Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/ops/numpy_ops/np_random.py: 2%
64 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-10-05 06:32 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-10-05 06:32 +0000
1# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Random functions."""
17# pylint: disable=g-direct-tensorflow-import
19import numpy as onp
21from tensorflow.python.framework import random_seed
22from tensorflow.python.ops import array_ops
23from tensorflow.python.ops import random_ops
24from tensorflow.python.ops.numpy_ops import np_array_ops
25from tensorflow.python.ops.numpy_ops import np_dtypes
26from tensorflow.python.ops.numpy_ops import np_utils
28# TODO(agarwal): deprecate this.
29DEFAULT_RANDN_DTYPE = onp.float32
32@np_utils.np_doc('random.seed')
33def seed(s):
34 """Sets the seed for the random number generator.
36 Uses `tf.set_random_seed`.
38 Args:
39 s: an integer.
40 """
41 try:
42 s = int(s)
43 except TypeError:
44 # TODO(wangpeng): support this?
45 raise ValueError(
46 f'Argument `s` got an invalid value {s}. Only integers are supported.')
47 random_seed.set_seed(s)
50@np_utils.np_doc('random.randn')
51def randn(*args):
52 """Returns samples from a normal distribution.
54 Uses `tf.random_normal`.
56 Args:
57 *args: The shape of the output array.
59 Returns:
60 An ndarray with shape `args` and dtype `float64`.
61 """
62 return standard_normal(size=args)
65@np_utils.np_doc('random.standard_normal')
66def standard_normal(size=None):
67 # TODO(wangpeng): Use new stateful RNG
68 if size is None:
69 size = ()
70 elif np_utils.isscalar(size):
71 size = (size,)
72 dtype = np_dtypes.default_float_type()
73 return random_ops.random_normal(size, dtype=dtype)
76@np_utils.np_doc('random.uniform')
77def uniform(low=0.0, high=1.0, size=None):
78 dtype = np_dtypes.default_float_type()
79 low = np_array_ops.asarray(low, dtype=dtype)
80 high = np_array_ops.asarray(high, dtype=dtype)
81 if size is None:
82 size = array_ops.broadcast_dynamic_shape(low.shape, high.shape)
83 return random_ops.random_uniform(
84 shape=size, minval=low, maxval=high, dtype=dtype)
87@np_utils.np_doc('random.poisson')
88def poisson(lam=1.0, size=None):
89 if size is None:
90 size = ()
91 elif np_utils.isscalar(size):
92 size = (size,)
93 return random_ops.random_poisson(shape=size, lam=lam, dtype=np_dtypes.int_)
96@np_utils.np_doc('random.random')
97def random(size=None):
98 return uniform(0., 1., size)
101@np_utils.np_doc('random.rand')
102def rand(*size):
103 return uniform(0., 1., size)
106@np_utils.np_doc('random.randint')
107def randint(low, high=None, size=None, dtype=onp.int64): # pylint: disable=missing-function-docstring
108 low = int(low)
109 if high is None:
110 high = low
111 low = 0
112 if size is None:
113 size = ()
114 elif isinstance(size, int):
115 size = (size,)
116 dtype_orig = dtype
117 dtype = np_utils.result_type(dtype)
118 accepted_dtypes = (onp.int32, onp.int64)
119 if dtype not in accepted_dtypes:
120 raise ValueError(
121 f'Argument `dtype` got an invalid value {dtype_orig}. Only those '
122 f'convertible to {accepted_dtypes} are supported.')
123 return random_ops.random_uniform(
124 shape=size, minval=low, maxval=high, dtype=dtype)