Coverage Report

Created: 2026-01-25 07:18

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/exiv2/xmpsdk/src/MD5.cpp
Line
Count
Source
1
/*
2
 * This code implements the MD5 message-digest algorithm.
3
 * The algorithm is due to Ron Rivest.  This code was
4
 * written by Colin Plumb in 1993, no copyright is claimed.
5
 * This code is in the public domain; do with it what you wish.
6
 *
7
 * Equivalent code is available from RSA Data Security, Inc.
8
 * This code has been tested against that, and is equivalent,
9
 * except that you don't need to include two pages of legalese
10
 * with every copy.
11
 *
12
 * To compute the message digest of a chunk of bytes, declare an
13
 * MD5_CTX structure, pass it to MD5Init, call MD5Update as
14
 * needed on buffers full of bytes, and then call MD5Final, which
15
 * will fill a supplied 16-byte array with the digest.
16
 *
17
 * Changed so as no longer to depend on Colin Plumb's `usual.h' header
18
 * definitions; now uses stuff from dpkg's config.h.
19
 *  - Ian Jackson <ian@chiark.greenend.org.uk>.
20
 * Still in the public domain.
21
 */
22
23
#include <cstring>
24
25
#include "MD5.h"
26
27
using namespace std;
28
29
static void
30
byteSwap(UWORD32 *buf, unsigned words)
31
0
{
32
0
        const uint32_t byteOrderTest = 0x1;
33
0
        if (((char *)&byteOrderTest)[0] == 0) {
34
0
            md5byte *p = (md5byte *)buf;
35
36
0
            do {
37
0
                *buf++ = (UWORD32)((unsigned)p[3] << 8 | p[2]) << 16 |
38
0
                    ((unsigned)p[1] << 8 | p[0]);
39
0
                p += 4;
40
0
            } while (--words);
41
0
        }
42
0
}
43
44
/*
45
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
46
 * initialization constants.
47
 */
48
void
49
MD5Init(struct MD5_CTX *ctx)
50
0
{
51
0
  ctx->buf[0] = 0x67452301;
52
0
  ctx->buf[1] = 0xefcdab89;
53
0
  ctx->buf[2] = 0x98badcfe;
54
0
  ctx->buf[3] = 0x10325476;
55
56
0
  ctx->bytes[0] = 0;
57
0
  ctx->bytes[1] = 0;
58
0
}
59
60
/*
61
 * Update context to reflect the concatenation of another buffer full
62
 * of bytes.
63
 */
64
void
65
MD5Update(struct MD5_CTX *ctx, md5byte const *buf, unsigned len)
66
0
{
67
0
  UWORD32 t;
68
69
  /* Update byte count */
70
71
0
  t = ctx->bytes[0];
72
0
  if ((ctx->bytes[0] = t + len) < t)
73
0
    ctx->bytes[1]++; /* Carry from low to high */
74
75
0
  t = 64 - (t & 0x3f);  /* Space available in ctx->in (at least 1) */
76
0
  if (t > len) {
77
0
    memcpy((md5byte *)ctx->in + 64 - t, buf, len);
78
0
    return;
79
0
  }
80
  /* First chunk is an odd size */
81
0
  memcpy((md5byte *)ctx->in + 64 - t, buf, t);
82
0
  byteSwap(ctx->in, 16);
83
0
  MD5Transform(ctx->buf, ctx->in);
84
0
  buf += t;
85
0
  len -= t;
86
87
  /* Process data in 64-byte chunks */
88
0
  while (len >= 64) {
89
0
    memcpy(ctx->in, buf, 64);
90
0
    byteSwap(ctx->in, 16);
91
0
    MD5Transform(ctx->buf, ctx->in);
92
0
    buf += 64;
93
0
    len -= 64;
94
0
  }
95
96
  /* Handle any remaining bytes of data. */
97
0
  memcpy(ctx->in, buf, len);
98
0
}
99
100
/*
101
 * Final wrapup - pad to 64-byte boundary with the bit pattern 
102
 * 1 0* (64-bit count of bits processed, MSB-first)
103
 */
104
void
105
MD5Final(md5byte digest[16], struct MD5_CTX *ctx)
106
0
{
107
0
  int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
108
0
  md5byte *p = (md5byte *)ctx->in + count;
109
110
  /* Set the first char of padding to 0x80.  There is always room. */
111
0
  *p++ = 0x80;
112
113
  /* Bytes of padding needed to make 56 bytes (-8..55) */
114
0
  count = 56 - 1 - count;
115
116
0
  if (count < 0) { /* Padding forces an extra block */
117
0
    memset(p, 0, count + 8);
118
0
    byteSwap(ctx->in, 16);
119
0
    MD5Transform(ctx->buf, ctx->in);
120
0
    p = (md5byte *)ctx->in;
121
0
    count = 56;
122
0
  }
123
0
  memset(p, 0, count);
124
0
  byteSwap(ctx->in, 14);
125
126
  /* Append length in bits and transform */
127
0
  ctx->in[14] = ctx->bytes[0] << 3;
128
0
  ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
129
0
  MD5Transform(ctx->buf, ctx->in);
130
131
0
  byteSwap(ctx->buf, 4);
132
0
  memcpy(digest, ctx->buf, 16);
133
0
  memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
134
0
}
135
136
/* The four core functions - F1 is optimized somewhat */
137
138
/* #define F1(x, y, z) (x & y | ~x & z) */
139
0
#define F1(x, y, z) (z ^ (x & (y ^ z)))
140
0
#define F2(x, y, z) F1(z, x, y)
141
0
#define F3(x, y, z) (x ^ y ^ z)
142
0
#define F4(x, y, z) (y ^ (x | ~z))
143
144
/* This is the central step in the MD5 algorithm. */
145
#define MD5STEP(f,w,x,y,z,in,s) \
146
0
   (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
147
148
/*
149
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
150
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
151
 * the data and converts bytes into longwords for this routine.
152
 */
153
void
154
MD5Transform(UWORD32 buf[4], UWORD32 const in[16])
155
0
{
156
0
  UWORD32 a, b, c, d;
157
158
0
  a = buf[0];
159
0
  b = buf[1];
160
0
  c = buf[2];
161
0
  d = buf[3];
162
163
0
  MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
164
0
  MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
165
0
  MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
166
0
  MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
167
0
  MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
168
0
  MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
169
0
  MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
170
0
  MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
171
0
  MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
172
0
  MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
173
0
  MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
174
0
  MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
175
0
  MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
176
0
  MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
177
0
  MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
178
0
  MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
179
180
0
  MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
181
0
  MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
182
0
  MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
183
0
  MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
184
0
  MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
185
0
  MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
186
0
  MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
187
0
  MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
188
0
  MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
189
0
  MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
190
0
  MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
191
0
  MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
192
0
  MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
193
0
  MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
194
0
  MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
195
0
  MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
196
197
0
  MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
198
0
  MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
199
0
  MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
200
0
  MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
201
0
  MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
202
0
  MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
203
0
  MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
204
0
  MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
205
0
  MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
206
0
  MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
207
0
  MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
208
0
  MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
209
0
  MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
210
0
  MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
211
0
  MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
212
0
  MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
213
214
0
  MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
215
0
  MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
216
0
  MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
217
0
  MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
218
0
  MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
219
0
  MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
220
0
  MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
221
0
  MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
222
0
  MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
223
0
  MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
224
0
  MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
225
0
  MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
226
0
  MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
227
0
  MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
228
0
  MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
229
0
  MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
230
231
0
  buf[0] += a;
232
0
  buf[1] += b;
233
0
  buf[2] += c;
234
0
  buf[3] += d;
235
0
}