Coverage Report

Created: 2026-01-25 07:18

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/gettext-0.26/gettext-tools/libgettextpo/fstrcmp.c
Line
Count
Source
1
/* Functions to make fuzzy comparisons between strings
2
   Copyright (C) 1988-1989, 1992-1993, 1995, 2001-2003, 2006, 2008-2025 Free
3
   Software Foundation, Inc.
4
5
   This program is free software: you can redistribute it and/or modify
6
   it under the terms of the GNU General Public License as published by
7
   the Free Software Foundation, either version 3 of the License, or
8
   (at your option) any later version.
9
10
   This program is distributed in the hope that it will be useful,
11
   but WITHOUT ANY WARRANTY; without even the implied warranty of
12
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
   GNU General Public License for more details.
14
15
   You should have received a copy of the GNU General Public License
16
   along with this program.  If not, see <https://www.gnu.org/licenses/>.  */
17
18
19
#include <config.h>
20
21
/* Specification.  */
22
#include "fstrcmp.h"
23
24
#include <string.h>
25
#include <stddef.h>
26
#include <stdio.h>
27
#include <stdint.h>
28
#include <stdlib.h>
29
#include <limits.h>
30
31
#include "glthread/once.h"
32
#include "glthread/tls.h"
33
#include "minmax.h"
34
#include "xalloc.h"
35
36
37
0
#define ELEMENT char
38
0
#define EQUAL(x,y) ((x) == (y))
39
0
#define OFFSET ptrdiff_t
40
0
#define OFFSET_MAX PTRDIFF_MAX
41
#define EXTRA_CONTEXT_FIELDS \
42
  /* The number of edits beyond which the computation can be aborted. */ \
43
  ptrdiff_t edit_count_limit; \
44
  /* The number of edits (= number of elements inserted, plus the number of \
45
     elements deleted), temporarily minus edit_count_limit. */ \
46
  ptrdiff_t edit_count;
47
0
#define NOTE_DELETE(ctxt, xoff) ctxt->edit_count++
48
0
#define NOTE_INSERT(ctxt, yoff) ctxt->edit_count++
49
0
#define NOTE_ORDERED false
50
0
#define EARLY_ABORT(ctxt) ctxt->edit_count > 0
51
/* We don't need USE_HEURISTIC, since it is unlikely in typical uses of
52
   fstrcmp().  */
53
#include "diffseq.h"
54
55
56
/* Because fstrcmp is typically called multiple times, attempt to minimize
57
   the number of memory allocations performed.  Thus, let a call reuse the
58
   memory already allocated by the previous call, if it is sufficient.
59
   To make it multithread-safe, without need for a lock that protects the
60
   already allocated memory, store the allocated memory per thread.  Free
61
   it only when the thread exits.  */
62
63
static gl_tls_key_t buffer_key; /* TLS key for a 'ptrdiff_t *' */
64
static gl_tls_key_t bufmax_key; /* TLS key for a 'uintptr_t' */
65
66
static void
67
keys_init (void)
68
0
{
69
0
  gl_tls_key_init (buffer_key, free);
70
0
  gl_tls_key_init (bufmax_key, NULL);
71
  /* The per-thread initial values are NULL and 0, respectively.  */
72
0
}
73
74
/* Ensure that keys_init is called once only.  */
75
gl_once_define(static, keys_init_once)
76
77
void
78
fstrcmp_free_resources (void)
79
0
{
80
0
  ptrdiff_t *buffer;
81
82
0
  gl_once (keys_init_once, keys_init);
83
0
  buffer = gl_tls_get (buffer_key);
84
0
  if (buffer != NULL)
85
0
    {
86
0
      gl_tls_set (buffer_key, NULL);
87
0
      gl_tls_set (bufmax_key, (void *) (uintptr_t) 0);
88
0
      free (buffer);
89
0
    }
90
0
}
91
92
93
/* In the code below, branch probabilities were measured by Ralf Wildenhues,
94
   by running "msgmerge LL.po coreutils.pot" with msgmerge 0.18 for many
95
   values of LL.  The probability indicates that the condition evaluates
96
   to true; whether that leads to a branch or a non-branch in the code,
97
   depends on the compiler's reordering of basic blocks.  */
98
99
100
double
101
fstrcmp_bounded (const char *string1, const char *string2, double lower_bound)
102
0
{
103
0
  struct context ctxt;
104
0
  size_t xvec_length = strlen (string1);
105
0
  size_t yvec_length = strlen (string2);
106
0
  size_t length_sum = xvec_length + yvec_length;
107
0
  ptrdiff_t i;
108
109
0
  ptrdiff_t fdiag_len;
110
0
  ptrdiff_t *buffer;
111
0
  uintptr_t bufmax;
112
113
  /* short-circuit obvious comparisons */
114
0
  if (xvec_length == 0 || yvec_length == 0) /* Prob: 1% */
115
0
    return length_sum == 0;
116
117
0
  if (! (xvec_length <= length_sum
118
0
         && length_sum <= MIN (UINTPTR_MAX, PTRDIFF_MAX) - 3))
119
0
    xalloc_die ();
120
121
0
  if (lower_bound > 0)
122
0
    {
123
      /* Compute a quick upper bound.
124
         Each edit is an insertion or deletion of an element, hence modifies
125
         the length of the sequence by at most 1.
126
         Therefore, when starting from a sequence X and ending at a sequence Y,
127
         with N edits,  | yvec_length - xvec_length | <= N.  (Proof by
128
         induction over N.)
129
         So, at the end, we will have
130
           edit_count >= | xvec_length - yvec_length |.
131
         and hence
132
           result
133
             = (xvec_length + yvec_length - edit_count)
134
               / (xvec_length + yvec_length)
135
             <= (xvec_length + yvec_length - | yvec_length - xvec_length |)
136
                / (xvec_length + yvec_length)
137
             = 2 * min (xvec_length, yvec_length) / (xvec_length + yvec_length).
138
       */
139
0
      ptrdiff_t length_min = MIN (xvec_length, yvec_length);
140
0
      volatile double upper_bound = 2.0 * length_min / length_sum;
141
142
0
      if (upper_bound < lower_bound) /* Prob: 74% */
143
        /* Return an arbitrary value < LOWER_BOUND.  */
144
0
        return 0.0;
145
146
0
#if CHAR_BIT <= 8
147
      /* When X and Y are both small, avoid the overhead of setting up an
148
         array of size 256.  */
149
0
      if (length_sum >= 20) /* Prob: 99% */
150
0
        {
151
          /* Compute a less quick upper bound.
152
             Each edit is an insertion or deletion of a character, hence
153
             modifies the occurrence count of a character by 1 and leaves the
154
             other occurrence counts unchanged.
155
             Therefore, when starting from a sequence X and ending at a
156
             sequence Y, and denoting the occurrence count of C in X with
157
             OCC (X, C), with N edits,
158
               sum_C | OCC (X, C) - OCC (Y, C) | <= N.
159
             (Proof by induction over N.)
160
             So, at the end, we will have
161
               edit_count >= sum_C | OCC (X, C) - OCC (Y, C) |,
162
             and hence
163
               result
164
                 = (xvec_length + yvec_length - edit_count)
165
                   / (xvec_length + yvec_length)
166
                 <= (xvec_length + yvec_length - sum_C | OCC(X,C) - OCC(Y,C) |)
167
                    / (xvec_length + yvec_length).
168
           */
169
0
          ptrdiff_t occ_diff[UCHAR_MAX + 1]; /* array C -> OCC(X,C) - OCC(Y,C) */
170
0
          ptrdiff_t sum;
171
0
          double dsum;
172
173
          /* Determine the occurrence counts in X.  */
174
0
          memset (occ_diff, 0, sizeof (occ_diff));
175
0
          for (i = xvec_length - 1; i >= 0; i--)
176
0
            occ_diff[(unsigned char) string1[i]]++;
177
          /* Subtract the occurrence counts in Y.  */
178
0
          for (i = yvec_length - 1; i >= 0; i--)
179
0
            occ_diff[(unsigned char) string2[i]]--;
180
          /* Sum up the absolute values.  */
181
0
          sum = 0;
182
0
          for (i = 0; i <= UCHAR_MAX; i++)
183
0
            {
184
0
              ptrdiff_t d = occ_diff[i];
185
0
              sum += (d >= 0 ? d : -d);
186
0
            }
187
188
0
          dsum = sum;
189
0
          upper_bound = 1.0 - dsum / length_sum;
190
191
0
          if (upper_bound < lower_bound) /* Prob: 66% */
192
            /* Return an arbitrary value < LOWER_BOUND.  */
193
0
            return 0.0;
194
0
        }
195
0
#endif
196
0
    }
197
198
  /* set the info for each string.  */
199
0
  ctxt.xvec = string1;
200
0
  ctxt.yvec = string2;
201
202
  /* Set TOO_EXPENSIVE to be approximate square root of input size,
203
     bounded below by 4096.  */
204
0
  ctxt.too_expensive = 1;
205
0
  for (i = xvec_length + yvec_length; i != 0; i >>= 2)
206
0
    ctxt.too_expensive <<= 1;
207
0
  if (ctxt.too_expensive < 4096)
208
0
    ctxt.too_expensive = 4096;
209
210
  /* Allocate memory for fdiag and bdiag from a thread-local pool.  */
211
0
  fdiag_len = length_sum + 3;
212
0
  gl_once (keys_init_once, keys_init);
213
0
  buffer = gl_tls_get (buffer_key);
214
0
  bufmax = (uintptr_t) gl_tls_get (bufmax_key);
215
0
  if (fdiag_len > bufmax)
216
0
    {
217
      /* Need more memory.  */
218
0
      bufmax = 2 * bufmax;
219
0
      if (fdiag_len > bufmax)
220
0
        bufmax = fdiag_len;
221
      /* Calling xrealloc would be a waste: buffer's contents does not need
222
         to be preserved.  */
223
0
      free (buffer);
224
0
      buffer = xnmalloc (bufmax, 2 * sizeof *buffer);
225
0
      gl_tls_set (buffer_key, buffer);
226
0
      gl_tls_set (bufmax_key, (void *) (uintptr_t) bufmax);
227
0
    }
228
0
  ctxt.fdiag = buffer + yvec_length + 1;
229
0
  ctxt.bdiag = ctxt.fdiag + fdiag_len;
230
231
  /* The edit_count is only ever increased.  The computation can be aborted
232
     when
233
       (xvec_length + yvec_length - edit_count) / (xvec_length + yvec_length)
234
       < lower_bound,
235
     or equivalently
236
       edit_count > (xvec_length + yvec_length) * (1 - lower_bound)
237
     or equivalently
238
       edit_count > floor((xvec_length + yvec_length) * (1 - lower_bound)).
239
     We need to add an epsilon inside the floor(...) argument, to neutralize
240
     rounding errors.  */
241
0
  ctxt.edit_count_limit =
242
0
    (lower_bound < 1.0
243
0
     ? (ptrdiff_t) (length_sum * (1.0 - lower_bound + 0.000001))
244
0
     : 0);
245
246
  /* Now do the main comparison algorithm */
247
0
  ctxt.edit_count = - ctxt.edit_count_limit;
248
0
  if (compareseq (0, xvec_length, 0, yvec_length, 0, &ctxt)) /* Prob: 98% */
249
    /* The edit_count passed the limit.  Hence the result would be
250
       < lower_bound.  We can return any value < lower_bound instead.  */
251
0
    return 0.0;
252
0
  ctxt.edit_count += ctxt.edit_count_limit;
253
254
  /* The result is
255
        ((number of chars in common) / (average length of the strings)).
256
     The numerator is
257
        = xvec_length - (number of calls to NOTE_DELETE)
258
        = yvec_length - (number of calls to NOTE_INSERT)
259
        = 1/2 * (xvec_length + yvec_length - (number of edits)).
260
     This is admittedly biased towards finding that the strings are
261
     similar, however it does produce meaningful results.  */
262
0
  return ((double) (xvec_length + yvec_length - ctxt.edit_count)
263
0
          / (xvec_length + yvec_length));
264
0
}