Coverage Report

Created: 2025-07-14 06:17

/src/keystone/llvm/lib/MC/ELFObjectWriter.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file implements ELF object file writer information.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/MC/MCELFObjectWriter.h"
15
#include "llvm/ADT/STLExtras.h"
16
#include "llvm/ADT/SmallPtrSet.h"
17
#include "llvm/ADT/SmallString.h"
18
#include "llvm/ADT/StringMap.h"
19
#include "llvm/MC/MCAsmBackend.h"
20
#include "llvm/MC/MCAsmInfo.h"
21
#include "llvm/MC/MCAsmLayout.h"
22
#include "llvm/MC/MCAssembler.h"
23
#include "llvm/MC/MCContext.h"
24
#include "llvm/MC/MCExpr.h"
25
#include "llvm/MC/MCFixupKindInfo.h"
26
#include "llvm/MC/MCObjectWriter.h"
27
#include "llvm/MC/MCSectionELF.h"
28
#include "llvm/MC/MCSymbolELF.h"
29
#include "llvm/MC/MCValue.h"
30
#include "llvm/MC/StringTableBuilder.h"
31
#include "llvm/Support/Debug.h"
32
#include "llvm/Support/ELF.h"
33
#include "llvm/Support/Endian.h"
34
#include "llvm/Support/ErrorHandling.h"
35
#include "llvm/Support/StringSaver.h"
36
#include <vector>
37
using namespace llvm_ks;
38
39
#undef  DEBUG_TYPE
40
#define DEBUG_TYPE "reloc-info"
41
42
namespace {
43
44
typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
45
46
class ELFObjectWriter;
47
48
class SymbolTableWriter {
49
  ELFObjectWriter &EWriter;
50
  bool Is64Bit;
51
52
  // indexes we are going to write to .symtab_shndx.
53
  std::vector<uint32_t> ShndxIndexes;
54
55
  // The numbel of symbols written so far.
56
  unsigned NumWritten;
57
58
  void createSymtabShndx();
59
60
  template <typename T> void write(T Value);
61
62
public:
63
  SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
64
65
  void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
66
                   uint8_t other, uint32_t shndx, bool Reserved);
67
68
0
  ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
69
};
70
71
class ELFObjectWriter : public MCObjectWriter {
72
    static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
73
    static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
74
                           bool Used, bool Renamed);
75
76
    /// Helper struct for containing some precomputed information on symbols.
77
    struct ELFSymbolData {
78
      const MCSymbolELF *Symbol;
79
      uint32_t SectionIndex;
80
      StringRef Name;
81
82
      // Support lexicographic sorting.
83
0
      bool operator<(const ELFSymbolData &RHS) const {
84
0
        unsigned LHSType = Symbol->getType();
85
0
        unsigned RHSType = RHS.Symbol->getType();
86
0
        if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
87
0
          return false;
88
0
        if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
89
0
          return true;
90
0
        if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
91
0
          return SectionIndex < RHS.SectionIndex;
92
0
        return Name < RHS.Name;
93
0
      }
94
    };
95
96
    /// The target specific ELF writer instance.
97
    std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
98
99
    DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
100
101
    llvm_ks::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>>
102
        Relocations;
103
104
    /// @}
105
    /// @name Symbol Table Data
106
    /// @{
107
108
    BumpPtrAllocator Alloc;
109
    StringSaver VersionSymSaver{Alloc};
110
    StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
111
112
    /// @}
113
114
    // This holds the symbol table index of the last local symbol.
115
    unsigned LastLocalSymbolIndex;
116
    // This holds the .strtab section index.
117
    unsigned StringTableIndex;
118
    // This holds the .symtab section index.
119
    unsigned SymbolTableIndex;
120
121
    // Sections in the order they are to be output in the section table.
122
    std::vector<const MCSectionELF *> SectionTable;
123
    unsigned addToSectionTable(const MCSectionELF *Sec);
124
125
    // TargetObjectWriter wrappers.
126
2.67k
    bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
127
83.7k
    bool hasRelocationAddend() const {
128
      // Keystone doesn't want relocation addends.
129
      /* return TargetObjectWriter->hasRelocationAddend(); */
130
83.7k
      return false;
131
83.7k
    }
132
    unsigned getRelocType(MCContext &Ctx, const MCValue &Target,
133
79.7k
                          const MCFixup &Fixup, bool IsPCRel) const {
134
79.7k
      return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
135
79.7k
    }
136
137
    void align(unsigned Alignment);
138
139
  public:
140
    ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
141
                    bool IsLittleEndian)
142
129k
        : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {}
143
144
0
    void reset() override {
145
0
      Renames.clear();
146
0
      Relocations.clear();
147
0
      StrTabBuilder.clear();
148
0
      SectionTable.clear();
149
0
      MCObjectWriter::reset();
150
0
    }
151
152
    ~ELFObjectWriter() override;
153
154
0
    void WriteWord(uint64_t W) {
155
0
      if (is64Bit())
156
0
        write64(W);
157
0
      else
158
0
        write32(W);
159
0
    }
160
161
0
    template <typename T> void write(T Val) {
162
0
      if (IsLittleEndian)
163
0
        support::endian::Writer<support::little>(getStream()).write(Val);
164
0
      else
165
0
        support::endian::Writer<support::big>(getStream()).write(Val);
166
0
    }
Unexecuted instantiation: ELFObjectWriter.cpp:void (anonymous namespace)::ELFObjectWriter::write<unsigned short>(unsigned short)
Unexecuted instantiation: ELFObjectWriter.cpp:void (anonymous namespace)::ELFObjectWriter::write<unsigned int>(unsigned int)
Unexecuted instantiation: ELFObjectWriter.cpp:void (anonymous namespace)::ELFObjectWriter::write<unsigned long>(unsigned long)
Unexecuted instantiation: ELFObjectWriter.cpp:void (anonymous namespace)::ELFObjectWriter::write<unsigned char>(unsigned char)
167
168
    void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
169
                     ELFSymbolData &MSD, const MCAsmLayout &Layout);
170
171
    // Start and end offset of each section
172
    typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>
173
        SectionOffsetsTy;
174
175
    bool shouldRelocateWithSymbol(const MCAssembler &Asm,
176
                                  const MCSymbolRefExpr *RefA,
177
                                  const MCSymbol *Sym, uint64_t C,
178
                                  unsigned Type) const;
179
180
    void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
181
                          const MCFragment *Fragment, const MCFixup &Fixup,
182
                          MCValue Target, bool &IsPCRel,
183
                          uint64_t &FixedValue) override;
184
185
    // Map from a signature symbol to the group section index
186
    typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy;
187
188
    /// Compute the symbol table data
189
    ///
190
    /// \param Asm - The assembler.
191
    /// \param SectionIndexMap - Maps a section to its index.
192
    /// \param RevGroupMap - Maps a signature symbol to the group section.
193
    void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
194
                            const SectionIndexMapTy &SectionIndexMap,
195
                            const RevGroupMapTy &RevGroupMap,
196
                            SectionOffsetsTy &SectionOffsets);
197
198
    MCSectionELF *createRelocationSection(MCContext &Ctx,
199
                                          const MCSectionELF &Sec);
200
201
    const MCSectionELF *createStringTable(MCContext &Ctx);
202
203
    void executePostLayoutBinding(MCAssembler &Asm,
204
                                  const MCAsmLayout &Layout) override;
205
206
    void writeSectionHeader(const MCAsmLayout &Layout,
207
                            const SectionIndexMapTy &SectionIndexMap,
208
                            const SectionOffsetsTy &SectionOffsets);
209
210
    void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
211
                          const MCAsmLayout &Layout);
212
213
    void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
214
                          uint64_t Address, uint64_t Offset, uint64_t Size,
215
                          uint32_t Link, uint32_t Info, uint64_t Alignment,
216
                          uint64_t EntrySize);
217
218
    void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
219
220
    bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
221
                                                const MCSymbol &SymA,
222
                                                const MCFragment &FB,
223
                                                bool InSet,
224
                                                bool IsPCRel) const override;
225
226
    bool isWeak(const MCSymbol &Sym) const override;
227
228
    void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
229
    void writeSection(const SectionIndexMapTy &SectionIndexMap,
230
                      uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
231
                      const MCSectionELF &Section);
232
  };
233
}
234
235
53.2k
void ELFObjectWriter::align(unsigned Alignment) {
236
53.2k
  uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment);
237
53.2k
  WriteZeros(Padding);
238
53.2k
}
239
240
103k
unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
241
103k
  SectionTable.push_back(Sec);
242
103k
  StrTabBuilder.add(Sec->getSectionName());
243
103k
  return SectionTable.size();
244
103k
}
245
246
0
void SymbolTableWriter::createSymtabShndx() {
247
0
  if (!ShndxIndexes.empty())
248
0
    return;
249
0
250
0
  ShndxIndexes.resize(NumWritten);
251
0
}
252
253
0
template <typename T> void SymbolTableWriter::write(T Value) {
254
0
  EWriter.write(Value);
255
0
}
Unexecuted instantiation: ELFObjectWriter.cpp:void (anonymous namespace)::SymbolTableWriter::write<unsigned int>(unsigned int)
Unexecuted instantiation: ELFObjectWriter.cpp:void (anonymous namespace)::SymbolTableWriter::write<unsigned char>(unsigned char)
Unexecuted instantiation: ELFObjectWriter.cpp:void (anonymous namespace)::SymbolTableWriter::write<unsigned short>(unsigned short)
Unexecuted instantiation: ELFObjectWriter.cpp:void (anonymous namespace)::SymbolTableWriter::write<unsigned long>(unsigned long)
256
257
SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
258
    : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
259
260
void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
261
                                    uint64_t size, uint8_t other,
262
0
                                    uint32_t shndx, bool Reserved) {
263
0
  bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
264
0
265
0
  if (LargeIndex)
266
0
    createSymtabShndx();
267
0
268
0
  if (!ShndxIndexes.empty()) {
269
0
    if (LargeIndex)
270
0
      ShndxIndexes.push_back(shndx);
271
0
    else
272
0
      ShndxIndexes.push_back(0);
273
0
  }
274
0
275
0
  uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
276
0
277
0
  if (Is64Bit) {
278
0
    write(name);  // st_name
279
0
    write(info);  // st_info
280
0
    write(other); // st_other
281
0
    write(Index); // st_shndx
282
0
    write(value); // st_value
283
0
    write(size);  // st_size
284
0
  } else {
285
0
    write(name);            // st_name
286
0
    write(uint32_t(value)); // st_value
287
0
    write(uint32_t(size));  // st_size
288
0
    write(info);            // st_info
289
0
    write(other);           // st_other
290
0
    write(Index);           // st_shndx
291
0
  }
292
0
293
0
  ++NumWritten;
294
0
}
295
296
ELFObjectWriter::~ELFObjectWriter()
297
129k
{}
298
299
uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
300
0
                                      const MCAsmLayout &Layout) {
301
0
  if (Sym.isCommon() && Sym.isExternal())
302
0
    return Sym.getCommonAlignment();
303
0
304
0
  uint64_t Res;
305
0
  bool valid;
306
0
  if (!Layout.getSymbolOffset(Sym, Res, valid))
307
0
    return 0;
308
0
309
0
  if (Layout.getAssembler().isThumbFunc(&Sym))
310
0
    Res |= 1;
311
0
312
0
  return Res;
313
0
}
314
315
void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
316
56.5k
                                               const MCAsmLayout &Layout) {
317
  // The presence of symbol versions causes undefined symbols and
318
  // versions declared with @@@ to be renamed.
319
320
667k
  for (const MCSymbol &A : Asm.symbols()) {
321
667k
    const auto &Alias = cast<MCSymbolELF>(A);
322
    // Not an alias.
323
667k
    if (!Alias.isVariable())
324
654k
      continue;
325
12.8k
    auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
326
12.8k
    if (!Ref)
327
5.65k
      continue;
328
7.15k
    const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
329
330
7.15k
    StringRef AliasName = Alias.getName();
331
7.15k
    size_t Pos = AliasName.find('@');
332
7.15k
    if (Pos == StringRef::npos)
333
3.24k
      continue;
334
335
    // Aliases defined with .symvar copy the binding from the symbol they alias.
336
    // This is the first place we are able to copy this information.
337
3.90k
    Alias.setExternal(Symbol.isExternal());
338
3.90k
    Alias.setBinding(Symbol.getBinding());
339
340
3.90k
    StringRef Rest = AliasName.substr(Pos);
341
3.90k
    if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
342
630
      continue;
343
344
    // FIXME: produce a better error message.
345
3.27k
    if (Symbol.isUndefined() && Rest.startswith("@@") &&
346
3.27k
        !Rest.startswith("@@@"))
347
0
      report_fatal_error("A @@ version cannot be undefined");
348
349
3.27k
    Renames.insert(std::make_pair(&Symbol, &Alias));
350
3.27k
  }
351
56.5k
}
352
353
0
static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
354
0
  uint8_t Type = newType;
355
0
356
0
  // Propagation rules:
357
0
  // IFUNC > FUNC > OBJECT > NOTYPE
358
0
  // TLS_OBJECT > OBJECT > NOTYPE
359
0
  //
360
0
  // dont let the new type degrade the old type
361
0
  switch (origType) {
362
0
  default:
363
0
    break;
364
0
  case ELF::STT_GNU_IFUNC:
365
0
    if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
366
0
        Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
367
0
      Type = ELF::STT_GNU_IFUNC;
368
0
    break;
369
0
  case ELF::STT_FUNC:
370
0
    if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
371
0
        Type == ELF::STT_TLS)
372
0
      Type = ELF::STT_FUNC;
373
0
    break;
374
0
  case ELF::STT_OBJECT:
375
0
    if (Type == ELF::STT_NOTYPE)
376
0
      Type = ELF::STT_OBJECT;
377
0
    break;
378
0
  case ELF::STT_TLS:
379
0
    if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
380
0
        Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
381
0
      Type = ELF::STT_TLS;
382
0
    break;
383
0
  }
384
0
385
0
  return Type;
386
0
}
387
388
void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
389
                                  uint32_t StringIndex, ELFSymbolData &MSD,
390
0
                                  const MCAsmLayout &Layout) {
391
0
  const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
392
0
  const MCSymbolELF *Base =
393
0
      cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
394
0
395
0
  // This has to be in sync with when computeSymbolTable uses SHN_ABS or
396
0
  // SHN_COMMON.
397
0
  bool IsReserved = !Base || Symbol.isCommon();
398
0
399
0
  // Binding and Type share the same byte as upper and lower nibbles
400
0
  uint8_t Binding = Symbol.getBinding();
401
0
  uint8_t Type = Symbol.getType();
402
0
  if (Base) {
403
0
    Type = mergeTypeForSet(Type, Base->getType());
404
0
  }
405
0
  uint8_t Info = (Binding << 4) | Type;
406
0
407
0
  // Other and Visibility share the same byte with Visibility using the lower
408
0
  // 2 bits
409
0
  uint8_t Visibility = Symbol.getVisibility();
410
0
  uint8_t Other = Symbol.getOther() | Visibility;
411
0
412
0
  uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
413
0
  uint64_t Size = 0;
414
0
415
0
  const MCExpr *ESize = MSD.Symbol->getSize();
416
0
  if (!ESize && Base)
417
0
    ESize = Base->getSize();
418
0
419
0
  if (ESize) {
420
0
    int64_t Res;
421
0
    if (!ESize->evaluateKnownAbsolute(Res, Layout))
422
0
      report_fatal_error("Size expression must be absolute.");
423
0
    Size = Res;
424
0
  }
425
0
426
0
  // Write out the symbol table entry
427
0
  Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
428
0
                     IsReserved);
429
0
}
430
431
// It is always valid to create a relocation with a symbol. It is preferable
432
// to use a relocation with a section if that is possible. Using the section
433
// allows us to omit some local symbols from the symbol table.
434
bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
435
                                               const MCSymbolRefExpr *RefA,
436
                                               const MCSymbol *S, uint64_t C,
437
79.7k
                                               unsigned Type) const {
438
79.7k
  const auto *Sym = cast_or_null<MCSymbolELF>(S);
439
  // A PCRel relocation to an absolute value has no symbol (or section). We
440
  // represent that with a relocation to a null section.
441
79.7k
  if (!RefA)
442
9.47k
    return false;
443
444
70.2k
  MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
445
70.2k
  switch (Kind) {
446
70.1k
  default:
447
70.1k
    break;
448
  // The .odp creation emits a relocation against the symbol ".TOC." which
449
  // create a R_PPC64_TOC relocation. However the relocation symbol name
450
  // in final object creation should be NULL, since the symbol does not
451
  // really exist, it is just the reference to TOC base for the current
452
  // object file. Since the symbol is undefined, returning false results
453
  // in a relocation with a null section which is the desired result.
454
70.1k
  case MCSymbolRefExpr::VK_PPC_TOCBASE:
455
0
    return false;
456
457
  // These VariantKind cause the relocation to refer to something other than
458
  // the symbol itself, like a linker generated table. Since the address of
459
  // symbol is not relevant, we cannot replace the symbol with the
460
  // section and patch the difference in the addend.
461
108
  case MCSymbolRefExpr::VK_GOT:
462
108
  case MCSymbolRefExpr::VK_PLT:
463
108
  case MCSymbolRefExpr::VK_GOTPCREL:
464
108
  case MCSymbolRefExpr::VK_Mips_GOT:
465
108
  case MCSymbolRefExpr::VK_PPC_GOT_LO:
466
108
  case MCSymbolRefExpr::VK_PPC_GOT_HI:
467
108
  case MCSymbolRefExpr::VK_PPC_GOT_HA:
468
108
    return true;
469
70.2k
  }
470
471
  // An undefined symbol is not in any section, so the relocation has to point
472
  // to the symbol itself.
473
70.1k
  assert(Sym && "Expected a symbol");
474
70.1k
  if (Sym->isUndefined())
475
0
    return true;
476
477
70.1k
  unsigned Binding = Sym->getBinding();
478
70.1k
  switch(Binding) {
479
0
  default:
480
0
    llvm_unreachable("Invalid Binding");
481
70.1k
  case ELF::STB_LOCAL:
482
70.1k
    break;
483
0
  case ELF::STB_WEAK:
484
    // If the symbol is weak, it might be overridden by a symbol in another
485
    // file. The relocation has to point to the symbol so that the linker
486
    // can update it.
487
0
    return true;
488
0
  case ELF::STB_GLOBAL:
489
    // Global ELF symbols can be preempted by the dynamic linker. The relocation
490
    // has to point to the symbol for a reason analogous to the STB_WEAK case.
491
0
    return true;
492
70.1k
  }
493
494
  // If a relocation points to a mergeable section, we have to be careful.
495
  // If the offset is zero, a relocation with the section will encode the
496
  // same information. With a non-zero offset, the situation is different.
497
  // For example, a relocation can point 42 bytes past the end of a string.
498
  // If we change such a relocation to use the section, the linker would think
499
  // that it pointed to another string and subtracting 42 at runtime will
500
  // produce the wrong value.
501
70.1k
  auto &Sec = cast<MCSectionELF>(Sym->getSection());
502
70.1k
  unsigned Flags = Sec.getFlags();
503
70.1k
  if (Flags & ELF::SHF_MERGE) {
504
0
    if (C != 0)
505
0
      return true;
506
507
    // It looks like gold has a bug (http://sourceware.org/PR16794) and can
508
    // only handle section relocations to mergeable sections if using RELA.
509
0
    if (!hasRelocationAddend())
510
0
      return true;
511
0
  }
512
513
  // Most TLS relocations use a got, so they need the symbol. Even those that
514
  // are just an offset (@tpoff), require a symbol in gold versions before
515
  // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
516
  // http://sourceware.org/PR16773.
517
70.1k
  if (Flags & ELF::SHF_TLS)
518
0
    return true;
519
520
  // If the symbol is a thumb function the final relocation must set the lowest
521
  // bit. With a symbol that is done by just having the symbol have that bit
522
  // set, so we would lose the bit if we relocated with the section.
523
  // FIXME: We could use the section but add the bit to the relocation value.
524
70.1k
  if (Asm.isThumbFunc(Sym))
525
0
    return true;
526
527
70.1k
  if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
528
10.0k
    return true;
529
60.1k
  return false;
530
70.1k
}
531
532
// True if the assembler knows nothing about the final value of the symbol.
533
// This doesn't cover the comdat issues, since in those cases the assembler
534
// can at least know that all symbols in the section will move together.
535
22.7k
static bool isWeak(const MCSymbolELF &Sym) {
536
22.7k
  if (Sym.getType() == ELF::STT_GNU_IFUNC)
537
0
    return true;
538
539
22.7k
  switch (Sym.getBinding()) {
540
0
  default:
541
0
    llvm_unreachable("Unknown binding");
542
22.7k
  case ELF::STB_LOCAL:
543
22.7k
    return false;
544
0
  case ELF::STB_GLOBAL:
545
0
    return false;
546
0
  case ELF::STB_WEAK:
547
0
  case ELF::STB_GNU_UNIQUE:
548
0
    return true;
549
22.7k
  }
550
22.7k
}
551
552
void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
553
                                       const MCAsmLayout &Layout,
554
                                       const MCFragment *Fragment,
555
                                       const MCFixup &Fixup, MCValue Target,
556
                                       bool &IsPCRel, uint64_t &FixedValue)
557
140k
{
558
140k
  const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
559
140k
  uint64_t C = Target.getConstant();
560
140k
  bool valid;
561
140k
  uint64_t FixupOffset = Layout.getFragmentOffset(Fragment, valid) + Fixup.getOffset();
562
140k
  MCContext &Ctx = Asm.getContext();
563
564
140k
  if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
565
68.3k
    assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
566
68.3k
           "Should not have constructed this");
567
568
    // Let A, B and C being the components of Target and R be the location of
569
    // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
570
    // If it is pcrel, we want to compute (A - B + C - R).
571
572
    // In general, ELF has no relocations for -B. It can only represent (A + C)
573
    // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
574
    // replace B to implement it: (A - R - K + C)
575
68.3k
    if (IsPCRel) {
576
7.55k
      Ctx.reportError(
577
7.55k
          Fixup.getLoc(),
578
7.55k
          "No relocation available to represent this relative expression");
579
7.55k
      return;
580
7.55k
    }
581
582
60.8k
    const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
583
584
60.8k
    if (SymB.isUndefined()) {
585
53.6k
      Ctx.reportError(Fixup.getLoc(),
586
53.6k
                      Twine("symbol '") + SymB.getName() +
587
53.6k
                          "' can not be undefined in a subtraction expression");
588
53.6k
      return;
589
53.6k
    }
590
591
7.16k
    assert(!SymB.isAbsolute() && "Should have been folded");
592
7.16k
    const MCSection &SecB = SymB.getSection();
593
7.16k
    if (&SecB != &FixupSection) {
594
0
      Ctx.reportError(Fixup.getLoc(),
595
0
                      "Cannot represent a difference across sections");
596
0
      return;
597
0
    }
598
599
7.16k
    bool valid;
600
7.16k
    uint64_t SymBOffset = Layout.getSymbolOffset(SymB, valid);
601
7.16k
    uint64_t K = SymBOffset - FixupOffset;
602
7.16k
    IsPCRel = true;
603
7.16k
    C -= K;
604
7.16k
  }
605
606
  // We either rejected the fixup or folded B into C at this point.
607
79.7k
  const MCSymbolRefExpr *RefA = Target.getSymA();
608
79.7k
  const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
609
610
79.7k
  bool ViaWeakRef = false;
611
79.7k
  if (SymA && SymA->isVariable()) {
612
2.36k
    const MCExpr *Expr = SymA->getVariableValue();
613
2.36k
    if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
614
1.59k
      if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
615
0
        SymA = cast<MCSymbolELF>(&Inner->getSymbol());
616
0
        ViaWeakRef = true;
617
0
      }
618
1.59k
    }
619
2.36k
  }
620
621
79.7k
  unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel);
622
79.7k
  bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
623
79.7k
  if (!RelocateWithSymbol && SymA && !SymA->isUndefined()) {
624
60.1k
    bool valid;
625
60.1k
    C += Layout.getSymbolOffset(*SymA, valid);
626
60.1k
  }
627
628
79.7k
  uint64_t Addend = 0;
629
79.7k
  if (hasRelocationAddend()) {
630
0
    Addend = C;
631
0
    C = 0;
632
0
  }
633
634
79.7k
  FixedValue = C;
635
636
79.7k
  if (!RelocateWithSymbol) {
637
69.6k
    const MCSection *SecA =
638
69.6k
        (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
639
69.6k
    auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
640
69.6k
    const auto *SectionSymbol =
641
69.6k
        ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
642
69.6k
    if (SectionSymbol)
643
60.1k
      SectionSymbol->setUsedInReloc();
644
69.6k
    ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend);
645
69.6k
    Relocations[&FixupSection].push_back(Rec);
646
69.6k
    return;
647
69.6k
  }
648
649
10.1k
  if (SymA) {
650
10.1k
    if (const MCSymbolELF *R = Renames.lookup(SymA))
651
3
      SymA = R;
652
653
10.1k
    if (ViaWeakRef)
654
0
      SymA->setIsWeakrefUsedInReloc();
655
10.1k
    else
656
10.1k
      SymA->setUsedInReloc();
657
10.1k
  }
658
10.1k
  ELFRelocationEntry Rec(FixupOffset, SymA, Type, Addend);
659
10.1k
  Relocations[&FixupSection].push_back(Rec);
660
10.1k
  return;
661
79.7k
}
662
663
bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
664
                                 const MCSymbolELF &Symbol, bool Used,
665
0
                                 bool Renamed) {
666
0
  if (Symbol.isVariable()) {
667
0
    const MCExpr *Expr = Symbol.getVariableValue();
668
0
    if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
669
0
      if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
670
0
        return false;
671
0
    }
672
0
  }
673
0
674
0
  if (Used)
675
0
    return true;
676
0
677
0
  if (Renamed)
678
0
    return false;
679
0
680
0
  if (Symbol.isVariable() && Symbol.isUndefined()) {
681
0
    // FIXME: this is here just to diagnose the case of a var = commmon_sym.
682
0
    Layout.getBaseSymbol(Symbol);
683
0
    return false;
684
0
  }
685
0
686
0
  if (Symbol.isUndefined() && !Symbol.isBindingSet())
687
0
    return false;
688
0
689
0
  if (Symbol.isTemporary())
690
0
    return false;
691
0
692
0
  if (Symbol.getType() == ELF::STT_SECTION)
693
0
    return false;
694
0
695
0
  return true;
696
0
}
697
698
void ELFObjectWriter::computeSymbolTable(
699
    MCAssembler &Asm, const MCAsmLayout &Layout,
700
    const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
701
0
    SectionOffsetsTy &SectionOffsets) {
702
0
  MCContext &Ctx = Asm.getContext();
703
0
  SymbolTableWriter Writer(*this, is64Bit());
704
0
705
0
  // Symbol table
706
0
  unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
707
0
  MCSectionELF *SymtabSection =
708
0
      Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
709
0
  SymtabSection->setAlignment(is64Bit() ? 8 : 4);
710
0
  SymbolTableIndex = addToSectionTable(SymtabSection);
711
0
712
0
  align(SymtabSection->getAlignment());
713
0
  uint64_t SecStart = getStream().tell();
714
0
715
0
  // The first entry is the undefined symbol entry.
716
0
  Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
717
0
718
0
  std::vector<ELFSymbolData> LocalSymbolData;
719
0
  std::vector<ELFSymbolData> ExternalSymbolData;
720
0
721
0
  // Add the data for the symbols.
722
0
  bool HasLargeSectionIndex = false;
723
0
  for (const MCSymbol &S : Asm.symbols()) {
724
0
    const auto &Symbol = cast<MCSymbolELF>(S);
725
0
    bool Used = Symbol.isUsedInReloc();
726
0
    bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
727
0
    bool isSignature = Symbol.isSignature();
728
0
729
0
    if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
730
0
                    Renames.count(&Symbol)))
731
0
      continue;
732
0
733
0
    if (Symbol.isTemporary() && Symbol.isUndefined()) {
734
0
      Ctx.reportError(SMLoc(), "Undefined temporary symbol");
735
0
      continue;
736
0
    }
737
0
738
0
    ELFSymbolData MSD;
739
0
    MSD.Symbol = cast<MCSymbolELF>(&Symbol);
740
0
741
0
    bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
742
0
    assert(Local || !Symbol.isTemporary());
743
0
744
0
    if (Symbol.isAbsolute()) {
745
0
      MSD.SectionIndex = ELF::SHN_ABS;
746
0
    } else if (Symbol.isCommon()) {
747
0
      assert(!Local);
748
0
      MSD.SectionIndex = ELF::SHN_COMMON;
749
0
    } else if (Symbol.isUndefined()) {
750
0
      if (isSignature && !Used) {
751
0
        MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
752
0
        if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
753
0
          HasLargeSectionIndex = true;
754
0
      } else {
755
0
        MSD.SectionIndex = ELF::SHN_UNDEF;
756
0
      }
757
0
    } else {
758
0
      const MCSectionELF &Section =
759
0
          static_cast<const MCSectionELF &>(Symbol.getSection());
760
0
      MSD.SectionIndex = SectionIndexMap.lookup(&Section);
761
0
      assert(MSD.SectionIndex && "Invalid section index!");
762
0
      if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
763
0
        HasLargeSectionIndex = true;
764
0
    }
765
0
766
0
    // The @@@ in symbol version is replaced with @ in undefined symbols and @@
767
0
    // in defined ones.
768
0
    //
769
0
    // FIXME: All name handling should be done before we get to the writer,
770
0
    // including dealing with GNU-style version suffixes.  Fixing this isn't
771
0
    // trivial.
772
0
    //
773
0
    // We thus have to be careful to not perform the symbol version replacement
774
0
    // blindly:
775
0
    //
776
0
    // The ELF format is used on Windows by the MCJIT engine.  Thus, on
777
0
    // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
778
0
    // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
779
0
    // C++ name mangling can legally have "@@@" as a sub-string. In that case,
780
0
    // the EFLObjectWriter should not interpret the "@@@" sub-string as
781
0
    // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
782
0
    // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
783
0
    // "__imp_?" or "__imp_@?".
784
0
    //
785
0
    // It would have been interesting to perform the MS mangling prefix check
786
0
    // only when the target triple is of the form *-pc-windows-elf. But, it
787
0
    // seems that this information is not easily accessible from the
788
0
    // ELFObjectWriter.
789
0
    StringRef Name = Symbol.getName();
790
0
    SmallString<32> Buf;
791
0
    if (!Name.startswith("?") && !Name.startswith("@?") &&
792
0
        !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
793
0
      // This symbol isn't following the MSVC C++ name mangling convention. We
794
0
      // can thus safely interpret the @@@ in symbol names as specifying symbol
795
0
      // versioning.
796
0
      size_t Pos = Name.find("@@@");
797
0
      if (Pos != StringRef::npos) {
798
0
        Buf += Name.substr(0, Pos);
799
0
        unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
800
0
        Buf += Name.substr(Pos + Skip);
801
0
        Name = VersionSymSaver.save(Buf.c_str());
802
0
      }
803
0
    }
804
0
805
0
    // Sections have their own string table
806
0
    if (Symbol.getType() != ELF::STT_SECTION) {
807
0
      MSD.Name = Name;
808
0
      StrTabBuilder.add(Name);
809
0
    }
810
0
811
0
    if (Local)
812
0
      LocalSymbolData.push_back(MSD);
813
0
    else
814
0
      ExternalSymbolData.push_back(MSD);
815
0
  }
816
0
817
0
  // This holds the .symtab_shndx section index.
818
0
  unsigned SymtabShndxSectionIndex = 0;
819
0
820
0
  if (HasLargeSectionIndex) {
821
0
    MCSectionELF *SymtabShndxSection =
822
0
        Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
823
0
    SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
824
0
    SymtabShndxSection->setAlignment(4);
825
0
  }
826
0
827
0
  ArrayRef<std::string> FileNames = Asm.getFileNames();
828
0
  for (const std::string &Name : FileNames)
829
0
    StrTabBuilder.add(Name);
830
0
831
0
  StrTabBuilder.finalize();
832
0
833
0
  for (const std::string &Name : FileNames)
834
0
    Writer.writeSymbol(StrTabBuilder.getOffset(Name),
835
0
                       ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
836
0
                       ELF::SHN_ABS, true);
837
0
838
0
  // Symbols are required to be in lexicographic order.
839
0
  array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
840
0
  array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
841
0
842
0
  // Set the symbol indices. Local symbols must come before all other
843
0
  // symbols with non-local bindings.
844
0
  unsigned Index = FileNames.size() + 1;
845
0
846
0
  for (ELFSymbolData &MSD : LocalSymbolData) {
847
0
    unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
848
0
                               ? 0
849
0
                               : StrTabBuilder.getOffset(MSD.Name);
850
0
    MSD.Symbol->setIndex(Index++);
851
0
    writeSymbol(Writer, StringIndex, MSD, Layout);
852
0
  }
853
0
854
0
  // Write the symbol table entries.
855
0
  LastLocalSymbolIndex = Index;
856
0
857
0
  for (ELFSymbolData &MSD : ExternalSymbolData) {
858
0
    unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
859
0
    MSD.Symbol->setIndex(Index++);
860
0
    writeSymbol(Writer, StringIndex, MSD, Layout);
861
0
    assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
862
0
  }
863
0
864
0
  uint64_t SecEnd = getStream().tell();
865
0
  SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
866
0
867
0
  ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
868
0
  if (ShndxIndexes.empty()) {
869
0
    assert(SymtabShndxSectionIndex == 0);
870
0
    return;
871
0
  }
872
0
  assert(SymtabShndxSectionIndex != 0);
873
0
874
0
  SecStart = getStream().tell();
875
0
  const MCSectionELF *SymtabShndxSection =
876
0
      SectionTable[SymtabShndxSectionIndex - 1];
877
0
  for (uint32_t Index : ShndxIndexes)
878
0
    write(Index);
879
0
  SecEnd = getStream().tell();
880
0
  SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
881
0
}
882
883
MCSectionELF *
884
ELFObjectWriter::createRelocationSection(MCContext &Ctx,
885
50.6k
                                         const MCSectionELF &Sec) {
886
50.6k
  if (Relocations[&Sec].empty())
887
49.3k
    return nullptr;
888
889
1.33k
  const StringRef SectionName = Sec.getSectionName();
890
1.33k
  std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
891
1.33k
  RelaSectionName += SectionName;
892
893
1.33k
  unsigned EntrySize;
894
1.33k
  if (hasRelocationAddend())
895
0
    EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
896
1.33k
  else
897
1.33k
    EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
898
899
1.33k
  unsigned Flags = 0;
900
1.33k
  if (Sec.getFlags() & ELF::SHF_GROUP)
901
0
    Flags = ELF::SHF_GROUP;
902
903
1.33k
  MCSectionELF *RelaSection = Ctx.createELFRelSection(
904
1.33k
      RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
905
1.33k
      Flags, EntrySize, Sec.getGroup(), &Sec);
906
1.33k
  RelaSection->setAlignment(is64Bit() ? 8 : 4);
907
1.33k
  return RelaSection;
908
50.6k
}
909
910
void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
911
53.2k
                                       const MCAsmLayout &Layout) {
912
53.2k
  MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
913
53.2k
  StringRef SectionName = Section.getSectionName();
914
915
  // Compressing debug_frame requires handling alignment fragments which is
916
  // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
917
  // for writing to arbitrary buffers) for little benefit.
918
53.2k
  if (!Asm.getContext().getAsmInfo()->compressDebugSections() ||
919
53.2k
      !SectionName.startswith(".debug_") || SectionName == ".debug_frame") {
920
53.2k
    Asm.writeSectionData(&Section, Layout);
921
53.2k
    return;
922
53.2k
  }
923
924
0
  SmallVector<char, 128> UncompressedData;
925
0
  raw_svector_ostream VecOS(UncompressedData);
926
0
  raw_pwrite_stream &OldStream = getStream();
927
0
  setStream(VecOS);
928
0
  Asm.writeSectionData(&Section, Layout);
929
0
  setStream(OldStream);
930
931
#if 0
932
  SmallVector<char, 128> CompressedContents;
933
  zlib::Status Success = zlib::compress(
934
      StringRef(UncompressedData.data(), UncompressedData.size()),
935
      CompressedContents);
936
  if (Success != zlib::StatusOK) {
937
    getStream() << UncompressedData;
938
    return;
939
  }
940
941
  if (!prependCompressionHeader(UncompressedData.size(), CompressedContents)) {
942
    getStream() << UncompressedData;
943
    return;
944
  }
945
  Asm.getContext().renameELFSection(&Section,
946
                                    (".z" + SectionName.drop_front(1)).str());
947
  getStream() << CompressedContents;
948
#endif
949
0
}
950
951
void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
952
                                       uint64_t Flags, uint64_t Address,
953
                                       uint64_t Offset, uint64_t Size,
954
                                       uint32_t Link, uint32_t Info,
955
                                       uint64_t Alignment,
956
0
                                       uint64_t EntrySize) {
957
0
  write32(Name);        // sh_name: index into string table
958
0
  write32(Type);        // sh_type
959
0
  WriteWord(Flags);     // sh_flags
960
0
  WriteWord(Address);   // sh_addr
961
0
  WriteWord(Offset);    // sh_offset
962
0
  WriteWord(Size);      // sh_size
963
0
  write32(Link);        // sh_link
964
0
  write32(Info);        // sh_info
965
0
  WriteWord(Alignment); // sh_addralign
966
0
  WriteWord(EntrySize); // sh_entsize
967
0
}
968
969
void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
970
0
                                       const MCSectionELF &Sec) {
971
0
  std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
972
0
973
0
  // We record relocations by pushing to the end of a vector. Reverse the vector
974
0
  // to get the relocations in the order they were created.
975
0
  // In most cases that is not important, but it can be for special sections
976
0
  // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
977
0
  std::reverse(Relocs.begin(), Relocs.end());
978
0
979
0
  // Sort the relocation entries. MIPS needs this.
980
0
  TargetObjectWriter->sortRelocs(Asm, Relocs);
981
0
982
0
  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
983
0
    const ELFRelocationEntry &Entry = Relocs[e - i - 1];
984
0
    unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
985
0
986
0
    if (is64Bit()) {
987
0
      write(Entry.Offset);
988
0
      if (TargetObjectWriter->isN64()) {
989
0
        write(uint32_t(Index));
990
0
991
0
        write(TargetObjectWriter->getRSsym(Entry.Type));
992
0
        write(TargetObjectWriter->getRType3(Entry.Type));
993
0
        write(TargetObjectWriter->getRType2(Entry.Type));
994
0
        write(TargetObjectWriter->getRType(Entry.Type));
995
0
      } else {
996
0
        struct ELF::Elf64_Rela ERE64;
997
0
        ERE64.setSymbolAndType(Index, Entry.Type);
998
0
        write(ERE64.r_info);
999
0
      }
1000
0
      if (hasRelocationAddend())
1001
0
        write(Entry.Addend);
1002
0
    } else {
1003
0
      write(uint32_t(Entry.Offset));
1004
0
1005
0
      struct ELF::Elf32_Rela ERE32;
1006
0
      ERE32.setSymbolAndType(Index, Entry.Type);
1007
0
      write(ERE32.r_info);
1008
0
1009
0
      if (hasRelocationAddend())
1010
0
        write(uint32_t(Entry.Addend));
1011
0
    }
1012
0
  }
1013
0
}
1014
1015
0
const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
1016
0
  const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
1017
0
  getStream() << StrTabBuilder.data();
1018
0
  return StrtabSection;
1019
0
}
1020
1021
void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
1022
                                   uint32_t GroupSymbolIndex, uint64_t Offset,
1023
0
                                   uint64_t Size, const MCSectionELF &Section) {
1024
0
  uint64_t sh_link = 0;
1025
0
  uint64_t sh_info = 0;
1026
0
1027
0
  switch(Section.getType()) {
1028
0
  default:
1029
0
    // Nothing to do.
1030
0
    break;
1031
0
1032
0
  case ELF::SHT_DYNAMIC:
1033
0
    llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1034
0
1035
0
  case ELF::SHT_REL:
1036
0
  case ELF::SHT_RELA: {
1037
0
    sh_link = SymbolTableIndex;
1038
0
    assert(sh_link && ".symtab not found");
1039
0
    const MCSectionELF *InfoSection = Section.getAssociatedSection();
1040
0
    sh_info = SectionIndexMap.lookup(InfoSection);
1041
0
    break;
1042
0
  }
1043
0
1044
0
  case ELF::SHT_SYMTAB:
1045
0
  case ELF::SHT_DYNSYM:
1046
0
    sh_link = StringTableIndex;
1047
0
    sh_info = LastLocalSymbolIndex;
1048
0
    break;
1049
0
1050
0
  case ELF::SHT_SYMTAB_SHNDX:
1051
0
    sh_link = SymbolTableIndex;
1052
0
    break;
1053
0
1054
0
  case ELF::SHT_GROUP:
1055
0
    sh_link = SymbolTableIndex;
1056
0
    sh_info = GroupSymbolIndex;
1057
0
    break;
1058
0
  }
1059
0
1060
0
  if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
1061
0
      Section.getType() == ELF::SHT_ARM_EXIDX)
1062
0
    sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
1063
0
1064
0
  WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1065
0
                   Section.getType(), Section.getFlags(), 0, Offset, Size,
1066
0
                   sh_link, sh_info, Section.getAlignment(),
1067
0
                   Section.getEntrySize());
1068
0
}
1069
1070
void ELFObjectWriter::writeSectionHeader(
1071
    const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1072
0
    const SectionOffsetsTy &SectionOffsets) {
1073
0
  const unsigned NumSections = SectionTable.size();
1074
0
1075
0
  // Null section first.
1076
0
  uint64_t FirstSectionSize =
1077
0
      (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1078
0
  WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1079
0
1080
0
  for (const MCSectionELF *Section : SectionTable) {
1081
0
    uint32_t GroupSymbolIndex;
1082
0
    unsigned Type = Section->getType();
1083
0
    if (Type != ELF::SHT_GROUP)
1084
0
      GroupSymbolIndex = 0;
1085
0
    else
1086
0
      GroupSymbolIndex = Section->getGroup()->getIndex();
1087
0
1088
0
    const std::pair<uint64_t, uint64_t> &Offsets =
1089
0
        SectionOffsets.find(Section)->second;
1090
0
    uint64_t Size;
1091
0
    if (Type == ELF::SHT_NOBITS)
1092
0
      Size = Layout.getSectionAddressSize(Section);
1093
0
    else
1094
0
      Size = Offsets.second - Offsets.first;
1095
0
1096
0
    writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1097
0
                 *Section);
1098
0
  }
1099
0
}
1100
1101
void ELFObjectWriter::writeObject(MCAssembler &Asm,
1102
                                  const MCAsmLayout &Layout)
1103
51.4k
{
1104
51.4k
  MCContext &Ctx = Asm.getContext();
1105
51.4k
  MCSectionELF *StrtabSection =
1106
51.4k
      Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1107
51.4k
  StringTableIndex = addToSectionTable(StrtabSection);
1108
1109
51.4k
  RevGroupMapTy RevGroupMap;
1110
51.4k
  SectionIndexMapTy SectionIndexMap;
1111
1112
51.4k
  std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1113
1114
  // ... then the sections ...
1115
51.4k
  SectionOffsetsTy SectionOffsets;
1116
51.4k
  std::vector<MCSectionELF *> Groups;
1117
51.4k
  std::vector<MCSectionELF *> Relocations;
1118
53.2k
  for (MCSection &Sec : Asm) {
1119
53.2k
    MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1120
1121
53.2k
    align(Section.getAlignment());
1122
1123
    // Remember the offset into the file for this section.
1124
53.2k
    uint64_t SecStart = getStream().tell();
1125
1126
53.2k
    const MCSymbolELF *SignatureSymbol = Section.getGroup();
1127
53.2k
    writeSectionData(Asm, Section, Layout);
1128
53.2k
    if (Asm.getError())
1129
2.54k
        return;
1130
1131
50.6k
    uint64_t SecEnd = getStream().tell();
1132
50.6k
    SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1133
1134
50.6k
    MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1135
1136
50.6k
    if (SignatureSymbol) {
1137
0
      Asm.registerSymbol(*SignatureSymbol);
1138
0
      unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1139
0
      if (!GroupIdx) {
1140
0
        MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1141
0
        GroupIdx = addToSectionTable(Group);
1142
0
        Group->setAlignment(4);
1143
0
        Groups.push_back(Group);
1144
0
      }
1145
0
      std::vector<const MCSectionELF *> &Members =
1146
0
          GroupMembers[SignatureSymbol];
1147
0
      Members.push_back(&Section);
1148
0
      if (RelSection)
1149
0
        Members.push_back(RelSection);
1150
0
    }
1151
1152
50.6k
    SectionIndexMap[&Section] = addToSectionTable(&Section);
1153
50.6k
    if (RelSection) {
1154
1.33k
      SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1155
1.33k
      Relocations.push_back(RelSection);
1156
1.33k
    }
1157
50.6k
  }
1158
1159
48.8k
return;
1160
1161
48.8k
  for (MCSectionELF *Group : Groups) {
1162
0
    align(Group->getAlignment());
1163
1164
    // Remember the offset into the file for this section.
1165
0
    uint64_t SecStart = getStream().tell();
1166
1167
0
    const MCSymbol *SignatureSymbol = Group->getGroup();
1168
0
    assert(SignatureSymbol);
1169
0
    write(uint32_t(ELF::GRP_COMDAT));
1170
0
    for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1171
0
      uint32_t SecIndex = SectionIndexMap.lookup(Member);
1172
0
      write(SecIndex);
1173
0
    }
1174
1175
0
    uint64_t SecEnd = getStream().tell();
1176
0
    SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1177
0
  }
1178
1179
  // Compute symbol table information.
1180
0
  computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
1181
1182
0
  for (MCSectionELF *RelSection : Relocations) {
1183
0
    align(RelSection->getAlignment());
1184
1185
    // Remember the offset into the file for this section.
1186
0
    uint64_t SecStart = getStream().tell();
1187
1188
0
    writeRelocations(Asm, *RelSection->getAssociatedSection()); // qq
1189
1190
0
    uint64_t SecEnd = getStream().tell();
1191
0
    SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1192
0
  }
1193
1194
0
  {
1195
0
    uint64_t SecStart = getStream().tell();
1196
0
    const MCSectionELF *Sec = createStringTable(Ctx);
1197
0
    uint64_t SecEnd = getStream().tell();
1198
0
    SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1199
0
  }
1200
1201
0
  uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1202
0
  align(NaturalAlignment);
1203
1204
0
  const uint64_t SectionHeaderOffset = getStream().tell();
1205
1206
  // ... then the section header table ...
1207
0
  writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1208
1209
0
  uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
1210
0
                             ? (uint16_t)ELF::SHN_UNDEF
1211
0
                             : SectionTable.size() + 1;
1212
0
  if (sys::IsLittleEndianHost != IsLittleEndian)
1213
0
    sys::swapByteOrder(NumSections);
1214
0
  unsigned NumSectionsOffset;
1215
1216
0
  if (is64Bit()) {
1217
0
    uint64_t Val = SectionHeaderOffset;
1218
0
    if (sys::IsLittleEndianHost != IsLittleEndian)
1219
0
      sys::swapByteOrder(Val);
1220
0
    getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1221
0
                       offsetof(ELF::Elf64_Ehdr, e_shoff));
1222
0
    NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1223
0
  } else {
1224
0
    uint32_t Val = SectionHeaderOffset;
1225
0
    if (sys::IsLittleEndianHost != IsLittleEndian)
1226
0
      sys::swapByteOrder(Val);
1227
0
    getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1228
0
                       offsetof(ELF::Elf32_Ehdr, e_shoff));
1229
0
    NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1230
0
  }
1231
0
  getStream().pwrite(reinterpret_cast<char *>(&NumSections),
1232
0
                     sizeof(NumSections), NumSectionsOffset);
1233
0
}
1234
1235
bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1236
    const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1237
143k
    bool InSet, bool IsPCRel) const {
1238
143k
  const auto &SymA = cast<MCSymbolELF>(SA);
1239
143k
  if (IsPCRel) {
1240
22.7k
    assert(!InSet);
1241
22.7k
    if (::isWeak(SymA))
1242
0
      return false;
1243
22.7k
  }
1244
143k
  return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1245
143k
                                                                InSet, IsPCRel);
1246
143k
}
1247
1248
0
bool ELFObjectWriter::isWeak(const MCSymbol &S) const {
1249
0
  const auto &Sym = cast<MCSymbolELF>(S);
1250
0
  if (::isWeak(Sym))
1251
0
    return true;
1252
1253
  // It is invalid to replace a reference to a global in a comdat
1254
  // with a reference to a local since out of comdat references
1255
  // to a local are forbidden.
1256
  // We could try to return false for more cases, like the reference
1257
  // being in the same comdat or Sym being an alias to another global,
1258
  // but it is not clear if it is worth the effort.
1259
0
  if (Sym.getBinding() != ELF::STB_GLOBAL)
1260
0
    return false;
1261
1262
0
  if (!Sym.isInSection())
1263
0
    return false;
1264
1265
0
  const auto &Sec = cast<MCSectionELF>(Sym.getSection());
1266
0
  return Sec.getGroup();
1267
0
}
1268
1269
MCObjectWriter *llvm_ks::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1270
                                            raw_pwrite_stream &OS,
1271
129k
                                            bool IsLittleEndian) {
1272
129k
  return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1273
129k
}