/src/ffmpeg/libavutil/random_seed.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2009 Baptiste Coudurier <baptiste.coudurier@gmail.com> |
3 | | * |
4 | | * This file is part of FFmpeg. |
5 | | * |
6 | | * FFmpeg is free software; you can redistribute it and/or |
7 | | * modify it under the terms of the GNU Lesser General Public |
8 | | * License as published by the Free Software Foundation; either |
9 | | * version 2.1 of the License, or (at your option) any later version. |
10 | | * |
11 | | * FFmpeg is distributed in the hope that it will be useful, |
12 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | | * Lesser General Public License for more details. |
15 | | * |
16 | | * You should have received a copy of the GNU Lesser General Public |
17 | | * License along with FFmpeg; if not, write to the Free Software |
18 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
19 | | */ |
20 | | |
21 | | #include "config.h" |
22 | | |
23 | | #if HAVE_UNISTD_H |
24 | | #include <unistd.h> |
25 | | #endif |
26 | | #if HAVE_IO_H |
27 | | #include <io.h> |
28 | | #endif |
29 | | #if HAVE_BCRYPT |
30 | | #include <windows.h> |
31 | | #include <bcrypt.h> |
32 | | #endif |
33 | | #if CONFIG_GCRYPT |
34 | | #include <gcrypt.h> |
35 | | #elif CONFIG_OPENSSL |
36 | | #include <openssl/rand.h> |
37 | | #endif |
38 | | #include <fcntl.h> |
39 | | #include <math.h> |
40 | | #include <time.h> |
41 | | #include <string.h> |
42 | | #include "avassert.h" |
43 | | #include "file_open.h" |
44 | | #include "internal.h" |
45 | | #include "intreadwrite.h" |
46 | | #include "timer.h" |
47 | | #include "random_seed.h" |
48 | | #include "sha.h" |
49 | | |
50 | | #ifndef TEST |
51 | 0 | #define TEST 0 |
52 | | #endif |
53 | | |
54 | | static int read_random(uint8_t *dst, size_t len, const char *file) |
55 | 0 | { |
56 | 0 | #if HAVE_UNISTD_H |
57 | 0 | FILE *fp = avpriv_fopen_utf8(file, "r"); |
58 | 0 | size_t err; |
59 | |
|
60 | 0 | if (!fp) |
61 | 0 | return AVERROR_UNKNOWN; |
62 | 0 | setvbuf(fp, NULL, _IONBF, 0); |
63 | 0 | err = fread(dst, 1, len, fp); |
64 | 0 | fclose(fp); |
65 | |
|
66 | 0 | if (err != len) |
67 | 0 | return AVERROR_UNKNOWN; |
68 | | |
69 | 0 | return 0; |
70 | | #else |
71 | | return AVERROR(ENOSYS); |
72 | | #endif |
73 | 0 | } |
74 | | |
75 | | static uint32_t get_generic_seed(void) |
76 | 0 | { |
77 | 0 | uint64_t tmp[120/8]; |
78 | 0 | struct AVSHA *sha = (void*)tmp; |
79 | 0 | clock_t last_t = 0; |
80 | 0 | clock_t last_td = 0; |
81 | 0 | clock_t init_t = 0; |
82 | 0 | static uint64_t i = 0; |
83 | 0 | static uint32_t buffer[512] = { 0 }; |
84 | 0 | unsigned char digest[20]; |
85 | 0 | uint64_t last_i = i; |
86 | 0 | int repeats[3] = { 0 }; |
87 | |
|
88 | 0 | av_assert0(sizeof(tmp) >= av_sha_size); |
89 | | |
90 | 0 | if(TEST){ |
91 | 0 | memset(buffer, 0, sizeof(buffer)); |
92 | 0 | last_i = i = 0; |
93 | 0 | }else{ |
94 | 0 | #ifdef AV_READ_TIME |
95 | 0 | buffer[13] ^= AV_READ_TIME(); |
96 | 0 | buffer[41] ^= AV_READ_TIME()>>32; |
97 | 0 | #endif |
98 | 0 | } |
99 | |
|
100 | 0 | for (;;) { |
101 | 0 | clock_t t = clock(); |
102 | 0 | int incremented_i = 0; |
103 | 0 | int cur_td = t - last_t; |
104 | 0 | if (last_t + 2*last_td + (CLOCKS_PER_SEC > 1000) < t) { |
105 | | // If the timer incremented by more than 2*last_td at once, |
106 | | // we may e.g. have had a context switch. If the timer resolution |
107 | | // is high (CLOCKS_PER_SEC > 1000), require that the timer |
108 | | // incremented by more than 1. If the timer resolution is low, |
109 | | // it is enough that the timer incremented at all. |
110 | 0 | buffer[++i & 511] += cur_td % 3294638521U; |
111 | 0 | incremented_i = 1; |
112 | 0 | } else if (t != last_t && repeats[0] > 0 && repeats[1] > 0 && |
113 | 0 | repeats[2] > 0 && repeats[0] != repeats[1] && |
114 | 0 | repeats[0] != repeats[2]) { |
115 | | // If the timer resolution is high, and we get the same timer |
116 | | // value multiple times, use variances in the number of repeats |
117 | | // of each timer value as entropy. If we get a different number of |
118 | | // repeats than the last two unique cases, count that as entropy |
119 | | // and proceed to the next index. |
120 | 0 | buffer[++i & 511] += (repeats[0] + repeats[1] + repeats[2]) % 3294638521U; |
121 | 0 | incremented_i = 1; |
122 | 0 | } else { |
123 | 0 | buffer[i & 511] = 1664525*buffer[i & 511] + 1013904223 + (cur_td % 3294638521U); |
124 | 0 | } |
125 | 0 | if (incremented_i && (t - init_t) >= CLOCKS_PER_SEC>>5) { |
126 | 0 | if (last_i && i - last_i > 4 || i - last_i > 64 || TEST && i - last_i > 8) |
127 | 0 | break; |
128 | 0 | } |
129 | 0 | if (t == last_t) { |
130 | 0 | repeats[0]++; |
131 | 0 | } else { |
132 | | // If we got a new unique number of repeats, update the history. |
133 | 0 | if (repeats[0] != repeats[1]) { |
134 | 0 | repeats[2] = repeats[1]; |
135 | 0 | repeats[1] = repeats[0]; |
136 | 0 | } |
137 | 0 | repeats[0] = 0; |
138 | 0 | } |
139 | 0 | last_t = t; |
140 | 0 | last_td = cur_td; |
141 | 0 | if (!init_t) |
142 | 0 | init_t = t; |
143 | 0 | } |
144 | |
|
145 | 0 | if(TEST) { |
146 | 0 | buffer[0] = buffer[1] = 0; |
147 | 0 | } else { |
148 | 0 | #ifdef AV_READ_TIME |
149 | 0 | buffer[111] += AV_READ_TIME(); |
150 | 0 | #endif |
151 | 0 | } |
152 | |
|
153 | 0 | av_sha_init(sha, 160); |
154 | 0 | av_sha_update(sha, (const uint8_t *)buffer, sizeof(buffer)); |
155 | 0 | av_sha_final(sha, digest); |
156 | 0 | return AV_RB32(digest) + AV_RB32(digest + 16); |
157 | 0 | } |
158 | | |
159 | | int av_random_bytes(uint8_t* buf, size_t len) |
160 | 0 | { |
161 | 0 | int err; |
162 | |
|
163 | | #if HAVE_BCRYPT |
164 | | BCRYPT_ALG_HANDLE algo_handle; |
165 | | NTSTATUS ret = BCryptOpenAlgorithmProvider(&algo_handle, BCRYPT_RNG_ALGORITHM, |
166 | | MS_PRIMITIVE_PROVIDER, 0); |
167 | | if (BCRYPT_SUCCESS(ret)) { |
168 | | NTSTATUS ret = BCryptGenRandom(algo_handle, (PUCHAR)buf, len, 0); |
169 | | BCryptCloseAlgorithmProvider(algo_handle, 0); |
170 | | if (BCRYPT_SUCCESS(ret)) |
171 | | return 0; |
172 | | } |
173 | | #endif |
174 | |
|
175 | | #if HAVE_ARC4RANDOM_BUF |
176 | | arc4random_buf(buf, len); |
177 | | return 0; |
178 | | #endif |
179 | |
|
180 | 0 | err = read_random(buf, len, "/dev/urandom"); |
181 | 0 | if (!err) |
182 | 0 | return err; |
183 | | |
184 | | #if CONFIG_GCRYPT |
185 | | gcry_randomize(buf, len, GCRY_VERY_STRONG_RANDOM); |
186 | | return 0; |
187 | | #elif CONFIG_OPENSSL |
188 | | if (RAND_bytes(buf, len) == 1) |
189 | | return 0; |
190 | | return AVERROR_EXTERNAL; |
191 | | #else |
192 | 0 | return err; |
193 | 0 | #endif |
194 | 0 | } |
195 | | |
196 | | uint32_t av_get_random_seed(void) |
197 | 0 | { |
198 | 0 | uint32_t seed; |
199 | |
|
200 | 0 | if (av_random_bytes((uint8_t *)&seed, sizeof(seed)) < 0) |
201 | 0 | return get_generic_seed(); |
202 | | |
203 | 0 | return seed; |
204 | 0 | } |