/src/openssl/crypto/bn/bn_lib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <assert.h> |
11 | | #include <limits.h> |
12 | | #include "internal/cryptlib.h" |
13 | | #include "internal/endian.h" |
14 | | #include "bn_local.h" |
15 | | #include <openssl/opensslconf.h> |
16 | | #include "internal/constant_time.h" |
17 | | |
18 | | /* This stuff appears to be completely unused, so is deprecated */ |
19 | | #ifndef OPENSSL_NO_DEPRECATED_0_9_8 |
20 | | /*- |
21 | | * For a 32 bit machine |
22 | | * 2 - 4 == 128 |
23 | | * 3 - 8 == 256 |
24 | | * 4 - 16 == 512 |
25 | | * 5 - 32 == 1024 |
26 | | * 6 - 64 == 2048 |
27 | | * 7 - 128 == 4096 |
28 | | * 8 - 256 == 8192 |
29 | | */ |
30 | | static int bn_limit_bits = 0; |
31 | | static int bn_limit_num = 8; /* (1<<bn_limit_bits) */ |
32 | | static int bn_limit_bits_low = 0; |
33 | | static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */ |
34 | | static int bn_limit_bits_high = 0; |
35 | | static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */ |
36 | | static int bn_limit_bits_mont = 0; |
37 | | static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */ |
38 | | |
39 | | void BN_set_params(int mult, int high, int low, int mont) |
40 | 0 | { |
41 | 0 | if (mult >= 0) { |
42 | 0 | if (mult > (int)(sizeof(int) * 8) - 1) |
43 | 0 | mult = sizeof(int) * 8 - 1; |
44 | 0 | bn_limit_bits = mult; |
45 | 0 | bn_limit_num = 1 << mult; |
46 | 0 | } |
47 | 0 | if (high >= 0) { |
48 | 0 | if (high > (int)(sizeof(int) * 8) - 1) |
49 | 0 | high = sizeof(int) * 8 - 1; |
50 | 0 | bn_limit_bits_high = high; |
51 | 0 | bn_limit_num_high = 1 << high; |
52 | 0 | } |
53 | 0 | if (low >= 0) { |
54 | 0 | if (low > (int)(sizeof(int) * 8) - 1) |
55 | 0 | low = sizeof(int) * 8 - 1; |
56 | 0 | bn_limit_bits_low = low; |
57 | 0 | bn_limit_num_low = 1 << low; |
58 | 0 | } |
59 | 0 | if (mont >= 0) { |
60 | 0 | if (mont > (int)(sizeof(int) * 8) - 1) |
61 | 0 | mont = sizeof(int) * 8 - 1; |
62 | 0 | bn_limit_bits_mont = mont; |
63 | 0 | bn_limit_num_mont = 1 << mont; |
64 | 0 | } |
65 | 0 | } |
66 | | |
67 | | int BN_get_params(int which) |
68 | 0 | { |
69 | 0 | if (which == 0) |
70 | 0 | return bn_limit_bits; |
71 | 0 | else if (which == 1) |
72 | 0 | return bn_limit_bits_high; |
73 | 0 | else if (which == 2) |
74 | 0 | return bn_limit_bits_low; |
75 | 0 | else if (which == 3) |
76 | 0 | return bn_limit_bits_mont; |
77 | 0 | else |
78 | 0 | return 0; |
79 | 0 | } |
80 | | #endif |
81 | | |
82 | | const BIGNUM *BN_value_one(void) |
83 | 0 | { |
84 | 0 | static const BN_ULONG data_one = 1L; |
85 | 0 | static const BIGNUM const_one = { |
86 | 0 | (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA |
87 | 0 | }; |
88 | |
|
89 | 0 | return &const_one; |
90 | 0 | } |
91 | | |
92 | | /* |
93 | | * Old Visual Studio ARM compiler miscompiles BN_num_bits_word() |
94 | | * https://mta.openssl.org/pipermail/openssl-users/2018-August/008465.html |
95 | | */ |
96 | | #if defined(_MSC_VER) && defined(_ARM_) && defined(_WIN32_WCE) \ |
97 | | && _MSC_VER>=1400 && _MSC_VER<1501 |
98 | | # define MS_BROKEN_BN_num_bits_word |
99 | | # pragma optimize("", off) |
100 | | #endif |
101 | | int BN_num_bits_word(BN_ULONG l) |
102 | 0 | { |
103 | 0 | BN_ULONG x, mask; |
104 | 0 | int bits = (l != 0); |
105 | |
|
106 | 0 | #if BN_BITS2 > 32 |
107 | 0 | x = l >> 32; |
108 | 0 | mask = (0 - x) & BN_MASK2; |
109 | 0 | mask = (0 - (mask >> (BN_BITS2 - 1))); |
110 | 0 | bits += 32 & mask; |
111 | 0 | l ^= (x ^ l) & mask; |
112 | 0 | #endif |
113 | |
|
114 | 0 | x = l >> 16; |
115 | 0 | mask = (0 - x) & BN_MASK2; |
116 | 0 | mask = (0 - (mask >> (BN_BITS2 - 1))); |
117 | 0 | bits += 16 & mask; |
118 | 0 | l ^= (x ^ l) & mask; |
119 | |
|
120 | 0 | x = l >> 8; |
121 | 0 | mask = (0 - x) & BN_MASK2; |
122 | 0 | mask = (0 - (mask >> (BN_BITS2 - 1))); |
123 | 0 | bits += 8 & mask; |
124 | 0 | l ^= (x ^ l) & mask; |
125 | |
|
126 | 0 | x = l >> 4; |
127 | 0 | mask = (0 - x) & BN_MASK2; |
128 | 0 | mask = (0 - (mask >> (BN_BITS2 - 1))); |
129 | 0 | bits += 4 & mask; |
130 | 0 | l ^= (x ^ l) & mask; |
131 | |
|
132 | 0 | x = l >> 2; |
133 | 0 | mask = (0 - x) & BN_MASK2; |
134 | 0 | mask = (0 - (mask >> (BN_BITS2 - 1))); |
135 | 0 | bits += 2 & mask; |
136 | 0 | l ^= (x ^ l) & mask; |
137 | |
|
138 | 0 | x = l >> 1; |
139 | 0 | mask = (0 - x) & BN_MASK2; |
140 | 0 | mask = (0 - (mask >> (BN_BITS2 - 1))); |
141 | 0 | bits += 1 & mask; |
142 | |
|
143 | 0 | return bits; |
144 | 0 | } |
145 | | #ifdef MS_BROKEN_BN_num_bits_word |
146 | | # pragma optimize("", on) |
147 | | #endif |
148 | | |
149 | | /* |
150 | | * This function still leaks `a->dmax`: it's caller's responsibility to |
151 | | * expand the input `a` in advance to a public length. |
152 | | */ |
153 | | static ossl_inline |
154 | | int bn_num_bits_consttime(const BIGNUM *a) |
155 | 0 | { |
156 | 0 | int j, ret; |
157 | 0 | unsigned int mask, past_i; |
158 | 0 | int i = a->top - 1; |
159 | 0 | bn_check_top(a); |
160 | |
|
161 | 0 | for (j = 0, past_i = 0, ret = 0; j < a->dmax; j++) { |
162 | 0 | mask = constant_time_eq_int(i, j); /* 0xff..ff if i==j, 0x0 otherwise */ |
163 | |
|
164 | 0 | ret += BN_BITS2 & (~mask & ~past_i); |
165 | 0 | ret += BN_num_bits_word(a->d[j]) & mask; |
166 | |
|
167 | 0 | past_i |= mask; /* past_i will become 0xff..ff after i==j */ |
168 | 0 | } |
169 | | |
170 | | /* |
171 | | * if BN_is_zero(a) => i is -1 and ret contains garbage, so we mask the |
172 | | * final result. |
173 | | */ |
174 | 0 | mask = ~(constant_time_eq_int(i, ((int)-1))); |
175 | |
|
176 | 0 | return ret & mask; |
177 | 0 | } |
178 | | |
179 | | int BN_num_bits(const BIGNUM *a) |
180 | 0 | { |
181 | 0 | int i = a->top - 1; |
182 | 0 | bn_check_top(a); |
183 | |
|
184 | 0 | if (a->flags & BN_FLG_CONSTTIME) { |
185 | | /* |
186 | | * We assume that BIGNUMs flagged as CONSTTIME have also been expanded |
187 | | * so that a->dmax is not leaking secret information. |
188 | | * |
189 | | * In other words, it's the caller's responsibility to ensure `a` has |
190 | | * been preallocated in advance to a public length if we hit this |
191 | | * branch. |
192 | | * |
193 | | */ |
194 | 0 | return bn_num_bits_consttime(a); |
195 | 0 | } |
196 | | |
197 | 0 | if (ossl_unlikely(BN_is_zero(a))) |
198 | 0 | return 0; |
199 | | |
200 | 0 | return ((i * BN_BITS2) + BN_num_bits_word(a->d[i])); |
201 | 0 | } |
202 | | |
203 | | static void bn_free_d(BIGNUM *a, int clear) |
204 | 0 | { |
205 | 0 | if (BN_get_flags(a, BN_FLG_SECURE)) |
206 | 0 | OPENSSL_secure_clear_free(a->d, a->dmax * sizeof(a->d[0])); |
207 | 0 | else if (clear != 0) |
208 | 0 | OPENSSL_clear_free(a->d, a->dmax * sizeof(a->d[0])); |
209 | 0 | else |
210 | 0 | OPENSSL_free(a->d); |
211 | 0 | } |
212 | | |
213 | | |
214 | | void BN_clear_free(BIGNUM *a) |
215 | 0 | { |
216 | 0 | if (a == NULL) |
217 | 0 | return; |
218 | 0 | if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA)) |
219 | 0 | bn_free_d(a, 1); |
220 | 0 | if (BN_get_flags(a, BN_FLG_MALLOCED)) { |
221 | 0 | OPENSSL_cleanse(a, sizeof(*a)); |
222 | 0 | OPENSSL_free(a); |
223 | 0 | } |
224 | 0 | } |
225 | | |
226 | | void BN_free(BIGNUM *a) |
227 | 207 | { |
228 | 207 | if (a == NULL) |
229 | 207 | return; |
230 | 0 | if (!BN_get_flags(a, BN_FLG_STATIC_DATA)) |
231 | 0 | bn_free_d(a, 0); |
232 | 0 | if (a->flags & BN_FLG_MALLOCED) |
233 | 0 | OPENSSL_free(a); |
234 | 0 | } |
235 | | |
236 | | void bn_init(BIGNUM *a) |
237 | 0 | { |
238 | 0 | static BIGNUM nilbn; |
239 | |
|
240 | 0 | *a = nilbn; |
241 | 0 | bn_check_top(a); |
242 | 0 | } |
243 | | |
244 | | BIGNUM *BN_new(void) |
245 | 0 | { |
246 | 0 | BIGNUM *ret; |
247 | |
|
248 | 0 | if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) |
249 | 0 | return NULL; |
250 | 0 | ret->flags = BN_FLG_MALLOCED; |
251 | 0 | bn_check_top(ret); |
252 | 0 | return ret; |
253 | 0 | } |
254 | | |
255 | | BIGNUM *BN_secure_new(void) |
256 | 0 | { |
257 | 0 | BIGNUM *ret = BN_new(); |
258 | |
|
259 | 0 | if (ret != NULL) |
260 | 0 | ret->flags |= BN_FLG_SECURE; |
261 | 0 | return ret; |
262 | 0 | } |
263 | | |
264 | | /* This is used by bn_expand2() */ |
265 | | /* The caller MUST check that words > b->dmax before calling this */ |
266 | | static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words) |
267 | 0 | { |
268 | 0 | BN_ULONG *a = NULL; |
269 | |
|
270 | 0 | if (ossl_unlikely(words > (INT_MAX / (4 * BN_BITS2)))) { |
271 | 0 | ERR_raise(ERR_LIB_BN, BN_R_BIGNUM_TOO_LONG); |
272 | 0 | return NULL; |
273 | 0 | } |
274 | 0 | if (ossl_unlikely(BN_get_flags(b, BN_FLG_STATIC_DATA))) { |
275 | 0 | ERR_raise(ERR_LIB_BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA); |
276 | 0 | return NULL; |
277 | 0 | } |
278 | 0 | if (BN_get_flags(b, BN_FLG_SECURE)) |
279 | 0 | a = OPENSSL_secure_zalloc(words * sizeof(*a)); |
280 | 0 | else |
281 | 0 | a = OPENSSL_zalloc(words * sizeof(*a)); |
282 | 0 | if (ossl_unlikely(a == NULL)) |
283 | 0 | return NULL; |
284 | | |
285 | 0 | assert(b->top <= words); |
286 | 0 | if (b->top > 0) |
287 | 0 | memcpy(a, b->d, sizeof(*a) * b->top); |
288 | |
|
289 | 0 | return a; |
290 | 0 | } |
291 | | |
292 | | /* |
293 | | * This is an internal function that should not be used in applications. It |
294 | | * ensures that 'b' has enough room for a 'words' word number and initialises |
295 | | * any unused part of b->d with leading zeros. It is mostly used by the |
296 | | * various BIGNUM routines. If there is an error, NULL is returned. If not, |
297 | | * 'b' is returned. |
298 | | */ |
299 | | |
300 | | BIGNUM *bn_expand2(BIGNUM *b, int words) |
301 | 0 | { |
302 | 0 | if (ossl_likely(words > b->dmax)) { |
303 | 0 | BN_ULONG *a = bn_expand_internal(b, words); |
304 | |
|
305 | 0 | if (ossl_unlikely(!a)) |
306 | 0 | return NULL; |
307 | 0 | if (b->d != NULL) |
308 | 0 | bn_free_d(b, 1); |
309 | 0 | b->d = a; |
310 | 0 | b->dmax = words; |
311 | 0 | } |
312 | | |
313 | 0 | return b; |
314 | 0 | } |
315 | | |
316 | | BIGNUM *BN_dup(const BIGNUM *a) |
317 | 0 | { |
318 | 0 | BIGNUM *t; |
319 | |
|
320 | 0 | if (a == NULL) |
321 | 0 | return NULL; |
322 | 0 | bn_check_top(a); |
323 | |
|
324 | 0 | t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new(); |
325 | 0 | if (t == NULL) |
326 | 0 | return NULL; |
327 | 0 | if (!BN_copy(t, a)) { |
328 | 0 | BN_free(t); |
329 | 0 | return NULL; |
330 | 0 | } |
331 | 0 | bn_check_top(t); |
332 | 0 | return t; |
333 | 0 | } |
334 | | |
335 | | BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b) |
336 | 0 | { |
337 | 0 | int bn_words; |
338 | |
|
339 | 0 | bn_check_top(b); |
340 | |
|
341 | 0 | bn_words = BN_get_flags(b, BN_FLG_CONSTTIME) ? b->dmax : b->top; |
342 | |
|
343 | 0 | if (ossl_unlikely(a == b)) |
344 | 0 | return a; |
345 | 0 | if (ossl_unlikely(bn_wexpand(a, bn_words) == NULL)) |
346 | 0 | return NULL; |
347 | | |
348 | 0 | if (ossl_likely(b->top > 0)) |
349 | 0 | memcpy(a->d, b->d, sizeof(b->d[0]) * bn_words); |
350 | |
|
351 | 0 | a->neg = b->neg; |
352 | 0 | a->top = b->top; |
353 | 0 | a->flags |= b->flags & BN_FLG_FIXED_TOP; |
354 | 0 | bn_check_top(a); |
355 | 0 | return a; |
356 | 0 | } |
357 | | |
358 | 0 | #define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \ |
359 | 0 | | BN_FLG_CONSTTIME \ |
360 | 0 | | BN_FLG_SECURE \ |
361 | 0 | | BN_FLG_FIXED_TOP)) |
362 | 0 | #define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED)) |
363 | | |
364 | | void BN_swap(BIGNUM *a, BIGNUM *b) |
365 | 0 | { |
366 | 0 | int flags_old_a, flags_old_b; |
367 | 0 | BN_ULONG *tmp_d; |
368 | 0 | int tmp_top, tmp_dmax, tmp_neg; |
369 | |
|
370 | 0 | bn_check_top(a); |
371 | 0 | bn_check_top(b); |
372 | |
|
373 | 0 | flags_old_a = a->flags; |
374 | 0 | flags_old_b = b->flags; |
375 | |
|
376 | 0 | tmp_d = a->d; |
377 | 0 | tmp_top = a->top; |
378 | 0 | tmp_dmax = a->dmax; |
379 | 0 | tmp_neg = a->neg; |
380 | |
|
381 | 0 | a->d = b->d; |
382 | 0 | a->top = b->top; |
383 | 0 | a->dmax = b->dmax; |
384 | 0 | a->neg = b->neg; |
385 | |
|
386 | 0 | b->d = tmp_d; |
387 | 0 | b->top = tmp_top; |
388 | 0 | b->dmax = tmp_dmax; |
389 | 0 | b->neg = tmp_neg; |
390 | |
|
391 | 0 | a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b); |
392 | 0 | b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a); |
393 | 0 | bn_check_top(a); |
394 | 0 | bn_check_top(b); |
395 | 0 | } |
396 | | |
397 | | void BN_clear(BIGNUM *a) |
398 | 0 | { |
399 | 0 | if (a == NULL) |
400 | 0 | return; |
401 | 0 | bn_check_top(a); |
402 | 0 | if (a->d != NULL) |
403 | 0 | OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax); |
404 | 0 | a->neg = 0; |
405 | 0 | a->top = 0; |
406 | 0 | a->flags &= ~BN_FLG_FIXED_TOP; |
407 | 0 | } |
408 | | |
409 | | BN_ULONG BN_get_word(const BIGNUM *a) |
410 | 0 | { |
411 | 0 | if (a->top > 1) |
412 | 0 | return BN_MASK2; |
413 | 0 | else if (a->top == 1) |
414 | 0 | return a->d[0]; |
415 | | /* a->top == 0 */ |
416 | 0 | return 0; |
417 | 0 | } |
418 | | |
419 | | int BN_set_word(BIGNUM *a, BN_ULONG w) |
420 | 0 | { |
421 | 0 | bn_check_top(a); |
422 | 0 | if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL) |
423 | 0 | return 0; |
424 | 0 | a->neg = 0; |
425 | 0 | a->d[0] = w; |
426 | 0 | a->top = (w ? 1 : 0); |
427 | 0 | a->flags &= ~BN_FLG_FIXED_TOP; |
428 | 0 | bn_check_top(a); |
429 | 0 | return 1; |
430 | 0 | } |
431 | | |
432 | | typedef enum {BIG, LITTLE} endianness_t; |
433 | | typedef enum {SIGNED, UNSIGNED} signedness_t; |
434 | | |
435 | | static BIGNUM *bin2bn(const unsigned char *s, int len, BIGNUM *ret, |
436 | | endianness_t endianness, signedness_t signedness) |
437 | 0 | { |
438 | 0 | int inc; |
439 | 0 | const unsigned char *s2; |
440 | 0 | int inc2; |
441 | 0 | int neg = 0, xor = 0, carry = 0; |
442 | 0 | unsigned int i; |
443 | 0 | unsigned int n; |
444 | 0 | BIGNUM *bn = NULL; |
445 | | |
446 | | /* Negative length is not acceptable */ |
447 | 0 | if (len < 0) |
448 | 0 | return NULL; |
449 | | |
450 | 0 | if (ret == NULL) |
451 | 0 | ret = bn = BN_new(); |
452 | 0 | if (ret == NULL) |
453 | 0 | return NULL; |
454 | 0 | bn_check_top(ret); |
455 | | |
456 | | /* |
457 | | * If the input has no bits, the number is considered zero. |
458 | | * This makes calls with s==NULL and len==0 safe. |
459 | | */ |
460 | 0 | if (len == 0) { |
461 | 0 | BN_clear(ret); |
462 | 0 | return ret; |
463 | 0 | } |
464 | | |
465 | | /* |
466 | | * The loop that does the work iterates from least to most |
467 | | * significant BIGNUM chunk, so we adapt parameters to transfer |
468 | | * input bytes accordingly. |
469 | | */ |
470 | 0 | if (endianness == LITTLE) { |
471 | 0 | s2 = s + len - 1; |
472 | 0 | inc2 = -1; |
473 | 0 | inc = 1; |
474 | 0 | } else { |
475 | 0 | s2 = s; |
476 | 0 | inc2 = 1; |
477 | 0 | inc = -1; |
478 | 0 | s += len - 1; |
479 | 0 | } |
480 | | |
481 | | /* Take note of the signedness of the input bytes*/ |
482 | 0 | if (signedness == SIGNED) { |
483 | 0 | neg = !!(*s2 & 0x80); |
484 | 0 | xor = neg ? 0xff : 0x00; |
485 | 0 | carry = neg; |
486 | 0 | } |
487 | | |
488 | | /* |
489 | | * Skip leading sign extensions (the value of |xor|). |
490 | | * This is the only spot where |s2| and |inc2| are used. |
491 | | */ |
492 | 0 | for ( ; len > 0 && *s2 == xor; s2 += inc2, len--) |
493 | 0 | continue; |
494 | | |
495 | | /* |
496 | | * If there was a set of 0xff, we backtrack one byte unless the next |
497 | | * one has a sign bit, as the last 0xff is then part of the actual |
498 | | * number, rather then a mere sign extension. |
499 | | */ |
500 | 0 | if (xor == 0xff) { |
501 | 0 | if (len == 0 || !(*s2 & 0x80)) |
502 | 0 | len++; |
503 | 0 | } |
504 | | /* If it was all zeros, we're done */ |
505 | 0 | if (len == 0) { |
506 | 0 | ret->top = 0; |
507 | 0 | return ret; |
508 | 0 | } |
509 | 0 | n = ((len - 1) / BN_BYTES) + 1; /* Number of resulting bignum chunks */ |
510 | 0 | if (bn_wexpand(ret, (int)n) == NULL) { |
511 | 0 | BN_free(bn); |
512 | 0 | return NULL; |
513 | 0 | } |
514 | 0 | ret->top = n; |
515 | 0 | ret->neg = neg; |
516 | 0 | for (i = 0; n-- > 0; i++) { |
517 | 0 | BN_ULONG l = 0; /* Accumulator */ |
518 | 0 | unsigned int m = 0; /* Offset in a bignum chunk, in bits */ |
519 | |
|
520 | 0 | for (; len > 0 && m < BN_BYTES * 8; len--, s += inc, m += 8) { |
521 | 0 | BN_ULONG byte_xored = *s ^ xor; |
522 | 0 | BN_ULONG byte = (byte_xored + carry) & 0xff; |
523 | |
|
524 | 0 | carry = byte_xored > byte; /* Implicit 1 or 0 */ |
525 | 0 | l |= (byte << m); |
526 | 0 | } |
527 | 0 | ret->d[i] = l; |
528 | 0 | } |
529 | | /* |
530 | | * need to call this due to clear byte at top if avoiding having the top |
531 | | * bit set (-ve number) |
532 | | */ |
533 | 0 | bn_correct_top(ret); |
534 | 0 | return ret; |
535 | 0 | } |
536 | | |
537 | | BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret) |
538 | 0 | { |
539 | 0 | return bin2bn(s, len, ret, BIG, UNSIGNED); |
540 | 0 | } |
541 | | |
542 | | BIGNUM *BN_signed_bin2bn(const unsigned char *s, int len, BIGNUM *ret) |
543 | 0 | { |
544 | 0 | return bin2bn(s, len, ret, BIG, SIGNED); |
545 | 0 | } |
546 | | |
547 | | static int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen, |
548 | | endianness_t endianness, signedness_t signedness) |
549 | 0 | { |
550 | 0 | int inc; |
551 | 0 | int n, n8; |
552 | 0 | int xor = 0, carry = 0, ext = 0; |
553 | 0 | size_t i, lasti, j, atop, mask; |
554 | 0 | BN_ULONG l; |
555 | | |
556 | | /* |
557 | | * In case |a| is fixed-top, BN_num_bits can return bogus length, |
558 | | * but it's assumed that fixed-top inputs ought to be "nominated" |
559 | | * even for padded output, so it works out... |
560 | | */ |
561 | 0 | n8 = BN_num_bits(a); |
562 | 0 | n = (n8 + 7) / 8; /* This is what BN_num_bytes() does */ |
563 | | |
564 | | /* Take note of the signedness of the bignum */ |
565 | 0 | if (signedness == SIGNED) { |
566 | 0 | xor = a->neg ? 0xff : 0x00; |
567 | 0 | carry = a->neg; |
568 | | |
569 | | /* |
570 | | * if |n * 8 == n|, then the MSbit is set, otherwise unset. |
571 | | * We must compensate with one extra byte if that doesn't |
572 | | * correspond to the signedness of the bignum with regards |
573 | | * to 2's complement. |
574 | | */ |
575 | 0 | ext = (n * 8 == n8) |
576 | 0 | ? !a->neg /* MSbit set on nonnegative bignum */ |
577 | 0 | : a->neg; /* MSbit unset on negative bignum */ |
578 | 0 | } |
579 | |
|
580 | 0 | if (tolen == -1) { |
581 | 0 | tolen = n + ext; |
582 | 0 | } else if (tolen < n + ext) { /* uncommon/unlike case */ |
583 | 0 | BIGNUM temp = *a; |
584 | |
|
585 | 0 | bn_correct_top(&temp); |
586 | 0 | n8 = BN_num_bits(&temp); |
587 | 0 | n = (n8 + 7) / 8; /* This is what BN_num_bytes() does */ |
588 | 0 | if (tolen < n + ext) |
589 | 0 | return -1; |
590 | 0 | } |
591 | | |
592 | | /* Swipe through whole available data and don't give away padded zero. */ |
593 | 0 | atop = a->dmax * BN_BYTES; |
594 | 0 | if (atop == 0) { |
595 | 0 | if (tolen != 0) |
596 | 0 | memset(to, '\0', tolen); |
597 | 0 | return tolen; |
598 | 0 | } |
599 | | |
600 | | /* |
601 | | * The loop that does the work iterates from least significant |
602 | | * to most significant BIGNUM limb, so we adapt parameters to |
603 | | * transfer output bytes accordingly. |
604 | | */ |
605 | 0 | if (endianness == LITTLE) { |
606 | 0 | inc = 1; |
607 | 0 | } else { |
608 | 0 | inc = -1; |
609 | 0 | to += tolen - 1; /* Move to the last byte, not beyond */ |
610 | 0 | } |
611 | |
|
612 | 0 | lasti = atop - 1; |
613 | 0 | atop = a->top * BN_BYTES; |
614 | 0 | for (i = 0, j = 0; j < (size_t)tolen; j++) { |
615 | 0 | unsigned char byte, byte_xored; |
616 | |
|
617 | 0 | l = a->d[i / BN_BYTES]; |
618 | 0 | mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1)); |
619 | 0 | byte = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask); |
620 | 0 | byte_xored = byte ^ xor; |
621 | 0 | *to = (unsigned char)(byte_xored + carry); |
622 | 0 | carry = byte_xored > *to; /* Implicit 1 or 0 */ |
623 | 0 | to += inc; |
624 | 0 | i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */ |
625 | 0 | } |
626 | |
|
627 | 0 | return tolen; |
628 | 0 | } |
629 | | |
630 | | int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen) |
631 | 0 | { |
632 | 0 | if (tolen < 0) |
633 | 0 | return -1; |
634 | 0 | return bn2binpad(a, to, tolen, BIG, UNSIGNED); |
635 | 0 | } |
636 | | |
637 | | int BN_signed_bn2bin(const BIGNUM *a, unsigned char *to, int tolen) |
638 | 0 | { |
639 | 0 | if (tolen < 0) |
640 | 0 | return -1; |
641 | 0 | return bn2binpad(a, to, tolen, BIG, SIGNED); |
642 | 0 | } |
643 | | |
644 | | int BN_bn2bin(const BIGNUM *a, unsigned char *to) |
645 | 0 | { |
646 | 0 | return bn2binpad(a, to, -1, BIG, UNSIGNED); |
647 | 0 | } |
648 | | |
649 | | BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret) |
650 | 0 | { |
651 | 0 | return bin2bn(s, len, ret, LITTLE, UNSIGNED); |
652 | 0 | } |
653 | | |
654 | | BIGNUM *BN_signed_lebin2bn(const unsigned char *s, int len, BIGNUM *ret) |
655 | 0 | { |
656 | 0 | return bin2bn(s, len, ret, LITTLE, SIGNED); |
657 | 0 | } |
658 | | |
659 | | int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen) |
660 | 0 | { |
661 | 0 | if (tolen < 0) |
662 | 0 | return -1; |
663 | 0 | return bn2binpad(a, to, tolen, LITTLE, UNSIGNED); |
664 | 0 | } |
665 | | |
666 | | int BN_signed_bn2lebin(const BIGNUM *a, unsigned char *to, int tolen) |
667 | 0 | { |
668 | 0 | if (tolen < 0) |
669 | 0 | return -1; |
670 | 0 | return bn2binpad(a, to, tolen, LITTLE, SIGNED); |
671 | 0 | } |
672 | | |
673 | | BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret) |
674 | 0 | { |
675 | 0 | DECLARE_IS_ENDIAN; |
676 | |
|
677 | 0 | if (IS_LITTLE_ENDIAN) |
678 | 0 | return BN_lebin2bn(s, len, ret); |
679 | 0 | return BN_bin2bn(s, len, ret); |
680 | 0 | } |
681 | | |
682 | | BIGNUM *BN_signed_native2bn(const unsigned char *s, int len, BIGNUM *ret) |
683 | 0 | { |
684 | 0 | DECLARE_IS_ENDIAN; |
685 | |
|
686 | 0 | if (IS_LITTLE_ENDIAN) |
687 | 0 | return BN_signed_lebin2bn(s, len, ret); |
688 | 0 | return BN_signed_bin2bn(s, len, ret); |
689 | 0 | } |
690 | | |
691 | | int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen) |
692 | 0 | { |
693 | 0 | DECLARE_IS_ENDIAN; |
694 | |
|
695 | 0 | if (IS_LITTLE_ENDIAN) |
696 | 0 | return BN_bn2lebinpad(a, to, tolen); |
697 | 0 | return BN_bn2binpad(a, to, tolen); |
698 | 0 | } |
699 | | |
700 | | int BN_signed_bn2native(const BIGNUM *a, unsigned char *to, int tolen) |
701 | 0 | { |
702 | 0 | DECLARE_IS_ENDIAN; |
703 | |
|
704 | 0 | if (IS_LITTLE_ENDIAN) |
705 | 0 | return BN_signed_bn2lebin(a, to, tolen); |
706 | 0 | return BN_signed_bn2bin(a, to, tolen); |
707 | 0 | } |
708 | | |
709 | | int BN_ucmp(const BIGNUM *a, const BIGNUM *b) |
710 | 0 | { |
711 | 0 | int i; |
712 | 0 | BN_ULONG t1, t2, *ap, *bp; |
713 | |
|
714 | 0 | ap = a->d; |
715 | 0 | bp = b->d; |
716 | |
|
717 | 0 | if (BN_get_flags(a, BN_FLG_CONSTTIME) |
718 | 0 | && a->top == b->top) { |
719 | 0 | int res = 0; |
720 | |
|
721 | 0 | for (i = 0; i < b->top; i++) { |
722 | 0 | res = constant_time_select_int((int)constant_time_lt_bn(ap[i], bp[i]), |
723 | 0 | -1, res); |
724 | 0 | res = constant_time_select_int((int)constant_time_lt_bn(bp[i], ap[i]), |
725 | 0 | 1, res); |
726 | 0 | } |
727 | 0 | return res; |
728 | 0 | } |
729 | | |
730 | 0 | bn_check_top(a); |
731 | 0 | bn_check_top(b); |
732 | |
|
733 | 0 | i = a->top - b->top; |
734 | 0 | if (i != 0) |
735 | 0 | return i; |
736 | | |
737 | 0 | for (i = a->top - 1; i >= 0; i--) { |
738 | 0 | t1 = ap[i]; |
739 | 0 | t2 = bp[i]; |
740 | 0 | if (t1 != t2) |
741 | 0 | return ((t1 > t2) ? 1 : -1); |
742 | 0 | } |
743 | 0 | return 0; |
744 | 0 | } |
745 | | |
746 | | int BN_cmp(const BIGNUM *a, const BIGNUM *b) |
747 | 0 | { |
748 | 0 | int i; |
749 | 0 | int gt, lt; |
750 | 0 | BN_ULONG t1, t2; |
751 | |
|
752 | 0 | if ((a == NULL) || (b == NULL)) { |
753 | 0 | if (a != NULL) |
754 | 0 | return -1; |
755 | 0 | else if (b != NULL) |
756 | 0 | return 1; |
757 | 0 | else |
758 | 0 | return 0; |
759 | 0 | } |
760 | | |
761 | 0 | bn_check_top(a); |
762 | 0 | bn_check_top(b); |
763 | |
|
764 | 0 | if (a->neg != b->neg) { |
765 | 0 | if (a->neg) |
766 | 0 | return -1; |
767 | 0 | else |
768 | 0 | return 1; |
769 | 0 | } |
770 | 0 | if (a->neg == 0) { |
771 | 0 | gt = 1; |
772 | 0 | lt = -1; |
773 | 0 | } else { |
774 | 0 | gt = -1; |
775 | 0 | lt = 1; |
776 | 0 | } |
777 | |
|
778 | 0 | if (a->top > b->top) |
779 | 0 | return gt; |
780 | 0 | if (a->top < b->top) |
781 | 0 | return lt; |
782 | 0 | for (i = a->top - 1; i >= 0; i--) { |
783 | 0 | t1 = a->d[i]; |
784 | 0 | t2 = b->d[i]; |
785 | 0 | if (t1 > t2) |
786 | 0 | return gt; |
787 | 0 | if (t1 < t2) |
788 | 0 | return lt; |
789 | 0 | } |
790 | 0 | return 0; |
791 | 0 | } |
792 | | |
793 | | int BN_set_bit(BIGNUM *a, int n) |
794 | 0 | { |
795 | 0 | int i, j, k; |
796 | |
|
797 | 0 | if (n < 0) |
798 | 0 | return 0; |
799 | | |
800 | 0 | i = n / BN_BITS2; |
801 | 0 | j = n % BN_BITS2; |
802 | 0 | if (a->top <= i) { |
803 | 0 | if (bn_wexpand(a, i + 1) == NULL) |
804 | 0 | return 0; |
805 | 0 | for (k = a->top; k < i + 1; k++) |
806 | 0 | a->d[k] = 0; |
807 | 0 | a->top = i + 1; |
808 | 0 | a->flags &= ~BN_FLG_FIXED_TOP; |
809 | 0 | } |
810 | | |
811 | 0 | a->d[i] |= (((BN_ULONG)1) << j); |
812 | 0 | bn_check_top(a); |
813 | 0 | return 1; |
814 | 0 | } |
815 | | |
816 | | int BN_clear_bit(BIGNUM *a, int n) |
817 | 0 | { |
818 | 0 | int i, j; |
819 | |
|
820 | 0 | bn_check_top(a); |
821 | 0 | if (n < 0) |
822 | 0 | return 0; |
823 | | |
824 | 0 | i = n / BN_BITS2; |
825 | 0 | j = n % BN_BITS2; |
826 | 0 | if (a->top <= i) |
827 | 0 | return 0; |
828 | | |
829 | 0 | a->d[i] &= (~(((BN_ULONG)1) << j)); |
830 | 0 | bn_correct_top(a); |
831 | 0 | return 1; |
832 | 0 | } |
833 | | |
834 | | int BN_is_bit_set(const BIGNUM *a, int n) |
835 | 0 | { |
836 | 0 | int i, j; |
837 | |
|
838 | 0 | bn_check_top(a); |
839 | 0 | if (ossl_unlikely(n < 0)) |
840 | 0 | return 0; |
841 | 0 | i = n / BN_BITS2; |
842 | 0 | j = n % BN_BITS2; |
843 | 0 | if (ossl_unlikely(a->top <= i)) |
844 | 0 | return 0; |
845 | 0 | return (int)(((a->d[i]) >> j) & ((BN_ULONG)1)); |
846 | 0 | } |
847 | | |
848 | | int ossl_bn_mask_bits_fixed_top(BIGNUM *a, int n) |
849 | 0 | { |
850 | 0 | int b, w; |
851 | |
|
852 | 0 | if (n < 0) |
853 | 0 | return 0; |
854 | | |
855 | 0 | w = n / BN_BITS2; |
856 | 0 | b = n % BN_BITS2; |
857 | 0 | if (w >= a->top) |
858 | 0 | return 0; |
859 | 0 | if (b == 0) |
860 | 0 | a->top = w; |
861 | 0 | else { |
862 | 0 | a->top = w + 1; |
863 | 0 | a->d[w] &= ~(BN_MASK2 << b); |
864 | 0 | } |
865 | 0 | a->flags |= BN_FLG_FIXED_TOP; |
866 | 0 | return 1; |
867 | 0 | } |
868 | | |
869 | | int BN_mask_bits(BIGNUM *a, int n) |
870 | 0 | { |
871 | 0 | int ret; |
872 | |
|
873 | 0 | bn_check_top(a); |
874 | 0 | ret = ossl_bn_mask_bits_fixed_top(a, n); |
875 | 0 | if (ret) |
876 | 0 | bn_correct_top(a); |
877 | 0 | return ret; |
878 | 0 | } |
879 | | |
880 | | void BN_set_negative(BIGNUM *a, int b) |
881 | 0 | { |
882 | 0 | if (b && !BN_is_zero(a)) |
883 | 0 | a->neg = 1; |
884 | 0 | else |
885 | 0 | a->neg = 0; |
886 | 0 | } |
887 | | |
888 | | int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n) |
889 | 0 | { |
890 | 0 | int i; |
891 | 0 | BN_ULONG aa, bb; |
892 | |
|
893 | 0 | if (ossl_unlikely(n == 0)) |
894 | 0 | return 0; |
895 | | |
896 | 0 | aa = a[n - 1]; |
897 | 0 | bb = b[n - 1]; |
898 | 0 | if (ossl_likely(aa != bb)) |
899 | 0 | return ((aa > bb) ? 1 : -1); |
900 | 0 | for (i = n - 2; i >= 0; i--) { |
901 | 0 | aa = a[i]; |
902 | 0 | bb = b[i]; |
903 | 0 | if (aa != bb) |
904 | 0 | return ((aa > bb) ? 1 : -1); |
905 | 0 | } |
906 | 0 | return 0; |
907 | 0 | } |
908 | | |
909 | | /* |
910 | | * Here follows a specialised variants of bn_cmp_words(). It has the |
911 | | * capability of performing the operation on arrays of different sizes. The |
912 | | * sizes of those arrays is expressed through cl, which is the common length |
913 | | * ( basically, min(len(a),len(b)) ), and dl, which is the delta between the |
914 | | * two lengths, calculated as len(a)-len(b). All lengths are the number of |
915 | | * BN_ULONGs... |
916 | | */ |
917 | | |
918 | | int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) |
919 | 0 | { |
920 | 0 | int n, i; |
921 | 0 | n = cl - 1; |
922 | |
|
923 | 0 | if (dl < 0) { |
924 | 0 | for (i = dl; i < 0; i++) { |
925 | 0 | if (b[n - i] != 0) |
926 | 0 | return -1; /* a < b */ |
927 | 0 | } |
928 | 0 | } |
929 | 0 | if (dl > 0) { |
930 | 0 | for (i = dl; i > 0; i--) { |
931 | 0 | if (a[n + i] != 0) |
932 | 0 | return 1; /* a > b */ |
933 | 0 | } |
934 | 0 | } |
935 | 0 | return bn_cmp_words(a, b, cl); |
936 | 0 | } |
937 | | |
938 | | /*- |
939 | | * Constant-time conditional swap of a and b. |
940 | | * a and b are swapped if condition is not 0. |
941 | | * nwords is the number of words to swap. |
942 | | * Assumes that at least nwords are allocated in both a and b. |
943 | | * Assumes that no more than nwords are used by either a or b. |
944 | | */ |
945 | | void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords) |
946 | 0 | { |
947 | 0 | BN_ULONG t; |
948 | 0 | int i; |
949 | |
|
950 | 0 | bn_wcheck_size(a, nwords); |
951 | 0 | bn_wcheck_size(b, nwords); |
952 | |
|
953 | 0 | condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1; |
954 | |
|
955 | 0 | t = (a->top ^ b->top) & condition; |
956 | 0 | a->top ^= t; |
957 | 0 | b->top ^= t; |
958 | |
|
959 | 0 | t = (a->neg ^ b->neg) & condition; |
960 | 0 | a->neg ^= t; |
961 | 0 | b->neg ^= t; |
962 | | |
963 | | /*- |
964 | | * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention |
965 | | * is actually to treat it as it's read-only data, and some (if not most) |
966 | | * of it does reside in read-only segment. In other words observation of |
967 | | * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal |
968 | | * condition. It would either cause SEGV or effectively cause data |
969 | | * corruption. |
970 | | * |
971 | | * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be |
972 | | * preserved. |
973 | | * |
974 | | * BN_FLG_SECURE: must be preserved, because it determines how x->d was |
975 | | * allocated and hence how to free it. |
976 | | * |
977 | | * BN_FLG_CONSTTIME: sufficient to mask and swap |
978 | | * |
979 | | * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on |
980 | | * the data, so the d array may be padded with additional 0 values (i.e. |
981 | | * top could be greater than the minimal value that it could be). We should |
982 | | * be swapping it |
983 | | */ |
984 | |
|
985 | 0 | #define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP) |
986 | |
|
987 | 0 | t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition; |
988 | 0 | a->flags ^= t; |
989 | 0 | b->flags ^= t; |
990 | | |
991 | | /* conditionally swap the data */ |
992 | 0 | for (i = 0; i < nwords; i++) { |
993 | 0 | t = (a->d[i] ^ b->d[i]) & condition; |
994 | 0 | a->d[i] ^= t; |
995 | 0 | b->d[i] ^= t; |
996 | 0 | } |
997 | 0 | } |
998 | | |
999 | | #undef BN_CONSTTIME_SWAP_FLAGS |
1000 | | |
1001 | | /* Bits of security, see SP800-57 */ |
1002 | | |
1003 | | int BN_security_bits(int L, int N) |
1004 | 0 | { |
1005 | 0 | int secbits, bits; |
1006 | 0 | if (L >= 15360) |
1007 | 0 | secbits = 256; |
1008 | 0 | else if (L >= 7680) |
1009 | 0 | secbits = 192; |
1010 | 0 | else if (L >= 3072) |
1011 | 0 | secbits = 128; |
1012 | 0 | else if (L >= 2048) |
1013 | 0 | secbits = 112; |
1014 | 0 | else if (L >= 1024) |
1015 | 0 | secbits = 80; |
1016 | 0 | else |
1017 | 0 | return 0; |
1018 | 0 | if (N == -1) |
1019 | 0 | return secbits; |
1020 | 0 | bits = N / 2; |
1021 | 0 | if (bits < 80) |
1022 | 0 | return 0; |
1023 | 0 | return bits >= secbits ? secbits : bits; |
1024 | 0 | } |
1025 | | |
1026 | | void BN_zero_ex(BIGNUM *a) |
1027 | 0 | { |
1028 | 0 | a->neg = 0; |
1029 | 0 | a->top = 0; |
1030 | 0 | a->flags &= ~BN_FLG_FIXED_TOP; |
1031 | 0 | } |
1032 | | |
1033 | | int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w) |
1034 | 0 | { |
1035 | 0 | return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0)); |
1036 | 0 | } |
1037 | | |
1038 | | int BN_is_zero(const BIGNUM *a) |
1039 | 0 | { |
1040 | 0 | return a->top == 0; |
1041 | 0 | } |
1042 | | |
1043 | | int BN_is_one(const BIGNUM *a) |
1044 | 0 | { |
1045 | 0 | return BN_abs_is_word(a, 1) && !a->neg; |
1046 | 0 | } |
1047 | | |
1048 | | int BN_is_word(const BIGNUM *a, const BN_ULONG w) |
1049 | 0 | { |
1050 | 0 | return BN_abs_is_word(a, w) && (!w || !a->neg); |
1051 | 0 | } |
1052 | | |
1053 | | int ossl_bn_is_word_fixed_top(const BIGNUM *a, const BN_ULONG w) |
1054 | 0 | { |
1055 | 0 | int res, i; |
1056 | 0 | const BN_ULONG *ap = a->d; |
1057 | |
|
1058 | 0 | if (a->neg || a->top == 0) |
1059 | 0 | return 0; |
1060 | | |
1061 | 0 | res = constant_time_select_int((int)constant_time_eq_bn(ap[0], w), 1, 0); |
1062 | |
|
1063 | 0 | for (i = 1; i < a->top; i++) |
1064 | 0 | res = constant_time_select_int((int)constant_time_is_zero_bn(ap[i]), |
1065 | 0 | res, 0); |
1066 | 0 | return res; |
1067 | 0 | } |
1068 | | |
1069 | | int BN_is_odd(const BIGNUM *a) |
1070 | 0 | { |
1071 | 0 | return (a->top > 0) && (a->d[0] & 1); |
1072 | 0 | } |
1073 | | |
1074 | | int BN_is_negative(const BIGNUM *a) |
1075 | 0 | { |
1076 | 0 | return (a->neg != 0); |
1077 | 0 | } |
1078 | | |
1079 | | int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, |
1080 | | BN_CTX *ctx) |
1081 | 0 | { |
1082 | 0 | return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx); |
1083 | 0 | } |
1084 | | |
1085 | | void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags) |
1086 | 0 | { |
1087 | 0 | dest->d = b->d; |
1088 | 0 | dest->top = b->top; |
1089 | 0 | dest->dmax = b->dmax; |
1090 | 0 | dest->neg = b->neg; |
1091 | 0 | dest->flags = ((dest->flags & BN_FLG_MALLOCED) |
1092 | 0 | | (b->flags & ~BN_FLG_MALLOCED) |
1093 | 0 | | BN_FLG_STATIC_DATA | flags); |
1094 | 0 | } |
1095 | | |
1096 | | BN_GENCB *BN_GENCB_new(void) |
1097 | 0 | { |
1098 | 0 | BN_GENCB *ret; |
1099 | |
|
1100 | 0 | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
1101 | 0 | return NULL; |
1102 | | |
1103 | 0 | return ret; |
1104 | 0 | } |
1105 | | |
1106 | | void BN_GENCB_free(BN_GENCB *cb) |
1107 | 0 | { |
1108 | 0 | if (cb == NULL) |
1109 | 0 | return; |
1110 | 0 | OPENSSL_free(cb); |
1111 | 0 | } |
1112 | | |
1113 | | void BN_set_flags(BIGNUM *b, int n) |
1114 | 0 | { |
1115 | 0 | b->flags |= n; |
1116 | 0 | } |
1117 | | |
1118 | | int BN_get_flags(const BIGNUM *b, int n) |
1119 | 0 | { |
1120 | 0 | return b->flags & n; |
1121 | 0 | } |
1122 | | |
1123 | | /* Populate a BN_GENCB structure with an "old"-style callback */ |
1124 | | void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *), |
1125 | | void *cb_arg) |
1126 | 0 | { |
1127 | 0 | BN_GENCB *tmp_gencb = gencb; |
1128 | 0 | tmp_gencb->ver = 1; |
1129 | 0 | tmp_gencb->arg = cb_arg; |
1130 | 0 | tmp_gencb->cb.cb_1 = callback; |
1131 | 0 | } |
1132 | | |
1133 | | /* Populate a BN_GENCB structure with a "new"-style callback */ |
1134 | | void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *), |
1135 | | void *cb_arg) |
1136 | 0 | { |
1137 | 0 | BN_GENCB *tmp_gencb = gencb; |
1138 | 0 | tmp_gencb->ver = 2; |
1139 | 0 | tmp_gencb->arg = cb_arg; |
1140 | 0 | tmp_gencb->cb.cb_2 = callback; |
1141 | 0 | } |
1142 | | |
1143 | | void *BN_GENCB_get_arg(BN_GENCB *cb) |
1144 | 0 | { |
1145 | 0 | return cb->arg; |
1146 | 0 | } |
1147 | | |
1148 | | BIGNUM *bn_wexpand(BIGNUM *a, int words) |
1149 | 0 | { |
1150 | 0 | return (words <= a->dmax) ? a : bn_expand2(a, words); |
1151 | 0 | } |
1152 | | |
1153 | | void bn_correct_top_consttime(BIGNUM *a) |
1154 | 0 | { |
1155 | 0 | int j, atop; |
1156 | 0 | BN_ULONG limb; |
1157 | 0 | unsigned int mask; |
1158 | |
|
1159 | 0 | for (j = 0, atop = 0; j < a->dmax; j++) { |
1160 | 0 | limb = a->d[j]; |
1161 | 0 | limb |= 0 - limb; |
1162 | 0 | limb >>= BN_BITS2 - 1; |
1163 | 0 | limb = 0 - limb; |
1164 | 0 | mask = (unsigned int)limb; |
1165 | 0 | mask &= constant_time_msb(j - a->top); |
1166 | 0 | atop = constant_time_select_int(mask, j + 1, atop); |
1167 | 0 | } |
1168 | |
|
1169 | 0 | mask = constant_time_eq_int(atop, 0); |
1170 | 0 | a->top = atop; |
1171 | 0 | a->neg = constant_time_select_int(mask, 0, a->neg); |
1172 | 0 | a->flags &= ~BN_FLG_FIXED_TOP; |
1173 | 0 | } |
1174 | | |
1175 | | void bn_correct_top(BIGNUM *a) |
1176 | 0 | { |
1177 | 0 | BN_ULONG *ftl; |
1178 | 0 | int tmp_top = a->top; |
1179 | |
|
1180 | 0 | if (ossl_likely(tmp_top > 0)) { |
1181 | 0 | for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) { |
1182 | 0 | ftl--; |
1183 | 0 | if (*ftl != 0) |
1184 | 0 | break; |
1185 | 0 | } |
1186 | 0 | a->top = tmp_top; |
1187 | 0 | } |
1188 | 0 | if (a->top == 0) |
1189 | 0 | a->neg = 0; |
1190 | 0 | a->flags &= ~BN_FLG_FIXED_TOP; |
1191 | 0 | bn_pollute(a); |
1192 | 0 | } |