/src/ffmpeg/libavutil/fifo.c
Line | Count | Source |
1 | | /* |
2 | | * a very simple circular buffer FIFO implementation |
3 | | * Copyright (c) 2000, 2001, 2002 Fabrice Bellard |
4 | | * Copyright (c) 2006 Roman Shaposhnik |
5 | | * |
6 | | * This file is part of FFmpeg. |
7 | | * |
8 | | * FFmpeg is free software; you can redistribute it and/or |
9 | | * modify it under the terms of the GNU Lesser General Public |
10 | | * License as published by the Free Software Foundation; either |
11 | | * version 2.1 of the License, or (at your option) any later version. |
12 | | * |
13 | | * FFmpeg is distributed in the hope that it will be useful, |
14 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
16 | | * Lesser General Public License for more details. |
17 | | * |
18 | | * You should have received a copy of the GNU Lesser General Public |
19 | | * License along with FFmpeg; if not, write to the Free Software |
20 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
21 | | */ |
22 | | |
23 | | #include <stdint.h> |
24 | | #include <string.h> |
25 | | |
26 | | #include "avassert.h" |
27 | | #include "error.h" |
28 | | #include "fifo.h" |
29 | | #include "macros.h" |
30 | | #include "mem.h" |
31 | | |
32 | | // by default the FIFO can be auto-grown to 1MB |
33 | | #define AUTO_GROW_DEFAULT_BYTES (1024 * 1024) |
34 | | |
35 | | struct AVFifo { |
36 | | uint8_t *buffer; |
37 | | |
38 | | size_t elem_size, nb_elems; |
39 | | size_t offset_r, offset_w; |
40 | | // distinguishes the ambiguous situation offset_r == offset_w |
41 | | int is_empty; |
42 | | |
43 | | unsigned int flags; |
44 | | size_t auto_grow_limit; |
45 | | }; |
46 | | |
47 | | AVFifo *av_fifo_alloc2(size_t nb_elems, size_t elem_size, |
48 | | unsigned int flags) |
49 | 0 | { |
50 | 0 | AVFifo *f; |
51 | 0 | void *buffer = NULL; |
52 | |
|
53 | 0 | if (!elem_size) |
54 | 0 | return NULL; |
55 | | |
56 | 0 | if (nb_elems) { |
57 | 0 | buffer = av_realloc_array(NULL, nb_elems, elem_size); |
58 | 0 | if (!buffer) |
59 | 0 | return NULL; |
60 | 0 | } |
61 | 0 | f = av_mallocz(sizeof(*f)); |
62 | 0 | if (!f) { |
63 | 0 | av_free(buffer); |
64 | 0 | return NULL; |
65 | 0 | } |
66 | 0 | f->buffer = buffer; |
67 | 0 | f->nb_elems = nb_elems; |
68 | 0 | f->elem_size = elem_size; |
69 | 0 | f->is_empty = 1; |
70 | |
|
71 | 0 | f->flags = flags; |
72 | 0 | f->auto_grow_limit = FFMAX(AUTO_GROW_DEFAULT_BYTES / elem_size, 1); |
73 | |
|
74 | 0 | return f; |
75 | 0 | } |
76 | | |
77 | | void av_fifo_auto_grow_limit(AVFifo *f, size_t max_elems) |
78 | 0 | { |
79 | 0 | f->auto_grow_limit = max_elems; |
80 | 0 | } |
81 | | |
82 | | size_t av_fifo_elem_size(const AVFifo *f) |
83 | 0 | { |
84 | 0 | return f->elem_size; |
85 | 0 | } |
86 | | |
87 | | size_t av_fifo_can_read(const AVFifo *f) |
88 | 0 | { |
89 | 0 | if (f->offset_w <= f->offset_r && !f->is_empty) |
90 | 0 | return f->nb_elems - f->offset_r + f->offset_w; |
91 | 0 | return f->offset_w - f->offset_r; |
92 | 0 | } |
93 | | |
94 | | size_t av_fifo_can_write(const AVFifo *f) |
95 | 0 | { |
96 | 0 | return f->nb_elems - av_fifo_can_read(f); |
97 | 0 | } |
98 | | |
99 | | int av_fifo_grow2(AVFifo *f, size_t inc) |
100 | 0 | { |
101 | 0 | uint8_t *tmp; |
102 | |
|
103 | 0 | if (inc > SIZE_MAX - f->nb_elems) |
104 | 0 | return AVERROR(EINVAL); |
105 | | |
106 | 0 | tmp = av_realloc_array(f->buffer, f->nb_elems + inc, f->elem_size); |
107 | 0 | if (!tmp) |
108 | 0 | return AVERROR(ENOMEM); |
109 | 0 | f->buffer = tmp; |
110 | | |
111 | | // move the data from the beginning of the ring buffer |
112 | | // to the newly allocated space |
113 | 0 | if (f->offset_w <= f->offset_r && !f->is_empty) { |
114 | 0 | const size_t copy = FFMIN(inc, f->offset_w); |
115 | 0 | memcpy(tmp + f->nb_elems * f->elem_size, tmp, copy * f->elem_size); |
116 | 0 | if (copy < f->offset_w) { |
117 | 0 | memmove(tmp, tmp + copy * f->elem_size, |
118 | 0 | (f->offset_w - copy) * f->elem_size); |
119 | 0 | f->offset_w -= copy; |
120 | 0 | } else |
121 | 0 | f->offset_w = copy == inc ? 0 : f->nb_elems + copy; |
122 | 0 | } |
123 | |
|
124 | 0 | f->nb_elems += inc; |
125 | |
|
126 | 0 | return 0; |
127 | 0 | } |
128 | | |
129 | | static int fifo_check_space(AVFifo *f, size_t to_write) |
130 | 0 | { |
131 | 0 | const size_t can_write = av_fifo_can_write(f); |
132 | 0 | const size_t need_grow = to_write > can_write ? to_write - can_write : 0; |
133 | 0 | size_t can_grow; |
134 | |
|
135 | 0 | if (!need_grow) |
136 | 0 | return 0; |
137 | | |
138 | 0 | can_grow = f->auto_grow_limit > f->nb_elems ? |
139 | 0 | f->auto_grow_limit - f->nb_elems : 0; |
140 | 0 | if ((f->flags & AV_FIFO_FLAG_AUTO_GROW) && need_grow <= can_grow) { |
141 | | // allocate a bit more than necessary, if we can |
142 | 0 | const size_t inc = (need_grow < can_grow / 2 ) ? need_grow * 2 : can_grow; |
143 | 0 | return av_fifo_grow2(f, inc); |
144 | 0 | } |
145 | | |
146 | 0 | return AVERROR(ENOSPC); |
147 | 0 | } |
148 | | |
149 | | static int fifo_write_common(AVFifo *f, const uint8_t *buf, size_t *nb_elems, |
150 | | AVFifoCB read_cb, void *opaque) |
151 | 0 | { |
152 | 0 | size_t to_write = *nb_elems; |
153 | 0 | size_t offset_w; |
154 | 0 | int ret = 0; |
155 | |
|
156 | 0 | ret = fifo_check_space(f, to_write); |
157 | 0 | if (ret < 0) |
158 | 0 | return ret; |
159 | | |
160 | 0 | offset_w = f->offset_w; |
161 | |
|
162 | 0 | while (to_write > 0) { |
163 | 0 | size_t len = FFMIN(f->nb_elems - offset_w, to_write); |
164 | 0 | uint8_t *wptr = f->buffer + offset_w * f->elem_size; |
165 | |
|
166 | 0 | if (read_cb) { |
167 | 0 | ret = read_cb(opaque, wptr, &len); |
168 | 0 | if (ret < 0 || len == 0) |
169 | 0 | break; |
170 | 0 | } else { |
171 | 0 | memcpy(wptr, buf, len * f->elem_size); |
172 | 0 | buf += len * f->elem_size; |
173 | 0 | } |
174 | 0 | offset_w += len; |
175 | 0 | if (offset_w >= f->nb_elems) |
176 | 0 | offset_w = 0; |
177 | 0 | to_write -= len; |
178 | 0 | } |
179 | 0 | f->offset_w = offset_w; |
180 | |
|
181 | 0 | if (*nb_elems != to_write) |
182 | 0 | f->is_empty = 0; |
183 | 0 | *nb_elems -= to_write; |
184 | |
|
185 | 0 | return ret; |
186 | 0 | } |
187 | | |
188 | | int av_fifo_write(AVFifo *f, const void *buf, size_t nb_elems) |
189 | 0 | { |
190 | 0 | return fifo_write_common(f, buf, &nb_elems, NULL, NULL); |
191 | 0 | } |
192 | | |
193 | | int av_fifo_write_from_cb(AVFifo *f, AVFifoCB read_cb, |
194 | | void *opaque, size_t *nb_elems) |
195 | 0 | { |
196 | 0 | return fifo_write_common(f, NULL, nb_elems, read_cb, opaque); |
197 | 0 | } |
198 | | |
199 | | static int fifo_peek_common(const AVFifo *f, uint8_t *buf, size_t *nb_elems, |
200 | | size_t offset, AVFifoCB write_cb, void *opaque) |
201 | 0 | { |
202 | 0 | size_t to_read = *nb_elems; |
203 | 0 | size_t offset_r = f->offset_r; |
204 | 0 | size_t can_read = av_fifo_can_read(f); |
205 | 0 | int ret = 0; |
206 | |
|
207 | 0 | if (offset > can_read || to_read > can_read - offset) { |
208 | 0 | *nb_elems = 0; |
209 | 0 | return AVERROR(EINVAL); |
210 | 0 | } |
211 | | |
212 | 0 | if (offset_r >= f->nb_elems - offset) |
213 | 0 | offset_r -= f->nb_elems - offset; |
214 | 0 | else |
215 | 0 | offset_r += offset; |
216 | |
|
217 | 0 | while (to_read > 0) { |
218 | 0 | size_t len = FFMIN(f->nb_elems - offset_r, to_read); |
219 | 0 | uint8_t *rptr = f->buffer + offset_r * f->elem_size; |
220 | |
|
221 | 0 | if (write_cb) { |
222 | 0 | ret = write_cb(opaque, rptr, &len); |
223 | 0 | if (ret < 0 || len == 0) |
224 | 0 | break; |
225 | 0 | } else { |
226 | 0 | memcpy(buf, rptr, len * f->elem_size); |
227 | 0 | buf += len * f->elem_size; |
228 | 0 | } |
229 | 0 | offset_r += len; |
230 | 0 | if (offset_r >= f->nb_elems) |
231 | 0 | offset_r = 0; |
232 | 0 | to_read -= len; |
233 | 0 | } |
234 | |
|
235 | 0 | *nb_elems -= to_read; |
236 | |
|
237 | 0 | return ret; |
238 | 0 | } |
239 | | |
240 | | int av_fifo_read(AVFifo *f, void *buf, size_t nb_elems) |
241 | 0 | { |
242 | 0 | int ret = fifo_peek_common(f, buf, &nb_elems, 0, NULL, NULL); |
243 | 0 | av_fifo_drain2(f, nb_elems); |
244 | 0 | return ret; |
245 | 0 | } |
246 | | |
247 | | int av_fifo_read_to_cb(AVFifo *f, AVFifoCB write_cb, |
248 | | void *opaque, size_t *nb_elems) |
249 | 0 | { |
250 | 0 | int ret = fifo_peek_common(f, NULL, nb_elems, 0, write_cb, opaque); |
251 | 0 | av_fifo_drain2(f, *nb_elems); |
252 | 0 | return ret; |
253 | 0 | } |
254 | | |
255 | | int av_fifo_peek(const AVFifo *f, void *buf, size_t nb_elems, size_t offset) |
256 | 0 | { |
257 | 0 | return fifo_peek_common(f, buf, &nb_elems, offset, NULL, NULL); |
258 | 0 | } |
259 | | |
260 | | int av_fifo_peek_to_cb(const AVFifo *f, AVFifoCB write_cb, void *opaque, |
261 | | size_t *nb_elems, size_t offset) |
262 | 0 | { |
263 | 0 | return fifo_peek_common(f, NULL, nb_elems, offset, write_cb, opaque); |
264 | 0 | } |
265 | | |
266 | | void av_fifo_drain2(AVFifo *f, size_t size) |
267 | 0 | { |
268 | 0 | const size_t cur_size = av_fifo_can_read(f); |
269 | |
|
270 | 0 | av_assert0(cur_size >= size); |
271 | 0 | if (cur_size == size) |
272 | 0 | f->is_empty = 1; |
273 | |
|
274 | 0 | if (f->offset_r >= f->nb_elems - size) |
275 | 0 | f->offset_r -= f->nb_elems - size; |
276 | 0 | else |
277 | 0 | f->offset_r += size; |
278 | 0 | } |
279 | | |
280 | | void av_fifo_reset2(AVFifo *f) |
281 | 0 | { |
282 | 0 | f->offset_r = f->offset_w = 0; |
283 | 0 | f->is_empty = 1; |
284 | 0 | } |
285 | | |
286 | | void av_fifo_freep2(AVFifo **f) |
287 | 0 | { |
288 | 0 | if (*f) { |
289 | 0 | av_freep(&(*f)->buffer); |
290 | 0 | av_freep(f); |
291 | 0 | } |
292 | 0 | } |