Coverage Report

Created: 2026-01-25 07:18

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavutil/csp.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2015 Kevin Wheatley <kevin.j.wheatley@gmail.com>
3
 * Copyright (c) 2016 Ronald S. Bultje <rsbultje@gmail.com>
4
 * Copyright (c) 2023 Leo Izen <leo.izen@gmail.com>
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
/**
24
 * @file Colorspace functions for libavutil
25
 * @author Ronald S. Bultje <rsbultje@gmail.com>
26
 * @author Leo Izen <leo.izen@gmail.com>
27
 * @author Kevin Wheatley <kevin.j.wheatley@gmail.com>
28
 */
29
30
#include <stdlib.h>
31
#include <math.h>
32
33
#include "attributes.h"
34
#include "csp.h"
35
#include "pixfmt.h"
36
#include "rational.h"
37
38
#define AVR(d) { (int)(d * 100000 + 0.5), 100000 }
39
40
/*
41
 * All constants explained in e.g. https://linuxtv.org/downloads/v4l-dvb-apis/ch02s06.html
42
 * The older ones (bt470bg/m) are also explained in their respective ITU docs
43
 * (e.g. https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.470-5-199802-S!!PDF-E.pdf)
44
 * whereas the newer ones can typically be copied directly from wikipedia :)
45
 */
46
static const struct AVLumaCoefficients luma_coefficients[AVCOL_SPC_NB] = {
47
    [AVCOL_SPC_FCC]        = { AVR(0.30),   AVR(0.59),   AVR(0.11)   },
48
    [AVCOL_SPC_BT470BG]    = { AVR(0.299),  AVR(0.587),  AVR(0.114)  },
49
    [AVCOL_SPC_SMPTE170M]  = { AVR(0.299),  AVR(0.587),  AVR(0.114)  },
50
    [AVCOL_SPC_BT709]      = { AVR(0.2126), AVR(0.7152), AVR(0.0722) },
51
    [AVCOL_SPC_SMPTE240M]  = { AVR(0.212),  AVR(0.701),  AVR(0.087)  },
52
    [AVCOL_SPC_YCOCG]      = { AVR(0.25),   AVR(0.5),    AVR(0.25)   },
53
    [AVCOL_SPC_RGB]        = { AVR(1),      AVR(1),      AVR(1)      },
54
    [AVCOL_SPC_BT2020_NCL] = { AVR(0.2627), AVR(0.6780), AVR(0.0593) },
55
    [AVCOL_SPC_BT2020_CL]  = { AVR(0.2627), AVR(0.6780), AVR(0.0593) },
56
};
57
58
const struct AVLumaCoefficients *av_csp_luma_coeffs_from_avcsp(enum AVColorSpace csp)
59
0
{
60
0
    const AVLumaCoefficients *coeffs;
61
62
0
    if ((unsigned)csp >= AVCOL_SPC_NB)
63
0
        return NULL;
64
0
    coeffs = &luma_coefficients[csp];
65
0
    if (!coeffs->cr.num)
66
0
        return NULL;
67
68
0
    return coeffs;
69
0
}
70
71
#define WP_D65 { AVR(0.3127), AVR(0.3290) }
72
#define WP_C   { AVR(0.3100), AVR(0.3160) }
73
#define WP_DCI { AVR(0.3140), AVR(0.3510) }
74
#define WP_E   { {1, 3}, {1, 3} }
75
76
static const AVColorPrimariesDesc color_primaries[AVCOL_PRI_NB] = {
77
    [AVCOL_PRI_BT709]     = { WP_D65, { { AVR(0.640), AVR(0.330) }, { AVR(0.300), AVR(0.600) }, { AVR(0.150), AVR(0.060) } } },
78
    [AVCOL_PRI_BT470M]    = { WP_C,   { { AVR(0.670), AVR(0.330) }, { AVR(0.210), AVR(0.710) }, { AVR(0.140), AVR(0.080) } } },
79
    [AVCOL_PRI_BT470BG]   = { WP_D65, { { AVR(0.640), AVR(0.330) }, { AVR(0.290), AVR(0.600) }, { AVR(0.150), AVR(0.060) } } },
80
    [AVCOL_PRI_SMPTE170M] = { WP_D65, { { AVR(0.630), AVR(0.340) }, { AVR(0.310), AVR(0.595) }, { AVR(0.155), AVR(0.070) } } },
81
    [AVCOL_PRI_SMPTE240M] = { WP_D65, { { AVR(0.630), AVR(0.340) }, { AVR(0.310), AVR(0.595) }, { AVR(0.155), AVR(0.070) } } },
82
    [AVCOL_PRI_SMPTE428]  = { WP_E,   { { AVR(0.735), AVR(0.265) }, { AVR(0.274), AVR(0.718) }, { AVR(0.167), AVR(0.009) } } },
83
    [AVCOL_PRI_SMPTE431]  = { WP_DCI, { { AVR(0.680), AVR(0.320) }, { AVR(0.265), AVR(0.690) }, { AVR(0.150), AVR(0.060) } } },
84
    [AVCOL_PRI_SMPTE432]  = { WP_D65, { { AVR(0.680), AVR(0.320) }, { AVR(0.265), AVR(0.690) }, { AVR(0.150), AVR(0.060) } } },
85
    [AVCOL_PRI_FILM]      = { WP_C,   { { AVR(0.681), AVR(0.319) }, { AVR(0.243), AVR(0.692) }, { AVR(0.145), AVR(0.049) } } },
86
    [AVCOL_PRI_BT2020]    = { WP_D65, { { AVR(0.708), AVR(0.292) }, { AVR(0.170), AVR(0.797) }, { AVR(0.131), AVR(0.046) } } },
87
    [AVCOL_PRI_JEDEC_P22] = { WP_D65, { { AVR(0.630), AVR(0.340) }, { AVR(0.295), AVR(0.605) }, { AVR(0.155), AVR(0.077) } } },
88
};
89
90
static const AVColorPrimariesDesc color_primaries_ext[AVCOL_PRI_EXT_NB -
91
                                                      AVCOL_PRI_EXT_BASE] = {
92
    [AVCOL_PRI_V_GAMUT - AVCOL_PRI_EXT_BASE] = { WP_D65, { { AVR(0.730), AVR(0.280) }, { AVR(0.165), AVR(0.840) }, { AVR(0.100), AVR(-0.030) } } },
93
};
94
95
const AVColorPrimariesDesc *av_csp_primaries_desc_from_id(enum AVColorPrimaries prm)
96
0
{
97
0
    const AVColorPrimariesDesc *p = NULL;
98
0
    if ((unsigned)prm < AVCOL_PRI_NB)
99
0
        p = &color_primaries[prm];
100
0
    else if (((unsigned)prm >= AVCOL_PRI_EXT_BASE) &&
101
0
             ((unsigned)prm < AVCOL_PRI_EXT_NB))
102
0
        p = &color_primaries_ext[prm - AVCOL_PRI_EXT_BASE];
103
0
    if (!p || !p->prim.r.x.num)
104
0
        return NULL;
105
0
    return p;
106
0
}
107
108
static av_always_inline AVRational abs_sub_q(AVRational r1, AVRational r2)
109
0
{
110
0
    AVRational diff = av_sub_q(r1, r2);
111
    /* denominator assumed to be positive */
112
0
    return av_make_q(abs(diff.num), diff.den);
113
0
}
114
115
enum AVColorPrimaries av_csp_primaries_id_from_desc(const AVColorPrimariesDesc *prm)
116
0
{
117
0
    AVRational delta;
118
119
0
    for (enum AVColorPrimaries p = 0; p < AVCOL_PRI_NB; p++) {
120
0
        const AVColorPrimariesDesc *ref = &color_primaries[p];
121
0
        if (!ref->prim.r.x.num)
122
0
            continue;
123
124
0
        delta = abs_sub_q(prm->prim.r.x, ref->prim.r.x);
125
0
        delta = av_add_q(delta, abs_sub_q(prm->prim.r.y, ref->prim.r.y));
126
0
        delta = av_add_q(delta, abs_sub_q(prm->prim.g.x, ref->prim.g.x));
127
0
        delta = av_add_q(delta, abs_sub_q(prm->prim.g.y, ref->prim.g.y));
128
0
        delta = av_add_q(delta, abs_sub_q(prm->prim.b.x, ref->prim.b.x));
129
0
        delta = av_add_q(delta, abs_sub_q(prm->prim.b.y, ref->prim.b.y));
130
0
        delta = av_add_q(delta, abs_sub_q(prm->wp.x, ref->wp.x));
131
0
        delta = av_add_q(delta, abs_sub_q(prm->wp.y, ref->wp.y));
132
133
0
        if (av_cmp_q(delta, av_make_q(1, 1000)) < 0)
134
0
            return p;
135
0
    }
136
137
0
    return AVCOL_PRI_UNSPECIFIED;
138
0
}
139
140
static const double approximate_gamma[AVCOL_TRC_NB] = {
141
    [AVCOL_TRC_BT709] = 1.961,
142
    [AVCOL_TRC_SMPTE170M] = 1.961,
143
    [AVCOL_TRC_SMPTE240M] = 1.961,
144
    [AVCOL_TRC_BT1361_ECG] = 1.961,
145
    [AVCOL_TRC_BT2020_10] = 1.961,
146
    [AVCOL_TRC_BT2020_12] = 1.961,
147
    [AVCOL_TRC_GAMMA22] = 2.2,
148
    [AVCOL_TRC_IEC61966_2_1] = 2.2,
149
    [AVCOL_TRC_GAMMA28] = 2.8,
150
    [AVCOL_TRC_LINEAR] = 1.0,
151
    [AVCOL_TRC_SMPTE428] = 2.6,
152
};
153
154
static const double approximate_gamma_ext[AVCOL_TRC_EXT_NB -
155
                                          AVCOL_TRC_EXT_BASE] = {
156
    [AVCOL_TRC_V_LOG - AVCOL_TRC_EXT_BASE] = 2.2,
157
};
158
159
double av_csp_approximate_trc_gamma(enum AVColorTransferCharacteristic trc)
160
0
{
161
0
    if (trc < AVCOL_TRC_NB)
162
0
        return approximate_gamma[trc];
163
0
    else if ((trc >= AVCOL_TRC_EXT_BASE) && (trc < AVCOL_TRC_EXT_NB))
164
0
        return approximate_gamma_ext[trc - AVCOL_TRC_EXT_BASE];
165
0
    return 0.0;
166
0
}
167
168
static const double approximate_eotf_gamma[AVCOL_TRC_NB] = {
169
    [AVCOL_TRC_BT709] = 2.2,
170
    [AVCOL_TRC_SMPTE170M] = 2.2,
171
    [AVCOL_TRC_SMPTE240M] = 2.2,
172
    [AVCOL_TRC_BT1361_ECG] = 2.2,
173
    [AVCOL_TRC_BT2020_10] = 2.2,
174
    [AVCOL_TRC_BT2020_12] = 2.2,
175
    [AVCOL_TRC_GAMMA22] = 2.2,
176
    [AVCOL_TRC_IEC61966_2_1] = 2.2,
177
    [AVCOL_TRC_GAMMA28] = 2.8,
178
    [AVCOL_TRC_LINEAR] = 1.0,
179
    [AVCOL_TRC_SMPTE428] = 2.6,
180
};
181
182
static const double approximate_eotf_gamma_ext[AVCOL_TRC_EXT_NB -
183
                                               AVCOL_TRC_EXT_BASE] = {
184
    [AVCOL_TRC_V_LOG - AVCOL_TRC_EXT_BASE] = 2.2,
185
};
186
187
double av_csp_approximate_eotf_gamma(enum AVColorTransferCharacteristic trc)
188
0
{
189
0
    if ((unsigned)trc < AVCOL_TRC_NB)
190
0
        return approximate_eotf_gamma[trc];
191
0
    else if (((unsigned)trc >= AVCOL_TRC_EXT_BASE) &&
192
0
             ((unsigned)trc < AVCOL_TRC_EXT_NB))
193
0
        return approximate_eotf_gamma_ext[trc - AVCOL_TRC_EXT_BASE];
194
0
    return 0.0;
195
0
}
196
197
0
#define BT709_alpha 1.099296826809442
198
0
#define BT709_beta 0.018053968510807
199
200
static double trc_bt709(double Lc)
201
0
{
202
0
    const double a = BT709_alpha;
203
0
    const double b = BT709_beta;
204
205
0
    return (0.0 > Lc) ? 0.0
206
0
         : (  b > Lc) ? 4.500 * Lc
207
0
         :              a * pow(Lc, 0.45) - (a - 1.0);
208
0
}
209
210
static double trc_bt709_inv(double E)
211
0
{
212
0
    const double a = BT709_alpha;
213
0
    const double b = 4.500 * BT709_beta;
214
215
0
    return (0.0 > E) ? 0.0
216
0
         : (  b > E) ? E / 4.500
217
0
         :             pow((E + (a - 1.0)) / a, 1.0 / 0.45);
218
0
}
219
220
static double trc_gamma22(double Lc)
221
0
{
222
0
    return (0.0 > Lc) ? 0.0 : pow(Lc, 1.0/ 2.2);
223
0
}
224
225
static double trc_gamma22_inv(double E)
226
0
{
227
0
    return (0.0 > E) ? 0.0 : pow(E, 2.2);
228
0
}
229
230
static double trc_gamma28(double Lc)
231
0
{
232
0
    return (0.0 > Lc) ? 0.0 : pow(Lc, 1.0/ 2.8);
233
0
}
234
235
static double trc_gamma28_inv(double E)
236
0
{
237
0
    return (0.0 > E) ? 0.0 : pow(E, 2.8);
238
0
}
239
240
static double trc_smpte240M(double Lc)
241
0
{
242
0
    const double a = 1.1115;
243
0
    const double b = 0.0228;
244
245
0
    return (0.0 > Lc) ? 0.0
246
0
         : (  b > Lc) ? 4.000 * Lc
247
0
         :              a * pow(Lc, 0.45) - (a - 1.0);
248
0
}
249
250
static double trc_smpte240M_inv(double E)
251
0
{
252
0
    const double a = 1.1115;
253
0
    const double b = 4.000 * 0.0228;
254
255
0
    return (0.0 > E) ? 0.0
256
0
         : (  b > E) ? E / 4.000
257
0
         :             pow((E + (a - 1.0)) / a, 1.0 / 0.45);
258
0
}
259
260
static double trc_linear(double Lc)
261
0
{
262
0
    return Lc;
263
0
}
264
265
static double trc_log(double Lc)
266
0
{
267
0
    return (0.01 > Lc) ? 0.0 : 1.0 + log10(Lc) / 2.0;
268
0
}
269
270
static double trc_log_inv(double E)
271
0
{
272
0
    return (0.0 > E) ? 0.01 : pow(10.0, 2.0 * (E - 1.0));
273
0
}
274
275
static double trc_log_sqrt(double Lc)
276
0
{
277
    // sqrt(10) / 1000
278
0
    return (0.00316227766 > Lc) ? 0.0 : 1.0 + log10(Lc) / 2.5;
279
0
}
280
281
static double trc_log_sqrt_inv(double E)
282
0
{
283
0
    return (0.0 > E) ? 0.00316227766 : pow(10.0, 2.5 * (E - 1.0));
284
0
}
285
286
static double trc_iec61966_2_4(double Lc)
287
0
{
288
0
    const double a = BT709_alpha;
289
0
    const double b = BT709_beta;
290
291
0
    return (-b >= Lc) ? -a * pow(-Lc, 0.45) + (a - 1.0)
292
0
         : ( b >  Lc) ? 4.500 * Lc
293
0
         :               a * pow( Lc, 0.45) - (a - 1.0);
294
0
}
295
296
static double trc_iec61966_2_4_inv(double E)
297
0
{
298
0
    const double a = BT709_alpha;
299
0
    const double b = 4.500 * BT709_beta;
300
301
0
    return (-b >= E) ? -pow((-E + (a - 1.0)) / a, 1.0 / 0.45)
302
0
         : ( b >  E) ? E / 4.500
303
0
         :              pow(( E + (a - 1.0)) / a, 1.0 / 0.45);
304
0
}
305
306
static double trc_bt1361(double Lc)
307
0
{
308
0
    const double a = BT709_alpha;
309
0
    const double b = BT709_beta;
310
311
0
    return (-0.0045 >= Lc) ? -(a * pow(-4.0 * Lc, 0.45) + (a - 1.0)) / 4.0
312
0
         : ( b >  Lc) ? 4.500 * Lc
313
0
         :               a * pow( Lc, 0.45) - (a - 1.0);
314
0
}
315
316
static double trc_bt1361_inv(double E)
317
0
{
318
0
    const double a = BT709_alpha;
319
0
    const double b = 4.500 * BT709_beta;
320
321
0
    return (-0.02025 >= E) ? -pow((-4.0 * E - (a - 1.0)) / a, 1.0 / 0.45) / 4.0
322
0
         : ( b       >  E) ? E / 4.500
323
0
         :                    pow(( E + (a - 1.0)) / a, 1.0 / 0.45);
324
0
}
325
326
static double trc_iec61966_2_1(double Lc)
327
0
{
328
0
    const double a = 1.055;
329
0
    const double b = 0.0031308;
330
331
0
    return (0.0 > Lc) ? 0.0
332
0
         : (  b > Lc) ? 12.92 * Lc
333
0
         :              a * pow(Lc, 1.0  / 2.4) - (a - 1.0);
334
0
}
335
336
static double trc_iec61966_2_1_inv(double E)
337
0
{
338
0
    const double a = 1.055;
339
0
    const double b = 12.92 * 0.0031308;
340
341
0
    return (0.0 > E) ? 0.0
342
0
         : (  b > E) ? E / 12.92
343
0
                     : pow((E + (a - 1.0)) / a, 2.4);
344
0
    return E;
345
0
}
346
347
0
#define PQ_c1 (        3424.0 / 4096.0) /* c3-c2 + 1 */
348
0
#define PQ_c2 ( 32.0 * 2413.0 / 4096.0)
349
0
#define PQ_c3 ( 32.0 * 2392.0 / 4096.0)
350
0
#define PQ_m  (128.0 * 2523.0 / 4096.0)
351
0
#define PQ_n  ( 0.25 * 2610.0 / 4096.0)
352
353
static double trc_smpte_st2084(double Lc)
354
0
{
355
0
    const double c1 = PQ_c1;
356
0
    const double c2 = PQ_c2;
357
0
    const double c3 = PQ_c3;
358
0
    const double m  = PQ_m;
359
0
    const double n  = PQ_n;
360
0
    const double L  = Lc / 10000.0;
361
0
    const double Ln = pow(L, n);
362
363
0
    return (0.0 > Lc) ? 0.0
364
0
         :              pow((c1 + c2 * Ln) / (1.0 + c3 * Ln), m);
365
366
0
}
367
368
static double trc_smpte_st2084_inv(double E)
369
0
{
370
0
    const double c1 = PQ_c1;
371
0
    const double c2 = PQ_c2;
372
0
    const double c3 = PQ_c3;
373
0
    const double m  = PQ_m;
374
0
    const double n  = PQ_n;
375
0
    const double Em = pow(E, 1.0 / m);
376
377
0
    return (c1 > Em) ? 0.0
378
0
                     : 10000.0 * pow((Em - c1) / (c2 - c3 * Em), 1.0 / n);
379
0
}
380
381
0
#define DCI_L 48.00
382
0
#define DCI_P 52.37
383
384
static double trc_smpte_st428_1(double Lc)
385
0
{
386
0
    return (0.0 > Lc) ? 0.0 : pow(DCI_L / DCI_P * Lc, 1.0 / 2.6);
387
0
}
388
389
static double trc_smpte_st428_1_inv(double E)
390
0
{
391
0
    return (0.0 > E) ? 0.0 : DCI_P / DCI_L * pow(E, 2.6);
392
0
}
393
394
0
#define HLG_a 0.17883277
395
0
#define HLG_b 0.28466892
396
0
#define HLG_c 0.55991073
397
398
0
static double trc_arib_std_b67(double Lc) {
399
    // The function uses the definition from HEVC, which assumes that the peak
400
    // white is input level = 1. (this is equivalent to scaling E = Lc * 12 and
401
    // using the definition from the ARIB STD-B67 spec)
402
0
    const double a = HLG_a;
403
0
    const double b = HLG_b;
404
0
    const double c = HLG_c;
405
0
    return (0.0 > Lc) ? 0.0 :
406
0
        (Lc <= 1.0 / 12.0 ? sqrt(3.0 * Lc) : a * log(12.0 * Lc - b) + c);
407
0
}
408
409
static double trc_arib_std_b67_inv(double E)
410
0
{
411
0
    const double a = HLG_a;
412
0
    const double b = HLG_b;
413
0
    const double c = HLG_c;
414
0
    return (0.0 > E) ? 0.0 :
415
0
        (E <= 0.5 ? E * E / 3.0 : (exp((E - c) / a) + b) / 12.0);
416
0
}
417
418
0
#define VLOG_c1 0.01
419
0
#define VLOG_c2 0.181
420
0
#define VLOG_b  0.00873
421
0
#define VLOG_c  0.241514
422
0
#define VLOG_d  0.598206
423
424
static double trc_v_log(double E)
425
0
{
426
0
    const double c1 = VLOG_c1;
427
0
    const double b = VLOG_b;
428
0
    const double c = VLOG_c;
429
0
    const double d = VLOG_d;
430
0
    return (E < c1) ? (5.6 * E + 0.125) :
431
0
        (c * log10(E + b) + d);
432
0
}
433
434
static double trc_v_log_inv(double E)
435
0
{
436
0
    const double c2 = VLOG_c2;
437
0
    const double b = VLOG_b;
438
0
    const double c = VLOG_c;
439
0
    const double d = VLOG_d;
440
0
    return (E < c2) ? (E - 0.125) / 5.6 :
441
0
        (pow(10.0, ((E - d) / c)) - b);
442
0
}
443
444
static const av_csp_trc_function trc_funcs[AVCOL_TRC_NB] = {
445
    [AVCOL_TRC_BT709] = trc_bt709,
446
    [AVCOL_TRC_GAMMA22] = trc_gamma22,
447
    [AVCOL_TRC_GAMMA28] = trc_gamma28,
448
    [AVCOL_TRC_SMPTE170M] = trc_bt709,
449
    [AVCOL_TRC_SMPTE240M] = trc_smpte240M,
450
    [AVCOL_TRC_LINEAR] = trc_linear,
451
    [AVCOL_TRC_LOG] = trc_log,
452
    [AVCOL_TRC_LOG_SQRT] = trc_log_sqrt,
453
    [AVCOL_TRC_IEC61966_2_4] = trc_iec61966_2_4,
454
    [AVCOL_TRC_BT1361_ECG] = trc_bt1361,
455
    [AVCOL_TRC_IEC61966_2_1] = trc_iec61966_2_1,
456
    [AVCOL_TRC_BT2020_10] = trc_bt709,
457
    [AVCOL_TRC_BT2020_12] = trc_bt709,
458
    [AVCOL_TRC_SMPTE2084] = trc_smpte_st2084,
459
    [AVCOL_TRC_SMPTE428] = trc_smpte_st428_1,
460
    [AVCOL_TRC_ARIB_STD_B67] = trc_arib_std_b67,
461
};
462
463
static const av_csp_trc_function trc_funcs_ext[AVCOL_TRC_EXT_NB -
464
                                               AVCOL_TRC_EXT_BASE] = {
465
    [AVCOL_TRC_V_LOG - AVCOL_TRC_EXT_BASE] = trc_v_log,
466
};
467
468
av_csp_trc_function av_csp_trc_func_from_id(enum AVColorTransferCharacteristic trc)
469
0
{
470
0
    if ((unsigned)trc < AVCOL_TRC_NB)
471
0
        return trc_funcs[trc];
472
0
    else if (((unsigned)trc >= AVCOL_TRC_EXT_BASE) &&
473
0
             ((unsigned)trc < AVCOL_TRC_EXT_NB))
474
0
        return trc_funcs_ext[trc - AVCOL_TRC_EXT_BASE];
475
0
    return NULL;
476
0
}
477
478
static const av_csp_trc_function trc_inv_funcs[AVCOL_TRC_NB] = {
479
    [AVCOL_TRC_BT709] = trc_bt709_inv,
480
    [AVCOL_TRC_GAMMA22] = trc_gamma22_inv,
481
    [AVCOL_TRC_GAMMA28] = trc_gamma28_inv,
482
    [AVCOL_TRC_SMPTE170M] = trc_bt709_inv,
483
    [AVCOL_TRC_SMPTE240M] = trc_smpte240M_inv,
484
    [AVCOL_TRC_LINEAR] = trc_linear,
485
    [AVCOL_TRC_LOG] = trc_log_inv,
486
    [AVCOL_TRC_LOG_SQRT] = trc_log_sqrt_inv,
487
    [AVCOL_TRC_IEC61966_2_4] = trc_iec61966_2_4_inv,
488
    [AVCOL_TRC_BT1361_ECG] = trc_bt1361_inv,
489
    [AVCOL_TRC_IEC61966_2_1] = trc_iec61966_2_1_inv,
490
    [AVCOL_TRC_BT2020_10] = trc_bt709_inv,
491
    [AVCOL_TRC_BT2020_12] = trc_bt709_inv,
492
    [AVCOL_TRC_SMPTE2084] = trc_smpte_st2084_inv,
493
    [AVCOL_TRC_SMPTE428] = trc_smpte_st428_1_inv,
494
    [AVCOL_TRC_ARIB_STD_B67] = trc_arib_std_b67_inv,
495
};
496
497
static const av_csp_trc_function trc_inv_funcs_ext[AVCOL_TRC_EXT_NB -
498
                                                   AVCOL_TRC_EXT_BASE] = {
499
    [AVCOL_TRC_V_LOG - AVCOL_TRC_EXT_BASE] = trc_v_log_inv,
500
};
501
502
av_csp_trc_function av_csp_trc_func_inv_from_id(enum AVColorTransferCharacteristic trc)
503
0
{
504
0
    if ((unsigned)trc < AVCOL_TRC_NB)
505
0
        return trc_inv_funcs[trc];
506
0
    else if (((unsigned)trc >= AVCOL_TRC_EXT_BASE) &&
507
0
             ((unsigned)trc < AVCOL_TRC_EXT_NB))
508
0
        return trc_inv_funcs_ext[trc - AVCOL_TRC_EXT_BASE];
509
0
    return NULL;
510
0
}
511
512
static void eotf_linear(const double Lw, const double Lb, double E[3])
513
0
{
514
0
    for (int i = 0; i < 3; i++)
515
0
        E[i] = (Lw - Lb) * E[i] + Lb;
516
0
}
517
518
static void eotf_linear_inv(const double Lw, const double Lb, double L[3])
519
0
{
520
0
    for (int i = 0; i < 3; i++)
521
0
        L[i] = (L[i] - Lb) / (Lw - Lb);
522
0
}
523
524
#define WRAP_SDR_OETF(name)                                         \
525
0
static void oetf_##name(double L[3])                                \
526
0
{                                                                   \
527
0
    for (int i = 0; i < 3; i++)                                     \
528
0
        L[i] = trc_##name(L[i]);                                    \
529
0
}                                                                   \
Unexecuted instantiation: csp.c:oetf_gamma22
Unexecuted instantiation: csp.c:oetf_gamma28
Unexecuted instantiation: csp.c:oetf_iec61966_2_1
530
                                                                    \
531
0
static void oetf_##name##_inv(double E[3])                          \
532
0
{                                                                   \
533
0
    for (int i = 0; i < 3; i++)                                     \
534
0
        E[i] = trc_##name##_inv(E[i]);                              \
535
0
}
Unexecuted instantiation: csp.c:oetf_gamma22_inv
Unexecuted instantiation: csp.c:oetf_gamma28_inv
Unexecuted instantiation: csp.c:oetf_iec61966_2_1_inv
536
537
WRAP_SDR_OETF(gamma22)
538
WRAP_SDR_OETF(gamma28)
539
WRAP_SDR_OETF(iec61966_2_1)
540
541
#define WRAP_SDR_EOTF(name)                                         \
542
0
static void eotf_##name(double Lw, double Lb, double E[3])          \
543
0
{                                                                   \
544
0
    oetf_##name##_inv(E);                                           \
545
0
    eotf_linear(Lw, Lb, E);                                         \
546
0
}                                                                   \
Unexecuted instantiation: csp.c:eotf_gamma22
Unexecuted instantiation: csp.c:eotf_gamma28
Unexecuted instantiation: csp.c:eotf_iec61966_2_1
547
                                                                    \
548
0
static void eotf_##name##_inv(double Lw, double Lb, double L[3])    \
549
0
{                                                                   \
550
0
    eotf_linear_inv(Lw, Lb, L);                                     \
551
0
    oetf_##name(L);                                                 \
552
0
}
Unexecuted instantiation: csp.c:eotf_gamma22_inv
Unexecuted instantiation: csp.c:eotf_gamma28_inv
Unexecuted instantiation: csp.c:eotf_iec61966_2_1_inv
553
554
WRAP_SDR_EOTF(gamma22)
555
WRAP_SDR_EOTF(gamma28)
556
WRAP_SDR_EOTF(iec61966_2_1)
557
558
static void eotf_bt1886(const double Lw, const double Lb, double E[3])
559
0
{
560
0
    const double Lw_inv = pow(Lw, 1.0 / 2.4);
561
0
    const double Lb_inv = pow(Lb, 1.0 / 2.4);
562
0
    const double a = pow(Lw_inv - Lb_inv, 2.4);
563
0
    const double b = Lb_inv / (Lw_inv - Lb_inv);
564
565
0
    for (int i = 0; i < 3; i++)
566
0
        E[i] = (-b > E[i]) ? 0.0 : a * pow(E[i] + b, 2.4);
567
0
}
568
569
static void eotf_bt1886_inv(const double Lw, const double Lb, double L[3])
570
0
{
571
0
    const double Lw_inv = pow(Lw, 1.0 / 2.4);
572
0
    const double Lb_inv = pow(Lb, 1.0 / 2.4);
573
0
    const double a = pow(Lw_inv - Lb_inv, 2.4);
574
0
    const double b = Lb_inv / (Lw_inv - Lb_inv);
575
576
0
    for (int i = 0; i < 3; i++)
577
0
        L[i] = (0.0 > L[i]) ? 0.0 : pow(L[i] / a, 1.0 / 2.4) - b;
578
0
}
579
580
static void eotf_smpte_st2084(const double Lw, const double Lb, double E[3])
581
0
{
582
0
    for (int i = 0; i < 3; i++)
583
0
        E[i] = trc_smpte_st2084_inv(E[i]);
584
0
}
585
586
static void eotf_smpte_st2084_inv(const double Lw, const double Lb, double L[3])
587
0
{
588
0
    for (int i = 0; i < 3; i++)
589
0
        L[i] = trc_smpte_st2084(L[i]);
590
0
}
591
592
/* This implementation assumes an SMPTE RP 431-2 reference projector (DCI) */
593
0
#define DCI_L 48.00
594
0
#define DCI_P 52.37
595
0
#define DCI_X (42.94 / DCI_L)
596
0
#define DCI_Z (45.82 / DCI_L)
597
598
static void eotf_smpte_st428_1(const double Lw_Y, const double Lb_Y, double E[3])
599
0
{
600
0
    const double Lw[3] = { DCI_X * Lw_Y, Lw_Y, DCI_Z * Lw_Y };
601
0
    const double Lb[3] = { DCI_X * Lb_Y, Lb_Y, DCI_Z * Lb_Y };
602
603
0
    for (int i = 0; i < 3; i++) {
604
0
        E[i] = (0.0 > E[i]) ? 0.0 : pow(E[i], 2.6) * DCI_P / DCI_L;
605
0
        E[i] = E[i] * (Lw[i] - Lb[i]) + Lb[i];
606
0
    }
607
0
}
608
609
static void eotf_smpte_st428_1_inv(const double Lw_Y, const double Lb_Y, double L[3])
610
0
{
611
0
    const double Lw[3] = { DCI_X * Lw_Y, Lw_Y, DCI_Z * Lw_Y };
612
0
    const double Lb[3] = { DCI_X * Lb_Y, Lb_Y, DCI_Z * Lb_Y };
613
614
0
    for (int i = 0; i < 3; i++) {
615
0
        L[i] = (L[i] - Lb[i]) / (Lw[i] - Lb[i]);
616
0
        L[i] = (0.0 > L[i]) ? 0.0 : pow(L[i] * DCI_L / DCI_P, 1.0 / 2.6);
617
0
    }
618
0
}
619
620
static void eotf_arib_std_b67(const double Lw, const double Lb, double E[3])
621
0
{
622
0
    const double gamma = fmax(1.2 + 0.42 * log10(Lw / 1000.0), 1.0);
623
624
    /**
625
     * Note: This equation is technically only accurate if the contrast ratio
626
     * Lw:Lb is greater than 12:1; otherwise we would need to use a different,
627
     * significantly more complicated solution. Ignore this as a highly
628
     * degenerate case, since any real world reference display will have a
629
     * static contrast ratio multiple orders of magnitude higher.
630
     */
631
0
    const double beta = sqrt(3 * pow(Lb / Lw, 1.0 / gamma));
632
0
    double luma;
633
634
0
    for (int i = 0; i < 3; i++)
635
0
        E[i] = trc_arib_std_b67_inv((1 - beta) * E[i] + beta);
636
637
0
    luma = 0.2627 * E[0] + 0.6780 * E[1] + 0.0593 * E[2];
638
0
    luma = pow(fmax(luma, 0.0), gamma - 1.0);
639
0
    for (int i = 0; i < 3; i++)
640
0
        E[i] *= Lw * luma;
641
0
}
642
643
static void eotf_arib_std_b67_inv(const double Lw, const double Lb, double L[3])
644
0
{
645
0
    const double gamma = fmax(1.2 + 0.42 * log10(Lw / 1000.0), 1.0);
646
0
    const double beta = sqrt(3 * pow(Lb / Lw, 1 / gamma));
647
0
    double luma = 0.2627 * L[0] + 0.6780 * L[1] + 0.0593 * L[2];
648
649
0
    if (luma > 0.0) {
650
0
        luma = pow(luma / Lw, (1 - gamma) / gamma);
651
0
        for (int i = 0; i < 3; i++)
652
0
            L[i] *= luma / Lw;
653
0
    } else {
654
0
        L[0] = L[1] = L[2] = 0.0;
655
0
    }
656
657
0
    for (int i = 0; i < 3; i++)
658
0
        L[i] = (trc_arib_std_b67(L[i]) - beta) / (1 - beta);
659
0
}
660
661
static const av_csp_eotf_function eotf_funcs[AVCOL_TRC_NB] = {
662
    [AVCOL_TRC_BT709] = eotf_bt1886,
663
    [AVCOL_TRC_GAMMA22] = eotf_gamma22,
664
    [AVCOL_TRC_GAMMA28] = eotf_gamma28,
665
    [AVCOL_TRC_SMPTE170M] = eotf_bt1886,
666
    [AVCOL_TRC_SMPTE240M] = eotf_bt1886,
667
    [AVCOL_TRC_LINEAR] = eotf_linear,
668
    /* There is no EOTF associated with these logarithmic encodings, since they
669
     * are defined purely for transmission of scene referred data. */
670
    [AVCOL_TRC_LOG] = NULL,
671
    [AVCOL_TRC_LOG_SQRT] = NULL,
672
    /* BT.1886 is already defined for values below 0.0, as far as physically
673
     * meaningful, so we can directly use it for extended range encodings */
674
    [AVCOL_TRC_IEC61966_2_4] = eotf_bt1886,
675
    [AVCOL_TRC_BT1361_ECG] = eotf_bt1886,
676
    [AVCOL_TRC_IEC61966_2_1] = eotf_iec61966_2_1,
677
    [AVCOL_TRC_BT2020_10] = eotf_bt1886,
678
    [AVCOL_TRC_BT2020_12] = eotf_bt1886,
679
    [AVCOL_TRC_SMPTE2084] = eotf_smpte_st2084,
680
    [AVCOL_TRC_SMPTE428] = eotf_smpte_st428_1,
681
    [AVCOL_TRC_ARIB_STD_B67] = eotf_arib_std_b67,
682
};
683
684
av_csp_eotf_function av_csp_itu_eotf(enum AVColorTransferCharacteristic trc)
685
0
{
686
0
    if ((unsigned)trc >= AVCOL_TRC_NB)
687
0
        return NULL;
688
0
    return eotf_funcs[trc];
689
0
}
690
691
static const av_csp_eotf_function eotf_inv_funcs[AVCOL_TRC_NB] = {
692
    [AVCOL_TRC_BT709] = eotf_bt1886_inv,
693
    [AVCOL_TRC_GAMMA22] = eotf_gamma22_inv,
694
    [AVCOL_TRC_GAMMA28] = eotf_gamma28_inv,
695
    [AVCOL_TRC_SMPTE170M] = eotf_bt1886_inv,
696
    [AVCOL_TRC_SMPTE240M] = eotf_bt1886_inv,
697
    [AVCOL_TRC_LINEAR] = eotf_linear_inv,
698
    [AVCOL_TRC_LOG] = NULL,
699
    [AVCOL_TRC_LOG_SQRT] = NULL,
700
    [AVCOL_TRC_IEC61966_2_4] = eotf_bt1886_inv,
701
    [AVCOL_TRC_BT1361_ECG] = eotf_bt1886_inv,
702
    [AVCOL_TRC_IEC61966_2_1] = eotf_iec61966_2_1_inv,
703
    [AVCOL_TRC_BT2020_10] = eotf_bt1886_inv,
704
    [AVCOL_TRC_BT2020_12] = eotf_bt1886_inv,
705
    [AVCOL_TRC_SMPTE2084] = eotf_smpte_st2084_inv,
706
    [AVCOL_TRC_SMPTE428] = eotf_smpte_st428_1_inv,
707
    [AVCOL_TRC_ARIB_STD_B67] = eotf_arib_std_b67_inv,
708
};
709
710
av_csp_eotf_function av_csp_itu_eotf_inv(enum AVColorTransferCharacteristic trc)
711
0
{
712
0
    if ((unsigned)trc >= AVCOL_TRC_NB)
713
0
        return NULL;
714
0
    return eotf_inv_funcs[trc];
715
0
}