Coverage Report

Created: 2023-06-07 06:33

/src/qtbase/src/3rdparty/double-conversion/fast-dtoa.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2012 the V8 project authors. All rights reserved.
2
// Redistribution and use in source and binary forms, with or without
3
// modification, are permitted provided that the following conditions are
4
// met:
5
//
6
//     * Redistributions of source code must retain the above copyright
7
//       notice, this list of conditions and the following disclaimer.
8
//     * Redistributions in binary form must reproduce the above
9
//       copyright notice, this list of conditions and the following
10
//       disclaimer in the documentation and/or other materials provided
11
//       with the distribution.
12
//     * Neither the name of Google Inc. nor the names of its
13
//       contributors may be used to endorse or promote products derived
14
//       from this software without specific prior written permission.
15
//
16
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
#include <double-conversion/fast-dtoa.h>
29
30
#include <double-conversion/cached-powers.h>
31
#include <double-conversion/diy-fp.h>
32
#include <double-conversion/ieee.h>
33
34
namespace double_conversion {
35
36
// The minimal and maximal target exponent define the range of w's binary
37
// exponent, where 'w' is the result of multiplying the input by a cached power
38
// of ten.
39
//
40
// A different range might be chosen on a different platform, to optimize digit
41
// generation, but a smaller range requires more powers of ten to be cached.
42
static const int kMinimalTargetExponent = -60;
43
static const int kMaximalTargetExponent = -32;
44
45
46
// Adjusts the last digit of the generated number, and screens out generated
47
// solutions that may be inaccurate. A solution may be inaccurate if it is
48
// outside the safe interval, or if we cannot prove that it is closer to the
49
// input than a neighboring representation of the same length.
50
//
51
// Input: * buffer containing the digits of too_high / 10^kappa
52
//        * the buffer's length
53
//        * distance_too_high_w == (too_high - w).f() * unit
54
//        * unsafe_interval == (too_high - too_low).f() * unit
55
//        * rest = (too_high - buffer * 10^kappa).f() * unit
56
//        * ten_kappa = 10^kappa * unit
57
//        * unit = the common multiplier
58
// Output: returns true if the buffer is guaranteed to contain the closest
59
//    representable number to the input.
60
//  Modifies the generated digits in the buffer to approach (round towards) w.
61
static bool RoundWeed(Vector<char> buffer,
62
                      int length,
63
                      uint64_t distance_too_high_w,
64
                      uint64_t unsafe_interval,
65
                      uint64_t rest,
66
                      uint64_t ten_kappa,
67
0
                      uint64_t unit) {
68
0
  uint64_t small_distance = distance_too_high_w - unit;
69
0
  uint64_t big_distance = distance_too_high_w + unit;
70
  // Let w_low  = too_high - big_distance, and
71
  //     w_high = too_high - small_distance.
72
  // Note: w_low < w < w_high
73
  //
74
  // The real w (* unit) must lie somewhere inside the interval
75
  // ]w_low; w_high[ (often written as "(w_low; w_high)")
76
77
  // Basically the buffer currently contains a number in the unsafe interval
78
  // ]too_low; too_high[ with too_low < w < too_high
79
  //
80
  //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
81
  //                     ^v 1 unit            ^      ^                 ^      ^
82
  //  boundary_high ---------------------     .      .                 .      .
83
  //                     ^v 1 unit            .      .                 .      .
84
  //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
85
  //                                          .      .         ^       .      .
86
  //                                          .  big_distance  .       .      .
87
  //                                          .      .         .       .    rest
88
  //                              small_distance     .         .       .      .
89
  //                                          v      .         .       .      .
90
  //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
91
  //                     ^v 1 unit                   .         .       .      .
92
  //  w ----------------------------------------     .         .       .      .
93
  //                     ^v 1 unit                   v         .       .      .
94
  //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
95
  //                                                           .       .      v
96
  //  buffer --------------------------------------------------+-------+--------
97
  //                                                           .       .
98
  //                                                  safe_interval    .
99
  //                                                           v       .
100
  //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
101
  //                     ^v 1 unit                                     .
102
  //  boundary_low -------------------------                     unsafe_interval
103
  //                     ^v 1 unit                                     v
104
  //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
105
  //
106
  //
107
  // Note that the value of buffer could lie anywhere inside the range too_low
108
  // to too_high.
109
  //
110
  // boundary_low, boundary_high and w are approximations of the real boundaries
111
  // and v (the input number). They are guaranteed to be precise up to one unit.
112
  // In fact the error is guaranteed to be strictly less than one unit.
113
  //
114
  // Anything that lies outside the unsafe interval is guaranteed not to round
115
  // to v when read again.
116
  // Anything that lies inside the safe interval is guaranteed to round to v
117
  // when read again.
118
  // If the number inside the buffer lies inside the unsafe interval but not
119
  // inside the safe interval then we simply do not know and bail out (returning
120
  // false).
121
  //
122
  // Similarly we have to take into account the imprecision of 'w' when finding
123
  // the closest representation of 'w'. If we have two potential
124
  // representations, and one is closer to both w_low and w_high, then we know
125
  // it is closer to the actual value v.
126
  //
127
  // By generating the digits of too_high we got the largest (closest to
128
  // too_high) buffer that is still in the unsafe interval. In the case where
129
  // w_high < buffer < too_high we try to decrement the buffer.
130
  // This way the buffer approaches (rounds towards) w.
131
  // There are 3 conditions that stop the decrementation process:
132
  //   1) the buffer is already below w_high
133
  //   2) decrementing the buffer would make it leave the unsafe interval
134
  //   3) decrementing the buffer would yield a number below w_high and farther
135
  //      away than the current number. In other words:
136
  //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
137
  // Instead of using the buffer directly we use its distance to too_high.
138
  // Conceptually rest ~= too_high - buffer
139
  // We need to do the following tests in this order to avoid over- and
140
  // underflows.
141
0
  ASSERT(rest <= unsafe_interval);
142
0
  while (rest < small_distance &&  // Negated condition 1
143
0
         unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
144
0
         (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
145
0
          small_distance - rest >= rest + ten_kappa - small_distance)) {
146
0
    buffer[length - 1]--;
147
0
    rest += ten_kappa;
148
0
  }
149
150
  // We have approached w+ as much as possible. We now test if approaching w-
151
  // would require changing the buffer. If yes, then we have two possible
152
  // representations close to w, but we cannot decide which one is closer.
153
0
  if (rest < big_distance &&
154
0
      unsafe_interval - rest >= ten_kappa &&
155
0
      (rest + ten_kappa < big_distance ||
156
0
       big_distance - rest > rest + ten_kappa - big_distance)) {
157
0
    return false;
158
0
  }
159
160
  // Weeding test.
161
  //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
162
  //   Since too_low = too_high - unsafe_interval this is equivalent to
163
  //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
164
  //   Conceptually we have: rest ~= too_high - buffer
165
0
  return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
166
0
}
167
168
169
// Rounds the buffer upwards if the result is closer to v by possibly adding
170
// 1 to the buffer. If the precision of the calculation is not sufficient to
171
// round correctly, return false.
172
// The rounding might shift the whole buffer in which case the kappa is
173
// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
174
//
175
// If 2*rest > ten_kappa then the buffer needs to be round up.
176
// rest can have an error of +/- 1 unit. This function accounts for the
177
// imprecision and returns false, if the rounding direction cannot be
178
// unambiguously determined.
179
//
180
// Precondition: rest < ten_kappa.
181
static bool RoundWeedCounted(Vector<char> buffer,
182
                             int length,
183
                             uint64_t rest,
184
                             uint64_t ten_kappa,
185
                             uint64_t unit,
186
0
                             int* kappa) {
187
0
  ASSERT(rest < ten_kappa);
188
  // The following tests are done in a specific order to avoid overflows. They
189
  // will work correctly with any uint64 values of rest < ten_kappa and unit.
190
  //
191
  // If the unit is too big, then we don't know which way to round. For example
192
  // a unit of 50 means that the real number lies within rest +/- 50. If
193
  // 10^kappa == 40 then there is no way to tell which way to round.
194
0
  if (unit >= ten_kappa) return false;
195
  // Even if unit is just half the size of 10^kappa we are already completely
196
  // lost. (And after the previous test we know that the expression will not
197
  // over/underflow.)
198
0
  if (ten_kappa - unit <= unit) return false;
199
  // If 2 * (rest + unit) <= 10^kappa we can safely round down.
200
0
  if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
201
0
    return true;
202
0
  }
203
  // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
204
0
  if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
205
    // Increment the last digit recursively until we find a non '9' digit.
206
0
    buffer[length - 1]++;
207
0
    for (int i = length - 1; i > 0; --i) {
208
0
      if (buffer[i] != '0' + 10) break;
209
0
      buffer[i] = '0';
210
0
      buffer[i - 1]++;
211
0
    }
212
    // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
213
    // exception of the first digit all digits are now '0'. Simply switch the
214
    // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
215
    // the power (the kappa) is increased.
216
0
    if (buffer[0] == '0' + 10) {
217
0
      buffer[0] = '1';
218
0
      (*kappa) += 1;
219
0
    }
220
0
    return true;
221
0
  }
222
0
  return false;
223
0
}
224
225
// Returns the biggest power of ten that is less than or equal to the given
226
// number. We furthermore receive the maximum number of bits 'number' has.
227
//
228
// Returns power == 10^(exponent_plus_one-1) such that
229
//    power <= number < power * 10.
230
// If number_bits == 0 then 0^(0-1) is returned.
231
// The number of bits must be <= 32.
232
// Precondition: number < (1 << (number_bits + 1)).
233
234
// Inspired by the method for finding an integer log base 10 from here:
235
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
236
static unsigned int const kSmallPowersOfTen[] =
237
    {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
238
     1000000000};
239
240
static void BiggestPowerTen(uint32_t number,
241
                            int number_bits,
242
                            uint32_t* power,
243
0
                            int* exponent_plus_one) {
244
0
  ASSERT(number < (1u << (number_bits + 1)));
245
  // 1233/4096 is approximately 1/lg(10).
246
0
  int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);
247
  // We increment to skip over the first entry in the kPowersOf10 table.
248
  // Note: kPowersOf10[i] == 10^(i-1).
249
0
  exponent_plus_one_guess++;
250
  // We don't have any guarantees that 2^number_bits <= number.
251
0
  if (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
252
0
    exponent_plus_one_guess--;
253
0
  }
254
0
  *power = kSmallPowersOfTen[exponent_plus_one_guess];
255
0
  *exponent_plus_one = exponent_plus_one_guess;
256
0
}
257
258
// Generates the digits of input number w.
259
// w is a floating-point number (DiyFp), consisting of a significand and an
260
// exponent. Its exponent is bounded by kMinimalTargetExponent and
261
// kMaximalTargetExponent.
262
//       Hence -60 <= w.e() <= -32.
263
//
264
// Returns false if it fails, in which case the generated digits in the buffer
265
// should not be used.
266
// Preconditions:
267
//  * low, w and high are correct up to 1 ulp (unit in the last place). That
268
//    is, their error must be less than a unit of their last digits.
269
//  * low.e() == w.e() == high.e()
270
//  * low < w < high, and taking into account their error: low~ <= high~
271
//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
272
// Postconditions: returns false if procedure fails.
273
//   otherwise:
274
//     * buffer is not null-terminated, but len contains the number of digits.
275
//     * buffer contains the shortest possible decimal digit-sequence
276
//       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
277
//       correct values of low and high (without their error).
278
//     * if more than one decimal representation gives the minimal number of
279
//       decimal digits then the one closest to W (where W is the correct value
280
//       of w) is chosen.
281
// Remark: this procedure takes into account the imprecision of its input
282
//   numbers. If the precision is not enough to guarantee all the postconditions
283
//   then false is returned. This usually happens rarely (~0.5%).
284
//
285
// Say, for the sake of example, that
286
//   w.e() == -48, and w.f() == 0x1234567890abcdef
287
// w's value can be computed by w.f() * 2^w.e()
288
// We can obtain w's integral digits by simply shifting w.f() by -w.e().
289
//  -> w's integral part is 0x1234
290
//  w's fractional part is therefore 0x567890abcdef.
291
// Printing w's integral part is easy (simply print 0x1234 in decimal).
292
// In order to print its fraction we repeatedly multiply the fraction by 10 and
293
// get each digit. Example the first digit after the point would be computed by
294
//   (0x567890abcdef * 10) >> 48. -> 3
295
// The whole thing becomes slightly more complicated because we want to stop
296
// once we have enough digits. That is, once the digits inside the buffer
297
// represent 'w' we can stop. Everything inside the interval low - high
298
// represents w. However we have to pay attention to low, high and w's
299
// imprecision.
300
static bool DigitGen(DiyFp low,
301
                     DiyFp w,
302
                     DiyFp high,
303
                     Vector<char> buffer,
304
                     int* length,
305
0
                     int* kappa) {
306
0
  ASSERT(low.e() == w.e() && w.e() == high.e());
307
0
  ASSERT(low.f() + 1 <= high.f() - 1);
308
0
  ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
309
  // low, w and high are imprecise, but by less than one ulp (unit in the last
310
  // place).
311
  // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
312
  // the new numbers are outside of the interval we want the final
313
  // representation to lie in.
314
  // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
315
  // numbers that are certain to lie in the interval. We will use this fact
316
  // later on.
317
  // We will now start by generating the digits within the uncertain
318
  // interval. Later we will weed out representations that lie outside the safe
319
  // interval and thus _might_ lie outside the correct interval.
320
0
  uint64_t unit = 1;
321
0
  DiyFp too_low = DiyFp(low.f() - unit, low.e());
322
0
  DiyFp too_high = DiyFp(high.f() + unit, high.e());
323
  // too_low and too_high are guaranteed to lie outside the interval we want the
324
  // generated number in.
325
0
  DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
326
  // We now cut the input number into two parts: the integral digits and the
327
  // fractionals. We will not write any decimal separator though, but adapt
328
  // kappa instead.
329
  // Reminder: we are currently computing the digits (stored inside the buffer)
330
  // such that:   too_low < buffer * 10^kappa < too_high
331
  // We use too_high for the digit_generation and stop as soon as possible.
332
  // If we stop early we effectively round down.
333
0
  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
334
  // Division by one is a shift.
335
0
  uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
336
  // Modulo by one is an and.
337
0
  uint64_t fractionals = too_high.f() & (one.f() - 1);
338
0
  uint32_t divisor;
339
0
  int divisor_exponent_plus_one;
340
0
  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
341
0
                  &divisor, &divisor_exponent_plus_one);
342
0
  *kappa = divisor_exponent_plus_one;
343
0
  *length = 0;
344
  // Loop invariant: buffer = too_high / 10^kappa  (integer division)
345
  // The invariant holds for the first iteration: kappa has been initialized
346
  // with the divisor exponent + 1. And the divisor is the biggest power of ten
347
  // that is smaller than integrals.
348
0
  while (*kappa > 0) {
349
0
    int digit = integrals / divisor;
350
0
    ASSERT(digit <= 9);
351
0
    buffer[*length] = static_cast<char>('0' + digit);
352
0
    (*length)++;
353
0
    integrals %= divisor;
354
0
    (*kappa)--;
355
    // Note that kappa now equals the exponent of the divisor and that the
356
    // invariant thus holds again.
357
0
    uint64_t rest =
358
0
        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
359
    // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
360
    // Reminder: unsafe_interval.e() == one.e()
361
0
    if (rest < unsafe_interval.f()) {
362
      // Rounding down (by not emitting the remaining digits) yields a number
363
      // that lies within the unsafe interval.
364
0
      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
365
0
                       unsafe_interval.f(), rest,
366
0
                       static_cast<uint64_t>(divisor) << -one.e(), unit);
367
0
    }
368
0
    divisor /= 10;
369
0
  }
370
371
  // The integrals have been generated. We are at the point of the decimal
372
  // separator. In the following loop we simply multiply the remaining digits by
373
  // 10 and divide by one. We just need to pay attention to multiply associated
374
  // data (like the interval or 'unit'), too.
375
  // Note that the multiplication by 10 does not overflow, because w.e >= -60
376
  // and thus one.e >= -60.
377
0
  ASSERT(one.e() >= -60);
378
0
  ASSERT(fractionals < one.f());
379
0
  ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
380
0
  for (;;) {
381
0
    fractionals *= 10;
382
0
    unit *= 10;
383
0
    unsafe_interval.set_f(unsafe_interval.f() * 10);
384
    // Integer division by one.
385
0
    int digit = static_cast<int>(fractionals >> -one.e());
386
0
    ASSERT(digit <= 9);
387
0
    buffer[*length] = static_cast<char>('0' + digit);
388
0
    (*length)++;
389
0
    fractionals &= one.f() - 1;  // Modulo by one.
390
0
    (*kappa)--;
391
0
    if (fractionals < unsafe_interval.f()) {
392
0
      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
393
0
                       unsafe_interval.f(), fractionals, one.f(), unit);
394
0
    }
395
0
  }
396
0
}
397
398
399
400
// Generates (at most) requested_digits digits of input number w.
401
// w is a floating-point number (DiyFp), consisting of a significand and an
402
// exponent. Its exponent is bounded by kMinimalTargetExponent and
403
// kMaximalTargetExponent.
404
//       Hence -60 <= w.e() <= -32.
405
//
406
// Returns false if it fails, in which case the generated digits in the buffer
407
// should not be used.
408
// Preconditions:
409
//  * w is correct up to 1 ulp (unit in the last place). That
410
//    is, its error must be strictly less than a unit of its last digit.
411
//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
412
//
413
// Postconditions: returns false if procedure fails.
414
//   otherwise:
415
//     * buffer is not null-terminated, but length contains the number of
416
//       digits.
417
//     * the representation in buffer is the most precise representation of
418
//       requested_digits digits.
419
//     * buffer contains at most requested_digits digits of w. If there are less
420
//       than requested_digits digits then some trailing '0's have been removed.
421
//     * kappa is such that
422
//            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
423
//
424
// Remark: This procedure takes into account the imprecision of its input
425
//   numbers. If the precision is not enough to guarantee all the postconditions
426
//   then false is returned. This usually happens rarely, but the failure-rate
427
//   increases with higher requested_digits.
428
static bool DigitGenCounted(DiyFp w,
429
                            int requested_digits,
430
                            Vector<char> buffer,
431
                            int* length,
432
0
                            int* kappa) {
433
0
  ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
434
0
  ASSERT(kMinimalTargetExponent >= -60);
435
0
  ASSERT(kMaximalTargetExponent <= -32);
436
  // w is assumed to have an error less than 1 unit. Whenever w is scaled we
437
  // also scale its error.
438
0
  uint64_t w_error = 1;
439
  // We cut the input number into two parts: the integral digits and the
440
  // fractional digits. We don't emit any decimal separator, but adapt kappa
441
  // instead. Example: instead of writing "1.2" we put "12" into the buffer and
442
  // increase kappa by 1.
443
0
  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
444
  // Division by one is a shift.
445
0
  uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
446
  // Modulo by one is an and.
447
0
  uint64_t fractionals = w.f() & (one.f() - 1);
448
0
  uint32_t divisor;
449
0
  int divisor_exponent_plus_one;
450
0
  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
451
0
                  &divisor, &divisor_exponent_plus_one);
452
0
  *kappa = divisor_exponent_plus_one;
453
0
  *length = 0;
454
455
  // Loop invariant: buffer = w / 10^kappa  (integer division)
456
  // The invariant holds for the first iteration: kappa has been initialized
457
  // with the divisor exponent + 1. And the divisor is the biggest power of ten
458
  // that is smaller than 'integrals'.
459
0
  while (*kappa > 0) {
460
0
    int digit = integrals / divisor;
461
0
    ASSERT(digit <= 9);
462
0
    buffer[*length] = static_cast<char>('0' + digit);
463
0
    (*length)++;
464
0
    requested_digits--;
465
0
    integrals %= divisor;
466
0
    (*kappa)--;
467
    // Note that kappa now equals the exponent of the divisor and that the
468
    // invariant thus holds again.
469
0
    if (requested_digits == 0) break;
470
0
    divisor /= 10;
471
0
  }
472
473
0
  if (requested_digits == 0) {
474
0
    uint64_t rest =
475
0
        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
476
0
    return RoundWeedCounted(buffer, *length, rest,
477
0
                            static_cast<uint64_t>(divisor) << -one.e(), w_error,
478
0
                            kappa);
479
0
  }
480
481
  // The integrals have been generated. We are at the point of the decimal
482
  // separator. In the following loop we simply multiply the remaining digits by
483
  // 10 and divide by one. We just need to pay attention to multiply associated
484
  // data (the 'unit'), too.
485
  // Note that the multiplication by 10 does not overflow, because w.e >= -60
486
  // and thus one.e >= -60.
487
0
  ASSERT(one.e() >= -60);
488
0
  ASSERT(fractionals < one.f());
489
0
  ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
490
0
  while (requested_digits > 0 && fractionals > w_error) {
491
0
    fractionals *= 10;
492
0
    w_error *= 10;
493
    // Integer division by one.
494
0
    int digit = static_cast<int>(fractionals >> -one.e());
495
0
    ASSERT(digit <= 9);
496
0
    buffer[*length] = static_cast<char>('0' + digit);
497
0
    (*length)++;
498
0
    requested_digits--;
499
0
    fractionals &= one.f() - 1;  // Modulo by one.
500
0
    (*kappa)--;
501
0
  }
502
0
  if (requested_digits != 0) return false;
503
0
  return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
504
0
                          kappa);
505
0
}
506
507
508
// Provides a decimal representation of v.
509
// Returns true if it succeeds, otherwise the result cannot be trusted.
510
// There will be *length digits inside the buffer (not null-terminated).
511
// If the function returns true then
512
//        v == (double) (buffer * 10^decimal_exponent).
513
// The digits in the buffer are the shortest representation possible: no
514
// 0.09999999999999999 instead of 0.1. The shorter representation will even be
515
// chosen even if the longer one would be closer to v.
516
// The last digit will be closest to the actual v. That is, even if several
517
// digits might correctly yield 'v' when read again, the closest will be
518
// computed.
519
static bool Grisu3(double v,
520
                   FastDtoaMode mode,
521
                   Vector<char> buffer,
522
                   int* length,
523
0
                   int* decimal_exponent) {
524
0
  DiyFp w = Double(v).AsNormalizedDiyFp();
525
  // boundary_minus and boundary_plus are the boundaries between v and its
526
  // closest floating-point neighbors. Any number strictly between
527
  // boundary_minus and boundary_plus will round to v when convert to a double.
528
  // Grisu3 will never output representations that lie exactly on a boundary.
529
0
  DiyFp boundary_minus, boundary_plus;
530
0
  if (mode == FAST_DTOA_SHORTEST) {
531
0
    Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
532
0
  } else {
533
0
    ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE);
534
0
    float single_v = static_cast<float>(v);
535
0
    Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
536
0
  }
537
0
  ASSERT(boundary_plus.e() == w.e());
538
0
  DiyFp ten_mk;  // Cached power of ten: 10^-k
539
0
  int mk;        // -k
540
0
  int ten_mk_minimal_binary_exponent =
541
0
     kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
542
0
  int ten_mk_maximal_binary_exponent =
543
0
     kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
544
0
  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
545
0
      ten_mk_minimal_binary_exponent,
546
0
      ten_mk_maximal_binary_exponent,
547
0
      &ten_mk, &mk);
548
0
  ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
549
0
          DiyFp::kSignificandSize) &&
550
0
         (kMaximalTargetExponent >= w.e() + ten_mk.e() +
551
0
          DiyFp::kSignificandSize));
552
  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
553
  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
554
555
  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
556
  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
557
  // off by a small amount.
558
  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
559
  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
560
  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
561
0
  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
562
0
  ASSERT(scaled_w.e() ==
563
0
         boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
564
  // In theory it would be possible to avoid some recomputations by computing
565
  // the difference between w and boundary_minus/plus (a power of 2) and to
566
  // compute scaled_boundary_minus/plus by subtracting/adding from
567
  // scaled_w. However the code becomes much less readable and the speed
568
  // enhancements are not terriffic.
569
0
  DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
570
0
  DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
571
572
  // DigitGen will generate the digits of scaled_w. Therefore we have
573
  // v == (double) (scaled_w * 10^-mk).
574
  // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
575
  // integer than it will be updated. For instance if scaled_w == 1.23 then
576
  // the buffer will be filled with "123" und the decimal_exponent will be
577
  // decreased by 2.
578
0
  int kappa;
579
0
  bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
580
0
                         buffer, length, &kappa);
581
0
  *decimal_exponent = -mk + kappa;
582
0
  return result;
583
0
}
584
585
586
// The "counted" version of grisu3 (see above) only generates requested_digits
587
// number of digits. This version does not generate the shortest representation,
588
// and with enough requested digits 0.1 will at some point print as 0.9999999...
589
// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
590
// therefore the rounding strategy for halfway cases is irrelevant.
591
static bool Grisu3Counted(double v,
592
                          int requested_digits,
593
                          Vector<char> buffer,
594
                          int* length,
595
0
                          int* decimal_exponent) {
596
0
  DiyFp w = Double(v).AsNormalizedDiyFp();
597
0
  DiyFp ten_mk;  // Cached power of ten: 10^-k
598
0
  int mk;        // -k
599
0
  int ten_mk_minimal_binary_exponent =
600
0
     kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
601
0
  int ten_mk_maximal_binary_exponent =
602
0
     kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
603
0
  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
604
0
      ten_mk_minimal_binary_exponent,
605
0
      ten_mk_maximal_binary_exponent,
606
0
      &ten_mk, &mk);
607
0
  ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
608
0
          DiyFp::kSignificandSize) &&
609
0
         (kMaximalTargetExponent >= w.e() + ten_mk.e() +
610
0
          DiyFp::kSignificandSize));
611
  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
612
  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
613
614
  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
615
  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
616
  // off by a small amount.
617
  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
618
  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
619
  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
620
0
  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
621
622
  // We now have (double) (scaled_w * 10^-mk).
623
  // DigitGen will generate the first requested_digits digits of scaled_w and
624
  // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
625
  // will not always be exactly the same since DigitGenCounted only produces a
626
  // limited number of digits.)
627
0
  int kappa;
628
0
  bool result = DigitGenCounted(scaled_w, requested_digits,
629
0
                                buffer, length, &kappa);
630
0
  *decimal_exponent = -mk + kappa;
631
0
  return result;
632
0
}
633
634
635
bool FastDtoa(double v,
636
              FastDtoaMode mode,
637
              int requested_digits,
638
              Vector<char> buffer,
639
              int* length,
640
0
              int* decimal_point) {
641
0
  ASSERT(v > 0);
642
0
  ASSERT(!Double(v).IsSpecial());
643
644
0
  bool result = false;
645
0
  int decimal_exponent = 0;
646
0
  switch (mode) {
647
0
    case FAST_DTOA_SHORTEST:
648
0
    case FAST_DTOA_SHORTEST_SINGLE:
649
0
      result = Grisu3(v, mode, buffer, length, &decimal_exponent);
650
0
      break;
651
0
    case FAST_DTOA_PRECISION:
652
0
      result = Grisu3Counted(v, requested_digits,
653
0
                             buffer, length, &decimal_exponent);
654
0
      break;
655
0
    default:
656
0
      UNREACHABLE();
657
0
  }
658
0
  if (result) {
659
0
    *decimal_point = *length + decimal_exponent;
660
0
    buffer[*length] = '\0';
661
0
  }
662
0
  return result;
663
0
}
664
665
}  // namespace double_conversion