/src/keystone/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===// |
2 | | // |
3 | | // The LLVM Compiler Infrastructure |
4 | | // |
5 | | // This file is distributed under the University of Illinois Open Source |
6 | | // License. See LICENSE.TXT for details. |
7 | | // |
8 | | //===----------------------------------------------------------------------===// |
9 | | |
10 | | #include "MCTargetDesc/X86BaseInfo.h" |
11 | | #include "MCTargetDesc/X86FixupKinds.h" |
12 | | #include "llvm/ADT/StringSwitch.h" |
13 | | #include "llvm/MC/MCAsmBackend.h" |
14 | | #include "llvm/MC/MCELFObjectWriter.h" |
15 | | #include "llvm/MC/MCExpr.h" |
16 | | #include "llvm/MC/MCFixupKindInfo.h" |
17 | | #include "llvm/MC/MCInst.h" |
18 | | #include "llvm/MC/MCObjectWriter.h" |
19 | | #include "llvm/MC/MCRegisterInfo.h" |
20 | | #include "llvm/MC/MCSectionCOFF.h" |
21 | | #include "llvm/MC/MCSectionELF.h" |
22 | | #include "llvm/MC/MCSectionMachO.h" |
23 | | #include "llvm/Support/ELF.h" |
24 | | #include "llvm/Support/ErrorHandling.h" |
25 | | #include "llvm/Support/MachO.h" |
26 | | #include "llvm/Support/TargetRegistry.h" |
27 | | #include "llvm/Support/raw_ostream.h" |
28 | | |
29 | | #include <keystone/keystone.h> |
30 | | |
31 | | using namespace llvm_ks; |
32 | | |
33 | 11.8k | static unsigned getFixupKindLog2Size(unsigned Kind) { |
34 | 11.8k | switch (Kind) { |
35 | 0 | default: |
36 | 0 | llvm_unreachable("invalid fixup kind!"); |
37 | 2.26k | case FK_PCRel_1: |
38 | 2.26k | case FK_SecRel_1: |
39 | 2.45k | case FK_Data_1: |
40 | 2.45k | return 0; |
41 | 4 | case FK_PCRel_2: |
42 | 4 | case FK_SecRel_2: |
43 | 6.56k | case FK_Data_2: |
44 | 6.56k | return 1; |
45 | 834 | case FK_PCRel_4: |
46 | 857 | case X86::reloc_riprel_4byte: |
47 | 857 | case X86::reloc_riprel_4byte_movq_load: |
48 | 858 | case X86::reloc_signed_4byte: |
49 | 858 | case X86::reloc_global_offset_table: |
50 | 858 | case FK_SecRel_4: |
51 | 2.84k | case FK_Data_4: |
52 | 2.84k | return 2; |
53 | 0 | case FK_PCRel_8: |
54 | 0 | case FK_SecRel_8: |
55 | 9 | case FK_Data_8: |
56 | 9 | case X86::reloc_global_offset_table8: |
57 | 9 | return 3; |
58 | 11.8k | } |
59 | 11.8k | } |
60 | | |
61 | | namespace { |
62 | | |
63 | | class X86ELFObjectWriter : public MCELFObjectTargetWriter { |
64 | | public: |
65 | | X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine, |
66 | | bool HasRelocationAddend, bool foobar) |
67 | 0 | : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {} |
68 | | }; |
69 | | |
70 | | class X86AsmBackend : public MCAsmBackend { |
71 | | const StringRef CPU; |
72 | | bool HasNopl; |
73 | | uint64_t MaxNopLength; |
74 | | public: |
75 | 16.2k | X86AsmBackend(const Target &T, StringRef CPU) : MCAsmBackend(), CPU(CPU) { |
76 | 16.2k | HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" && |
77 | 16.2k | CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" && |
78 | 16.2k | CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" && |
79 | 16.2k | CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" && |
80 | 16.2k | CPU != "c3" && CPU != "c3-2"; |
81 | | // Max length of true long nop instruction is 15 bytes. |
82 | | // Max length of long nop replacement instruction is 7 bytes. |
83 | | // Taking into account SilverMont architecture features max length of nops |
84 | | // is reduced for it to achieve better performance. |
85 | 16.2k | MaxNopLength = (!HasNopl || CPU == "slm") ? 7 : 15; |
86 | 16.2k | } |
87 | | |
88 | 153 | unsigned getNumFixupKinds() const override { |
89 | 153 | return X86::NumTargetFixupKinds; |
90 | 153 | } |
91 | | |
92 | 60.9k | const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override { |
93 | 60.9k | const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = { |
94 | 60.9k | { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel, }, |
95 | 60.9k | { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel,}, |
96 | 60.9k | { "reloc_signed_4byte", 0, 4 * 8, 0}, |
97 | 60.9k | { "reloc_global_offset_table", 0, 4 * 8, 0}, |
98 | 60.9k | { "reloc_global_offset_table8", 0, 8 * 8, 0}, |
99 | 60.9k | }; |
100 | | |
101 | 60.9k | if (Kind < FirstTargetFixupKind) |
102 | 60.7k | return MCAsmBackend::getFixupKindInfo(Kind); |
103 | | |
104 | 153 | assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && |
105 | 153 | "Invalid kind!"); |
106 | 153 | return Infos[Kind - FirstTargetFixupKind]; |
107 | 153 | } |
108 | | |
109 | | void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, |
110 | 11.8k | uint64_t Value, bool IsPCRel, unsigned int &KsError) const override { |
111 | 11.8k | unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind()); |
112 | | |
113 | | //assert(Fixup.getOffset() + Size <= DataSize && |
114 | | // "Invalid fixup offset!"); |
115 | | |
116 | | // Check that uppper bits are either all zeros or all ones. |
117 | | // Specifically ignore overflow/underflow as long as the leakage is |
118 | | // limited to the lower bits. This is to remain compatible with |
119 | | // other assemblers. |
120 | | //assert(isIntN(Size * 8 + 1, Value) && |
121 | | // "Value does not fit in the Fixup field"); |
122 | 11.8k | if (Fixup.getOffset() + Size > DataSize || |
123 | 11.8k | !isIntN(Size * 8 + 1, Value)) { |
124 | 68 | KsError = KS_ERR_ASM_FIXUP_INVALID; |
125 | 68 | return; |
126 | 68 | } |
127 | | |
128 | 38.6k | for (unsigned i = 0; i != Size; ++i) |
129 | 26.8k | Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8)); |
130 | 11.8k | } |
131 | | |
132 | | bool mayNeedRelaxation(const MCInst &Inst) const override; |
133 | | |
134 | | bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, |
135 | | const MCRelaxableFragment *DF, |
136 | | const MCAsmLayout &Layout, unsigned &KsError) const override; |
137 | | |
138 | | void relaxInstruction(const MCInst &Inst, MCInst &Res) const override; |
139 | | |
140 | | bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override; |
141 | | }; |
142 | | } // end anonymous namespace |
143 | | |
144 | 74.1k | static unsigned getRelaxedOpcodeBranch(unsigned Op) { |
145 | 74.1k | switch (Op) { |
146 | 42.3k | default: |
147 | 42.3k | return Op; |
148 | | |
149 | 14 | case X86::JAE_1: return X86::JAE_4; |
150 | 59 | case X86::JA_1: return X86::JA_4; |
151 | 23 | case X86::JBE_1: return X86::JBE_4; |
152 | 818 | case X86::JB_1: return X86::JB_4; |
153 | 804 | case X86::JE_1: return X86::JE_4; |
154 | 10.2k | case X86::JGE_1: return X86::JGE_4; |
155 | 17.0k | case X86::JG_1: return X86::JG_4; |
156 | 225 | case X86::JLE_1: return X86::JLE_4; |
157 | 346 | case X86::JL_1: return X86::JL_4; |
158 | 125 | case X86::JMP_1: return X86::JMP_4; |
159 | 53 | case X86::JNE_1: return X86::JNE_4; |
160 | 10 | case X86::JNO_1: return X86::JNO_4; |
161 | 10 | case X86::JNP_1: return X86::JNP_4; |
162 | 6 | case X86::JNS_1: return X86::JNS_4; |
163 | 958 | case X86::JO_1: return X86::JO_4; |
164 | 851 | case X86::JP_1: return X86::JP_4; |
165 | 84 | case X86::JS_1: return X86::JS_4; |
166 | 74.1k | } |
167 | 74.1k | } |
168 | | |
169 | 50.0k | static unsigned getRelaxedOpcodeArith(unsigned Op) { |
170 | 50.0k | switch (Op) { |
171 | 49.6k | default: |
172 | 49.6k | return Op; |
173 | | |
174 | | // IMUL |
175 | 0 | case X86::IMUL16rri8: return X86::IMUL16rri; |
176 | 0 | case X86::IMUL16rmi8: return X86::IMUL16rmi; |
177 | 0 | case X86::IMUL32rri8: return X86::IMUL32rri; |
178 | 0 | case X86::IMUL32rmi8: return X86::IMUL32rmi; |
179 | 0 | case X86::IMUL64rri8: return X86::IMUL64rri32; |
180 | 0 | case X86::IMUL64rmi8: return X86::IMUL64rmi32; |
181 | | |
182 | | // AND |
183 | 0 | case X86::AND16ri8: return X86::AND16ri; |
184 | 0 | case X86::AND16mi8: return X86::AND16mi; |
185 | 0 | case X86::AND32ri8: return X86::AND32ri; |
186 | 0 | case X86::AND32mi8: return X86::AND32mi; |
187 | 0 | case X86::AND64ri8: return X86::AND64ri32; |
188 | 0 | case X86::AND64mi8: return X86::AND64mi32; |
189 | | |
190 | | // OR |
191 | 6 | case X86::OR16ri8: return X86::OR16ri; |
192 | 0 | case X86::OR16mi8: return X86::OR16mi; |
193 | 0 | case X86::OR32ri8: return X86::OR32ri; |
194 | 0 | case X86::OR32mi8: return X86::OR32mi; |
195 | 0 | case X86::OR64ri8: return X86::OR64ri32; |
196 | 0 | case X86::OR64mi8: return X86::OR64mi32; |
197 | | |
198 | | // XOR |
199 | 0 | case X86::XOR16ri8: return X86::XOR16ri; |
200 | 0 | case X86::XOR16mi8: return X86::XOR16mi; |
201 | 0 | case X86::XOR32ri8: return X86::XOR32ri; |
202 | 0 | case X86::XOR32mi8: return X86::XOR32mi; |
203 | 0 | case X86::XOR64ri8: return X86::XOR64ri32; |
204 | 0 | case X86::XOR64mi8: return X86::XOR64mi32; |
205 | | |
206 | | // ADD |
207 | 9 | case X86::ADD16ri8: return X86::ADD16ri; |
208 | 0 | case X86::ADD16mi8: return X86::ADD16mi; |
209 | 2 | case X86::ADD32ri8: return X86::ADD32ri; |
210 | 0 | case X86::ADD32mi8: return X86::ADD32mi; |
211 | 0 | case X86::ADD64ri8: return X86::ADD64ri32; |
212 | 0 | case X86::ADD64mi8: return X86::ADD64mi32; |
213 | | |
214 | | // ADC |
215 | 0 | case X86::ADC16ri8: return X86::ADC16ri; |
216 | 0 | case X86::ADC16mi8: return X86::ADC16mi; |
217 | 2 | case X86::ADC32ri8: return X86::ADC32ri; |
218 | 0 | case X86::ADC32mi8: return X86::ADC32mi; |
219 | 0 | case X86::ADC64ri8: return X86::ADC64ri32; |
220 | 0 | case X86::ADC64mi8: return X86::ADC64mi32; |
221 | | |
222 | | // SUB |
223 | 21 | case X86::SUB16ri8: return X86::SUB16ri; |
224 | 0 | case X86::SUB16mi8: return X86::SUB16mi; |
225 | 0 | case X86::SUB32ri8: return X86::SUB32ri; |
226 | 0 | case X86::SUB32mi8: return X86::SUB32mi; |
227 | 0 | case X86::SUB64ri8: return X86::SUB64ri32; |
228 | 0 | case X86::SUB64mi8: return X86::SUB64mi32; |
229 | | |
230 | | // SBB |
231 | 1 | case X86::SBB16ri8: return X86::SBB16ri; |
232 | 0 | case X86::SBB16mi8: return X86::SBB16mi; |
233 | 0 | case X86::SBB32ri8: return X86::SBB32ri; |
234 | 0 | case X86::SBB32mi8: return X86::SBB32mi; |
235 | 0 | case X86::SBB64ri8: return X86::SBB64ri32; |
236 | 0 | case X86::SBB64mi8: return X86::SBB64mi32; |
237 | | |
238 | | // CMP |
239 | 139 | case X86::CMP16ri8: return X86::CMP16ri; |
240 | 0 | case X86::CMP16mi8: return X86::CMP16mi; |
241 | 8 | case X86::CMP32ri8: return X86::CMP32ri; |
242 | 0 | case X86::CMP32mi8: return X86::CMP32mi; |
243 | 0 | case X86::CMP64ri8: return X86::CMP64ri32; |
244 | 0 | case X86::CMP64mi8: return X86::CMP64mi32; |
245 | | |
246 | | // PUSH |
247 | 20 | case X86::PUSH32i8: return X86::PUSHi32; |
248 | 183 | case X86::PUSH16i8: return X86::PUSHi16; |
249 | 17 | case X86::PUSH64i8: return X86::PUSH64i32; |
250 | 50.0k | } |
251 | 50.0k | } |
252 | | |
253 | 7.62k | static unsigned getRelaxedOpcode(unsigned Op) { |
254 | 7.62k | unsigned R = getRelaxedOpcodeArith(Op); |
255 | 7.62k | if (R != Op) |
256 | 56 | return R; |
257 | 7.56k | return getRelaxedOpcodeBranch(Op); |
258 | 7.62k | } |
259 | | |
260 | 66.5k | bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const { |
261 | | // Branches can always be relaxed. |
262 | 66.5k | if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode()) |
263 | 24.1k | return true; |
264 | | |
265 | | // Check if this instruction is ever relaxable. |
266 | 42.3k | if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode()) |
267 | 42.0k | return false; |
268 | | |
269 | | |
270 | | // Check if the relaxable operand has an expression. For the current set of |
271 | | // relaxable instructions, the relaxable operand is always the last operand. |
272 | 352 | unsigned RelaxableOp = Inst.getNumOperands() - 1; |
273 | 352 | if (Inst.getOperand(RelaxableOp).isExpr()) |
274 | 304 | return true; |
275 | | |
276 | 48 | return false; |
277 | 352 | } |
278 | | |
279 | | bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, |
280 | | uint64_t Value, |
281 | | const MCRelaxableFragment *DF, |
282 | 11.5k | const MCAsmLayout &Layout, unsigned &KsError) const { |
283 | | // Relax if the value is too big for a (signed) i8. |
284 | 11.5k | return int64_t(Value) != int64_t(int8_t(Value)); |
285 | 11.5k | } |
286 | | |
287 | | // FIXME: Can tblgen help at all here to verify there aren't other instructions |
288 | | // we can relax? |
289 | 7.62k | void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const { |
290 | | // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel. |
291 | 7.62k | unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); |
292 | | |
293 | 7.62k | if (RelaxedOp == Inst.getOpcode()) { |
294 | 0 | SmallString<256> Tmp; |
295 | 0 | raw_svector_ostream OS(Tmp); |
296 | 0 | OS << "\n"; |
297 | 0 | report_fatal_error("unexpected instruction to relax: " + OS.str()); |
298 | 0 | } |
299 | | |
300 | 7.62k | Res = Inst; |
301 | 7.62k | Res.setOpcode(RelaxedOp); |
302 | 7.62k | } |
303 | | |
304 | | /// \brief Write a sequence of optimal nops to the output, covering \p Count |
305 | | /// bytes. |
306 | | /// \return - true on success, false on failure |
307 | 656 | bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const { |
308 | 656 | static const uint8_t TrueNops[10][10] = { |
309 | | // nop |
310 | 656 | {0x90}, |
311 | | // xchg %ax,%ax |
312 | 656 | {0x66, 0x90}, |
313 | | // nopl (%[re]ax) |
314 | 656 | {0x0f, 0x1f, 0x00}, |
315 | | // nopl 0(%[re]ax) |
316 | 656 | {0x0f, 0x1f, 0x40, 0x00}, |
317 | | // nopl 0(%[re]ax,%[re]ax,1) |
318 | 656 | {0x0f, 0x1f, 0x44, 0x00, 0x00}, |
319 | | // nopw 0(%[re]ax,%[re]ax,1) |
320 | 656 | {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, |
321 | | // nopl 0L(%[re]ax) |
322 | 656 | {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, |
323 | | // nopl 0L(%[re]ax,%[re]ax,1) |
324 | 656 | {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
325 | | // nopw 0L(%[re]ax,%[re]ax,1) |
326 | 656 | {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
327 | | // nopw %cs:0L(%[re]ax,%[re]ax,1) |
328 | 656 | {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
329 | 656 | }; |
330 | | |
331 | | // Alternative nop instructions for CPUs which don't support long nops. |
332 | 656 | static const uint8_t AltNops[7][10] = { |
333 | | // nop |
334 | 656 | {0x90}, |
335 | | // xchg %ax,%ax |
336 | 656 | {0x66, 0x90}, |
337 | | // lea 0x0(%esi),%esi |
338 | 656 | {0x8d, 0x76, 0x00}, |
339 | | // lea 0x0(%esi),%esi |
340 | 656 | {0x8d, 0x74, 0x26, 0x00}, |
341 | | // nop + lea 0x0(%esi),%esi |
342 | 656 | {0x90, 0x8d, 0x74, 0x26, 0x00}, |
343 | | // lea 0x0(%esi),%esi |
344 | 656 | {0x8d, 0xb6, 0x00, 0x00, 0x00, 0x00 }, |
345 | | // lea 0x0(%esi),%esi |
346 | 656 | {0x8d, 0xb4, 0x26, 0x00, 0x00, 0x00, 0x00}, |
347 | 656 | }; |
348 | | |
349 | | // Select the right NOP table. |
350 | | // FIXME: Can we get if CPU supports long nops from the subtarget somehow? |
351 | 656 | const uint8_t (*Nops)[10] = HasNopl ? TrueNops : AltNops; |
352 | 656 | assert(HasNopl || MaxNopLength <= 7); |
353 | | |
354 | | // Emit as many largest nops as needed, then emit a nop of the remaining |
355 | | // length. |
356 | 702 | do { |
357 | 702 | const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength); |
358 | 702 | const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10; |
359 | 944 | for (uint8_t i = 0; i < Prefixes; i++) |
360 | 242 | OW->write8(0x66); |
361 | 702 | const uint8_t Rest = ThisNopLength - Prefixes; |
362 | 1.23k | for (uint8_t i = 0; i < Rest; i++) |
363 | 531 | OW->write8(Nops[Rest - 1][i]); |
364 | 702 | Count -= ThisNopLength; |
365 | 702 | } while (Count != 0); |
366 | | |
367 | 656 | return true; |
368 | 656 | } |
369 | | |
370 | | /* *** */ |
371 | | |
372 | | namespace { |
373 | | |
374 | | class ELFX86AsmBackend : public X86AsmBackend { |
375 | | public: |
376 | | uint8_t OSABI; |
377 | | ELFX86AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU) |
378 | 16.2k | : X86AsmBackend(T, CPU), OSABI(OSABI) {} |
379 | | }; |
380 | | |
381 | | class ELFX86_32AsmBackend : public ELFX86AsmBackend { |
382 | | public: |
383 | | ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU) |
384 | 15.7k | : ELFX86AsmBackend(T, OSABI, CPU) {} |
385 | | |
386 | 15.7k | MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override { |
387 | 15.7k | return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386); |
388 | 15.7k | } |
389 | | }; |
390 | | |
391 | | class ELFX86_X32AsmBackend : public ELFX86AsmBackend { |
392 | | public: |
393 | | ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU) |
394 | 0 | : ELFX86AsmBackend(T, OSABI, CPU) {} |
395 | | |
396 | 0 | MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override { |
397 | 0 | return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, |
398 | 0 | ELF::EM_X86_64); |
399 | 0 | } |
400 | | }; |
401 | | |
402 | | class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend { |
403 | | public: |
404 | | ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI, StringRef CPU) |
405 | 0 | : ELFX86AsmBackend(T, OSABI, CPU) {} |
406 | | |
407 | 0 | MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override { |
408 | 0 | return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, |
409 | 0 | ELF::EM_IAMCU); |
410 | 0 | } |
411 | | }; |
412 | | |
413 | | class ELFX86_64AsmBackend : public ELFX86AsmBackend { |
414 | | public: |
415 | | ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU) |
416 | 465 | : ELFX86AsmBackend(T, OSABI, CPU) {} |
417 | | |
418 | 465 | MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override { |
419 | 465 | return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64); |
420 | 465 | } |
421 | | }; |
422 | | |
423 | | namespace CU { |
424 | | |
425 | | /// Compact unwind encoding values. |
426 | | enum CompactUnwindEncodings { |
427 | | /// [RE]BP based frame where [RE]BP is pused on the stack immediately after |
428 | | /// the return address, then [RE]SP is moved to [RE]BP. |
429 | | UNWIND_MODE_BP_FRAME = 0x01000000, |
430 | | |
431 | | /// A frameless function with a small constant stack size. |
432 | | UNWIND_MODE_STACK_IMMD = 0x02000000, |
433 | | |
434 | | /// A frameless function with a large constant stack size. |
435 | | UNWIND_MODE_STACK_IND = 0x03000000, |
436 | | |
437 | | /// No compact unwind encoding is available. |
438 | | UNWIND_MODE_DWARF = 0x04000000, |
439 | | |
440 | | /// Mask for encoding the frame registers. |
441 | | UNWIND_BP_FRAME_REGISTERS = 0x00007FFF, |
442 | | |
443 | | /// Mask for encoding the frameless registers. |
444 | | UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF |
445 | | }; |
446 | | |
447 | | } // end CU namespace |
448 | | |
449 | | class DarwinX86AsmBackend : public X86AsmBackend { |
450 | | const MCRegisterInfo &MRI; |
451 | | |
452 | | /// \brief Number of registers that can be saved in a compact unwind encoding. |
453 | | enum { CU_NUM_SAVED_REGS = 6 }; |
454 | | |
455 | | mutable unsigned SavedRegs[CU_NUM_SAVED_REGS]; |
456 | | bool Is64Bit; |
457 | | |
458 | | unsigned OffsetSize; ///< Offset of a "push" instruction. |
459 | | unsigned MoveInstrSize; ///< Size of a "move" instruction. |
460 | | unsigned StackDivide; ///< Amount to adjust stack size by. |
461 | | protected: |
462 | | /// \brief Size of a "push" instruction for the given register. |
463 | 0 | unsigned PushInstrSize(unsigned Reg) const { |
464 | 0 | switch (Reg) { |
465 | 0 | case X86::EBX: |
466 | 0 | case X86::ECX: |
467 | 0 | case X86::EDX: |
468 | 0 | case X86::EDI: |
469 | 0 | case X86::ESI: |
470 | 0 | case X86::EBP: |
471 | 0 | case X86::RBX: |
472 | 0 | case X86::RBP: |
473 | 0 | return 1; |
474 | 0 | case X86::R12: |
475 | 0 | case X86::R13: |
476 | 0 | case X86::R14: |
477 | 0 | case X86::R15: |
478 | 0 | return 2; |
479 | 0 | } |
480 | 0 | return 1; |
481 | 0 | } |
482 | | |
483 | | /// \brief Implementation of algorithm to generate the compact unwind encoding |
484 | | /// for the CFI instructions. |
485 | | uint32_t |
486 | 0 | generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const { |
487 | 0 | if (Instrs.empty()) return 0; |
488 | 0 |
|
489 | 0 | // Reset the saved registers. |
490 | 0 | unsigned SavedRegIdx = 0; |
491 | 0 | memset(SavedRegs, 0, sizeof(SavedRegs)); |
492 | 0 |
|
493 | 0 | bool HasFP = false; |
494 | 0 |
|
495 | 0 | // Encode that we are using EBP/RBP as the frame pointer. |
496 | 0 | uint32_t CompactUnwindEncoding = 0; |
497 | 0 |
|
498 | 0 | unsigned SubtractInstrIdx = Is64Bit ? 3 : 2; |
499 | 0 | unsigned InstrOffset = 0; |
500 | 0 | unsigned StackAdjust = 0; |
501 | 0 | unsigned StackSize = 0; |
502 | 0 | unsigned PrevStackSize = 0; |
503 | 0 | unsigned NumDefCFAOffsets = 0; |
504 | 0 |
|
505 | 0 | for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { |
506 | 0 | const MCCFIInstruction &Inst = Instrs[i]; |
507 | 0 |
|
508 | 0 | switch (Inst.getOperation()) { |
509 | 0 | default: |
510 | 0 | // Any other CFI directives indicate a frame that we aren't prepared |
511 | 0 | // to represent via compact unwind, so just bail out. |
512 | 0 | return 0; |
513 | 0 | case MCCFIInstruction::OpDefCfaRegister: { |
514 | 0 | // Defines a frame pointer. E.g. |
515 | 0 | // |
516 | 0 | // movq %rsp, %rbp |
517 | 0 | // L0: |
518 | 0 | // .cfi_def_cfa_register %rbp |
519 | 0 | // |
520 | 0 | HasFP = true; |
521 | 0 | assert(MRI.getLLVMRegNum(Inst.getRegister(), true) == |
522 | 0 | (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!"); |
523 | 0 |
|
524 | 0 | // Reset the counts. |
525 | 0 | memset(SavedRegs, 0, sizeof(SavedRegs)); |
526 | 0 | StackAdjust = 0; |
527 | 0 | SavedRegIdx = 0; |
528 | 0 | InstrOffset += MoveInstrSize; |
529 | 0 | break; |
530 | 0 | } |
531 | 0 | case MCCFIInstruction::OpDefCfaOffset: { |
532 | 0 | // Defines a new offset for the CFA. E.g. |
533 | 0 | // |
534 | 0 | // With frame: |
535 | 0 | // |
536 | 0 | // pushq %rbp |
537 | 0 | // L0: |
538 | 0 | // .cfi_def_cfa_offset 16 |
539 | 0 | // |
540 | 0 | // Without frame: |
541 | 0 | // |
542 | 0 | // subq $72, %rsp |
543 | 0 | // L0: |
544 | 0 | // .cfi_def_cfa_offset 80 |
545 | 0 | // |
546 | 0 | PrevStackSize = StackSize; |
547 | 0 | StackSize = std::abs(Inst.getOffset()) / StackDivide; |
548 | 0 | ++NumDefCFAOffsets; |
549 | 0 | break; |
550 | 0 | } |
551 | 0 | case MCCFIInstruction::OpOffset: { |
552 | 0 | // Defines a "push" of a callee-saved register. E.g. |
553 | 0 | // |
554 | 0 | // pushq %r15 |
555 | 0 | // pushq %r14 |
556 | 0 | // pushq %rbx |
557 | 0 | // L0: |
558 | 0 | // subq $120, %rsp |
559 | 0 | // L1: |
560 | 0 | // .cfi_offset %rbx, -40 |
561 | 0 | // .cfi_offset %r14, -32 |
562 | 0 | // .cfi_offset %r15, -24 |
563 | 0 | // |
564 | 0 | if (SavedRegIdx == CU_NUM_SAVED_REGS) |
565 | 0 | // If there are too many saved registers, we cannot use a compact |
566 | 0 | // unwind encoding. |
567 | 0 | return CU::UNWIND_MODE_DWARF; |
568 | 0 |
|
569 | 0 | unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true); |
570 | 0 | SavedRegs[SavedRegIdx++] = Reg; |
571 | 0 | StackAdjust += OffsetSize; |
572 | 0 | InstrOffset += PushInstrSize(Reg); |
573 | 0 | break; |
574 | 0 | } |
575 | 0 | } |
576 | 0 | } |
577 | 0 |
|
578 | 0 | StackAdjust /= StackDivide; |
579 | 0 |
|
580 | 0 | if (HasFP) { |
581 | 0 | if ((StackAdjust & 0xFF) != StackAdjust) |
582 | 0 | // Offset was too big for a compact unwind encoding. |
583 | 0 | return CU::UNWIND_MODE_DWARF; |
584 | 0 |
|
585 | 0 | // Get the encoding of the saved registers when we have a frame pointer. |
586 | 0 | uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(); |
587 | 0 | if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; |
588 | 0 |
|
589 | 0 | CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME; |
590 | 0 | CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16; |
591 | 0 | CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS; |
592 | 0 | } else { |
593 | 0 | // If the amount of the stack allocation is the size of a register, then |
594 | 0 | // we "push" the RAX/EAX register onto the stack instead of adjusting the |
595 | 0 | // stack pointer with a SUB instruction. We don't support the push of the |
596 | 0 | // RAX/EAX register with compact unwind. So we check for that situation |
597 | 0 | // here. |
598 | 0 | if ((NumDefCFAOffsets == SavedRegIdx + 1 && |
599 | 0 | StackSize - PrevStackSize == 1) || |
600 | 0 | (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2)) |
601 | 0 | return CU::UNWIND_MODE_DWARF; |
602 | 0 |
|
603 | 0 | SubtractInstrIdx += InstrOffset; |
604 | 0 | ++StackAdjust; |
605 | 0 |
|
606 | 0 | if ((StackSize & 0xFF) == StackSize) { |
607 | 0 | // Frameless stack with a small stack size. |
608 | 0 | CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD; |
609 | 0 |
|
610 | 0 | // Encode the stack size. |
611 | 0 | CompactUnwindEncoding |= (StackSize & 0xFF) << 16; |
612 | 0 | } else { |
613 | 0 | if ((StackAdjust & 0x7) != StackAdjust) |
614 | 0 | // The extra stack adjustments are too big for us to handle. |
615 | 0 | return CU::UNWIND_MODE_DWARF; |
616 | 0 |
|
617 | 0 | // Frameless stack with an offset too large for us to encode compactly. |
618 | 0 | CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND; |
619 | 0 |
|
620 | 0 | // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP' |
621 | 0 | // instruction. |
622 | 0 | CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16; |
623 | 0 |
|
624 | 0 | // Encode any extra stack stack adjustments (done via push |
625 | 0 | // instructions). |
626 | 0 | CompactUnwindEncoding |= (StackAdjust & 0x7) << 13; |
627 | 0 | } |
628 | 0 |
|
629 | 0 | // Encode the number of registers saved. (Reverse the list first.) |
630 | 0 | std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]); |
631 | 0 | CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10; |
632 | 0 |
|
633 | 0 | // Get the encoding of the saved registers when we don't have a frame |
634 | 0 | // pointer. |
635 | 0 | uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx); |
636 | 0 | if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; |
637 | 0 |
|
638 | 0 | // Encode the register encoding. |
639 | 0 | CompactUnwindEncoding |= |
640 | 0 | RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION; |
641 | 0 | } |
642 | 0 |
|
643 | 0 | return CompactUnwindEncoding; |
644 | 0 | } |
645 | | |
646 | | private: |
647 | | /// \brief Get the compact unwind number for a given register. The number |
648 | | /// corresponds to the enum lists in compact_unwind_encoding.h. |
649 | 0 | int getCompactUnwindRegNum(unsigned Reg) const { |
650 | 0 | static const MCPhysReg CU32BitRegs[7] = { |
651 | 0 | X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0 |
652 | 0 | }; |
653 | 0 | static const MCPhysReg CU64BitRegs[] = { |
654 | 0 | X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 |
655 | 0 | }; |
656 | 0 | const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs; |
657 | 0 | for (int Idx = 1; *CURegs; ++CURegs, ++Idx) |
658 | 0 | if (*CURegs == Reg) |
659 | 0 | return Idx; |
660 | 0 |
|
661 | 0 | return -1; |
662 | 0 | } |
663 | | |
664 | | /// \brief Return the registers encoded for a compact encoding with a frame |
665 | | /// pointer. |
666 | 0 | uint32_t encodeCompactUnwindRegistersWithFrame() const { |
667 | 0 | // Encode the registers in the order they were saved --- 3-bits per |
668 | 0 | // register. The list of saved registers is assumed to be in reverse |
669 | 0 | // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS. |
670 | 0 | uint32_t RegEnc = 0; |
671 | 0 | for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) { |
672 | 0 | unsigned Reg = SavedRegs[i]; |
673 | 0 | if (Reg == 0) break; |
674 | 0 |
|
675 | 0 | int CURegNum = getCompactUnwindRegNum(Reg); |
676 | 0 | if (CURegNum == -1) return ~0U; |
677 | 0 |
|
678 | 0 | // Encode the 3-bit register number in order, skipping over 3-bits for |
679 | 0 | // each register. |
680 | 0 | RegEnc |= (CURegNum & 0x7) << (Idx++ * 3); |
681 | 0 | } |
682 | 0 |
|
683 | 0 | assert((RegEnc & 0x3FFFF) == RegEnc && |
684 | 0 | "Invalid compact register encoding!"); |
685 | 0 | return RegEnc; |
686 | 0 | } |
687 | | |
688 | | /// \brief Create the permutation encoding used with frameless stacks. It is |
689 | | /// passed the number of registers to be saved and an array of the registers |
690 | | /// saved. |
691 | 0 | uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const { |
692 | 0 | // The saved registers are numbered from 1 to 6. In order to encode the |
693 | 0 | // order in which they were saved, we re-number them according to their |
694 | 0 | // place in the register order. The re-numbering is relative to the last |
695 | 0 | // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in |
696 | 0 | // that order: |
697 | 0 | // |
698 | 0 | // Orig Re-Num |
699 | 0 | // ---- ------ |
700 | 0 | // 6 6 |
701 | 0 | // 2 2 |
702 | 0 | // 4 3 |
703 | 0 | // 5 3 |
704 | 0 | // |
705 | 0 | for (unsigned i = 0; i < RegCount; ++i) { |
706 | 0 | int CUReg = getCompactUnwindRegNum(SavedRegs[i]); |
707 | 0 | if (CUReg == -1) return ~0U; |
708 | 0 | SavedRegs[i] = CUReg; |
709 | 0 | } |
710 | 0 |
|
711 | 0 | // Reverse the list. |
712 | 0 | std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]); |
713 | 0 |
|
714 | 0 | uint32_t RenumRegs[CU_NUM_SAVED_REGS]; |
715 | 0 | for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){ |
716 | 0 | unsigned Countless = 0; |
717 | 0 | for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j) |
718 | 0 | if (SavedRegs[j] < SavedRegs[i]) |
719 | 0 | ++Countless; |
720 | 0 |
|
721 | 0 | RenumRegs[i] = SavedRegs[i] - Countless - 1; |
722 | 0 | } |
723 | 0 |
|
724 | 0 | // Take the renumbered values and encode them into a 10-bit number. |
725 | 0 | uint32_t permutationEncoding = 0; |
726 | 0 | switch (RegCount) { |
727 | 0 | case 6: |
728 | 0 | permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1] |
729 | 0 | + 6 * RenumRegs[2] + 2 * RenumRegs[3] |
730 | 0 | + RenumRegs[4]; |
731 | 0 | break; |
732 | 0 | case 5: |
733 | 0 | permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2] |
734 | 0 | + 6 * RenumRegs[3] + 2 * RenumRegs[4] |
735 | 0 | + RenumRegs[5]; |
736 | 0 | break; |
737 | 0 | case 4: |
738 | 0 | permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3] |
739 | 0 | + 3 * RenumRegs[4] + RenumRegs[5]; |
740 | 0 | break; |
741 | 0 | case 3: |
742 | 0 | permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4] |
743 | 0 | + RenumRegs[5]; |
744 | 0 | break; |
745 | 0 | case 2: |
746 | 0 | permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5]; |
747 | 0 | break; |
748 | 0 | case 1: |
749 | 0 | permutationEncoding |= RenumRegs[5]; |
750 | 0 | break; |
751 | 0 | } |
752 | 0 |
|
753 | 0 | assert((permutationEncoding & 0x3FF) == permutationEncoding && |
754 | 0 | "Invalid compact register encoding!"); |
755 | 0 | return permutationEncoding; |
756 | 0 | } |
757 | | |
758 | | public: |
759 | | DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU, |
760 | | bool Is64Bit) |
761 | 0 | : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) { |
762 | 0 | memset(SavedRegs, 0, sizeof(SavedRegs)); |
763 | 0 | OffsetSize = Is64Bit ? 8 : 4; |
764 | 0 | MoveInstrSize = Is64Bit ? 3 : 2; |
765 | 0 | StackDivide = Is64Bit ? 8 : 4; |
766 | 0 | } |
767 | | }; |
768 | | |
769 | | } // end anonymous namespace |
770 | | |
771 | | MCAsmBackend *llvm_ks::createX86_32AsmBackend(const Target &T, |
772 | | const MCRegisterInfo &MRI, |
773 | | const Triple &TheTriple, |
774 | 15.7k | StringRef CPU) { |
775 | 15.7k | uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); |
776 | | |
777 | 15.7k | if (TheTriple.isOSIAMCU()) |
778 | 0 | return new ELFX86_IAMCUAsmBackend(T, OSABI, CPU); |
779 | | |
780 | 15.7k | return new ELFX86_32AsmBackend(T, OSABI, CPU); |
781 | 15.7k | } |
782 | | |
783 | | MCAsmBackend *llvm_ks::createX86_64AsmBackend(const Target &T, |
784 | | const MCRegisterInfo &MRI, |
785 | | const Triple &TheTriple, |
786 | 465 | StringRef CPU) { |
787 | 465 | uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); |
788 | | |
789 | 465 | if (TheTriple.getEnvironment() == Triple::GNUX32) |
790 | 0 | return new ELFX86_X32AsmBackend(T, OSABI, CPU); |
791 | 465 | return new ELFX86_64AsmBackend(T, OSABI, CPU); |
792 | 465 | } |