Coverage Report

Created: 2025-07-23 06:08

/src/openssl/crypto/bn/bn_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <assert.h>
11
#include <limits.h>
12
#include "internal/cryptlib.h"
13
#include "internal/endian.h"
14
#include "bn_local.h"
15
#include <openssl/opensslconf.h>
16
#include "internal/constant_time.h"
17
18
/* This stuff appears to be completely unused, so is deprecated */
19
#ifndef OPENSSL_NO_DEPRECATED_0_9_8
20
/*-
21
 * For a 32 bit machine
22
 * 2 -   4 ==  128
23
 * 3 -   8 ==  256
24
 * 4 -  16 ==  512
25
 * 5 -  32 == 1024
26
 * 6 -  64 == 2048
27
 * 7 - 128 == 4096
28
 * 8 - 256 == 8192
29
 */
30
static int bn_limit_bits = 0;
31
static int bn_limit_num = 8;    /* (1<<bn_limit_bits) */
32
static int bn_limit_bits_low = 0;
33
static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
34
static int bn_limit_bits_high = 0;
35
static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
36
static int bn_limit_bits_mont = 0;
37
static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
38
39
void BN_set_params(int mult, int high, int low, int mont)
40
0
{
41
0
    if (mult >= 0) {
42
0
        if (mult > (int)(sizeof(int) * 8) - 1)
43
0
            mult = sizeof(int) * 8 - 1;
44
0
        bn_limit_bits = mult;
45
0
        bn_limit_num = 1 << mult;
46
0
    }
47
0
    if (high >= 0) {
48
0
        if (high > (int)(sizeof(int) * 8) - 1)
49
0
            high = sizeof(int) * 8 - 1;
50
0
        bn_limit_bits_high = high;
51
0
        bn_limit_num_high = 1 << high;
52
0
    }
53
0
    if (low >= 0) {
54
0
        if (low > (int)(sizeof(int) * 8) - 1)
55
0
            low = sizeof(int) * 8 - 1;
56
0
        bn_limit_bits_low = low;
57
0
        bn_limit_num_low = 1 << low;
58
0
    }
59
0
    if (mont >= 0) {
60
0
        if (mont > (int)(sizeof(int) * 8) - 1)
61
0
            mont = sizeof(int) * 8 - 1;
62
0
        bn_limit_bits_mont = mont;
63
0
        bn_limit_num_mont = 1 << mont;
64
0
    }
65
0
}
66
67
int BN_get_params(int which)
68
0
{
69
0
    if (which == 0)
70
0
        return bn_limit_bits;
71
0
    else if (which == 1)
72
0
        return bn_limit_bits_high;
73
0
    else if (which == 2)
74
0
        return bn_limit_bits_low;
75
0
    else if (which == 3)
76
0
        return bn_limit_bits_mont;
77
0
    else
78
0
        return 0;
79
0
}
80
#endif
81
82
const BIGNUM *BN_value_one(void)
83
0
{
84
0
    static const BN_ULONG data_one = 1L;
85
0
    static const BIGNUM const_one = {
86
0
        (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA
87
0
    };
88
89
0
    return &const_one;
90
0
}
91
92
/*
93
 * Old Visual Studio ARM compiler miscompiles BN_num_bits_word()
94
 * https://mta.openssl.org/pipermail/openssl-users/2018-August/008465.html
95
 */
96
#if defined(_MSC_VER) && defined(_ARM_) && defined(_WIN32_WCE) \
97
    && _MSC_VER>=1400 && _MSC_VER<1501
98
# define MS_BROKEN_BN_num_bits_word
99
# pragma optimize("", off)
100
#endif
101
int BN_num_bits_word(BN_ULONG l)
102
0
{
103
0
    BN_ULONG x, mask;
104
0
    int bits = (l != 0);
105
106
0
#if BN_BITS2 > 32
107
0
    x = l >> 32;
108
0
    mask = (0 - x) & BN_MASK2;
109
0
    mask = (0 - (mask >> (BN_BITS2 - 1)));
110
0
    bits += 32 & mask;
111
0
    l ^= (x ^ l) & mask;
112
0
#endif
113
114
0
    x = l >> 16;
115
0
    mask = (0 - x) & BN_MASK2;
116
0
    mask = (0 - (mask >> (BN_BITS2 - 1)));
117
0
    bits += 16 & mask;
118
0
    l ^= (x ^ l) & mask;
119
120
0
    x = l >> 8;
121
0
    mask = (0 - x) & BN_MASK2;
122
0
    mask = (0 - (mask >> (BN_BITS2 - 1)));
123
0
    bits += 8 & mask;
124
0
    l ^= (x ^ l) & mask;
125
126
0
    x = l >> 4;
127
0
    mask = (0 - x) & BN_MASK2;
128
0
    mask = (0 - (mask >> (BN_BITS2 - 1)));
129
0
    bits += 4 & mask;
130
0
    l ^= (x ^ l) & mask;
131
132
0
    x = l >> 2;
133
0
    mask = (0 - x) & BN_MASK2;
134
0
    mask = (0 - (mask >> (BN_BITS2 - 1)));
135
0
    bits += 2 & mask;
136
0
    l ^= (x ^ l) & mask;
137
138
0
    x = l >> 1;
139
0
    mask = (0 - x) & BN_MASK2;
140
0
    mask = (0 - (mask >> (BN_BITS2 - 1)));
141
0
    bits += 1 & mask;
142
143
0
    return bits;
144
0
}
145
#ifdef MS_BROKEN_BN_num_bits_word
146
# pragma optimize("", on)
147
#endif
148
149
/*
150
 * This function still leaks `a->dmax`: it's caller's responsibility to
151
 * expand the input `a` in advance to a public length.
152
 */
153
static ossl_inline
154
int bn_num_bits_consttime(const BIGNUM *a)
155
0
{
156
0
    int j, ret;
157
0
    unsigned int mask, past_i;
158
0
    int i = a->top - 1;
159
0
    bn_check_top(a);
160
161
0
    for (j = 0, past_i = 0, ret = 0; j < a->dmax; j++) {
162
0
        mask = constant_time_eq_int(i, j); /* 0xff..ff if i==j, 0x0 otherwise */
163
164
0
        ret += BN_BITS2 & (~mask & ~past_i);
165
0
        ret += BN_num_bits_word(a->d[j]) & mask;
166
167
0
        past_i |= mask; /* past_i will become 0xff..ff after i==j */
168
0
    }
169
170
    /*
171
     * if BN_is_zero(a) => i is -1 and ret contains garbage, so we mask the
172
     * final result.
173
     */
174
0
    mask = ~(constant_time_eq_int(i, ((int)-1)));
175
176
0
    return ret & mask;
177
0
}
178
179
int BN_num_bits(const BIGNUM *a)
180
0
{
181
0
    int i = a->top - 1;
182
0
    bn_check_top(a);
183
184
0
    if (a->flags & BN_FLG_CONSTTIME) {
185
        /*
186
         * We assume that BIGNUMs flagged as CONSTTIME have also been expanded
187
         * so that a->dmax is not leaking secret information.
188
         *
189
         * In other words, it's the caller's responsibility to ensure `a` has
190
         * been preallocated in advance to a public length if we hit this
191
         * branch.
192
         *
193
         */
194
0
        return bn_num_bits_consttime(a);
195
0
    }
196
197
0
    if (ossl_unlikely(BN_is_zero(a)))
198
0
        return 0;
199
200
0
    return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
201
0
}
202
203
static void bn_free_d(BIGNUM *a, int clear)
204
0
{
205
0
    if (BN_get_flags(a, BN_FLG_SECURE))
206
0
        OPENSSL_secure_clear_free(a->d, a->dmax * sizeof(a->d[0]));
207
0
    else if (clear != 0)
208
0
        OPENSSL_clear_free(a->d, a->dmax * sizeof(a->d[0]));
209
0
    else
210
0
        OPENSSL_free(a->d);
211
0
}
212
213
214
void BN_clear_free(BIGNUM *a)
215
0
{
216
0
    if (a == NULL)
217
0
        return;
218
0
    if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA))
219
0
        bn_free_d(a, 1);
220
0
    if (BN_get_flags(a, BN_FLG_MALLOCED)) {
221
0
        OPENSSL_cleanse(a, sizeof(*a));
222
0
        OPENSSL_free(a);
223
0
    }
224
0
}
225
226
void BN_free(BIGNUM *a)
227
207
{
228
207
    if (a == NULL)
229
207
        return;
230
0
    if (!BN_get_flags(a, BN_FLG_STATIC_DATA))
231
0
        bn_free_d(a, 0);
232
0
    if (a->flags & BN_FLG_MALLOCED)
233
0
        OPENSSL_free(a);
234
0
}
235
236
void bn_init(BIGNUM *a)
237
0
{
238
0
    static BIGNUM nilbn;
239
240
0
    *a = nilbn;
241
0
    bn_check_top(a);
242
0
}
243
244
BIGNUM *BN_new(void)
245
0
{
246
0
    BIGNUM *ret;
247
248
0
    if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL)
249
0
        return NULL;
250
0
    ret->flags = BN_FLG_MALLOCED;
251
0
    bn_check_top(ret);
252
0
    return ret;
253
0
}
254
255
BIGNUM *BN_secure_new(void)
256
0
{
257
0
    BIGNUM *ret = BN_new();
258
259
0
    if (ret != NULL)
260
0
        ret->flags |= BN_FLG_SECURE;
261
0
    return ret;
262
0
}
263
264
/* This is used by bn_expand2() */
265
/* The caller MUST check that words > b->dmax before calling this */
266
static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
267
0
{
268
0
    BN_ULONG *a = NULL;
269
270
0
    if (ossl_unlikely(words > (INT_MAX / (4 * BN_BITS2)))) {
271
0
        ERR_raise(ERR_LIB_BN, BN_R_BIGNUM_TOO_LONG);
272
0
        return NULL;
273
0
    }
274
0
    if (ossl_unlikely(BN_get_flags(b, BN_FLG_STATIC_DATA))) {
275
0
        ERR_raise(ERR_LIB_BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
276
0
        return NULL;
277
0
    }
278
0
    if (BN_get_flags(b, BN_FLG_SECURE))
279
0
        a = OPENSSL_secure_zalloc(words * sizeof(*a));
280
0
    else
281
0
        a = OPENSSL_zalloc(words * sizeof(*a));
282
0
    if (ossl_unlikely(a == NULL))
283
0
        return NULL;
284
285
0
    assert(b->top <= words);
286
0
    if (b->top > 0)
287
0
        memcpy(a, b->d, sizeof(*a) * b->top);
288
289
0
    return a;
290
0
}
291
292
/*
293
 * This is an internal function that should not be used in applications. It
294
 * ensures that 'b' has enough room for a 'words' word number and initialises
295
 * any unused part of b->d with leading zeros. It is mostly used by the
296
 * various BIGNUM routines. If there is an error, NULL is returned. If not,
297
 * 'b' is returned.
298
 */
299
300
BIGNUM *bn_expand2(BIGNUM *b, int words)
301
0
{
302
0
    if (ossl_likely(words > b->dmax)) {
303
0
        BN_ULONG *a = bn_expand_internal(b, words);
304
305
0
        if (ossl_unlikely(!a))
306
0
            return NULL;
307
0
        if (b->d != NULL)
308
0
            bn_free_d(b, 1);
309
0
        b->d = a;
310
0
        b->dmax = words;
311
0
    }
312
313
0
    return b;
314
0
}
315
316
BIGNUM *BN_dup(const BIGNUM *a)
317
0
{
318
0
    BIGNUM *t;
319
320
0
    if (a == NULL)
321
0
        return NULL;
322
0
    bn_check_top(a);
323
324
0
    t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new();
325
0
    if (t == NULL)
326
0
        return NULL;
327
0
    if (!BN_copy(t, a)) {
328
0
        BN_free(t);
329
0
        return NULL;
330
0
    }
331
0
    bn_check_top(t);
332
0
    return t;
333
0
}
334
335
BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
336
0
{
337
0
    int bn_words;
338
339
0
    bn_check_top(b);
340
341
0
    bn_words = BN_get_flags(b, BN_FLG_CONSTTIME) ? b->dmax : b->top;
342
343
0
    if (ossl_unlikely(a == b))
344
0
        return a;
345
0
    if (ossl_unlikely(bn_wexpand(a, bn_words) == NULL))
346
0
        return NULL;
347
348
0
    if (ossl_likely(b->top > 0))
349
0
        memcpy(a->d, b->d, sizeof(b->d[0]) * bn_words);
350
351
0
    a->neg = b->neg;
352
0
    a->top = b->top;
353
0
    a->flags |= b->flags & BN_FLG_FIXED_TOP;
354
0
    bn_check_top(a);
355
0
    return a;
356
0
}
357
358
0
#define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \
359
0
                                    | BN_FLG_CONSTTIME   \
360
0
                                    | BN_FLG_SECURE      \
361
0
                                    | BN_FLG_FIXED_TOP))
362
0
#define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED))
363
364
void BN_swap(BIGNUM *a, BIGNUM *b)
365
0
{
366
0
    int flags_old_a, flags_old_b;
367
0
    BN_ULONG *tmp_d;
368
0
    int tmp_top, tmp_dmax, tmp_neg;
369
370
0
    bn_check_top(a);
371
0
    bn_check_top(b);
372
373
0
    flags_old_a = a->flags;
374
0
    flags_old_b = b->flags;
375
376
0
    tmp_d = a->d;
377
0
    tmp_top = a->top;
378
0
    tmp_dmax = a->dmax;
379
0
    tmp_neg = a->neg;
380
381
0
    a->d = b->d;
382
0
    a->top = b->top;
383
0
    a->dmax = b->dmax;
384
0
    a->neg = b->neg;
385
386
0
    b->d = tmp_d;
387
0
    b->top = tmp_top;
388
0
    b->dmax = tmp_dmax;
389
0
    b->neg = tmp_neg;
390
391
0
    a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b);
392
0
    b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a);
393
0
    bn_check_top(a);
394
0
    bn_check_top(b);
395
0
}
396
397
void BN_clear(BIGNUM *a)
398
0
{
399
0
    if (a == NULL)
400
0
        return;
401
0
    bn_check_top(a);
402
0
    if (a->d != NULL)
403
0
        OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax);
404
0
    a->neg = 0;
405
0
    a->top = 0;
406
0
    a->flags &= ~BN_FLG_FIXED_TOP;
407
0
}
408
409
BN_ULONG BN_get_word(const BIGNUM *a)
410
0
{
411
0
    if (a->top > 1)
412
0
        return BN_MASK2;
413
0
    else if (a->top == 1)
414
0
        return a->d[0];
415
    /* a->top == 0 */
416
0
    return 0;
417
0
}
418
419
int BN_set_word(BIGNUM *a, BN_ULONG w)
420
0
{
421
0
    bn_check_top(a);
422
0
    if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
423
0
        return 0;
424
0
    a->neg = 0;
425
0
    a->d[0] = w;
426
0
    a->top = (w ? 1 : 0);
427
0
    a->flags &= ~BN_FLG_FIXED_TOP;
428
0
    bn_check_top(a);
429
0
    return 1;
430
0
}
431
432
typedef enum {BIG, LITTLE} endianness_t;
433
typedef enum {SIGNED, UNSIGNED} signedness_t;
434
435
static BIGNUM *bin2bn(const unsigned char *s, int len, BIGNUM *ret,
436
                      endianness_t endianness, signedness_t signedness)
437
0
{
438
0
    int inc;
439
0
    const unsigned char *s2;
440
0
    int inc2;
441
0
    int neg = 0, xor = 0, carry = 0;
442
0
    unsigned int i;
443
0
    unsigned int n;
444
0
    BIGNUM *bn = NULL;
445
446
    /* Negative length is not acceptable */
447
0
    if (len < 0)
448
0
        return NULL;
449
450
0
    if (ret == NULL)
451
0
        ret = bn = BN_new();
452
0
    if (ret == NULL)
453
0
        return NULL;
454
0
    bn_check_top(ret);
455
456
    /*
457
     * If the input has no bits, the number is considered zero.
458
     * This makes calls with s==NULL and len==0 safe.
459
     */
460
0
    if (len == 0) {
461
0
        BN_clear(ret);
462
0
        return ret;
463
0
    }
464
465
    /*
466
     * The loop that does the work iterates from least to most
467
     * significant BIGNUM chunk, so we adapt parameters to transfer
468
     * input bytes accordingly.
469
     */
470
0
    if (endianness == LITTLE) {
471
0
        s2 = s + len - 1;
472
0
        inc2 = -1;
473
0
        inc = 1;
474
0
    } else {
475
0
        s2 = s;
476
0
        inc2 = 1;
477
0
        inc = -1;
478
0
        s += len - 1;
479
0
    }
480
481
    /* Take note of the signedness of the input bytes*/
482
0
    if (signedness == SIGNED) {
483
0
        neg = !!(*s2 & 0x80);
484
0
        xor = neg ? 0xff : 0x00;
485
0
        carry = neg;
486
0
    }
487
488
    /*
489
     * Skip leading sign extensions (the value of |xor|).
490
     * This is the only spot where |s2| and |inc2| are used.
491
     */
492
0
    for ( ; len > 0 && *s2 == xor; s2 += inc2, len--)
493
0
        continue;
494
495
    /*
496
     * If there was a set of 0xff, we backtrack one byte unless the next
497
     * one has a sign bit, as the last 0xff is then part of the actual
498
     * number, rather then a mere sign extension.
499
     */
500
0
    if (xor == 0xff) {
501
0
        if (len == 0 || !(*s2 & 0x80))
502
0
            len++;
503
0
    }
504
    /* If it was all zeros, we're done */
505
0
    if (len == 0) {
506
0
        ret->top = 0;
507
0
        return ret;
508
0
    }
509
0
    n = ((len - 1) / BN_BYTES) + 1; /* Number of resulting bignum chunks */
510
0
    if (bn_wexpand(ret, (int)n) == NULL) {
511
0
        BN_free(bn);
512
0
        return NULL;
513
0
    }
514
0
    ret->top = n;
515
0
    ret->neg = neg;
516
0
    for (i = 0; n-- > 0; i++) {
517
0
        BN_ULONG l = 0;        /* Accumulator */
518
0
        unsigned int m = 0;    /* Offset in a bignum chunk, in bits */
519
520
0
        for (; len > 0 && m < BN_BYTES * 8; len--, s += inc, m += 8) {
521
0
            BN_ULONG byte_xored = *s ^ xor;
522
0
            BN_ULONG byte = (byte_xored + carry) & 0xff;
523
524
0
            carry = byte_xored > byte; /* Implicit 1 or 0 */
525
0
            l |= (byte << m);
526
0
        }
527
0
        ret->d[i] = l;
528
0
    }
529
    /*
530
     * need to call this due to clear byte at top if avoiding having the top
531
     * bit set (-ve number)
532
     */
533
0
    bn_correct_top(ret);
534
0
    return ret;
535
0
}
536
537
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
538
0
{
539
0
    return bin2bn(s, len, ret, BIG, UNSIGNED);
540
0
}
541
542
BIGNUM *BN_signed_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
543
0
{
544
0
    return bin2bn(s, len, ret, BIG, SIGNED);
545
0
}
546
547
static int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen,
548
                     endianness_t endianness, signedness_t signedness)
549
0
{
550
0
    int inc;
551
0
    int n, n8;
552
0
    int xor = 0, carry = 0, ext = 0;
553
0
    size_t i, lasti, j, atop, mask;
554
0
    BN_ULONG l;
555
556
    /*
557
     * In case |a| is fixed-top, BN_num_bits can return bogus length,
558
     * but it's assumed that fixed-top inputs ought to be "nominated"
559
     * even for padded output, so it works out...
560
     */
561
0
    n8 = BN_num_bits(a);
562
0
    n = (n8 + 7) / 8;           /* This is what BN_num_bytes() does */
563
564
    /* Take note of the signedness of the bignum */
565
0
    if (signedness == SIGNED) {
566
0
        xor = a->neg ? 0xff : 0x00;
567
0
        carry = a->neg;
568
569
        /*
570
         * if |n * 8 == n|, then the MSbit is set, otherwise unset.
571
         * We must compensate with one extra byte if that doesn't
572
         * correspond to the signedness of the bignum with regards
573
         * to 2's complement.
574
         */
575
0
        ext = (n * 8 == n8)
576
0
            ? !a->neg            /* MSbit set on nonnegative bignum */
577
0
            : a->neg;            /* MSbit unset on negative bignum */
578
0
    }
579
580
0
    if (tolen == -1) {
581
0
        tolen = n + ext;
582
0
    } else if (tolen < n + ext) { /* uncommon/unlike case */
583
0
        BIGNUM temp = *a;
584
585
0
        bn_correct_top(&temp);
586
0
        n8 = BN_num_bits(&temp);
587
0
        n = (n8 + 7) / 8;       /* This is what BN_num_bytes() does */
588
0
        if (tolen < n + ext)
589
0
            return -1;
590
0
    }
591
592
    /* Swipe through whole available data and don't give away padded zero. */
593
0
    atop = a->dmax * BN_BYTES;
594
0
    if (atop == 0) {
595
0
        if (tolen != 0)
596
0
            memset(to, '\0', tolen);
597
0
        return tolen;
598
0
    }
599
600
    /*
601
     * The loop that does the work iterates from least significant
602
     * to most significant BIGNUM limb, so we adapt parameters to
603
     * transfer output bytes accordingly.
604
     */
605
0
    if (endianness == LITTLE) {
606
0
        inc = 1;
607
0
    } else {
608
0
        inc = -1;
609
0
        to += tolen - 1;         /* Move to the last byte, not beyond */
610
0
    }
611
612
0
    lasti = atop - 1;
613
0
    atop = a->top * BN_BYTES;
614
0
    for (i = 0, j = 0; j < (size_t)tolen; j++) {
615
0
        unsigned char byte, byte_xored;
616
617
0
        l = a->d[i / BN_BYTES];
618
0
        mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1));
619
0
        byte = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask);
620
0
        byte_xored = byte ^ xor;
621
0
        *to = (unsigned char)(byte_xored + carry);
622
0
        carry = byte_xored > *to; /* Implicit 1 or 0 */
623
0
        to += inc;
624
0
        i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */
625
0
    }
626
627
0
    return tolen;
628
0
}
629
630
int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
631
0
{
632
0
    if (tolen < 0)
633
0
        return -1;
634
0
    return bn2binpad(a, to, tolen, BIG, UNSIGNED);
635
0
}
636
637
int BN_signed_bn2bin(const BIGNUM *a, unsigned char *to, int tolen)
638
0
{
639
0
    if (tolen < 0)
640
0
        return -1;
641
0
    return bn2binpad(a, to, tolen, BIG, SIGNED);
642
0
}
643
644
int BN_bn2bin(const BIGNUM *a, unsigned char *to)
645
0
{
646
0
    return bn2binpad(a, to, -1, BIG, UNSIGNED);
647
0
}
648
649
BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
650
0
{
651
0
    return bin2bn(s, len, ret, LITTLE, UNSIGNED);
652
0
}
653
654
BIGNUM *BN_signed_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
655
0
{
656
0
    return bin2bn(s, len, ret, LITTLE, SIGNED);
657
0
}
658
659
int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen)
660
0
{
661
0
    if (tolen < 0)
662
0
        return -1;
663
0
    return bn2binpad(a, to, tolen, LITTLE, UNSIGNED);
664
0
}
665
666
int BN_signed_bn2lebin(const BIGNUM *a, unsigned char *to, int tolen)
667
0
{
668
0
    if (tolen < 0)
669
0
        return -1;
670
0
    return bn2binpad(a, to, tolen, LITTLE, SIGNED);
671
0
}
672
673
BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret)
674
0
{
675
0
    DECLARE_IS_ENDIAN;
676
677
0
    if (IS_LITTLE_ENDIAN)
678
0
        return BN_lebin2bn(s, len, ret);
679
0
    return BN_bin2bn(s, len, ret);
680
0
}
681
682
BIGNUM *BN_signed_native2bn(const unsigned char *s, int len, BIGNUM *ret)
683
0
{
684
0
    DECLARE_IS_ENDIAN;
685
686
0
    if (IS_LITTLE_ENDIAN)
687
0
        return BN_signed_lebin2bn(s, len, ret);
688
0
    return BN_signed_bin2bn(s, len, ret);
689
0
}
690
691
int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen)
692
0
{
693
0
    DECLARE_IS_ENDIAN;
694
695
0
    if (IS_LITTLE_ENDIAN)
696
0
        return BN_bn2lebinpad(a, to, tolen);
697
0
    return BN_bn2binpad(a, to, tolen);
698
0
}
699
700
int BN_signed_bn2native(const BIGNUM *a, unsigned char *to, int tolen)
701
0
{
702
0
    DECLARE_IS_ENDIAN;
703
704
0
    if (IS_LITTLE_ENDIAN)
705
0
        return BN_signed_bn2lebin(a, to, tolen);
706
0
    return BN_signed_bn2bin(a, to, tolen);
707
0
}
708
709
int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
710
0
{
711
0
    int i;
712
0
    BN_ULONG t1, t2, *ap, *bp;
713
714
0
    ap = a->d;
715
0
    bp = b->d;
716
717
0
    if (BN_get_flags(a, BN_FLG_CONSTTIME)
718
0
            && a->top == b->top) {
719
0
        int res = 0;
720
721
0
        for (i = 0; i < b->top; i++) {
722
0
            res = constant_time_select_int((int)constant_time_lt_bn(ap[i], bp[i]),
723
0
                                           -1, res);
724
0
            res = constant_time_select_int((int)constant_time_lt_bn(bp[i], ap[i]),
725
0
                                           1, res);
726
0
        }
727
0
        return res;
728
0
    }
729
730
0
    bn_check_top(a);
731
0
    bn_check_top(b);
732
733
0
    i = a->top - b->top;
734
0
    if (i != 0)
735
0
        return i;
736
737
0
    for (i = a->top - 1; i >= 0; i--) {
738
0
        t1 = ap[i];
739
0
        t2 = bp[i];
740
0
        if (t1 != t2)
741
0
            return ((t1 > t2) ? 1 : -1);
742
0
    }
743
0
    return 0;
744
0
}
745
746
int BN_cmp(const BIGNUM *a, const BIGNUM *b)
747
0
{
748
0
    int i;
749
0
    int gt, lt;
750
0
    BN_ULONG t1, t2;
751
752
0
    if ((a == NULL) || (b == NULL)) {
753
0
        if (a != NULL)
754
0
            return -1;
755
0
        else if (b != NULL)
756
0
            return 1;
757
0
        else
758
0
            return 0;
759
0
    }
760
761
0
    bn_check_top(a);
762
0
    bn_check_top(b);
763
764
0
    if (a->neg != b->neg) {
765
0
        if (a->neg)
766
0
            return -1;
767
0
        else
768
0
            return 1;
769
0
    }
770
0
    if (a->neg == 0) {
771
0
        gt = 1;
772
0
        lt = -1;
773
0
    } else {
774
0
        gt = -1;
775
0
        lt = 1;
776
0
    }
777
778
0
    if (a->top > b->top)
779
0
        return gt;
780
0
    if (a->top < b->top)
781
0
        return lt;
782
0
    for (i = a->top - 1; i >= 0; i--) {
783
0
        t1 = a->d[i];
784
0
        t2 = b->d[i];
785
0
        if (t1 > t2)
786
0
            return gt;
787
0
        if (t1 < t2)
788
0
            return lt;
789
0
    }
790
0
    return 0;
791
0
}
792
793
int BN_set_bit(BIGNUM *a, int n)
794
0
{
795
0
    int i, j, k;
796
797
0
    if (n < 0)
798
0
        return 0;
799
800
0
    i = n / BN_BITS2;
801
0
    j = n % BN_BITS2;
802
0
    if (a->top <= i) {
803
0
        if (bn_wexpand(a, i + 1) == NULL)
804
0
            return 0;
805
0
        for (k = a->top; k < i + 1; k++)
806
0
            a->d[k] = 0;
807
0
        a->top = i + 1;
808
0
        a->flags &= ~BN_FLG_FIXED_TOP;
809
0
    }
810
811
0
    a->d[i] |= (((BN_ULONG)1) << j);
812
0
    bn_check_top(a);
813
0
    return 1;
814
0
}
815
816
int BN_clear_bit(BIGNUM *a, int n)
817
0
{
818
0
    int i, j;
819
820
0
    bn_check_top(a);
821
0
    if (n < 0)
822
0
        return 0;
823
824
0
    i = n / BN_BITS2;
825
0
    j = n % BN_BITS2;
826
0
    if (a->top <= i)
827
0
        return 0;
828
829
0
    a->d[i] &= (~(((BN_ULONG)1) << j));
830
0
    bn_correct_top(a);
831
0
    return 1;
832
0
}
833
834
int BN_is_bit_set(const BIGNUM *a, int n)
835
0
{
836
0
    int i, j;
837
838
0
    bn_check_top(a);
839
0
    if (ossl_unlikely(n < 0))
840
0
        return 0;
841
0
    i = n / BN_BITS2;
842
0
    j = n % BN_BITS2;
843
0
    if (ossl_unlikely(a->top <= i))
844
0
        return 0;
845
0
    return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
846
0
}
847
848
int ossl_bn_mask_bits_fixed_top(BIGNUM *a, int n)
849
0
{
850
0
    int b, w;
851
852
0
    if (n < 0)
853
0
        return 0;
854
855
0
    w = n / BN_BITS2;
856
0
    b = n % BN_BITS2;
857
0
    if (w >= a->top)
858
0
        return 0;
859
0
    if (b == 0)
860
0
        a->top = w;
861
0
    else {
862
0
        a->top = w + 1;
863
0
        a->d[w] &= ~(BN_MASK2 << b);
864
0
    }
865
0
    a->flags |= BN_FLG_FIXED_TOP;
866
0
    return 1;
867
0
}
868
869
int BN_mask_bits(BIGNUM *a, int n)
870
0
{
871
0
    int ret;
872
873
0
    bn_check_top(a);
874
0
    ret = ossl_bn_mask_bits_fixed_top(a, n);
875
0
    if (ret)
876
0
        bn_correct_top(a);
877
0
    return ret;
878
0
}
879
880
void BN_set_negative(BIGNUM *a, int b)
881
0
{
882
0
    if (b && !BN_is_zero(a))
883
0
        a->neg = 1;
884
0
    else
885
0
        a->neg = 0;
886
0
}
887
888
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
889
0
{
890
0
    int i;
891
0
    BN_ULONG aa, bb;
892
893
0
    if (ossl_unlikely(n == 0))
894
0
        return 0;
895
896
0
    aa = a[n - 1];
897
0
    bb = b[n - 1];
898
0
    if (ossl_likely(aa != bb))
899
0
        return ((aa > bb) ? 1 : -1);
900
0
    for (i = n - 2; i >= 0; i--) {
901
0
        aa = a[i];
902
0
        bb = b[i];
903
0
        if (aa != bb)
904
0
            return ((aa > bb) ? 1 : -1);
905
0
    }
906
0
    return 0;
907
0
}
908
909
/*
910
 * Here follows a specialised variants of bn_cmp_words().  It has the
911
 * capability of performing the operation on arrays of different sizes. The
912
 * sizes of those arrays is expressed through cl, which is the common length
913
 * ( basically, min(len(a),len(b)) ), and dl, which is the delta between the
914
 * two lengths, calculated as len(a)-len(b). All lengths are the number of
915
 * BN_ULONGs...
916
 */
917
918
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
919
0
{
920
0
    int n, i;
921
0
    n = cl - 1;
922
923
0
    if (dl < 0) {
924
0
        for (i = dl; i < 0; i++) {
925
0
            if (b[n - i] != 0)
926
0
                return -1;      /* a < b */
927
0
        }
928
0
    }
929
0
    if (dl > 0) {
930
0
        for (i = dl; i > 0; i--) {
931
0
            if (a[n + i] != 0)
932
0
                return 1;       /* a > b */
933
0
        }
934
0
    }
935
0
    return bn_cmp_words(a, b, cl);
936
0
}
937
938
/*-
939
 * Constant-time conditional swap of a and b.
940
 * a and b are swapped if condition is not 0.
941
 * nwords is the number of words to swap.
942
 * Assumes that at least nwords are allocated in both a and b.
943
 * Assumes that no more than nwords are used by either a or b.
944
 */
945
void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
946
0
{
947
0
    BN_ULONG t;
948
0
    int i;
949
950
0
    bn_wcheck_size(a, nwords);
951
0
    bn_wcheck_size(b, nwords);
952
953
0
    condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1;
954
955
0
    t = (a->top ^ b->top) & condition;
956
0
    a->top ^= t;
957
0
    b->top ^= t;
958
959
0
    t = (a->neg ^ b->neg) & condition;
960
0
    a->neg ^= t;
961
0
    b->neg ^= t;
962
963
    /*-
964
     * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention
965
     * is actually to treat it as it's read-only data, and some (if not most)
966
     * of it does reside in read-only segment. In other words observation of
967
     * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal
968
     * condition. It would either cause SEGV or effectively cause data
969
     * corruption.
970
     *
971
     * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be
972
     * preserved.
973
     *
974
     * BN_FLG_SECURE: must be preserved, because it determines how x->d was
975
     * allocated and hence how to free it.
976
     *
977
     * BN_FLG_CONSTTIME: sufficient to mask and swap
978
     *
979
     * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on
980
     * the data, so the d array may be padded with additional 0 values (i.e.
981
     * top could be greater than the minimal value that it could be). We should
982
     * be swapping it
983
     */
984
985
0
#define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP)
986
987
0
    t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition;
988
0
    a->flags ^= t;
989
0
    b->flags ^= t;
990
991
    /* conditionally swap the data */
992
0
    for (i = 0; i < nwords; i++) {
993
0
        t = (a->d[i] ^ b->d[i]) & condition;
994
0
        a->d[i] ^= t;
995
0
        b->d[i] ^= t;
996
0
    }
997
0
}
998
999
#undef BN_CONSTTIME_SWAP_FLAGS
1000
1001
/* Bits of security, see SP800-57 */
1002
1003
int BN_security_bits(int L, int N)
1004
0
{
1005
0
    int secbits, bits;
1006
0
    if (L >= 15360)
1007
0
        secbits = 256;
1008
0
    else if (L >= 7680)
1009
0
        secbits = 192;
1010
0
    else if (L >= 3072)
1011
0
        secbits = 128;
1012
0
    else if (L >= 2048)
1013
0
        secbits = 112;
1014
0
    else if (L >= 1024)
1015
0
        secbits = 80;
1016
0
    else
1017
0
        return 0;
1018
0
    if (N == -1)
1019
0
        return secbits;
1020
0
    bits = N / 2;
1021
0
    if (bits < 80)
1022
0
        return 0;
1023
0
    return bits >= secbits ? secbits : bits;
1024
0
}
1025
1026
void BN_zero_ex(BIGNUM *a)
1027
0
{
1028
0
    a->neg = 0;
1029
0
    a->top = 0;
1030
0
    a->flags &= ~BN_FLG_FIXED_TOP;
1031
0
}
1032
1033
int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w)
1034
0
{
1035
0
    return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0));
1036
0
}
1037
1038
int BN_is_zero(const BIGNUM *a)
1039
0
{
1040
0
    return a->top == 0;
1041
0
}
1042
1043
int BN_is_one(const BIGNUM *a)
1044
0
{
1045
0
    return BN_abs_is_word(a, 1) && !a->neg;
1046
0
}
1047
1048
int BN_is_word(const BIGNUM *a, const BN_ULONG w)
1049
0
{
1050
0
    return BN_abs_is_word(a, w) && (!w || !a->neg);
1051
0
}
1052
1053
int ossl_bn_is_word_fixed_top(const BIGNUM *a, const BN_ULONG w)
1054
0
{
1055
0
    int res, i;
1056
0
    const BN_ULONG *ap = a->d;
1057
1058
0
    if (a->neg || a->top == 0)
1059
0
        return 0;
1060
1061
0
    res = constant_time_select_int((int)constant_time_eq_bn(ap[0], w), 1, 0);
1062
1063
0
    for (i = 1; i < a->top; i++)
1064
0
        res = constant_time_select_int((int)constant_time_is_zero_bn(ap[i]),
1065
0
                                       res, 0);
1066
0
    return res;
1067
0
}
1068
1069
int BN_is_odd(const BIGNUM *a)
1070
0
{
1071
0
    return (a->top > 0) && (a->d[0] & 1);
1072
0
}
1073
1074
int BN_is_negative(const BIGNUM *a)
1075
0
{
1076
0
    return (a->neg != 0);
1077
0
}
1078
1079
int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
1080
                     BN_CTX *ctx)
1081
0
{
1082
0
    return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx);
1083
0
}
1084
1085
void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags)
1086
0
{
1087
0
    dest->d = b->d;
1088
0
    dest->top = b->top;
1089
0
    dest->dmax = b->dmax;
1090
0
    dest->neg = b->neg;
1091
0
    dest->flags = ((dest->flags & BN_FLG_MALLOCED)
1092
0
                   | (b->flags & ~BN_FLG_MALLOCED)
1093
0
                   | BN_FLG_STATIC_DATA | flags);
1094
0
}
1095
1096
BN_GENCB *BN_GENCB_new(void)
1097
0
{
1098
0
    BN_GENCB *ret;
1099
1100
0
    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
1101
0
        return NULL;
1102
1103
0
    return ret;
1104
0
}
1105
1106
void BN_GENCB_free(BN_GENCB *cb)
1107
0
{
1108
0
    if (cb == NULL)
1109
0
        return;
1110
0
    OPENSSL_free(cb);
1111
0
}
1112
1113
void BN_set_flags(BIGNUM *b, int n)
1114
0
{
1115
0
    b->flags |= n;
1116
0
}
1117
1118
int BN_get_flags(const BIGNUM *b, int n)
1119
0
{
1120
0
    return b->flags & n;
1121
0
}
1122
1123
/* Populate a BN_GENCB structure with an "old"-style callback */
1124
void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
1125
                      void *cb_arg)
1126
0
{
1127
0
    BN_GENCB *tmp_gencb = gencb;
1128
0
    tmp_gencb->ver = 1;
1129
0
    tmp_gencb->arg = cb_arg;
1130
0
    tmp_gencb->cb.cb_1 = callback;
1131
0
}
1132
1133
/* Populate a BN_GENCB structure with a "new"-style callback */
1134
void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
1135
                  void *cb_arg)
1136
0
{
1137
0
    BN_GENCB *tmp_gencb = gencb;
1138
0
    tmp_gencb->ver = 2;
1139
0
    tmp_gencb->arg = cb_arg;
1140
0
    tmp_gencb->cb.cb_2 = callback;
1141
0
}
1142
1143
void *BN_GENCB_get_arg(BN_GENCB *cb)
1144
0
{
1145
0
    return cb->arg;
1146
0
}
1147
1148
BIGNUM *bn_wexpand(BIGNUM *a, int words)
1149
0
{
1150
0
    return (words <= a->dmax) ? a : bn_expand2(a, words);
1151
0
}
1152
1153
void bn_correct_top_consttime(BIGNUM *a)
1154
0
{
1155
0
    int j, atop;
1156
0
    BN_ULONG limb;
1157
0
    unsigned int mask;
1158
1159
0
    for (j = 0, atop = 0; j < a->dmax; j++) {
1160
0
        limb = a->d[j];
1161
0
        limb |= 0 - limb;
1162
0
        limb >>= BN_BITS2 - 1;
1163
0
        limb = 0 - limb;
1164
0
        mask = (unsigned int)limb;
1165
0
        mask &= constant_time_msb(j - a->top);
1166
0
        atop = constant_time_select_int(mask, j + 1, atop);
1167
0
    }
1168
1169
0
    mask = constant_time_eq_int(atop, 0);
1170
0
    a->top = atop;
1171
0
    a->neg = constant_time_select_int(mask, 0, a->neg);
1172
0
    a->flags &= ~BN_FLG_FIXED_TOP;
1173
0
}
1174
1175
void bn_correct_top(BIGNUM *a)
1176
0
{
1177
0
    BN_ULONG *ftl;
1178
0
    int tmp_top = a->top;
1179
1180
0
    if (ossl_likely(tmp_top > 0)) {
1181
0
        for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) {
1182
0
            ftl--;
1183
0
            if (*ftl != 0)
1184
0
                break;
1185
0
        }
1186
0
        a->top = tmp_top;
1187
0
    }
1188
0
    if (a->top == 0)
1189
0
        a->neg = 0;
1190
0
    a->flags &= ~BN_FLG_FIXED_TOP;
1191
0
    bn_pollute(a);
1192
0
}