Coverage Report

Created: 2025-07-18 06:59

/src/keystone/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.h
Line
Count
Source (jump to first uncovered line)
1
//===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// Utility functions for Hexagon specific MCInst queries
11
//
12
//===----------------------------------------------------------------------===//
13
14
#ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
15
#define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
16
17
#include "HexagonMCExpr.h"
18
#include "llvm/MC/MCInst.h"
19
20
namespace llvm_ks {
21
class HexagonMCChecker;
22
class MCContext;
23
class MCInstrDesc;
24
class MCInstrInfo;
25
class MCInst;
26
class MCOperand;
27
class MCSubtargetInfo;
28
namespace HexagonII {
29
enum class MemAccessSize;
30
}
31
class DuplexCandidate {
32
public:
33
  unsigned packetIndexI, packetIndexJ, iClass;
34
  DuplexCandidate(unsigned i, unsigned j, unsigned iClass)
35
1
      : packetIndexI(i), packetIndexJ(j), iClass(iClass) {}
36
};
37
namespace HexagonMCInstrInfo {
38
size_t const innerLoopOffset = 0;
39
int64_t const innerLoopMask = 1 << innerLoopOffset;
40
41
size_t const outerLoopOffset = 1;
42
int64_t const outerLoopMask = 1 << outerLoopOffset;
43
44
// do not reorder memory load/stores by default load/stores are re-ordered
45
// and by default loads can be re-ordered
46
size_t const memReorderDisabledOffset = 2;
47
int64_t const memReorderDisabledMask = 1 << memReorderDisabledOffset;
48
49
// allow re-ordering of memory stores by default stores cannot be re-ordered
50
size_t const memStoreReorderEnabledOffset = 3;
51
int64_t const memStoreReorderEnabledMask = 1 << memStoreReorderEnabledOffset;
52
53
size_t const bundleInstructionsOffset = 1;
54
55
void addConstant(MCInst &MI, uint64_t Value, MCContext &Context);
56
void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
57
                      MCInst const &MCI);
58
59
// Returns a iterator range of instructions in this bundle
60
iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);
61
62
// Returns the number of instructions in the bundle
63
size_t bundleSize(MCInst const &MCI);
64
65
// Put the packet in to canonical form, compound, duplex, pad, and shuffle
66
bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
67
                        MCContext &Context, MCInst &MCB,
68
                        HexagonMCChecker *Checker);
69
70
// Clamp off upper 26 bits of extendable operand for emission
71
void clampExtended(MCInstrInfo const &MCII, MCContext &Context, MCInst &MCI);
72
73
MCInst createBundle();
74
75
// Return the extender for instruction at Index or nullptr if none
76
MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
77
void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
78
                    MCInst const &MCI, bool MustExtend);
79
80
// Create a duplex instruction given the two subinsts
81
MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
82
                     MCInst const &inst1);
83
MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst,
84
                      MCOperand const &MO);
85
86
// Convert this instruction in to a duplex subinst
87
MCInst deriveSubInst(MCInst const &Inst);
88
89
// Return the extender for instruction at Index or nullptr if none
90
MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
91
92
// Return memory access size
93
HexagonII::MemAccessSize getAccessSize(MCInstrInfo const &MCII,
94
                                       MCInst const &MCI);
95
96
// Return number of bits in the constant extended operand.
97
unsigned getBitCount(MCInstrInfo const &MCII, MCInst const &MCI);
98
99
// Return constant extended operand number.
100
unsigned short getCExtOpNum(MCInstrInfo const &MCII, MCInst const &MCI);
101
102
MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI);
103
104
// Return which duplex group this instruction belongs to
105
unsigned getDuplexCandidateGroup(MCInst const &MI);
106
107
// Return a list of all possible instruction duplex combinations
108
SmallVector<DuplexCandidate, 8> getDuplexPossibilties(MCInstrInfo const &MCII,
109
                                                      MCInst const &MCB);
110
111
// Return the index of the extendable operand
112
unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI);
113
114
// Return a reference to the extendable operand
115
MCOperand const &getExtendableOperand(MCInstrInfo const &MCII,
116
                                      MCInst const &MCI);
117
118
// Return the implicit alignment of the extendable operand
119
unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI);
120
121
// Return the number of logical bits of the extendable operand
122
unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI);
123
124
// Return the max value that a constant extendable operand can have
125
// without being extended.
126
int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI);
127
128
// Return the min value that a constant extendable operand can have
129
// without being extended.
130
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI);
131
132
// Return instruction name
133
char const *getName(MCInstrInfo const &MCII, MCInst const &MCI);
134
135
// Return the operand index for the new value.
136
unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI);
137
138
// Return the operand that consumes or produces a new value.
139
MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI);
140
unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI);
141
MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII,
142
                                     MCInst const &MCI);
143
144
int getSubTarget(MCInstrInfo const &MCII, MCInst const &MCI);
145
146
// Return the Hexagon ISA class for the insn.
147
unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI);
148
149
/// Return the slots used by the insn.
150
unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
151
                  MCInst const &MCI);
152
153
// Does the packet have an extender for the instruction at Index
154
bool hasExtenderForIndex(MCInst const &MCB, size_t Index);
155
156
bool hasImmExt(MCInst const &MCI);
157
158
// Return whether the instruction is a legal new-value producer.
159
bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
160
bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI);
161
162
// Return the instruction at Index
163
MCInst const &instruction(MCInst const &MCB, size_t Index);
164
165
// Returns whether this MCInst is a wellformed bundle
166
bool isBundle(MCInst const &MCI);
167
168
// Return whether the insn is an actual insn.
169
bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
170
bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI);
171
172
// Return the duplex iclass given the two duplex classes
173
unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);
174
175
int64_t minConstant(MCInst const &MCI, size_t Index);
176
template <unsigned N, unsigned S>
177
0
bool inRange(MCInst const &MCI, size_t Index) {
178
0
  return isShiftedUInt<N, S>(minConstant(MCI, Index));
179
0
}
Unexecuted instantiation: bool llvm_ks::HexagonMCInstrInfo::inRange<5u, 2u>(llvm_ks::MCInst const&, unsigned long)
Unexecuted instantiation: bool llvm_ks::HexagonMCInstrInfo::inRange<4u, 2u>(llvm_ks::MCInst const&, unsigned long)
Unexecuted instantiation: bool llvm_ks::HexagonMCInstrInfo::inRange<3u, 1u>(llvm_ks::MCInst const&, unsigned long)
Unexecuted instantiation: bool llvm_ks::HexagonMCInstrInfo::inRange<5u, 3u>(llvm_ks::MCInst const&, unsigned long)
Unexecuted instantiation: bool llvm_ks::HexagonMCInstrInfo::inRange<6u, 2u>(llvm_ks::MCInst const&, unsigned long)
180
template <unsigned N, unsigned S>
181
0
bool inSRange(MCInst const &MCI, size_t Index) {
182
0
  return isShiftedInt<N, S>(minConstant(MCI, Index));
183
0
}
184
0
template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) {
185
0
  return isUInt<N>(minConstant(MCI, Index));
186
0
}
Unexecuted instantiation: bool llvm_ks::HexagonMCInstrInfo::inRange<5u>(llvm_ks::MCInst const&, unsigned long)
Unexecuted instantiation: bool llvm_ks::HexagonMCInstrInfo::inRange<4u>(llvm_ks::MCInst const&, unsigned long)
Unexecuted instantiation: bool llvm_ks::HexagonMCInstrInfo::inRange<3u>(llvm_ks::MCInst const&, unsigned long)
Unexecuted instantiation: bool llvm_ks::HexagonMCInstrInfo::inRange<1u>(llvm_ks::MCInst const&, unsigned long)
Unexecuted instantiation: bool llvm_ks::HexagonMCInstrInfo::inRange<2u>(llvm_ks::MCInst const&, unsigned long)
187
188
// Return whether the instruction needs to be constant extended.
189
bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
190
191
// Is this double register suitable for use in a duplex subinst
192
bool isDblRegForSubInst(unsigned Reg);
193
194
// Is this a duplex instruction
195
bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
196
197
// Can these instructions be duplexed
198
bool isDuplexPair(MCInst const &MIa, MCInst const &MIb);
199
200
// Can these duplex classes be combine in to a duplex instruction
201
bool isDuplexPairMatch(unsigned Ga, unsigned Gb);
202
203
// Return true if the insn may be extended based on the operand value.
204
bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI);
205
206
// Return whether the instruction must be always extended.
207
bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI);
208
209
/// Return whether it is a floating-point insn.
210
bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI);
211
212
// Returns whether this instruction is an immediate extender
213
bool isImmext(MCInst const &MCI);
214
215
// Returns whether this bundle is an endloop0
216
bool isInnerLoop(MCInst const &MCI);
217
218
// Is this an integer register
219
bool isIntReg(unsigned Reg);
220
221
// Is this register suitable for use in a duplex subinst
222
bool isIntRegForSubInst(unsigned Reg);
223
bool isMemReorderDisabled(MCInst const &MCI);
224
bool isMemStoreReorderEnabled(MCInst const &MCI);
225
226
// Return whether the insn is a new-value consumer.
227
bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
228
229
// Return true if the operand can be constant extended.
230
bool isOperandExtended(MCInstrInfo const &MCII, MCInst const &MCI,
231
                       unsigned short OperandNum);
232
233
// Can these two instructions be duplexed
234
bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa,
235
                         bool ExtendedA, MCInst const &MIb, bool ExtendedB,
236
                         bool bisReversable);
237
238
// Returns whether this bundle is an endloop1
239
bool isOuterLoop(MCInst const &MCI);
240
241
// Return whether this instruction is predicated
242
bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
243
bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI);
244
bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI);
245
246
// Return whether the predicate sense is true
247
bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);
248
249
// Is this a predicate register
250
bool isPredReg(unsigned Reg);
251
252
// Return whether the insn is a prefix.
253
bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI);
254
255
// Return whether the insn is solo, i.e., cannot be in a packet.
256
bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI);
257
258
/// Return whether the insn can be packaged only with A and X-type insns.
259
bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI);
260
261
/// Return whether the insn can be packaged only with an A-type insn in slot #1.
262
bool isSoloAin1(MCInstrInfo const &MCII, MCInst const &MCI);
263
bool isVector(MCInstrInfo const &MCII, MCInst const &MCI);
264
265
// Pad the bundle with nops to satisfy endloop requirements
266
void padEndloop(MCContext &Context, MCInst &MCI);
267
268
bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI);
269
270
// Replace the instructions inside MCB, represented by Candidate
271
void replaceDuplex(MCContext &Context, MCInst &MCB, DuplexCandidate Candidate);
272
273
// Marks a bundle as endloop0
274
void setInnerLoop(MCInst &MCI);
275
void setMemReorderDisabled(MCInst &MCI);
276
void setMemStoreReorderEnabled(MCInst &MCI);
277
278
// Marks a bundle as endloop1
279
void setOuterLoop(MCInst &MCI);
280
281
// Would duplexing this instruction create a requirement to extend
282
bool subInstWouldBeExtended(MCInst const &potentialDuplex);
283
284
// Attempt to find and replace compound pairs
285
void tryCompound(MCInstrInfo const &MCII, MCContext &Context, MCInst &MCI);
286
}
287
}
288
289
#endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H