Coverage Report

Created: 2023-06-07 06:33

/src/qtbase/src/3rdparty/double-conversion/bignum.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2010 the V8 project authors. All rights reserved.
2
// Redistribution and use in source and binary forms, with or without
3
// modification, are permitted provided that the following conditions are
4
// met:
5
//
6
//     * Redistributions of source code must retain the above copyright
7
//       notice, this list of conditions and the following disclaimer.
8
//     * Redistributions in binary form must reproduce the above
9
//       copyright notice, this list of conditions and the following
10
//       disclaimer in the documentation and/or other materials provided
11
//       with the distribution.
12
//     * Neither the name of Google Inc. nor the names of its
13
//       contributors may be used to endorse or promote products derived
14
//       from this software without specific prior written permission.
15
//
16
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
#include <double-conversion/bignum.h>
29
#include <double-conversion/utils.h>
30
31
namespace double_conversion {
32
33
Bignum::Bignum()
34
0
    : bigits_buffer_(), bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
35
0
  for (int i = 0; i < kBigitCapacity; ++i) {
36
0
    bigits_[i] = 0;
37
0
  }
38
0
}
39
40
41
template<typename S>
42
0
static int BitSize(S value) {
43
0
  (void) value;  // Mark variable as used.
44
0
  return 8 * sizeof(value);
45
0
}
46
47
// Guaranteed to lie in one Bigit.
48
0
void Bignum::AssignUInt16(uint16_t value) {
49
0
  ASSERT(kBigitSize >= BitSize(value));
50
0
  Zero();
51
0
  if (value == 0) return;
52
53
0
  EnsureCapacity(1);
54
0
  bigits_[0] = value;
55
0
  used_digits_ = 1;
56
0
}
57
58
59
0
void Bignum::AssignUInt64(uint64_t value) {
60
0
  const int kUInt64Size = 64;
61
62
0
  Zero();
63
0
  if (value == 0) return;
64
65
0
  int needed_bigits = kUInt64Size / kBigitSize + 1;
66
0
  EnsureCapacity(needed_bigits);
67
0
  for (int i = 0; i < needed_bigits; ++i) {
68
0
    bigits_[i] = value & kBigitMask;
69
0
    value = value >> kBigitSize;
70
0
  }
71
0
  used_digits_ = needed_bigits;
72
0
  Clamp();
73
0
}
74
75
76
0
void Bignum::AssignBignum(const Bignum& other) {
77
0
  exponent_ = other.exponent_;
78
0
  for (int i = 0; i < other.used_digits_; ++i) {
79
0
    bigits_[i] = other.bigits_[i];
80
0
  }
81
  // Clear the excess digits (if there were any).
82
0
  for (int i = other.used_digits_; i < used_digits_; ++i) {
83
0
    bigits_[i] = 0;
84
0
  }
85
0
  used_digits_ = other.used_digits_;
86
0
}
87
88
89
static uint64_t ReadUInt64(Vector<const char> buffer,
90
                           int from,
91
0
                           int digits_to_read) {
92
0
  uint64_t result = 0;
93
0
  for (int i = from; i < from + digits_to_read; ++i) {
94
0
    int digit = buffer[i] - '0';
95
0
    ASSERT(0 <= digit && digit <= 9);
96
0
    result = result * 10 + digit;
97
0
  }
98
0
  return result;
99
0
}
100
101
102
0
void Bignum::AssignDecimalString(Vector<const char> value) {
103
  // 2^64 = 18446744073709551616 > 10^19
104
0
  const int kMaxUint64DecimalDigits = 19;
105
0
  Zero();
106
0
  int length = value.length();
107
0
  unsigned int pos = 0;
108
  // Let's just say that each digit needs 4 bits.
109
0
  while (length >= kMaxUint64DecimalDigits) {
110
0
    uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
111
0
    pos += kMaxUint64DecimalDigits;
112
0
    length -= kMaxUint64DecimalDigits;
113
0
    MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
114
0
    AddUInt64(digits);
115
0
  }
116
0
  uint64_t digits = ReadUInt64(value, pos, length);
117
0
  MultiplyByPowerOfTen(length);
118
0
  AddUInt64(digits);
119
0
  Clamp();
120
0
}
121
122
123
0
static int HexCharValue(char c) {
124
0
  if ('0' <= c && c <= '9') return c - '0';
125
0
  if ('a' <= c && c <= 'f') return 10 + c - 'a';
126
0
  ASSERT('A' <= c && c <= 'F');
127
0
  return 10 + c - 'A';
128
0
}
129
130
131
0
void Bignum::AssignHexString(Vector<const char> value) {
132
0
  Zero();
133
0
  int length = value.length();
134
135
0
  int needed_bigits = length * 4 / kBigitSize + 1;
136
0
  EnsureCapacity(needed_bigits);
137
0
  int string_index = length - 1;
138
0
  for (int i = 0; i < needed_bigits - 1; ++i) {
139
    // These bigits are guaranteed to be "full".
140
0
    Chunk current_bigit = 0;
141
0
    for (int j = 0; j < kBigitSize / 4; j++) {
142
0
      current_bigit += HexCharValue(value[string_index--]) << (j * 4);
143
0
    }
144
0
    bigits_[i] = current_bigit;
145
0
  }
146
0
  used_digits_ = needed_bigits - 1;
147
148
0
  Chunk most_significant_bigit = 0;  // Could be = 0;
149
0
  for (int j = 0; j <= string_index; ++j) {
150
0
    most_significant_bigit <<= 4;
151
0
    most_significant_bigit += HexCharValue(value[j]);
152
0
  }
153
0
  if (most_significant_bigit != 0) {
154
0
    bigits_[used_digits_] = most_significant_bigit;
155
0
    used_digits_++;
156
0
  }
157
0
  Clamp();
158
0
}
159
160
161
0
void Bignum::AddUInt64(uint64_t operand) {
162
0
  if (operand == 0) return;
163
0
  Bignum other;
164
0
  other.AssignUInt64(operand);
165
0
  AddBignum(other);
166
0
}
167
168
169
0
void Bignum::AddBignum(const Bignum& other) {
170
0
  ASSERT(IsClamped());
171
0
  ASSERT(other.IsClamped());
172
173
  // If this has a greater exponent than other append zero-bigits to this.
174
  // After this call exponent_ <= other.exponent_.
175
0
  Align(other);
176
177
  // There are two possibilities:
178
  //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
179
  //     bbbbb 00000000
180
  //   ----------------
181
  //   ccccccccccc 0000
182
  // or
183
  //    aaaaaaaaaa 0000
184
  //  bbbbbbbbb 0000000
185
  //  -----------------
186
  //  cccccccccccc 0000
187
  // In both cases we might need a carry bigit.
188
189
0
  EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
190
0
  Chunk carry = 0;
191
0
  int bigit_pos = other.exponent_ - exponent_;
192
0
  ASSERT(bigit_pos >= 0);
193
0
  for (int i = 0; i < other.used_digits_; ++i) {
194
0
    Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
195
0
    bigits_[bigit_pos] = sum & kBigitMask;
196
0
    carry = sum >> kBigitSize;
197
0
    bigit_pos++;
198
0
  }
199
200
0
  while (carry != 0) {
201
0
    Chunk sum = bigits_[bigit_pos] + carry;
202
0
    bigits_[bigit_pos] = sum & kBigitMask;
203
0
    carry = sum >> kBigitSize;
204
0
    bigit_pos++;
205
0
  }
206
0
  used_digits_ = Max(bigit_pos, used_digits_);
207
0
  ASSERT(IsClamped());
208
0
}
209
210
211
0
void Bignum::SubtractBignum(const Bignum& other) {
212
0
  ASSERT(IsClamped());
213
0
  ASSERT(other.IsClamped());
214
  // We require this to be bigger than other.
215
0
  ASSERT(LessEqual(other, *this));
216
217
0
  Align(other);
218
219
0
  int offset = other.exponent_ - exponent_;
220
0
  Chunk borrow = 0;
221
0
  int i;
222
0
  for (i = 0; i < other.used_digits_; ++i) {
223
0
    ASSERT((borrow == 0) || (borrow == 1));
224
0
    Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
225
0
    bigits_[i + offset] = difference & kBigitMask;
226
0
    borrow = difference >> (kChunkSize - 1);
227
0
  }
228
0
  while (borrow != 0) {
229
0
    Chunk difference = bigits_[i + offset] - borrow;
230
0
    bigits_[i + offset] = difference & kBigitMask;
231
0
    borrow = difference >> (kChunkSize - 1);
232
0
    ++i;
233
0
  }
234
0
  Clamp();
235
0
}
236
237
238
0
void Bignum::ShiftLeft(int shift_amount) {
239
0
  if (used_digits_ == 0) return;
240
0
  exponent_ += shift_amount / kBigitSize;
241
0
  int local_shift = shift_amount % kBigitSize;
242
0
  EnsureCapacity(used_digits_ + 1);
243
0
  BigitsShiftLeft(local_shift);
244
0
}
245
246
247
0
void Bignum::MultiplyByUInt32(uint32_t factor) {
248
0
  if (factor == 1) return;
249
0
  if (factor == 0) {
250
0
    Zero();
251
0
    return;
252
0
  }
253
0
  if (used_digits_ == 0) return;
254
255
  // The product of a bigit with the factor is of size kBigitSize + 32.
256
  // Assert that this number + 1 (for the carry) fits into double chunk.
257
0
  ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
258
0
  DoubleChunk carry = 0;
259
0
  for (int i = 0; i < used_digits_; ++i) {
260
0
    DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
261
0
    bigits_[i] = static_cast<Chunk>(product & kBigitMask);
262
0
    carry = (product >> kBigitSize);
263
0
  }
264
0
  while (carry != 0) {
265
0
    EnsureCapacity(used_digits_ + 1);
266
0
    bigits_[used_digits_] = carry & kBigitMask;
267
0
    used_digits_++;
268
0
    carry >>= kBigitSize;
269
0
  }
270
0
}
271
272
273
0
void Bignum::MultiplyByUInt64(uint64_t factor) {
274
0
  if (factor == 1) return;
275
0
  if (factor == 0) {
276
0
    Zero();
277
0
    return;
278
0
  }
279
0
  ASSERT(kBigitSize < 32);
280
0
  uint64_t carry = 0;
281
0
  uint64_t low = factor & 0xFFFFFFFF;
282
0
  uint64_t high = factor >> 32;
283
0
  for (int i = 0; i < used_digits_; ++i) {
284
0
    uint64_t product_low = low * bigits_[i];
285
0
    uint64_t product_high = high * bigits_[i];
286
0
    uint64_t tmp = (carry & kBigitMask) + product_low;
287
0
    bigits_[i] = tmp & kBigitMask;
288
0
    carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
289
0
        (product_high << (32 - kBigitSize));
290
0
  }
291
0
  while (carry != 0) {
292
0
    EnsureCapacity(used_digits_ + 1);
293
0
    bigits_[used_digits_] = carry & kBigitMask;
294
0
    used_digits_++;
295
0
    carry >>= kBigitSize;
296
0
  }
297
0
}
298
299
300
0
void Bignum::MultiplyByPowerOfTen(int exponent) {
301
0
  const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
302
0
  const uint16_t kFive1 = 5;
303
0
  const uint16_t kFive2 = kFive1 * 5;
304
0
  const uint16_t kFive3 = kFive2 * 5;
305
0
  const uint16_t kFive4 = kFive3 * 5;
306
0
  const uint16_t kFive5 = kFive4 * 5;
307
0
  const uint16_t kFive6 = kFive5 * 5;
308
0
  const uint32_t kFive7 = kFive6 * 5;
309
0
  const uint32_t kFive8 = kFive7 * 5;
310
0
  const uint32_t kFive9 = kFive8 * 5;
311
0
  const uint32_t kFive10 = kFive9 * 5;
312
0
  const uint32_t kFive11 = kFive10 * 5;
313
0
  const uint32_t kFive12 = kFive11 * 5;
314
0
  const uint32_t kFive13 = kFive12 * 5;
315
0
  const uint32_t kFive1_to_12[] =
316
0
      { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
317
0
        kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
318
319
0
  ASSERT(exponent >= 0);
320
0
  if (exponent == 0) return;
321
0
  if (used_digits_ == 0) return;
322
323
  // We shift by exponent at the end just before returning.
324
0
  int remaining_exponent = exponent;
325
0
  while (remaining_exponent >= 27) {
326
0
    MultiplyByUInt64(kFive27);
327
0
    remaining_exponent -= 27;
328
0
  }
329
0
  while (remaining_exponent >= 13) {
330
0
    MultiplyByUInt32(kFive13);
331
0
    remaining_exponent -= 13;
332
0
  }
333
0
  if (remaining_exponent > 0) {
334
0
    MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
335
0
  }
336
0
  ShiftLeft(exponent);
337
0
}
338
339
340
0
void Bignum::Square() {
341
0
  ASSERT(IsClamped());
342
0
  int product_length = 2 * used_digits_;
343
0
  EnsureCapacity(product_length);
344
345
  // Comba multiplication: compute each column separately.
346
  // Example: r = a2a1a0 * b2b1b0.
347
  //    r =  1    * a0b0 +
348
  //        10    * (a1b0 + a0b1) +
349
  //        100   * (a2b0 + a1b1 + a0b2) +
350
  //        1000  * (a2b1 + a1b2) +
351
  //        10000 * a2b2
352
  //
353
  // In the worst case we have to accumulate nb-digits products of digit*digit.
354
  //
355
  // Assert that the additional number of bits in a DoubleChunk are enough to
356
  // sum up used_digits of Bigit*Bigit.
357
0
  if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
358
0
    UNIMPLEMENTED();
359
0
  }
360
0
  DoubleChunk accumulator = 0;
361
  // First shift the digits so we don't overwrite them.
362
0
  int copy_offset = used_digits_;
363
0
  for (int i = 0; i < used_digits_; ++i) {
364
0
    bigits_[copy_offset + i] = bigits_[i];
365
0
  }
366
  // We have two loops to avoid some 'if's in the loop.
367
0
  for (int i = 0; i < used_digits_; ++i) {
368
    // Process temporary digit i with power i.
369
    // The sum of the two indices must be equal to i.
370
0
    int bigit_index1 = i;
371
0
    int bigit_index2 = 0;
372
    // Sum all of the sub-products.
373
0
    while (bigit_index1 >= 0) {
374
0
      Chunk chunk1 = bigits_[copy_offset + bigit_index1];
375
0
      Chunk chunk2 = bigits_[copy_offset + bigit_index2];
376
0
      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
377
0
      bigit_index1--;
378
0
      bigit_index2++;
379
0
    }
380
0
    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
381
0
    accumulator >>= kBigitSize;
382
0
  }
383
0
  for (int i = used_digits_; i < product_length; ++i) {
384
0
    int bigit_index1 = used_digits_ - 1;
385
0
    int bigit_index2 = i - bigit_index1;
386
    // Invariant: sum of both indices is again equal to i.
387
    // Inner loop runs 0 times on last iteration, emptying accumulator.
388
0
    while (bigit_index2 < used_digits_) {
389
0
      Chunk chunk1 = bigits_[copy_offset + bigit_index1];
390
0
      Chunk chunk2 = bigits_[copy_offset + bigit_index2];
391
0
      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
392
0
      bigit_index1--;
393
0
      bigit_index2++;
394
0
    }
395
    // The overwritten bigits_[i] will never be read in further loop iterations,
396
    // because bigit_index1 and bigit_index2 are always greater
397
    // than i - used_digits_.
398
0
    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
399
0
    accumulator >>= kBigitSize;
400
0
  }
401
  // Since the result was guaranteed to lie inside the number the
402
  // accumulator must be 0 now.
403
0
  ASSERT(accumulator == 0);
404
405
  // Don't forget to update the used_digits and the exponent.
406
0
  used_digits_ = product_length;
407
0
  exponent_ *= 2;
408
0
  Clamp();
409
0
}
410
411
412
0
void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
413
0
  ASSERT(base != 0);
414
0
  ASSERT(power_exponent >= 0);
415
0
  if (power_exponent == 0) {
416
0
    AssignUInt16(1);
417
0
    return;
418
0
  }
419
0
  Zero();
420
0
  int shifts = 0;
421
  // We expect base to be in range 2-32, and most often to be 10.
422
  // It does not make much sense to implement different algorithms for counting
423
  // the bits.
424
0
  while ((base & 1) == 0) {
425
0
    base >>= 1;
426
0
    shifts++;
427
0
  }
428
0
  int bit_size = 0;
429
0
  int tmp_base = base;
430
0
  while (tmp_base != 0) {
431
0
    tmp_base >>= 1;
432
0
    bit_size++;
433
0
  }
434
0
  int final_size = bit_size * power_exponent;
435
  // 1 extra bigit for the shifting, and one for rounded final_size.
436
0
  EnsureCapacity(final_size / kBigitSize + 2);
437
438
  // Left to Right exponentiation.
439
0
  int mask = 1;
440
0
  while (power_exponent >= mask) mask <<= 1;
441
442
  // The mask is now pointing to the bit above the most significant 1-bit of
443
  // power_exponent.
444
  // Get rid of first 1-bit;
445
0
  mask >>= 2;
446
0
  uint64_t this_value = base;
447
448
0
  bool delayed_multiplication = false;
449
0
  const uint64_t max_32bits = 0xFFFFFFFF;
450
0
  while (mask != 0 && this_value <= max_32bits) {
451
0
    this_value = this_value * this_value;
452
    // Verify that there is enough space in this_value to perform the
453
    // multiplication.  The first bit_size bits must be 0.
454
0
    if ((power_exponent & mask) != 0) {
455
0
      ASSERT(bit_size > 0);
456
0
      uint64_t base_bits_mask =
457
0
          ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
458
0
      bool high_bits_zero = (this_value & base_bits_mask) == 0;
459
0
      if (high_bits_zero) {
460
0
        this_value *= base;
461
0
      } else {
462
0
        delayed_multiplication = true;
463
0
      }
464
0
    }
465
0
    mask >>= 1;
466
0
  }
467
0
  AssignUInt64(this_value);
468
0
  if (delayed_multiplication) {
469
0
    MultiplyByUInt32(base);
470
0
  }
471
472
  // Now do the same thing as a bignum.
473
0
  while (mask != 0) {
474
0
    Square();
475
0
    if ((power_exponent & mask) != 0) {
476
0
      MultiplyByUInt32(base);
477
0
    }
478
0
    mask >>= 1;
479
0
  }
480
481
  // And finally add the saved shifts.
482
0
  ShiftLeft(shifts * power_exponent);
483
0
}
484
485
486
// Precondition: this/other < 16bit.
487
0
uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
488
0
  ASSERT(IsClamped());
489
0
  ASSERT(other.IsClamped());
490
0
  ASSERT(other.used_digits_ > 0);
491
492
  // Easy case: if we have less digits than the divisor than the result is 0.
493
  // Note: this handles the case where this == 0, too.
494
0
  if (BigitLength() < other.BigitLength()) {
495
0
    return 0;
496
0
  }
497
498
0
  Align(other);
499
500
0
  uint16_t result = 0;
501
502
  // Start by removing multiples of 'other' until both numbers have the same
503
  // number of digits.
504
0
  while (BigitLength() > other.BigitLength()) {
505
    // This naive approach is extremely inefficient if `this` divided by other
506
    // is big. This function is implemented for doubleToString where
507
    // the result should be small (less than 10).
508
0
    ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
509
0
    ASSERT(bigits_[used_digits_ - 1] < 0x10000);
510
    // Remove the multiples of the first digit.
511
    // Example this = 23 and other equals 9. -> Remove 2 multiples.
512
0
    result += static_cast<uint16_t>(bigits_[used_digits_ - 1]);
513
0
    SubtractTimes(other, bigits_[used_digits_ - 1]);
514
0
  }
515
516
0
  ASSERT(BigitLength() == other.BigitLength());
517
518
  // Both bignums are at the same length now.
519
  // Since other has more than 0 digits we know that the access to
520
  // bigits_[used_digits_ - 1] is safe.
521
0
  Chunk this_bigit = bigits_[used_digits_ - 1];
522
0
  Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
523
524
0
  if (other.used_digits_ == 1) {
525
    // Shortcut for easy (and common) case.
526
0
    int quotient = this_bigit / other_bigit;
527
0
    bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
528
0
    ASSERT(quotient < 0x10000);
529
0
    result += static_cast<uint16_t>(quotient);
530
0
    Clamp();
531
0
    return result;
532
0
  }
533
534
0
  int division_estimate = this_bigit / (other_bigit + 1);
535
0
  ASSERT(division_estimate < 0x10000);
536
0
  result += static_cast<uint16_t>(division_estimate);
537
0
  SubtractTimes(other, division_estimate);
538
539
0
  if (other_bigit * (division_estimate + 1) > this_bigit) {
540
    // No need to even try to subtract. Even if other's remaining digits were 0
541
    // another subtraction would be too much.
542
0
    return result;
543
0
  }
544
545
0
  while (LessEqual(other, *this)) {
546
0
    SubtractBignum(other);
547
0
    result++;
548
0
  }
549
0
  return result;
550
0
}
551
552
553
template<typename S>
554
0
static int SizeInHexChars(S number) {
555
0
  ASSERT(number > 0);
556
0
  int result = 0;
557
0
  while (number != 0) {
558
0
    number >>= 4;
559
0
    result++;
560
0
  }
561
0
  return result;
562
0
}
563
564
565
0
static char HexCharOfValue(int value) {
566
0
  ASSERT(0 <= value && value <= 16);
567
0
  if (value < 10) return static_cast<char>(value + '0');
568
0
  return static_cast<char>(value - 10 + 'A');
569
0
}
570
571
572
0
bool Bignum::ToHexString(char* buffer, int buffer_size) const {
573
0
  ASSERT(IsClamped());
574
  // Each bigit must be printable as separate hex-character.
575
0
  ASSERT(kBigitSize % 4 == 0);
576
0
  const int kHexCharsPerBigit = kBigitSize / 4;
577
578
0
  if (used_digits_ == 0) {
579
0
    if (buffer_size < 2) return false;
580
0
    buffer[0] = '0';
581
0
    buffer[1] = '\0';
582
0
    return true;
583
0
  }
584
  // We add 1 for the terminating '\0' character.
585
0
  int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
586
0
      SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
587
0
  if (needed_chars > buffer_size) return false;
588
0
  int string_index = needed_chars - 1;
589
0
  buffer[string_index--] = '\0';
590
0
  for (int i = 0; i < exponent_; ++i) {
591
0
    for (int j = 0; j < kHexCharsPerBigit; ++j) {
592
0
      buffer[string_index--] = '0';
593
0
    }
594
0
  }
595
0
  for (int i = 0; i < used_digits_ - 1; ++i) {
596
0
    Chunk current_bigit = bigits_[i];
597
0
    for (int j = 0; j < kHexCharsPerBigit; ++j) {
598
0
      buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
599
0
      current_bigit >>= 4;
600
0
    }
601
0
  }
602
  // And finally the last bigit.
603
0
  Chunk most_significant_bigit = bigits_[used_digits_ - 1];
604
0
  while (most_significant_bigit != 0) {
605
0
    buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
606
0
    most_significant_bigit >>= 4;
607
0
  }
608
0
  return true;
609
0
}
610
611
612
0
Bignum::Chunk Bignum::BigitAt(int index) const {
613
0
  if (index >= BigitLength()) return 0;
614
0
  if (index < exponent_) return 0;
615
0
  return bigits_[index - exponent_];
616
0
}
617
618
619
0
int Bignum::Compare(const Bignum& a, const Bignum& b) {
620
0
  ASSERT(a.IsClamped());
621
0
  ASSERT(b.IsClamped());
622
0
  int bigit_length_a = a.BigitLength();
623
0
  int bigit_length_b = b.BigitLength();
624
0
  if (bigit_length_a < bigit_length_b) return -1;
625
0
  if (bigit_length_a > bigit_length_b) return +1;
626
0
  for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
627
0
    Chunk bigit_a = a.BigitAt(i);
628
0
    Chunk bigit_b = b.BigitAt(i);
629
0
    if (bigit_a < bigit_b) return -1;
630
0
    if (bigit_a > bigit_b) return +1;
631
    // Otherwise they are equal up to this digit. Try the next digit.
632
0
  }
633
0
  return 0;
634
0
}
635
636
637
0
int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
638
0
  ASSERT(a.IsClamped());
639
0
  ASSERT(b.IsClamped());
640
0
  ASSERT(c.IsClamped());
641
0
  if (a.BigitLength() < b.BigitLength()) {
642
0
    return PlusCompare(b, a, c);
643
0
  }
644
0
  if (a.BigitLength() + 1 < c.BigitLength()) return -1;
645
0
  if (a.BigitLength() > c.BigitLength()) return +1;
646
  // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
647
  // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
648
  // of 'a'.
649
0
  if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
650
0
    return -1;
651
0
  }
652
653
0
  Chunk borrow = 0;
654
  // Starting at min_exponent all digits are == 0. So no need to compare them.
655
0
  int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
656
0
  for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
657
0
    Chunk chunk_a = a.BigitAt(i);
658
0
    Chunk chunk_b = b.BigitAt(i);
659
0
    Chunk chunk_c = c.BigitAt(i);
660
0
    Chunk sum = chunk_a + chunk_b;
661
0
    if (sum > chunk_c + borrow) {
662
0
      return +1;
663
0
    } else {
664
0
      borrow = chunk_c + borrow - sum;
665
0
      if (borrow > 1) return -1;
666
0
      borrow <<= kBigitSize;
667
0
    }
668
0
  }
669
0
  if (borrow == 0) return 0;
670
0
  return -1;
671
0
}
672
673
674
0
void Bignum::Clamp() {
675
0
  while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
676
0
    used_digits_--;
677
0
  }
678
0
  if (used_digits_ == 0) {
679
    // Zero.
680
0
    exponent_ = 0;
681
0
  }
682
0
}
683
684
685
0
bool Bignum::IsClamped() const {
686
0
  return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
687
0
}
688
689
690
0
void Bignum::Zero() {
691
0
  for (int i = 0; i < used_digits_; ++i) {
692
0
    bigits_[i] = 0;
693
0
  }
694
0
  used_digits_ = 0;
695
0
  exponent_ = 0;
696
0
}
697
698
699
0
void Bignum::Align(const Bignum& other) {
700
0
  if (exponent_ > other.exponent_) {
701
    // If "X" represents a "hidden" digit (by the exponent) then we are in the
702
    // following case (a == this, b == other):
703
    // a:  aaaaaaXXXX   or a:   aaaaaXXX
704
    // b:     bbbbbbX      b: bbbbbbbbXX
705
    // We replace some of the hidden digits (X) of a with 0 digits.
706
    // a:  aaaaaa000X   or a:   aaaaa0XX
707
0
    int zero_digits = exponent_ - other.exponent_;
708
0
    EnsureCapacity(used_digits_ + zero_digits);
709
0
    for (int i = used_digits_ - 1; i >= 0; --i) {
710
0
      bigits_[i + zero_digits] = bigits_[i];
711
0
    }
712
0
    for (int i = 0; i < zero_digits; ++i) {
713
0
      bigits_[i] = 0;
714
0
    }
715
0
    used_digits_ += zero_digits;
716
0
    exponent_ -= zero_digits;
717
0
    ASSERT(used_digits_ >= 0);
718
0
    ASSERT(exponent_ >= 0);
719
0
  }
720
0
}
721
722
723
0
void Bignum::BigitsShiftLeft(int shift_amount) {
724
0
  ASSERT(shift_amount < kBigitSize);
725
0
  ASSERT(shift_amount >= 0);
726
0
  Chunk carry = 0;
727
0
  for (int i = 0; i < used_digits_; ++i) {
728
0
    Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
729
0
    bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
730
0
    carry = new_carry;
731
0
  }
732
0
  if (carry != 0) {
733
0
    bigits_[used_digits_] = carry;
734
0
    used_digits_++;
735
0
  }
736
0
}
737
738
739
0
void Bignum::SubtractTimes(const Bignum& other, int factor) {
740
0
  ASSERT(exponent_ <= other.exponent_);
741
0
  if (factor < 3) {
742
0
    for (int i = 0; i < factor; ++i) {
743
0
      SubtractBignum(other);
744
0
    }
745
0
    return;
746
0
  }
747
0
  Chunk borrow = 0;
748
0
  int exponent_diff = other.exponent_ - exponent_;
749
0
  for (int i = 0; i < other.used_digits_; ++i) {
750
0
    DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
751
0
    DoubleChunk remove = borrow + product;
752
0
    Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask);
753
0
    bigits_[i + exponent_diff] = difference & kBigitMask;
754
0
    borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
755
0
                                (remove >> kBigitSize));
756
0
  }
757
0
  for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
758
0
    if (borrow == 0) return;
759
0
    Chunk difference = bigits_[i] - borrow;
760
0
    bigits_[i] = difference & kBigitMask;
761
0
    borrow = difference >> (kChunkSize - 1);
762
0
  }
763
0
  Clamp();
764
0
}
765
766
767
}  // namespace double_conversion