Coverage Report

Created: 2026-01-25 07:18

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavutil/sha.c
Line
Count
Source
1
/*
2
 * Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at>
3
 * Copyright (C) 2009 Konstantin Shishkov
4
 * based on public domain SHA-1 code by Steve Reid <steve@edmweb.com>
5
 * and on BSD-licensed SHA-2 code by Aaron D. Gifford
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23
24
#include <string.h>
25
26
#include "config.h"
27
#include "attributes.h"
28
#include "bswap.h"
29
#include "error.h"
30
#include "sha.h"
31
#include "intreadwrite.h"
32
#include "mem.h"
33
34
/** hash context */
35
typedef struct AVSHA {
36
    uint8_t  digest_len;  ///< digest length in 32-bit words
37
    uint64_t count;       ///< number of bytes in buffer
38
    uint8_t  buffer[64];  ///< 512-bit buffer of input values used in hash updating
39
    uint32_t state[8];    ///< current hash value
40
    /** function used to update hash for 512-bit input block */
41
    void     (*transform)(uint32_t *state, const uint8_t buffer[64]);
42
} AVSHA;
43
44
const int av_sha_size = sizeof(AVSHA);
45
46
struct AVSHA *av_sha_alloc(void)
47
0
{
48
0
    return av_mallocz(sizeof(struct AVSHA));
49
0
}
50
51
0
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
52
53
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
54
0
#define blk0(i) (block[i] = AV_RB32(buffer + 4 * (i)))
55
0
#define blk(i)  (block[i] = rol(block[(i)-3] ^ block[(i)-8] ^ block[(i)-14] ^ block[(i)-16], 1))
56
57
0
#define R0(v,w,x,y,z,i) z += (((w)&((x)^(y)))^(y))       + blk0(i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
58
0
#define R1(v,w,x,y,z,i) z += (((w)&((x)^(y)))^(y))       + blk (i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
59
0
#define R2(v,w,x,y,z,i) z += ( (w)^(x)       ^(y))       + blk (i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
60
0
#define R3(v,w,x,y,z,i) z += ((((w)|(x))&(y))|((w)&(x))) + blk (i) + 0x8F1BBCDC + rol(v, 5); w = rol(w, 30);
61
0
#define R4(v,w,x,y,z,i) z += ( (w)^(x)       ^(y))       + blk (i) + 0xCA62C1D6 + rol(v, 5); w = rol(w, 30);
62
63
/* Hash a single 512-bit block. This is the core of the algorithm. */
64
65
static void sha1_transform(uint32_t state[5], const uint8_t buffer[64])
66
0
{
67
0
    uint32_t block[80];
68
0
    unsigned int i, a, b, c, d, e;
69
70
0
    a = state[0];
71
0
    b = state[1];
72
0
    c = state[2];
73
0
    d = state[3];
74
0
    e = state[4];
75
#if CONFIG_SMALL
76
    for (i = 0; i < 80; i++) {
77
        int t;
78
        if (i < 16)
79
            t = AV_RB32(buffer + 4 * i);
80
        else
81
            t = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1);
82
        block[i] = t;
83
        t += e + rol(a, 5);
84
        if (i < 40) {
85
            if (i < 20)
86
                t += ((b&(c^d))^d)     + 0x5A827999;
87
            else
88
                t += ( b^c     ^d)     + 0x6ED9EBA1;
89
        } else {
90
            if (i < 60)
91
                t += (((b|c)&d)|(b&c)) + 0x8F1BBCDC;
92
            else
93
                t += ( b^c     ^d)     + 0xCA62C1D6;
94
        }
95
        e = d;
96
        d = c;
97
        c = rol(b, 30);
98
        b = a;
99
        a = t;
100
    }
101
#else
102
103
0
#define R1_0 \
104
0
    R0(a, b, c, d, e, 0 + i); \
105
0
    R0(e, a, b, c, d, 1 + i); \
106
0
    R0(d, e, a, b, c, 2 + i); \
107
0
    R0(c, d, e, a, b, 3 + i); \
108
0
    R0(b, c, d, e, a, 4 + i); \
109
0
    i += 5
110
111
0
    i = 0;
112
0
    R1_0; R1_0; R1_0;
113
0
    R0(a, b, c, d, e, 15);
114
0
    R1(e, a, b, c, d, 16);
115
0
    R1(d, e, a, b, c, 17);
116
0
    R1(c, d, e, a, b, 18);
117
0
    R1(b, c, d, e, a, 19);
118
119
0
#define R1_20 \
120
0
    R2(a, b, c, d, e, 0 + i); \
121
0
    R2(e, a, b, c, d, 1 + i); \
122
0
    R2(d, e, a, b, c, 2 + i); \
123
0
    R2(c, d, e, a, b, 3 + i); \
124
0
    R2(b, c, d, e, a, 4 + i); \
125
0
    i += 5
126
127
0
    i = 20;
128
0
    R1_20; R1_20; R1_20; R1_20;
129
130
0
#define R1_40 \
131
0
    R3(a, b, c, d, e, 0 + i); \
132
0
    R3(e, a, b, c, d, 1 + i); \
133
0
    R3(d, e, a, b, c, 2 + i); \
134
0
    R3(c, d, e, a, b, 3 + i); \
135
0
    R3(b, c, d, e, a, 4 + i); \
136
0
    i += 5
137
138
0
    R1_40; R1_40; R1_40; R1_40;
139
140
0
#define R1_60 \
141
0
    R4(a, b, c, d, e, 0 + i); \
142
0
    R4(e, a, b, c, d, 1 + i); \
143
0
    R4(d, e, a, b, c, 2 + i); \
144
0
    R4(c, d, e, a, b, 3 + i); \
145
0
    R4(b, c, d, e, a, 4 + i); \
146
0
    i += 5
147
148
0
    R1_60; R1_60; R1_60; R1_60;
149
0
#endif
150
0
    state[0] += a;
151
0
    state[1] += b;
152
0
    state[2] += c;
153
0
    state[3] += d;
154
0
    state[4] += e;
155
0
}
156
157
static const uint32_t K256[64] = {
158
    0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
159
    0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
160
    0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
161
    0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
162
    0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
163
    0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
164
    0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
165
    0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
166
    0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
167
    0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
168
    0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
169
    0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
170
    0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
171
    0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
172
    0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
173
    0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
174
};
175
176
177
0
#define Ch(x,y,z)   (((x) & ((y) ^ (z))) ^ (z))
178
0
#define Maj(z,y,x)  ((((x) | (y)) & (z)) | ((x) & (y)))
179
180
0
#define Sigma0_256(x)   (rol((x), 30) ^ rol((x), 19) ^ rol((x), 10))
181
0
#define Sigma1_256(x)   (rol((x), 26) ^ rol((x), 21) ^ rol((x),  7))
182
0
#define sigma0_256(x)   (rol((x), 25) ^ rol((x), 14) ^ ((x) >> 3))
183
0
#define sigma1_256(x)   (rol((x), 15) ^ rol((x), 13) ^ ((x) >> 10))
184
185
#undef blk
186
0
#define blk(i)  (block[i] = block[i - 16] + sigma0_256(block[i - 15]) + \
187
0
                            sigma1_256(block[i - 2]) + block[i - 7])
188
189
#define ROUND256(a,b,c,d,e,f,g,h)   \
190
0
    T1 += (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[i]; \
191
0
    (d) += T1; \
192
0
    (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
193
0
    i++
194
195
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)   \
196
0
    T1 = blk0(i); \
197
0
    ROUND256(a,b,c,d,e,f,g,h)
198
199
#define ROUND256_16_TO_63(a,b,c,d,e,f,g,h)   \
200
0
    T1 = blk(i); \
201
0
    ROUND256(a,b,c,d,e,f,g,h)
202
203
static void sha256_transform(uint32_t *state, const uint8_t buffer[64])
204
0
{
205
0
    unsigned int i, a, b, c, d, e, f, g, h;
206
0
    uint32_t block[64];
207
0
    uint32_t T1;
208
209
0
    a = state[0];
210
0
    b = state[1];
211
0
    c = state[2];
212
0
    d = state[3];
213
0
    e = state[4];
214
0
    f = state[5];
215
0
    g = state[6];
216
0
    h = state[7];
217
#if CONFIG_SMALL
218
    for (i = 0; i < 64; i++) {
219
        uint32_t T2;
220
        if (i < 16)
221
            T1 = blk0(i);
222
        else
223
            T1 = blk(i);
224
        T1 += h + Sigma1_256(e) + Ch(e, f, g) + K256[i];
225
        T2 = Sigma0_256(a) + Maj(a, b, c);
226
        h = g;
227
        g = f;
228
        f = e;
229
        e = d + T1;
230
        d = c;
231
        c = b;
232
        b = a;
233
        a = T1 + T2;
234
    }
235
#else
236
237
0
    i = 0;
238
0
#define R256_0 \
239
0
    ROUND256_0_TO_15(a, b, c, d, e, f, g, h); \
240
0
    ROUND256_0_TO_15(h, a, b, c, d, e, f, g); \
241
0
    ROUND256_0_TO_15(g, h, a, b, c, d, e, f); \
242
0
    ROUND256_0_TO_15(f, g, h, a, b, c, d, e); \
243
0
    ROUND256_0_TO_15(e, f, g, h, a, b, c, d); \
244
0
    ROUND256_0_TO_15(d, e, f, g, h, a, b, c); \
245
0
    ROUND256_0_TO_15(c, d, e, f, g, h, a, b); \
246
0
    ROUND256_0_TO_15(b, c, d, e, f, g, h, a)
247
248
0
    R256_0; R256_0;
249
250
0
#define R256_16 \
251
0
    ROUND256_16_TO_63(a, b, c, d, e, f, g, h); \
252
0
    ROUND256_16_TO_63(h, a, b, c, d, e, f, g); \
253
0
    ROUND256_16_TO_63(g, h, a, b, c, d, e, f); \
254
0
    ROUND256_16_TO_63(f, g, h, a, b, c, d, e); \
255
0
    ROUND256_16_TO_63(e, f, g, h, a, b, c, d); \
256
0
    ROUND256_16_TO_63(d, e, f, g, h, a, b, c); \
257
0
    ROUND256_16_TO_63(c, d, e, f, g, h, a, b); \
258
0
    ROUND256_16_TO_63(b, c, d, e, f, g, h, a)
259
260
0
    R256_16; R256_16; R256_16;
261
0
    R256_16; R256_16; R256_16;
262
0
#endif
263
0
    state[0] += a;
264
0
    state[1] += b;
265
0
    state[2] += c;
266
0
    state[3] += d;
267
0
    state[4] += e;
268
0
    state[5] += f;
269
0
    state[6] += g;
270
0
    state[7] += h;
271
0
}
272
273
274
av_cold int av_sha_init(AVSHA *ctx, int bits)
275
0
{
276
0
    ctx->digest_len = bits >> 5;
277
0
    switch (bits) {
278
0
    case 160: // SHA-1
279
0
        ctx->state[0] = 0x67452301;
280
0
        ctx->state[1] = 0xEFCDAB89;
281
0
        ctx->state[2] = 0x98BADCFE;
282
0
        ctx->state[3] = 0x10325476;
283
0
        ctx->state[4] = 0xC3D2E1F0;
284
0
        ctx->transform = sha1_transform;
285
0
        break;
286
0
    case 224: // SHA-224
287
0
        ctx->state[0] = 0xC1059ED8;
288
0
        ctx->state[1] = 0x367CD507;
289
0
        ctx->state[2] = 0x3070DD17;
290
0
        ctx->state[3] = 0xF70E5939;
291
0
        ctx->state[4] = 0xFFC00B31;
292
0
        ctx->state[5] = 0x68581511;
293
0
        ctx->state[6] = 0x64F98FA7;
294
0
        ctx->state[7] = 0xBEFA4FA4;
295
0
        ctx->transform = sha256_transform;
296
0
        break;
297
0
    case 256: // SHA-256
298
0
        ctx->state[0] = 0x6A09E667;
299
0
        ctx->state[1] = 0xBB67AE85;
300
0
        ctx->state[2] = 0x3C6EF372;
301
0
        ctx->state[3] = 0xA54FF53A;
302
0
        ctx->state[4] = 0x510E527F;
303
0
        ctx->state[5] = 0x9B05688C;
304
0
        ctx->state[6] = 0x1F83D9AB;
305
0
        ctx->state[7] = 0x5BE0CD19;
306
0
        ctx->transform = sha256_transform;
307
0
        break;
308
0
    default:
309
0
        return AVERROR(EINVAL);
310
0
    }
311
0
    ctx->count = 0;
312
0
    return 0;
313
0
}
314
315
void av_sha_update(struct AVSHA *ctx, const uint8_t *data, size_t len)
316
0
{
317
0
    unsigned int j;
318
0
    size_t i;
319
320
0
    j = ctx->count & 63;
321
0
    ctx->count += len;
322
#if CONFIG_SMALL
323
    for (i = 0; i < len; i++) {
324
        ctx->buffer[j++] = data[i];
325
        if (64 == j) {
326
            ctx->transform(ctx->state, ctx->buffer);
327
            j = 0;
328
        }
329
    }
330
#else
331
0
    if (len >= 64 - j) {
332
0
        const uint8_t *end;
333
0
        memcpy(&ctx->buffer[j], data, (i = 64 - j));
334
0
        ctx->transform(ctx->state, ctx->buffer);
335
0
        data += i;
336
0
        len  -= i;
337
0
        end   = data + (len & ~63);
338
0
        len   = len % 64;
339
0
        for (; data < end; data += 64)
340
0
            ctx->transform(ctx->state, data);
341
0
        j = 0;
342
0
    }
343
0
    memcpy(&ctx->buffer[j], data, len);
344
0
#endif
345
0
}
346
347
void av_sha_final(AVSHA* ctx, uint8_t *digest)
348
0
{
349
0
    int i;
350
0
    uint64_t finalcount = av_be2ne64(ctx->count << 3);
351
352
0
    av_sha_update(ctx, "\200", 1);
353
0
    while ((ctx->count & 63) != 56)
354
0
        av_sha_update(ctx, "", 1);
355
0
    av_sha_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */
356
0
    for (i = 0; i < ctx->digest_len; i++)
357
0
        AV_WB32(digest + i*4, ctx->state[i]);
358
0
}