Coverage Report

Created: 2026-01-25 07:18

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavutil/fifo.c
Line
Count
Source
1
/*
2
 * a very simple circular buffer FIFO implementation
3
 * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
4
 * Copyright (c) 2006 Roman Shaposhnik
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
#include <stdint.h>
24
#include <string.h>
25
26
#include "avassert.h"
27
#include "error.h"
28
#include "fifo.h"
29
#include "macros.h"
30
#include "mem.h"
31
32
// by default the FIFO can be auto-grown to 1MB
33
#define AUTO_GROW_DEFAULT_BYTES (1024 * 1024)
34
35
struct AVFifo {
36
    uint8_t *buffer;
37
38
    size_t elem_size, nb_elems;
39
    size_t offset_r, offset_w;
40
    // distinguishes the ambiguous situation offset_r == offset_w
41
    int    is_empty;
42
43
    unsigned int flags;
44
    size_t       auto_grow_limit;
45
};
46
47
AVFifo *av_fifo_alloc2(size_t nb_elems, size_t elem_size,
48
                       unsigned int flags)
49
0
{
50
0
    AVFifo *f;
51
0
    void *buffer = NULL;
52
53
0
    if (!elem_size)
54
0
        return NULL;
55
56
0
    if (nb_elems) {
57
0
        buffer = av_realloc_array(NULL, nb_elems, elem_size);
58
0
        if (!buffer)
59
0
            return NULL;
60
0
    }
61
0
    f = av_mallocz(sizeof(*f));
62
0
    if (!f) {
63
0
        av_free(buffer);
64
0
        return NULL;
65
0
    }
66
0
    f->buffer    = buffer;
67
0
    f->nb_elems  = nb_elems;
68
0
    f->elem_size = elem_size;
69
0
    f->is_empty  = 1;
70
71
0
    f->flags           = flags;
72
0
    f->auto_grow_limit = FFMAX(AUTO_GROW_DEFAULT_BYTES / elem_size, 1);
73
74
0
    return f;
75
0
}
76
77
void av_fifo_auto_grow_limit(AVFifo *f, size_t max_elems)
78
0
{
79
0
    f->auto_grow_limit = max_elems;
80
0
}
81
82
size_t av_fifo_elem_size(const AVFifo *f)
83
0
{
84
0
    return f->elem_size;
85
0
}
86
87
size_t av_fifo_can_read(const AVFifo *f)
88
0
{
89
0
    if (f->offset_w <= f->offset_r && !f->is_empty)
90
0
        return f->nb_elems - f->offset_r + f->offset_w;
91
0
    return f->offset_w - f->offset_r;
92
0
}
93
94
size_t av_fifo_can_write(const AVFifo *f)
95
0
{
96
0
    return f->nb_elems - av_fifo_can_read(f);
97
0
}
98
99
int av_fifo_grow2(AVFifo *f, size_t inc)
100
0
{
101
0
    uint8_t *tmp;
102
103
0
    if (inc > SIZE_MAX - f->nb_elems)
104
0
        return AVERROR(EINVAL);
105
106
0
    tmp = av_realloc_array(f->buffer, f->nb_elems + inc, f->elem_size);
107
0
    if (!tmp)
108
0
        return AVERROR(ENOMEM);
109
0
    f->buffer = tmp;
110
111
    // move the data from the beginning of the ring buffer
112
    // to the newly allocated space
113
0
    if (f->offset_w <= f->offset_r && !f->is_empty) {
114
0
        const size_t copy = FFMIN(inc, f->offset_w);
115
0
        memcpy(tmp + f->nb_elems * f->elem_size, tmp, copy * f->elem_size);
116
0
        if (copy < f->offset_w) {
117
0
            memmove(tmp, tmp + copy * f->elem_size,
118
0
                    (f->offset_w - copy) * f->elem_size);
119
0
            f->offset_w -= copy;
120
0
        } else
121
0
            f->offset_w = copy == inc ? 0 : f->nb_elems + copy;
122
0
    }
123
124
0
    f->nb_elems += inc;
125
126
0
    return 0;
127
0
}
128
129
static int fifo_check_space(AVFifo *f, size_t to_write)
130
0
{
131
0
    const size_t can_write = av_fifo_can_write(f);
132
0
    const size_t need_grow = to_write > can_write ? to_write - can_write : 0;
133
0
    size_t can_grow;
134
135
0
    if (!need_grow)
136
0
        return 0;
137
138
0
    can_grow = f->auto_grow_limit > f->nb_elems ?
139
0
               f->auto_grow_limit - f->nb_elems : 0;
140
0
    if ((f->flags & AV_FIFO_FLAG_AUTO_GROW) && need_grow <= can_grow) {
141
        // allocate a bit more than necessary, if we can
142
0
        const size_t inc = (need_grow < can_grow / 2 ) ? need_grow * 2 : can_grow;
143
0
        return av_fifo_grow2(f, inc);
144
0
    }
145
146
0
    return AVERROR(ENOSPC);
147
0
}
148
149
static int fifo_write_common(AVFifo *f, const uint8_t *buf, size_t *nb_elems,
150
                             AVFifoCB read_cb, void *opaque)
151
0
{
152
0
    size_t to_write = *nb_elems;
153
0
    size_t offset_w;
154
0
    int         ret = 0;
155
156
0
    ret = fifo_check_space(f, to_write);
157
0
    if (ret < 0)
158
0
        return ret;
159
160
0
    offset_w = f->offset_w;
161
162
0
    while (to_write > 0) {
163
0
        size_t    len = FFMIN(f->nb_elems - offset_w, to_write);
164
0
        uint8_t *wptr = f->buffer + offset_w * f->elem_size;
165
166
0
        if (read_cb) {
167
0
            ret = read_cb(opaque, wptr, &len);
168
0
            if (ret < 0 || len == 0)
169
0
                break;
170
0
        } else {
171
0
            memcpy(wptr, buf, len * f->elem_size);
172
0
            buf += len * f->elem_size;
173
0
        }
174
0
        offset_w += len;
175
0
        if (offset_w >= f->nb_elems)
176
0
            offset_w = 0;
177
0
        to_write -= len;
178
0
    }
179
0
    f->offset_w = offset_w;
180
181
0
    if (*nb_elems != to_write)
182
0
        f->is_empty = 0;
183
0
    *nb_elems -= to_write;
184
185
0
    return ret;
186
0
}
187
188
int av_fifo_write(AVFifo *f, const void *buf, size_t nb_elems)
189
0
{
190
0
    return fifo_write_common(f, buf, &nb_elems, NULL, NULL);
191
0
}
192
193
int av_fifo_write_from_cb(AVFifo *f, AVFifoCB read_cb,
194
                          void *opaque, size_t *nb_elems)
195
0
{
196
0
    return fifo_write_common(f, NULL, nb_elems, read_cb, opaque);
197
0
}
198
199
static int fifo_peek_common(const AVFifo *f, uint8_t *buf, size_t *nb_elems,
200
                            size_t offset, AVFifoCB write_cb, void *opaque)
201
0
{
202
0
    size_t  to_read = *nb_elems;
203
0
    size_t offset_r = f->offset_r;
204
0
    size_t can_read = av_fifo_can_read(f);
205
0
    int         ret = 0;
206
207
0
    if (offset > can_read || to_read > can_read - offset) {
208
0
        *nb_elems = 0;
209
0
        return AVERROR(EINVAL);
210
0
    }
211
212
0
    if (offset_r >= f->nb_elems - offset)
213
0
        offset_r -= f->nb_elems - offset;
214
0
    else
215
0
        offset_r += offset;
216
217
0
    while (to_read > 0) {
218
0
        size_t    len = FFMIN(f->nb_elems - offset_r, to_read);
219
0
        uint8_t *rptr = f->buffer + offset_r * f->elem_size;
220
221
0
        if (write_cb) {
222
0
            ret = write_cb(opaque, rptr, &len);
223
0
            if (ret < 0 || len == 0)
224
0
                break;
225
0
        } else {
226
0
            memcpy(buf, rptr, len * f->elem_size);
227
0
            buf += len * f->elem_size;
228
0
        }
229
0
        offset_r += len;
230
0
        if (offset_r >= f->nb_elems)
231
0
            offset_r = 0;
232
0
        to_read -= len;
233
0
    }
234
235
0
    *nb_elems -= to_read;
236
237
0
    return ret;
238
0
}
239
240
int av_fifo_read(AVFifo *f, void *buf, size_t nb_elems)
241
0
{
242
0
    int ret = fifo_peek_common(f, buf, &nb_elems, 0, NULL, NULL);
243
0
    av_fifo_drain2(f, nb_elems);
244
0
    return ret;
245
0
}
246
247
int av_fifo_read_to_cb(AVFifo *f, AVFifoCB write_cb,
248
                       void *opaque, size_t *nb_elems)
249
0
{
250
0
    int ret = fifo_peek_common(f, NULL, nb_elems, 0, write_cb, opaque);
251
0
    av_fifo_drain2(f, *nb_elems);
252
0
    return ret;
253
0
}
254
255
int av_fifo_peek(const AVFifo *f, void *buf, size_t nb_elems, size_t offset)
256
0
{
257
0
    return fifo_peek_common(f, buf, &nb_elems, offset, NULL, NULL);
258
0
}
259
260
int av_fifo_peek_to_cb(const AVFifo *f, AVFifoCB write_cb, void *opaque,
261
                       size_t *nb_elems, size_t offset)
262
0
{
263
0
    return fifo_peek_common(f, NULL, nb_elems, offset, write_cb, opaque);
264
0
}
265
266
void av_fifo_drain2(AVFifo *f, size_t size)
267
0
{
268
0
    const size_t cur_size = av_fifo_can_read(f);
269
270
0
    av_assert0(cur_size >= size);
271
0
    if (cur_size == size)
272
0
        f->is_empty = 1;
273
274
0
    if (f->offset_r >= f->nb_elems - size)
275
0
        f->offset_r -= f->nb_elems - size;
276
0
    else
277
0
        f->offset_r += size;
278
0
}
279
280
void av_fifo_reset2(AVFifo *f)
281
0
{
282
0
    f->offset_r = f->offset_w = 0;
283
0
    f->is_empty = 1;
284
0
}
285
286
void av_fifo_freep2(AVFifo **f)
287
0
{
288
0
    if (*f) {
289
0
        av_freep(&(*f)->buffer);
290
0
        av_freep(f);
291
0
    }
292
0
}