Coverage Report

Created: 2026-01-25 07:18

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavutil/mathematics.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at>
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
21
/**
22
 * @file
23
 * miscellaneous math routines and tables
24
 */
25
26
#include <stdint.h>
27
#include <limits.h>
28
29
#include "avutil.h"
30
#include "mathematics.h"
31
#include "libavutil/intmath.h"
32
#include "libavutil/common.h"
33
#include "avassert.h"
34
35
/* Stein's binary GCD algorithm:
36
 * https://en.wikipedia.org/wiki/Binary_GCD_algorithm */
37
0
int64_t av_gcd(int64_t a, int64_t b) {
38
0
    int za, zb, k;
39
0
    int64_t u, v;
40
0
    if (a == 0)
41
0
        return b;
42
0
    if (b == 0)
43
0
        return a;
44
0
    za = ff_ctzll(a);
45
0
    zb = ff_ctzll(b);
46
0
    k  = FFMIN(za, zb);
47
0
    u = llabs(a >> za);
48
0
    v = llabs(b >> zb);
49
0
    while (u != v) {
50
0
        if (u > v)
51
0
            FFSWAP(int64_t, v, u);
52
0
        v -= u;
53
0
        v >>= ff_ctzll(v);
54
0
    }
55
0
    return (uint64_t)u << k;
56
0
}
57
58
int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd)
59
0
{
60
0
    int64_t r = 0;
61
0
    av_assert2(c > 0);
62
0
    av_assert2(b >=0);
63
0
    av_assert2((unsigned)(rnd&~AV_ROUND_PASS_MINMAX)<=5 && (rnd&~AV_ROUND_PASS_MINMAX)!=4);
64
65
0
    if (c <= 0 || b < 0 || !((unsigned)(rnd&~AV_ROUND_PASS_MINMAX)<=5 && (rnd&~AV_ROUND_PASS_MINMAX)!=4))
66
0
        return INT64_MIN;
67
68
0
    if (rnd & AV_ROUND_PASS_MINMAX) {
69
0
        if (a == INT64_MIN || a == INT64_MAX)
70
0
            return a;
71
0
        rnd -= AV_ROUND_PASS_MINMAX;
72
0
    }
73
74
0
    if (a < 0)
75
0
        return -(uint64_t)av_rescale_rnd(-FFMAX(a, -INT64_MAX), b, c, rnd ^ ((rnd >> 1) & 1));
76
77
0
    if (rnd == AV_ROUND_NEAR_INF)
78
0
        r = c / 2;
79
0
    else if (rnd & 1)
80
0
        r = c - 1;
81
82
0
    if (b <= INT_MAX && c <= INT_MAX) {
83
0
        if (a <= INT_MAX)
84
0
            return (a * b + r) / c;
85
0
        else {
86
0
            int64_t ad = a / c;
87
0
            int64_t a2 = (a % c * b + r) / c;
88
0
            if (ad >= INT32_MAX && b && ad > (INT64_MAX - a2) / b)
89
0
                return INT64_MIN;
90
0
            return ad * b + a2;
91
0
        }
92
0
    } else {
93
0
#if 1
94
0
        uint64_t a0  = a & 0xFFFFFFFF;
95
0
        uint64_t a1  = a >> 32;
96
0
        uint64_t b0  = b & 0xFFFFFFFF;
97
0
        uint64_t b1  = b >> 32;
98
0
        uint64_t t1  = a0 * b1 + a1 * b0;
99
0
        uint64_t t1a = t1 << 32;
100
0
        int i;
101
102
0
        a0  = a0 * b0 + t1a;
103
0
        a1  = a1 * b1 + (t1 >> 32) + (a0 < t1a);
104
0
        a0 += r;
105
0
        a1 += a0 < r;
106
107
0
        for (i = 63; i >= 0; i--) {
108
0
            a1 += a1 + ((a0 >> i) & 1);
109
0
            t1 += t1;
110
0
            if (c <= a1) {
111
0
                a1 -= c;
112
0
                t1++;
113
0
            }
114
0
        }
115
0
        if (t1 > INT64_MAX)
116
0
            return INT64_MIN;
117
0
        return t1;
118
#else
119
        /* reference code doing (a*b + r) / c, requires libavutil/integer.h */
120
        AVInteger ai;
121
        ai = av_mul_i(av_int2i(a), av_int2i(b));
122
        ai = av_add_i(ai, av_int2i(r));
123
124
        return av_i2int(av_div_i(ai, av_int2i(c)));
125
#endif
126
0
    }
127
0
}
128
129
int64_t av_rescale(int64_t a, int64_t b, int64_t c)
130
0
{
131
0
    return av_rescale_rnd(a, b, c, AV_ROUND_NEAR_INF);
132
0
}
133
134
int64_t av_rescale_q_rnd(int64_t a, AVRational bq, AVRational cq,
135
                         enum AVRounding rnd)
136
0
{
137
0
    int64_t b = bq.num * (int64_t)cq.den;
138
0
    int64_t c = cq.num * (int64_t)bq.den;
139
0
    return av_rescale_rnd(a, b, c, rnd);
140
0
}
141
142
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
143
0
{
144
0
    return av_rescale_q_rnd(a, bq, cq, AV_ROUND_NEAR_INF);
145
0
}
146
147
int av_compare_ts(int64_t ts_a, AVRational tb_a, int64_t ts_b, AVRational tb_b)
148
0
{
149
0
    int64_t a = tb_a.num * (int64_t)tb_b.den;
150
0
    int64_t b = tb_b.num * (int64_t)tb_a.den;
151
0
    if ((FFABS64U(ts_a)|a|FFABS64U(ts_b)|b) <= INT_MAX)
152
0
        return (ts_a*a > ts_b*b) - (ts_a*a < ts_b*b);
153
0
    if (av_rescale_rnd(ts_a, a, b, AV_ROUND_DOWN) < ts_b)
154
0
        return -1;
155
0
    if (av_rescale_rnd(ts_b, b, a, AV_ROUND_DOWN) < ts_a)
156
0
        return 1;
157
0
    return 0;
158
0
}
159
160
int64_t av_compare_mod(uint64_t a, uint64_t b, uint64_t mod)
161
0
{
162
0
    int64_t c = (a - b) & (mod - 1);
163
0
    if (c > (mod >> 1))
164
0
        c -= mod;
165
0
    return c;
166
0
}
167
168
0
int64_t av_rescale_delta(AVRational in_tb, int64_t in_ts,  AVRational fs_tb, int duration, int64_t *last, AVRational out_tb){
169
0
    int64_t a, b, this;
170
171
0
    av_assert0(in_ts != AV_NOPTS_VALUE);
172
0
    av_assert0(duration >= 0);
173
174
0
    if (*last == AV_NOPTS_VALUE || !duration || in_tb.num*(int64_t)out_tb.den <= out_tb.num*(int64_t)in_tb.den) {
175
0
simple_round:
176
0
        *last = av_rescale_q(in_ts, in_tb, fs_tb) + duration;
177
0
        return av_rescale_q(in_ts, in_tb, out_tb);
178
0
    }
179
180
0
    a =  av_rescale_q_rnd(2*in_ts-1, in_tb, fs_tb, AV_ROUND_DOWN)   >>1;
181
0
    b = (av_rescale_q_rnd(2*in_ts+1, in_tb, fs_tb, AV_ROUND_UP  )+1)>>1;
182
0
    if (*last < 2*a - b || *last > 2*b - a)
183
0
        goto simple_round;
184
185
0
    this = av_clip64(*last, a, b);
186
0
    *last = this + duration;
187
188
0
    return av_rescale_q(this, fs_tb, out_tb);
189
0
}
190
191
int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc)
192
0
{
193
0
    int64_t m, d;
194
195
0
    if (inc != 1)
196
0
        inc_tb = av_mul_q(inc_tb, (AVRational) {inc, 1});
197
198
0
    m = inc_tb.num * (int64_t)ts_tb.den;
199
0
    d = inc_tb.den * (int64_t)ts_tb.num;
200
201
0
    if (m % d == 0 && ts <= INT64_MAX - m / d)
202
0
        return ts + m / d;
203
0
    if (m < d)
204
0
        return ts;
205
206
0
    {
207
0
        int64_t old = av_rescale_q(ts, ts_tb, inc_tb);
208
0
        int64_t old_ts = av_rescale_q(old, inc_tb, ts_tb);
209
210
0
        if (old == INT64_MAX || old == AV_NOPTS_VALUE || old_ts == AV_NOPTS_VALUE)
211
0
            return ts;
212
213
0
        return av_sat_add64(av_rescale_q(old + 1, inc_tb, ts_tb), ts - old_ts);
214
0
    }
215
0
}
216
217
0
static inline double eval_poly(const double *coeff, int size, double x) {
218
0
    double sum = coeff[size-1];
219
0
    int i;
220
0
    for (i = size-2; i >= 0; --i) {
221
0
        sum *= x;
222
0
        sum += coeff[i];
223
0
    }
224
0
    return sum;
225
0
}
226
227
/**
228
 * 0th order modified bessel function of the first kind.
229
 * Algorithm taken from the Boost project, source:
230
 * https://searchcode.com/codesearch/view/14918379/
231
 * Use, modification and distribution are subject to the
232
 * Boost Software License, Version 1.0 (see notice below).
233
 * Boost Software License - Version 1.0 - August 17th, 2003
234
Permission is hereby granted, free of charge, to any person or organization
235
obtaining a copy of the software and accompanying documentation covered by
236
this license (the "Software") to use, reproduce, display, distribute,
237
execute, and transmit the Software, and to prepare derivative works of the
238
Software, and to permit third-parties to whom the Software is furnished to
239
do so, all subject to the following:
240
241
The copyright notices in the Software and this entire statement, including
242
the above license grant, this restriction and the following disclaimer,
243
must be included in all copies of the Software, in whole or in part, and
244
all derivative works of the Software, unless such copies or derivative
245
works are solely in the form of machine-executable object code generated by
246
a source language processor.
247
248
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
249
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
250
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
251
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
252
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
253
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
254
DEALINGS IN THE SOFTWARE.
255
 */
256
257
0
double av_bessel_i0(double x) {
258
// Modified Bessel function of the first kind of order zero
259
// minimax rational approximations on intervals, see
260
// Blair and Edwards, Chalk River Report AECL-4928, 1974
261
0
    static const double p1[] = {
262
0
        -2.2335582639474375249e+15,
263
0
        -5.5050369673018427753e+14,
264
0
        -3.2940087627407749166e+13,
265
0
        -8.4925101247114157499e+11,
266
0
        -1.1912746104985237192e+10,
267
0
        -1.0313066708737980747e+08,
268
0
        -5.9545626019847898221e+05,
269
0
        -2.4125195876041896775e+03,
270
0
        -7.0935347449210549190e+00,
271
0
        -1.5453977791786851041e-02,
272
0
        -2.5172644670688975051e-05,
273
0
        -3.0517226450451067446e-08,
274
0
        -2.6843448573468483278e-11,
275
0
        -1.5982226675653184646e-14,
276
0
        -5.2487866627945699800e-18,
277
0
    };
278
0
    static const double q1[] = {
279
0
        -2.2335582639474375245e+15,
280
0
         7.8858692566751002988e+12,
281
0
        -1.2207067397808979846e+10,
282
0
         1.0377081058062166144e+07,
283
0
        -4.8527560179962773045e+03,
284
0
         1.0,
285
0
    };
286
0
    static const double p2[] = {
287
0
        -2.2210262233306573296e-04,
288
0
         1.3067392038106924055e-02,
289
0
        -4.4700805721174453923e-01,
290
0
         5.5674518371240761397e+00,
291
0
        -2.3517945679239481621e+01,
292
0
         3.1611322818701131207e+01,
293
0
        -9.6090021968656180000e+00,
294
0
    };
295
0
    static const double q2[] = {
296
0
        -5.5194330231005480228e-04,
297
0
         3.2547697594819615062e-02,
298
0
        -1.1151759188741312645e+00,
299
0
         1.3982595353892851542e+01,
300
0
        -6.0228002066743340583e+01,
301
0
         8.5539563258012929600e+01,
302
0
        -3.1446690275135491500e+01,
303
0
        1.0,
304
0
    };
305
0
    double y, r, factor;
306
0
    if (x == 0)
307
0
        return 1.0;
308
0
    x = fabs(x);
309
0
    if (x <= 15) {
310
0
        y = x * x;
311
0
        return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y);
312
0
    }
313
0
    else {
314
0
        y = 1 / x - 1.0 / 15;
315
0
        r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y);
316
0
        factor = exp(x) / sqrt(x);
317
0
        return factor * r;
318
0
    }
319
0
}