight; w < maxWeight1; ++w) { |
1112 | 349k | int const begin = rankStart[w]; |
1113 | 349k | int const end = rankStart[w+1]; |
1114 | 349k | U32 const nbBits = nbBitsBaseline - w; |
1115 | 349k | U32 const totalBits = nbBits + consumedBits; |
1116 | 349k | HUF_fillDTableX2ForWeight( |
1117 | 349k | DTable + rankVal[w], |
1118 | 349k | sortedSymbols + begin, sortedSymbols + end, |
1119 | 349k | totalBits, targetLog, |
1120 | 349k | baseSeq, /* level */ 2); |
1121 | 349k | } |
1122 | 82.9k | } |
1123 | 82.9k | } |
1124 | | |
1125 | | static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog, |
1126 | | const sortedSymbol_t* sortedList, |
1127 | | const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight, |
1128 | | const U32 nbBitsBaseline) |
1129 | 2.05k | { |
1130 | 2.05k | U32* const rankVal = rankValOrigin[0]; |
1131 | 2.05k | const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ |
1132 | 2.05k | const U32 minBits = nbBitsBaseline - maxWeight; |
1133 | 2.05k | int w; |
1134 | 2.05k | int const wEnd = (int)maxWeight + 1; |
1135 | | |
1136 | | /* Fill DTable in order of weight. */ |
1137 | 18.3k | for (w = 1; w < wEnd; ++w) { |
1138 | 16.3k | int const begin = (int)rankStart[w]; |
1139 | 16.3k | int const end = (int)rankStart[w+1]; |
1140 | 16.3k | U32 const nbBits = nbBitsBaseline - w; |
1141 | | |
1142 | 16.3k | if (targetLog-nbBits >= minBits) { |
1143 | | /* Enough room for a second symbol. */ |
1144 | 14.8k | int start = rankVal[w]; |
1145 | 14.8k | U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */); |
1146 | 14.8k | int minWeight = nbBits + scaleLog; |
1147 | 14.8k | int s; |
1148 | 14.8k | if (minWeight < 1) minWeight = 1; |
1149 | | /* Fill the DTable for every symbol of weight w. |
1150 | | * These symbols get at least 1 second symbol. |
1151 | | */ |
1152 | 97.7k | for (s = begin; s != end; ++s) { |
1153 | 82.9k | HUF_fillDTableX2Level2( |
1154 | 82.9k | DTable + start, targetLog, nbBits, |
1155 | 82.9k | rankValOrigin[nbBits], minWeight, wEnd, |
1156 | 82.9k | sortedList, rankStart, |
1157 | 82.9k | nbBitsBaseline, sortedList[s].symbol); |
1158 | 82.9k | start += length; |
1159 | 82.9k | } |
1160 | 14.8k | } else { |
1161 | | /* Only a single symbol. */ |
1162 | 1.47k | HUF_fillDTableX2ForWeight( |
1163 | 1.47k | DTable + rankVal[w], |
1164 | 1.47k | sortedList + begin, sortedList + end, |
1165 | 1.47k | nbBits, targetLog, |
1166 | 1.47k | /* baseSeq */ 0, /* level */ 1); |
1167 | 1.47k | } |
1168 | 16.3k | } |
1169 | 2.05k | } |
1170 | | |
1171 | | typedef struct { |
1172 | | rankValCol_t rankVal[HUF_TABLELOG_MAX]; |
1173 | | U32 rankStats[HUF_TABLELOG_MAX + 1]; |
1174 | | U32 rankStart0[HUF_TABLELOG_MAX + 3]; |
1175 | | sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1]; |
1176 | | BYTE weightList[HUF_SYMBOLVALUE_MAX + 1]; |
1177 | | U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
1178 | | } HUF_ReadDTableX2_Workspace; |
1179 | | |
1180 | | size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, |
1181 | | const void* src, size_t srcSize, |
1182 | | void* workSpace, size_t wkspSize, int flags) |
1183 | 2.48k | { |
1184 | 2.48k | U32 tableLog, maxW, nbSymbols; |
1185 | 2.48k | DTableDesc dtd = HUF_getDTableDesc(DTable); |
1186 | 2.48k | U32 maxTableLog = dtd.maxTableLog; |
1187 | 2.48k | size_t iSize; |
1188 | 2.48k | void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ |
1189 | 2.48k | HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; |
1190 | 2.48k | U32 *rankStart; |
1191 | | |
1192 | 2.48k | HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace; |
1193 | | |
1194 | 2.48k | if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC); |
1195 | | |
1196 | 2.48k | rankStart = wksp->rankStart0 + 1; |
1197 | 2.48k | ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats)); |
1198 | 2.48k | ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0)); |
1199 | | |
1200 | 2.48k | DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ |
1201 | 2.48k | if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); |
1202 | | /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ |
1203 | | |
1204 | 2.48k | iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags); |
1205 | 2.48k | if (HUF_isError(iSize)) return iSize; |
1206 | | |
1207 | | /* check result */ |
1208 | 2.05k | if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ |
1209 | 2.05k | if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG; |
1210 | | |
1211 | | /* find maxWeight */ |
1212 | 3.27k | for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ |
1213 | | |
1214 | | /* Get start index of each weight */ |
1215 | 2.05k | { U32 w, nextRankStart = 0; |
1216 | 18.3k | for (w=1; w<maxW+1; w++) { |
1217 | 16.3k | U32 curr = nextRankStart; |
1218 | 16.3k | nextRankStart += wksp->rankStats[w]; |
1219 | 16.3k | rankStart[w] = curr; |
1220 | 16.3k | } |
1221 | 2.05k | rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ |
1222 | 2.05k | rankStart[maxW+1] = nextRankStart; |
1223 | 2.05k | } |
1224 | | |
1225 | | /* sort symbols by weight */ |
1226 | 2.05k | { U32 s; |
1227 | 141k | for (s=0; s<nbSymbols; s++) { |
1228 | 139k | U32 const w = wksp->weightList[s]; |
1229 | 139k | U32 const r = rankStart[w]++; |
1230 | 139k | wksp->sortedSymbol[r].symbol = (BYTE)s; |
1231 | 139k | } |
1232 | 2.05k | rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ |
1233 | 2.05k | } |
1234 | | |
1235 | | /* Build rankVal */ |
1236 | 2.05k | { U32* const rankVal0 = wksp->rankVal[0]; |
1237 | 2.05k | { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */ |
1238 | 2.05k | U32 nextRankVal = 0; |
1239 | 2.05k | U32 w; |
1240 | 18.3k | for (w=1; w<maxW+1; w++) { |
1241 | 16.3k | U32 curr = nextRankVal; |
1242 | 16.3k | nextRankVal += wksp->rankStats[w] << (w+rescale); |
1243 | 16.3k | rankVal0[w] = curr; |
1244 | 16.3k | } } |
1245 | 2.05k | { U32 const minBits = tableLog+1 - maxW; |
1246 | 2.05k | U32 consumed; |
1247 | 20.7k | for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { |
1248 | 18.7k | U32* const rankValPtr = wksp->rankVal[consumed]; |
1249 | 18.7k | U32 w; |
1250 | 176k | for (w = 1; w < maxW+1; w++) { |
1251 | 157k | rankValPtr[w] = rankVal0[w] >> consumed; |
1252 | 157k | } } } } |
1253 | | |
1254 | 2.05k | HUF_fillDTableX2(dt, maxTableLog, |
1255 | 2.05k | wksp->sortedSymbol, |
1256 | 2.05k | wksp->rankStart0, wksp->rankVal, maxW, |
1257 | 2.05k | tableLog+1); |
1258 | | |
1259 | 2.05k | dtd.tableLog = (BYTE)maxTableLog; |
1260 | 2.05k | dtd.tableType = 1; |
1261 | 2.05k | ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
1262 | 2.05k | return iSize; |
1263 | 2.05k | } |
1264 | | |
1265 | | |
1266 | | FORCE_INLINE_TEMPLATE U32 |
1267 | | HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
1268 | 759k | { |
1269 | 759k | size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
1270 | 759k | ZSTD_memcpy(op, &dt[val].sequence, 2); |
1271 | 759k | BIT_skipBits(DStream, dt[val].nbBits); |
1272 | 759k | return dt[val].length; |
1273 | 759k | } |
1274 | | |
1275 | | FORCE_INLINE_TEMPLATE U32 |
1276 | | HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
1277 | 3.15k | { |
1278 | 3.15k | size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
1279 | 3.15k | ZSTD_memcpy(op, &dt[val].sequence, 1); |
1280 | 3.15k | if (dt[val].length==1) { |
1281 | 1.16k | BIT_skipBits(DStream, dt[val].nbBits); |
1282 | 1.99k | } else { |
1283 | 1.99k | if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { |
1284 | 514 | BIT_skipBits(DStream, dt[val].nbBits); |
1285 | 514 | if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) |
1286 | | /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ |
1287 | 32 | DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); |
1288 | 514 | } |
1289 | 1.99k | } |
1290 | 3.15k | return 1; |
1291 | 3.15k | } |
1292 | | |
1293 | | #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ |
1294 | 704k | do { ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); } while (0) |
1295 | | |
1296 | | #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ |
1297 | 18.4k | do { \ |
1298 | 18.4k | if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
1299 | 18.4k | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \ |
1300 | 18.4k | } while (0) |
1301 | | |
1302 | | #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ |
1303 | 36.8k | do { \ |
1304 | 36.8k | if (MEM_64bits()) \ |
1305 | 36.8k | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \ |
1306 | 36.8k | } while (0) |
1307 | | |
1308 | | HINT_INLINE size_t |
1309 | | HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, |
1310 | | const HUF_DEltX2* const dt, const U32 dtLog) |
1311 | 4.98k | { |
1312 | 4.98k | BYTE* const pStart = p; |
1313 | | |
1314 | | /* up to 8 symbols at a time */ |
1315 | 4.98k | if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) { |
1316 | 4.93k | if (dtLog <= 11 && MEM_64bits()) { |
1317 | | /* up to 10 symbols at a time */ |
1318 | 28.1k | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) { |
1319 | 25.1k | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1320 | 25.1k | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1321 | 25.1k | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1322 | 25.1k | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1323 | 25.1k | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1324 | 25.1k | } |
1325 | 3.03k | } else { |
1326 | | /* up to 8 symbols at a time */ |
1327 | 15.5k | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) { |
1328 | 13.6k | HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
1329 | 13.6k | HUF_DECODE_SYMBOLX2_1(p, bitDPtr); |
1330 | 13.6k | HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
1331 | 13.6k | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1332 | 13.6k | } |
1333 | 1.89k | } |
1334 | 4.93k | } else { |
1335 | 58 | BIT_reloadDStream(bitDPtr); |
1336 | 58 | } |
1337 | | |
1338 | | /* closer to end : up to 2 symbols at a time */ |
1339 | 4.98k | if ((size_t)(pEnd - p) >= 2) { |
1340 | 6.05k | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2)) |
1341 | 1.31k | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1342 | | |
1343 | 563k | while (p <= pEnd-2) |
1344 | 559k | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ |
1345 | 4.73k | } |
1346 | | |
1347 | 4.98k | if (p < pEnd) |
1348 | 3.15k | p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog); |
1349 | | |
1350 | 4.98k | return p-pStart; |
1351 | 4.98k | } |
1352 | | |
1353 | | FORCE_INLINE_TEMPLATE size_t |
1354 | | HUF_decompress1X2_usingDTable_internal_body( |
1355 | | void* dst, size_t dstSize, |
1356 | | const void* cSrc, size_t cSrcSize, |
1357 | | const HUF_DTable* DTable) |
1358 | 0 | { |
1359 | 0 | BIT_DStream_t bitD; |
1360 | | |
1361 | | /* Init */ |
1362 | 0 | CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
1363 | | |
1364 | | /* decode */ |
1365 | 0 | { BYTE* const ostart = (BYTE*) dst; |
1366 | 0 | BYTE* const oend = (BYTE*)ZSTD_maybeNullPtrAdd(ostart, (ptrdiff_t)dstSize); |
1367 | 0 | const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ |
1368 | 0 | const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
1369 | 0 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1370 | 0 | HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog); |
1371 | 0 | } |
1372 | | |
1373 | | /* check */ |
1374 | 0 | if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
1375 | | |
1376 | | /* decoded size */ |
1377 | 0 | return dstSize; |
1378 | 0 | } |
1379 | | |
1380 | | /* HUF_decompress4X2_usingDTable_internal_body(): |
1381 | | * Conditions: |
1382 | | * @dstSize >= 6 |
1383 | | */ |
1384 | | FORCE_INLINE_TEMPLATE size_t |
1385 | | HUF_decompress4X2_usingDTable_internal_body( |
1386 | | void* dst, size_t dstSize, |
1387 | | const void* cSrc, size_t cSrcSize, |
1388 | | const HUF_DTable* DTable) |
1389 | 1.71k | { |
1390 | 1.71k | if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
1391 | 1.71k | if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */ |
1392 | | |
1393 | 1.71k | { const BYTE* const istart = (const BYTE*) cSrc; |
1394 | 1.71k | BYTE* const ostart = (BYTE*) dst; |
1395 | 1.71k | BYTE* const oend = ostart + dstSize; |
1396 | 1.71k | BYTE* const olimit = oend - (sizeof(size_t)-1); |
1397 | 1.71k | const void* const dtPtr = DTable+1; |
1398 | 1.71k | const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
1399 | | |
1400 | | /* Init */ |
1401 | 1.71k | BIT_DStream_t bitD1; |
1402 | 1.71k | BIT_DStream_t bitD2; |
1403 | 1.71k | BIT_DStream_t bitD3; |
1404 | 1.71k | BIT_DStream_t bitD4; |
1405 | 1.71k | size_t const length1 = MEM_readLE16(istart); |
1406 | 1.71k | size_t const length2 = MEM_readLE16(istart+2); |
1407 | 1.71k | size_t const length3 = MEM_readLE16(istart+4); |
1408 | 1.71k | size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
1409 | 1.71k | const BYTE* const istart1 = istart + 6; /* jumpTable */ |
1410 | 1.71k | const BYTE* const istart2 = istart1 + length1; |
1411 | 1.71k | const BYTE* const istart3 = istart2 + length2; |
1412 | 1.71k | const BYTE* const istart4 = istart3 + length3; |
1413 | 1.71k | size_t const segmentSize = (dstSize+3) / 4; |
1414 | 1.71k | BYTE* const opStart2 = ostart + segmentSize; |
1415 | 1.71k | BYTE* const opStart3 = opStart2 + segmentSize; |
1416 | 1.71k | BYTE* const opStart4 = opStart3 + segmentSize; |
1417 | 1.71k | BYTE* op1 = ostart; |
1418 | 1.71k | BYTE* op2 = opStart2; |
1419 | 1.71k | BYTE* op3 = opStart3; |
1420 | 1.71k | BYTE* op4 = opStart4; |
1421 | 1.71k | U32 endSignal = 1; |
1422 | 1.71k | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1423 | 1.71k | U32 const dtLog = dtd.tableLog; |
1424 | | |
1425 | 1.71k | if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
1426 | 1.65k | if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ |
1427 | 1.65k | assert(dstSize >= 6 /* validated above */); |
1428 | 1.65k | CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
1429 | 1.55k | CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
1430 | 1.34k | CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
1431 | 1.20k | CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
1432 | | |
1433 | | /* 16-32 symbols per loop (4-8 symbols per stream) */ |
1434 | 1.13k | if ((size_t)(oend - op4) >= sizeof(size_t)) { |
1435 | 2.33k | for ( ; (endSignal) & (op4 < olimit); ) { |
1436 | 1.19k | #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) |
1437 | 1.19k | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1438 | 1.19k | HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
1439 | 1.19k | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1440 | 1.19k | HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
1441 | 1.19k | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1442 | 1.19k | HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
1443 | 1.19k | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1444 | 1.19k | HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
1445 | 1.19k | endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
1446 | 1.19k | endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
1447 | 1.19k | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1448 | 1.19k | HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
1449 | 1.19k | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1450 | 1.19k | HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
1451 | 1.19k | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1452 | 1.19k | HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
1453 | 1.19k | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1454 | 1.19k | HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
1455 | 1.19k | endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
1456 | 1.19k | endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
1457 | | #else |
1458 | | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1459 | | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1460 | | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1461 | | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1462 | | HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
1463 | | HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
1464 | | HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
1465 | | HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
1466 | | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1467 | | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1468 | | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1469 | | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1470 | | HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
1471 | | HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
1472 | | HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
1473 | | HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
1474 | | endSignal = (U32)LIKELY((U32) |
1475 | | (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished) |
1476 | | & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished) |
1477 | | & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished) |
1478 | | & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished)); |
1479 | | #endif |
1480 | 1.19k | } |
1481 | 1.13k | } |
1482 | | |
1483 | | /* check corruption */ |
1484 | 1.13k | if (op1 > opStart2) return ERROR(corruption_detected); |
1485 | 1.13k | if (op2 > opStart3) return ERROR(corruption_detected); |
1486 | 1.13k | if (op3 > opStart4) return ERROR(corruption_detected); |
1487 | | /* note : op4 already verified within main loop */ |
1488 | | |
1489 | | /* finish bitStreams one by one */ |
1490 | 1.13k | HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); |
1491 | 1.13k | HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); |
1492 | 1.13k | HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); |
1493 | 1.13k | HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); |
1494 | | |
1495 | | /* check */ |
1496 | 1.13k | { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
1497 | 1.13k | if (!endCheck) return ERROR(corruption_detected); } |
1498 | | |
1499 | | /* decoded size */ |
1500 | 0 | return dstSize; |
1501 | 1.13k | } |
1502 | 1.13k | } |
1503 | | |
1504 | | #if HUF_NEED_BMI2_FUNCTION |
1505 | | static BMI2_TARGET_ATTRIBUTE |
1506 | | size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, |
1507 | 1.71k | size_t cSrcSize, HUF_DTable const* DTable) { |
1508 | 1.71k | return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
1509 | 1.71k | } |
1510 | | #endif |
1511 | | |
1512 | | static |
1513 | | size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, |
1514 | 0 | size_t cSrcSize, HUF_DTable const* DTable) { |
1515 | 0 | return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
1516 | 0 | } |
1517 | | |
1518 | | #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
1519 | | |
1520 | | HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN; |
1521 | | |
1522 | | #endif |
1523 | | |
1524 | | static HUF_FAST_BMI2_ATTRS |
1525 | | void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args) |
1526 | 0 | { |
1527 | 0 | U64 bits[4]; |
1528 | 0 | BYTE const* ip[4]; |
1529 | 0 | BYTE* op[4]; |
1530 | 0 | BYTE* oend[4]; |
1531 | 0 | HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt; |
1532 | 0 | BYTE const* const ilowest = args->ilowest; |
1533 | | |
1534 | | /* Copy the arguments to local registers. */ |
1535 | 0 | ZSTD_memcpy(&bits, &args->bits, sizeof(bits)); |
1536 | 0 | ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip)); |
1537 | 0 | ZSTD_memcpy(&op, &args->op, sizeof(op)); |
1538 | |
|
1539 | 0 | oend[0] = op[1]; |
1540 | 0 | oend[1] = op[2]; |
1541 | 0 | oend[2] = op[3]; |
1542 | 0 | oend[3] = args->oend; |
1543 | |
|
1544 | 0 | assert(MEM_isLittleEndian()); |
1545 | 0 | assert(!MEM_32bits()); |
1546 | |
|
1547 | 0 | for (;;) { |
1548 | 0 | BYTE* olimit; |
1549 | 0 | int stream; |
1550 | | |
1551 | | /* Assert loop preconditions */ |
1552 | | #ifndef NDEBUG |
1553 | | for (stream = 0; stream < 4; ++stream) { |
1554 | | assert(op[stream] <= oend[stream]); |
1555 | | assert(ip[stream] >= ilowest); |
1556 | | } |
1557 | | #endif |
1558 | | /* Compute olimit */ |
1559 | 0 | { |
1560 | | /* Each loop does 5 table lookups for each of the 4 streams. |
1561 | | * Each table lookup consumes up to 11 bits of input, and produces |
1562 | | * up to 2 bytes of output. |
1563 | | */ |
1564 | | /* We can consume up to 7 bytes of input per iteration per stream. |
1565 | | * We also know that each input pointer is >= ip[0]. So we can run |
1566 | | * iters loops before running out of input. |
1567 | | */ |
1568 | 0 | size_t iters = (size_t)(ip[0] - ilowest) / 7; |
1569 | | /* Each iteration can produce up to 10 bytes of output per stream. |
1570 | | * Each output stream my advance at different rates. So take the |
1571 | | * minimum number of safe iterations among all the output streams. |
1572 | | */ |
1573 | 0 | for (stream = 0; stream < 4; ++stream) { |
1574 | 0 | size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10; |
1575 | 0 | iters = MIN(iters, oiters); |
1576 | 0 | } |
1577 | | |
1578 | | /* Each iteration produces at least 5 output symbols. So until |
1579 | | * op[3] crosses olimit, we know we haven't executed iters |
1580 | | * iterations yet. This saves us maintaining an iters counter, |
1581 | | * at the expense of computing the remaining # of iterations |
1582 | | * more frequently. |
1583 | | */ |
1584 | 0 | olimit = op[3] + (iters * 5); |
1585 | | |
1586 | | /* Exit the fast decoding loop once we reach the end. */ |
1587 | 0 | if (op[3] == olimit) |
1588 | 0 | break; |
1589 | | |
1590 | | /* Exit the decoding loop if any input pointer has crossed the |
1591 | | * previous one. This indicates corruption, and a precondition |
1592 | | * to our loop is that ip[i] >= ip[0]. |
1593 | | */ |
1594 | 0 | for (stream = 1; stream < 4; ++stream) { |
1595 | 0 | if (ip[stream] < ip[stream - 1]) |
1596 | 0 | goto _out; |
1597 | 0 | } |
1598 | 0 | } |
1599 | | |
1600 | | #ifndef NDEBUG |
1601 | | for (stream = 1; stream < 4; ++stream) { |
1602 | | assert(ip[stream] >= ip[stream - 1]); |
1603 | | } |
1604 | | #endif |
1605 | | |
1606 | 0 | #define HUF_4X2_DECODE_SYMBOL(_stream, _decode3) \ |
1607 | 0 | do { \ |
1608 | 0 | if ((_decode3) || (_stream) != 3) { \ |
1609 | 0 | int const index = (int)(bits[(_stream)] >> 53); \ |
1610 | 0 | HUF_DEltX2 const entry = dtable[index]; \ |
1611 | 0 | MEM_write16(op[(_stream)], entry.sequence); \ |
1612 | 0 | bits[(_stream)] <<= (entry.nbBits) & 0x3F; \ |
1613 | 0 | op[(_stream)] += (entry.length); \ |
1614 | 0 | } \ |
1615 | 0 | } while (0) |
1616 | | |
1617 | 0 | #define HUF_4X2_RELOAD_STREAM(_stream) \ |
1618 | 0 | do { \ |
1619 | 0 | HUF_4X2_DECODE_SYMBOL(3, 1); \ |
1620 | 0 | { \ |
1621 | 0 | int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \ |
1622 | 0 | int const nbBits = ctz & 7; \ |
1623 | 0 | int const nbBytes = ctz >> 3; \ |
1624 | 0 | ip[(_stream)] -= nbBytes; \ |
1625 | 0 | bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \ |
1626 | 0 | bits[(_stream)] <<= nbBits; \ |
1627 | 0 | } \ |
1628 | 0 | } while (0) |
1629 | | |
1630 | | /* Manually unroll the loop because compilers don't consistently |
1631 | | * unroll the inner loops, which destroys performance. |
1632 | | */ |
1633 | 0 | do { |
1634 | | /* Decode 5 symbols from each of the first 3 streams. |
1635 | | * The final stream will be decoded during the reload phase |
1636 | | * to reduce register pressure. |
1637 | | */ |
1638 | 0 | HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0); |
1639 | 0 | HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0); |
1640 | 0 | HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0); |
1641 | 0 | HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0); |
1642 | 0 | HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0); |
1643 | | |
1644 | | /* Decode one symbol from the final stream */ |
1645 | 0 | HUF_4X2_DECODE_SYMBOL(3, 1); |
1646 | | |
1647 | | /* Decode 4 symbols from the final stream & reload bitstreams. |
1648 | | * The final stream is reloaded last, meaning that all 5 symbols |
1649 | | * are decoded from the final stream before it is reloaded. |
1650 | | */ |
1651 | 0 | HUF_4X_FOR_EACH_STREAM(HUF_4X2_RELOAD_STREAM); |
1652 | 0 | } while (op[3] < olimit); |
1653 | 0 | } |
1654 | | |
1655 | 0 | #undef HUF_4X2_DECODE_SYMBOL |
1656 | 0 | #undef HUF_4X2_RELOAD_STREAM |
1657 | | |
1658 | 0 | _out: |
1659 | | |
1660 | | /* Save the final values of each of the state variables back to args. */ |
1661 | 0 | ZSTD_memcpy(&args->bits, &bits, sizeof(bits)); |
1662 | 0 | ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip)); |
1663 | 0 | ZSTD_memcpy(&args->op, &op, sizeof(op)); |
1664 | 0 | } |
1665 | | |
1666 | | |
1667 | | static HUF_FAST_BMI2_ATTRS size_t |
1668 | | HUF_decompress4X2_usingDTable_internal_fast( |
1669 | | void* dst, size_t dstSize, |
1670 | | const void* cSrc, size_t cSrcSize, |
1671 | | const HUF_DTable* DTable, |
1672 | 2.05k | HUF_DecompressFastLoopFn loopFn) { |
1673 | 2.05k | void const* dt = DTable + 1; |
1674 | 2.05k | const BYTE* const ilowest = (const BYTE*)cSrc; |
1675 | 2.05k | BYTE* const oend = (BYTE*)ZSTD_maybeNullPtrAdd(dst, (ptrdiff_t)dstSize); |
1676 | 2.05k | HUF_DecompressFastArgs args; |
1677 | 2.05k | { |
1678 | 2.05k | size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); |
1679 | 2.05k | FORWARD_IF_ERROR(ret, "Failed to init asm args"); |
1680 | 1.88k | if (ret == 0) |
1681 | 1.71k | return 0; |
1682 | 1.88k | } |
1683 | | |
1684 | 171 | assert(args.ip[0] >= args.ilowest); |
1685 | 171 | loopFn(&args); |
1686 | | |
1687 | | /* note : op4 already verified within main loop */ |
1688 | 171 | assert(args.ip[0] >= ilowest); |
1689 | 171 | assert(args.ip[1] >= ilowest); |
1690 | 171 | assert(args.ip[2] >= ilowest); |
1691 | 171 | assert(args.ip[3] >= ilowest); |
1692 | 171 | assert(args.op[3] <= oend); |
1693 | | |
1694 | 171 | assert(ilowest == args.ilowest); |
1695 | 171 | assert(ilowest + 6 == args.iend[0]); |
1696 | 171 | (void)ilowest; |
1697 | | |
1698 | | /* finish bitStreams one by one */ |
1699 | 171 | { |
1700 | 171 | size_t const segmentSize = (dstSize+3) / 4; |
1701 | 171 | BYTE* segmentEnd = (BYTE*)dst; |
1702 | 171 | int i; |
1703 | 612 | for (i = 0; i < 4; ++i) { |
1704 | 525 | BIT_DStream_t bit; |
1705 | 525 | if (segmentSize <= (size_t)(oend - segmentEnd)) |
1706 | 438 | segmentEnd += segmentSize; |
1707 | 87 | else |
1708 | 87 | segmentEnd = oend; |
1709 | 525 | FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); |
1710 | 441 | args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG); |
1711 | 441 | if (args.op[i] != segmentEnd) |
1712 | 0 | return ERROR(corruption_detected); |
1713 | 441 | } |
1714 | 171 | } |
1715 | | |
1716 | | /* decoded size */ |
1717 | 87 | return dstSize; |
1718 | 171 | } |
1719 | | |
1720 | | static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, |
1721 | | size_t cSrcSize, HUF_DTable const* DTable, int flags) |
1722 | 2.05k | { |
1723 | 2.05k | HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default; |
1724 | 2.05k | HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop; |
1725 | | |
1726 | 2.05k | #if DYNAMIC_BMI2 |
1727 | 2.05k | if (flags & HUF_flags_bmi2) { |
1728 | 2.05k | fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2; |
1729 | 2.05k | # if ZSTD_ENABLE_ASM_X86_64_BMI2 |
1730 | 2.05k | if (!(flags & HUF_flags_disableAsm)) { |
1731 | 2.05k | loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop; |
1732 | 2.05k | } |
1733 | 2.05k | # endif |
1734 | 2.05k | } else { |
1735 | 0 | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
1736 | 0 | } |
1737 | 2.05k | #endif |
1738 | | |
1739 | | #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) |
1740 | | if (!(flags & HUF_flags_disableAsm)) { |
1741 | | loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop; |
1742 | | } |
1743 | | #endif |
1744 | | |
1745 | 2.05k | if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) { |
1746 | 2.05k | size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn); |
1747 | 2.05k | if (ret != 0) |
1748 | 344 | return ret; |
1749 | 2.05k | } |
1750 | 1.71k | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
1751 | 2.05k | } |
1752 | | |
1753 | | HUF_DGEN(HUF_decompress1X2_usingDTable_internal) |
1754 | | |
1755 | | size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, |
1756 | | const void* cSrc, size_t cSrcSize, |
1757 | | void* workSpace, size_t wkspSize, int flags) |
1758 | 0 | { |
1759 | 0 | const BYTE* ip = (const BYTE*) cSrc; |
1760 | |
|
1761 | 0 | size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, |
1762 | 0 | workSpace, wkspSize, flags); |
1763 | 0 | if (HUF_isError(hSize)) return hSize; |
1764 | 0 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
1765 | 0 | ip += hSize; cSrcSize -= hSize; |
1766 | |
|
1767 | 0 | return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags); |
1768 | 0 | } |
1769 | | |
1770 | | static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
1771 | | const void* cSrc, size_t cSrcSize, |
1772 | | void* workSpace, size_t wkspSize, int flags) |
1773 | 2.48k | { |
1774 | 2.48k | const BYTE* ip = (const BYTE*) cSrc; |
1775 | | |
1776 | 2.48k | size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, |
1777 | 2.48k | workSpace, wkspSize, flags); |
1778 | 2.48k | if (HUF_isError(hSize)) return hSize; |
1779 | 2.05k | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
1780 | 2.05k | ip += hSize; cSrcSize -= hSize; |
1781 | | |
1782 | 2.05k | return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); |
1783 | 2.05k | } |
1784 | | |
1785 | | #endif /* HUF_FORCE_DECOMPRESS_X1 */ |
1786 | | |
1787 | | |
1788 | | /* ***********************************/ |
1789 | | /* Universal decompression selectors */ |
1790 | | /* ***********************************/ |
1791 | | |
1792 | | |
1793 | | #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) |
1794 | | typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; |
1795 | | static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] = |
1796 | | { |
1797 | | /* single, double, quad */ |
1798 | | {{0,0}, {1,1}}, /* Q==0 : impossible */ |
1799 | | {{0,0}, {1,1}}, /* Q==1 : impossible */ |
1800 | | {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */ |
1801 | | {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */ |
1802 | | {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */ |
1803 | | {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */ |
1804 | | {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */ |
1805 | | {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */ |
1806 | | {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */ |
1807 | | {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */ |
1808 | | {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */ |
1809 | | {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */ |
1810 | | {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */ |
1811 | | {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */ |
1812 | | {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */ |
1813 | | {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */ |
1814 | | }; |
1815 | | #endif |
1816 | | |
1817 | | /** HUF_selectDecoder() : |
1818 | | * Tells which decoder is likely to decode faster, |
1819 | | * based on a set of pre-computed metrics. |
1820 | | * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . |
1821 | | * Assumption : 0 < dstSize <= 128 KB */ |
1822 | | U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize) |
1823 | 10.7k | { |
1824 | 10.7k | assert(dstSize > 0); |
1825 | 10.7k | assert(dstSize <= 128*1024); |
1826 | | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1827 | | (void)dstSize; |
1828 | | (void)cSrcSize; |
1829 | | return 0; |
1830 | | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1831 | | (void)dstSize; |
1832 | | (void)cSrcSize; |
1833 | | return 1; |
1834 | | #else |
1835 | | /* decoder timing evaluation */ |
1836 | 10.7k | { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */ |
1837 | 10.7k | U32 const D256 = (U32)(dstSize >> 8); |
1838 | 10.7k | U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); |
1839 | 10.7k | U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); |
1840 | 10.7k | DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */ |
1841 | 10.7k | return DTime1 < DTime0; |
1842 | 10.7k | } |
1843 | 10.7k | #endif |
1844 | 10.7k | } |
1845 | | |
1846 | | size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
1847 | | const void* cSrc, size_t cSrcSize, |
1848 | | void* workSpace, size_t wkspSize, int flags) |
1849 | 0 | { |
1850 | | /* validation checks */ |
1851 | 0 | if (dstSize == 0) return ERROR(dstSize_tooSmall); |
1852 | 0 | if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ |
1853 | 0 | if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ |
1854 | 0 | if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ |
1855 | | |
1856 | 0 | { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
1857 | | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1858 | | (void)algoNb; |
1859 | | assert(algoNb == 0); |
1860 | | return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1861 | | cSrcSize, workSpace, wkspSize, flags); |
1862 | | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1863 | | (void)algoNb; |
1864 | | assert(algoNb == 1); |
1865 | | return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1866 | | cSrcSize, workSpace, wkspSize, flags); |
1867 | | #else |
1868 | 0 | return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1869 | 0 | cSrcSize, workSpace, wkspSize, flags): |
1870 | 0 | HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1871 | 0 | cSrcSize, workSpace, wkspSize, flags); |
1872 | 0 | #endif |
1873 | 0 | } |
1874 | 0 | } |
1875 | | |
1876 | | |
1877 | | size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags) |
1878 | 124 | { |
1879 | 124 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1880 | | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1881 | | (void)dtd; |
1882 | | assert(dtd.tableType == 0); |
1883 | | return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1884 | | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1885 | | (void)dtd; |
1886 | | assert(dtd.tableType == 1); |
1887 | | return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1888 | | #else |
1889 | 124 | return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) : |
1890 | 124 | HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1891 | 124 | #endif |
1892 | 124 | } |
1893 | | |
1894 | | #ifndef HUF_FORCE_DECOMPRESS_X2 |
1895 | | size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) |
1896 | 316 | { |
1897 | 316 | const BYTE* ip = (const BYTE*) cSrc; |
1898 | | |
1899 | 316 | size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1900 | 316 | if (HUF_isError(hSize)) return hSize; |
1901 | 145 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
1902 | 110 | ip += hSize; cSrcSize -= hSize; |
1903 | | |
1904 | 110 | return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); |
1905 | 145 | } |
1906 | | #endif |
1907 | | |
1908 | | size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags) |
1909 | 24 | { |
1910 | 24 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1911 | | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1912 | | (void)dtd; |
1913 | | assert(dtd.tableType == 0); |
1914 | | return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1915 | | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1916 | | (void)dtd; |
1917 | | assert(dtd.tableType == 1); |
1918 | | return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1919 | | #else |
1920 | 24 | return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) : |
1921 | 24 | HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1922 | 24 | #endif |
1923 | 24 | } |
1924 | | |
1925 | | size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) |
1926 | 10.8k | { |
1927 | | /* validation checks */ |
1928 | 10.8k | if (dstSize == 0) return ERROR(dstSize_tooSmall); |
1929 | 10.8k | if (cSrcSize == 0) return ERROR(corruption_detected); |
1930 | | |
1931 | 10.7k | { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
1932 | | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1933 | | (void)algoNb; |
1934 | | assert(algoNb == 0); |
1935 | | return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1936 | | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1937 | | (void)algoNb; |
1938 | | assert(algoNb == 1); |
1939 | | return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1940 | | #else |
1941 | 10.7k | return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) : |
1942 | 10.7k | HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1943 | 10.8k | #endif |
1944 | 10.8k | } |
1945 | 10.8k | } |