Coverage Report

Created: 2025-07-18 06:59

/src/keystone/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
Line
Count
Source (jump to first uncovered line)
1
//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file contains small standalone helper functions and enum definitions for
11
// the X86 target useful for the compiler back-end and the MC libraries.
12
// As such, it deliberately does not include references to LLVM core
13
// code gen types, passes, etc..
14
//
15
//===----------------------------------------------------------------------===//
16
17
#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18
#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
19
20
#include "X86MCTargetDesc.h"
21
#include "llvm/MC/MCInstrDesc.h"
22
#include "llvm/Support/DataTypes.h"
23
#include "llvm/Support/ErrorHandling.h"
24
25
namespace llvm_ks {
26
27
namespace X86 {
28
  // Enums for memory operand decoding.  Each memory operand is represented with
29
  // a 5 operand sequence in the form:
30
  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31
  // These enums help decode this.
32
  enum {
33
    AddrBaseReg = 0,
34
    AddrScaleAmt = 1,
35
    AddrIndexReg = 2,
36
    AddrDisp = 3,
37
38
    /// AddrSegmentReg - The operand # of the segment in the memory operand.
39
    AddrSegmentReg = 4,
40
41
    /// AddrNumOperands - Total number of operands in a memory reference.
42
    AddrNumOperands = 5
43
  };
44
45
  /// AVX512 static rounding constants.  These need to match the values in
46
  /// avx512fintrin.h.
47
  enum STATIC_ROUNDING {
48
    TO_NEAREST_INT = 0,
49
    TO_NEG_INF = 1,
50
    TO_POS_INF = 2,
51
    TO_ZERO = 3,
52
    CUR_DIRECTION = 4
53
  };
54
} // end namespace X86;
55
56
/// X86II - This namespace holds all of the target specific flags that
57
/// instruction info tracks.
58
///
59
namespace X86II {
60
  /// Target Operand Flag enum.
61
  enum TOF {
62
    //===------------------------------------------------------------------===//
63
    // X86 Specific MachineOperand flags.
64
65
    MO_NO_FLAG,
66
67
    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
68
    /// relocation of:
69
    ///    SYMBOL_LABEL + [. - PICBASELABEL]
70
    MO_GOT_ABSOLUTE_ADDRESS,
71
72
    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
73
    /// immediate should get the value of the symbol minus the PIC base label:
74
    ///    SYMBOL_LABEL - PICBASELABEL
75
    MO_PIC_BASE_OFFSET,
76
77
    /// MO_GOT - On a symbol operand this indicates that the immediate is the
78
    /// offset to the GOT entry for the symbol name from the base of the GOT.
79
    ///
80
    /// See the X86-64 ELF ABI supplement for more details.
81
    ///    SYMBOL_LABEL @GOT
82
    MO_GOT,
83
84
    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
85
    /// the offset to the location of the symbol name from the base of the GOT.
86
    ///
87
    /// See the X86-64 ELF ABI supplement for more details.
88
    ///    SYMBOL_LABEL @GOTOFF
89
    MO_GOTOFF,
90
91
    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
92
    /// offset to the GOT entry for the symbol name from the current code
93
    /// location.
94
    ///
95
    /// See the X86-64 ELF ABI supplement for more details.
96
    ///    SYMBOL_LABEL @GOTPCREL
97
    MO_GOTPCREL,
98
99
    /// MO_PLT - On a symbol operand this indicates that the immediate is
100
    /// offset to the PLT entry of symbol name from the current code location.
101
    ///
102
    /// See the X86-64 ELF ABI supplement for more details.
103
    ///    SYMBOL_LABEL @PLT
104
    MO_PLT,
105
106
    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
107
    /// the offset of the GOT entry with the TLS index structure that contains
108
    /// the module number and variable offset for the symbol. Used in the
109
    /// general dynamic TLS access model.
110
    ///
111
    /// See 'ELF Handling for Thread-Local Storage' for more details.
112
    ///    SYMBOL_LABEL @TLSGD
113
    MO_TLSGD,
114
115
    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
116
    /// the offset of the GOT entry with the TLS index for the module that
117
    /// contains the symbol. When this index is passed to a call to
118
    /// __tls_get_addr, the function will return the base address of the TLS
119
    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
120
    ///
121
    /// See 'ELF Handling for Thread-Local Storage' for more details.
122
    ///    SYMBOL_LABEL @TLSLD
123
    MO_TLSLD,
124
125
    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
126
    /// the offset of the GOT entry with the TLS index for the module that
127
    /// contains the symbol. When this index is passed to a call to
128
    /// ___tls_get_addr, the function will return the base address of the TLS
129
    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
130
    ///
131
    /// See 'ELF Handling for Thread-Local Storage' for more details.
132
    ///    SYMBOL_LABEL @TLSLDM
133
    MO_TLSLDM,
134
135
    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
136
    /// the offset of the GOT entry with the thread-pointer offset for the
137
    /// symbol. Used in the x86-64 initial exec TLS access model.
138
    ///
139
    /// See 'ELF Handling for Thread-Local Storage' for more details.
140
    ///    SYMBOL_LABEL @GOTTPOFF
141
    MO_GOTTPOFF,
142
143
    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
144
    /// the absolute address of the GOT entry with the negative thread-pointer
145
    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
146
    /// model.
147
    ///
148
    /// See 'ELF Handling for Thread-Local Storage' for more details.
149
    ///    SYMBOL_LABEL @INDNTPOFF
150
    MO_INDNTPOFF,
151
152
    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
153
    /// the thread-pointer offset for the symbol. Used in the x86-64 local
154
    /// exec TLS access model.
155
    ///
156
    /// See 'ELF Handling for Thread-Local Storage' for more details.
157
    ///    SYMBOL_LABEL @TPOFF
158
    MO_TPOFF,
159
160
    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
161
    /// the offset of the GOT entry with the TLS offset of the symbol. Used
162
    /// in the local dynamic TLS access model.
163
    ///
164
    /// See 'ELF Handling for Thread-Local Storage' for more details.
165
    ///    SYMBOL_LABEL @DTPOFF
166
    MO_DTPOFF,
167
168
    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
169
    /// the negative thread-pointer offset for the symbol. Used in the IA32
170
    /// local exec TLS access model.
171
    ///
172
    /// See 'ELF Handling for Thread-Local Storage' for more details.
173
    ///    SYMBOL_LABEL @NTPOFF
174
    MO_NTPOFF,
175
176
    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
177
    /// the offset of the GOT entry with the negative thread-pointer offset for
178
    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
179
    ///
180
    /// See 'ELF Handling for Thread-Local Storage' for more details.
181
    ///    SYMBOL_LABEL @GOTNTPOFF
182
    MO_GOTNTPOFF,
183
184
    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
185
    /// reference is actually to the "__imp_FOO" symbol.  This is used for
186
    /// dllimport linkage on windows.
187
    MO_DLLIMPORT,
188
189
    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
190
    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
191
    /// and jumps to external functions on Tiger and earlier.
192
    MO_DARWIN_STUB,
193
194
    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
195
    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
196
    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
197
    MO_DARWIN_NONLAZY,
198
199
    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
200
    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
201
    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
202
    MO_DARWIN_NONLAZY_PIC_BASE,
203
204
    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
205
    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
206
    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
207
    /// stub.
208
    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
209
210
    /// MO_TLVP - On a symbol operand this indicates that the immediate is
211
    /// some TLS offset.
212
    ///
213
    /// This is the TLS offset for the Darwin TLS mechanism.
214
    MO_TLVP,
215
216
    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
217
    /// is some TLS offset from the picbase.
218
    ///
219
    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
220
    MO_TLVP_PIC_BASE,
221
222
    /// MO_SECREL - On a symbol operand this indicates that the immediate is
223
    /// the offset from beginning of section.
224
    ///
225
    /// This is the TLS offset for the COFF/Windows TLS mechanism.
226
    MO_SECREL
227
  };
228
229
  enum : uint64_t {
230
    //===------------------------------------------------------------------===//
231
    // Instruction encodings.  These are the standard/most common forms for X86
232
    // instructions.
233
    //
234
235
    // PseudoFrm - This represents an instruction that is a pseudo instruction
236
    // or one that has not been implemented yet.  It is illegal to code generate
237
    // it, but tolerated for intermediate implementation stages.
238
    Pseudo         = 0,
239
240
    /// Raw - This form is for instructions that don't have any operands, so
241
    /// they are just a fixed opcode value, like 'leave'.
242
    RawFrm         = 1,
243
244
    /// AddRegFrm - This form is used for instructions like 'push r32' that have
245
    /// their one register operand added to their opcode.
246
    AddRegFrm      = 2,
247
248
    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
249
    /// to specify a destination, which in this case is a register.
250
    ///
251
    MRMDestReg     = 3,
252
253
    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
254
    /// to specify a destination, which in this case is memory.
255
    ///
256
    MRMDestMem     = 4,
257
258
    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
259
    /// to specify a source, which in this case is a register.
260
    ///
261
    MRMSrcReg      = 5,
262
263
    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
264
    /// to specify a source, which in this case is memory.
265
    ///
266
    MRMSrcMem      = 6,
267
268
    /// RawFrmMemOffs - This form is for instructions that store an absolute
269
    /// memory offset as an immediate with a possible segment override.
270
    RawFrmMemOffs  = 7,
271
272
    /// RawFrmSrc - This form is for instructions that use the source index
273
    /// register SI/ESI/RSI with a possible segment override.
274
    RawFrmSrc      = 8,
275
276
    /// RawFrmDst - This form is for instructions that use the destination index
277
    /// register DI/EDI/ESI.
278
    RawFrmDst      = 9,
279
280
    /// RawFrmSrc - This form is for instructions that use the source index
281
    /// register SI/ESI/ERI with a possible segment override, and also the
282
    /// destination index register DI/ESI/RDI.
283
    RawFrmDstSrc   = 10,
284
285
    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
286
    /// immediates, the first of which is a 16-bit immediate (specified by
287
    /// the imm encoding) and the second is a 8-bit fixed value.
288
    RawFrmImm8 = 11,
289
290
    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
291
    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
292
    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
293
    /// manual, this operand is described as pntr16:32 and pntr16:16
294
    RawFrmImm16 = 12,
295
296
    /// MRMX[rm] - The forms are used to represent instructions that use a
297
    /// Mod/RM byte, and don't use the middle field for anything.
298
    MRMXr = 14, MRMXm = 15,
299
300
    /// MRM[0-7][rm] - These forms are used to represent instructions that use
301
    /// a Mod/RM byte, and use the middle field to hold extended opcode
302
    /// information.  In the intel manual these are represented as /0, /1, ...
303
    ///
304
305
    // First, instructions that operate on a register r/m operand...
306
    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
307
    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
308
309
    // Next, instructions that operate on a memory r/m operand...
310
    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
311
    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
312
313
    //// MRM_XX - A mod/rm byte of exactly 0xXX.
314
    MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
315
    MRM_C4 = 36, MRM_C5 = 37, MRM_C6 = 38, MRM_C7 = 39,
316
    MRM_C8 = 40, MRM_C9 = 41, MRM_CA = 42, MRM_CB = 43,
317
    MRM_CC = 44, MRM_CD = 45, MRM_CE = 46, MRM_CF = 47,
318
    MRM_D0 = 48, MRM_D1 = 49, MRM_D2 = 50, MRM_D3 = 51,
319
    MRM_D4 = 52, MRM_D5 = 53, MRM_D6 = 54, MRM_D7 = 55,
320
    MRM_D8 = 56, MRM_D9 = 57, MRM_DA = 58, MRM_DB = 59,
321
    MRM_DC = 60, MRM_DD = 61, MRM_DE = 62, MRM_DF = 63,
322
    MRM_E0 = 64, MRM_E1 = 65, MRM_E2 = 66, MRM_E3 = 67,
323
    MRM_E4 = 68, MRM_E5 = 69, MRM_E6 = 70, MRM_E7 = 71,
324
    MRM_E8 = 72, MRM_E9 = 73, MRM_EA = 74, MRM_EB = 75,
325
    MRM_EC = 76, MRM_ED = 77, MRM_EE = 78, MRM_EF = 79,
326
    MRM_F0 = 80, MRM_F1 = 81, MRM_F2 = 82, MRM_F3 = 83,
327
    MRM_F4 = 84, MRM_F5 = 85, MRM_F6 = 86, MRM_F7 = 87,
328
    MRM_F8 = 88, MRM_F9 = 89, MRM_FA = 90, MRM_FB = 91,
329
    MRM_FC = 92, MRM_FD = 93, MRM_FE = 94, MRM_FF = 95,
330
331
    FormMask       = 127,
332
333
    //===------------------------------------------------------------------===//
334
    // Actual flags...
335
336
    // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
337
    // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
338
    // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
339
    // prefix in 16-bit mode.
340
    OpSizeShift = 7,
341
    OpSizeMask = 0x3 << OpSizeShift,
342
343
    OpSizeFixed = 0 << OpSizeShift,
344
    OpSize16    = 1 << OpSizeShift,
345
    OpSize32    = 2 << OpSizeShift,
346
347
    // AsSize - AdSizeX implies this instruction determines its need of 0x67
348
    // prefix from a normal ModRM memory operand. The other types indicate that
349
    // an operand is encoded with a specific width and a prefix is needed if
350
    // it differs from the current mode.
351
    AdSizeShift = OpSizeShift + 2,
352
    AdSizeMask  = 0x3 << AdSizeShift,
353
354
    AdSizeX  = 1 << AdSizeShift,
355
    AdSize16 = 1 << AdSizeShift,
356
    AdSize32 = 2 << AdSizeShift,
357
    AdSize64 = 3 << AdSizeShift,
358
359
    //===------------------------------------------------------------------===//
360
    // OpPrefix - There are several prefix bytes that are used as opcode
361
    // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
362
    // no prefix.
363
    //
364
    OpPrefixShift = AdSizeShift + 2,
365
    OpPrefixMask  = 0x7 << OpPrefixShift,
366
367
    // PS, PD - Prefix code for packed single and double precision vector
368
    // floating point operations performed in the SSE registers.
369
    PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
370
371
    // XS, XD - These prefix codes are for single and double precision scalar
372
    // floating point operations performed in the SSE registers.
373
    XS = 3 << OpPrefixShift,  XD = 4 << OpPrefixShift,
374
375
    //===------------------------------------------------------------------===//
376
    // OpMap - This field determines which opcode map this instruction
377
    // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
378
    //
379
    OpMapShift = OpPrefixShift + 3,
380
    OpMapMask  = 0x7 << OpMapShift,
381
382
    // OB - OneByte - Set if this instruction has a one byte opcode.
383
    OB = 0 << OpMapShift,
384
385
    // TB - TwoByte - Set if this instruction has a two byte opcode, which
386
    // starts with a 0x0F byte before the real opcode.
387
    TB = 1 << OpMapShift,
388
389
    // T8, TA - Prefix after the 0x0F prefix.
390
    T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
391
392
    // XOP8 - Prefix to include use of imm byte.
393
    XOP8 = 4 << OpMapShift,
394
395
    // XOP9 - Prefix to exclude use of imm byte.
396
    XOP9 = 5 << OpMapShift,
397
398
    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
399
    XOPA = 6 << OpMapShift,
400
401
    //===------------------------------------------------------------------===//
402
    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
403
    // They are used to specify GPRs and SSE registers, 64-bit operand size,
404
    // etc. We only cares about REX.W and REX.R bits and only the former is
405
    // statically determined.
406
    //
407
    REXShift    = OpMapShift + 3,
408
    REX_W       = 1 << REXShift,
409
410
    //===------------------------------------------------------------------===//
411
    // This three-bit field describes the size of an immediate operand.  Zero is
412
    // unused so that we can tell if we forgot to set a value.
413
    ImmShift = REXShift + 1,
414
    ImmMask    = 15 << ImmShift,
415
    Imm8       = 1 << ImmShift,
416
    Imm8PCRel  = 2 << ImmShift,
417
    Imm16      = 3 << ImmShift,
418
    Imm16PCRel = 4 << ImmShift,
419
    Imm32      = 5 << ImmShift,
420
    Imm32PCRel = 6 << ImmShift,
421
    Imm32S     = 7 << ImmShift,
422
    Imm64      = 8 << ImmShift,
423
424
    //===------------------------------------------------------------------===//
425
    // FP Instruction Classification...  Zero is non-fp instruction.
426
427
    // FPTypeMask - Mask for all of the FP types...
428
    FPTypeShift = ImmShift + 4,
429
    FPTypeMask  = 7 << FPTypeShift,
430
431
    // NotFP - The default, set for instructions that do not use FP registers.
432
    NotFP      = 0 << FPTypeShift,
433
434
    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
435
    ZeroArgFP  = 1 << FPTypeShift,
436
437
    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
438
    OneArgFP   = 2 << FPTypeShift,
439
440
    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
441
    // result back to ST(0).  For example, fcos, fsqrt, etc.
442
    //
443
    OneArgFPRW = 3 << FPTypeShift,
444
445
    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
446
    // explicit argument, storing the result to either ST(0) or the implicit
447
    // argument.  For example: fadd, fsub, fmul, etc...
448
    TwoArgFP   = 4 << FPTypeShift,
449
450
    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
451
    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
452
    CompareFP  = 5 << FPTypeShift,
453
454
    // CondMovFP - "2 operand" floating point conditional move instructions.
455
    CondMovFP  = 6 << FPTypeShift,
456
457
    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
458
    SpecialFP  = 7 << FPTypeShift,
459
460
    // Lock prefix
461
    LOCKShift = FPTypeShift + 3,
462
    LOCK = 1 << LOCKShift,
463
464
    // REP prefix
465
    REPShift = LOCKShift + 1,
466
    REP = 1 << REPShift,
467
468
    // Execution domain for SSE instructions.
469
    // 0 means normal, non-SSE instruction.
470
    SSEDomainShift = REPShift + 1,
471
472
    // Encoding
473
    EncodingShift = SSEDomainShift + 2,
474
    EncodingMask = 0x3 << EncodingShift,
475
476
    // VEX - encoding using 0xC4/0xC5
477
    VEX = 1 << EncodingShift,
478
479
    /// XOP - Opcode prefix used by XOP instructions.
480
    XOP = 2 << EncodingShift,
481
482
    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
483
    // syntax support up to 32 512-bit register operands and up to 7 16-bit
484
    // mask operands as well as source operand data swizzling/memory operand
485
    // conversion, eviction hint, and rounding mode.
486
    EVEX = 3 << EncodingShift,
487
488
    // Opcode
489
    OpcodeShift   = EncodingShift + 2,
490
491
    /// VEX_W - Has a opcode specific functionality, but is used in the same
492
    /// way as REX_W is for regular SSE instructions.
493
    VEX_WShift  = OpcodeShift + 8,
494
    VEX_W       = 1ULL << VEX_WShift,
495
496
    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
497
    /// address instructions in SSE are represented as 3 address ones in AVX
498
    /// and the additional register is encoded in VEX_VVVV prefix.
499
    VEX_4VShift = VEX_WShift + 1,
500
    VEX_4V      = 1ULL << VEX_4VShift,
501
502
    /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
503
    /// operand 3 with VEX.vvvv.
504
    VEX_4VOp3Shift = VEX_4VShift + 1,
505
    VEX_4VOp3   = 1ULL << VEX_4VOp3Shift,
506
507
    /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
508
    /// must be encoded in the i8 immediate field. This usually happens in
509
    /// instructions with 4 operands.
510
    VEX_I8IMMShift = VEX_4VOp3Shift + 1,
511
    VEX_I8IMM   = 1ULL << VEX_I8IMMShift,
512
513
    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
514
    /// instruction uses 256-bit wide registers. This is usually auto detected
515
    /// if a VR256 register is used, but some AVX instructions also have this
516
    /// field marked when using a f256 memory references.
517
    VEX_LShift = VEX_I8IMMShift + 1,
518
    VEX_L       = 1ULL << VEX_LShift,
519
520
    // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
521
    // prefix. Usually used for scalar instructions. Needed by disassembler.
522
    VEX_LIGShift = VEX_LShift + 1,
523
    VEX_LIG     = 1ULL << VEX_LIGShift,
524
525
    // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
526
    // with following encoding:
527
    // - 00 V128
528
    // - 01 V256
529
    // - 10 V512
530
    // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
531
    // this will save 1 tsflag bit
532
533
    // EVEX_K - Set if this instruction requires masking
534
    EVEX_KShift = VEX_LIGShift + 1,
535
    EVEX_K      = 1ULL << EVEX_KShift,
536
537
    // EVEX_Z - Set if this instruction has EVEX.Z field set.
538
    EVEX_ZShift = EVEX_KShift + 1,
539
    EVEX_Z      = 1ULL << EVEX_ZShift,
540
541
    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
542
    EVEX_L2Shift = EVEX_ZShift + 1,
543
    EVEX_L2     = 1ULL << EVEX_L2Shift,
544
545
    // EVEX_B - Set if this instruction has EVEX.B field set.
546
    EVEX_BShift = EVEX_L2Shift + 1,
547
    EVEX_B      = 1ULL << EVEX_BShift,
548
549
    // The scaling factor for the AVX512's 8-bit compressed displacement.
550
    CD8_Scale_Shift = EVEX_BShift + 1,
551
    CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
552
553
    /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
554
    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
555
    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
556
    /// storing a classifier in the imm8 field.  To simplify our implementation,
557
    /// we handle this by storeing the classifier in the opcode field and using
558
    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
559
    Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
560
    Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
561
562
    /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
563
    /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
564
    MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
565
    MemOp4 = 1ULL << MemOp4Shift,
566
567
    /// Explicitly specified rounding control
568
    EVEX_RCShift = MemOp4Shift + 1,
569
    EVEX_RC = 1ULL << EVEX_RCShift
570
  };
571
572
  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
573
  // specified machine instruction.
574
  //
575
46.4k
  inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
576
46.4k
    return TSFlags >> X86II::OpcodeShift;
577
46.4k
  }
578
579
99
  inline bool hasImm(uint64_t TSFlags) {
580
99
    return (TSFlags & X86II::ImmMask) != 0;
581
99
  }
582
583
  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
584
  /// of the specified instruction.
585
40.9k
  inline unsigned getSizeOfImm(uint64_t TSFlags) {
586
40.9k
    switch (TSFlags & X86II::ImmMask) {
587
0
    default: llvm_unreachable("Unknown immediate size");
588
460
    case X86II::Imm8:
589
24.6k
    case X86II::Imm8PCRel:  return 1;
590
326
    case X86II::Imm16:
591
654
    case X86II::Imm16PCRel: return 2;
592
204
    case X86II::Imm32:
593
206
    case X86II::Imm32S:
594
15.5k
    case X86II::Imm32PCRel: return 4;
595
14
    case X86II::Imm64:      return 8;
596
40.9k
    }
597
40.9k
  }
598
599
  /// isImmPCRel - Return true if the immediate of the specified instruction's
600
  /// TSFlags indicates that it is pc relative.
601
20.4k
  inline unsigned isImmPCRel(uint64_t TSFlags) {
602
20.4k
    switch (TSFlags & X86II::ImmMask) {
603
0
    default: llvm_unreachable("Unknown immediate size");
604
12.1k
    case X86II::Imm8PCRel:
605
12.2k
    case X86II::Imm16PCRel:
606
19.9k
    case X86II::Imm32PCRel:
607
19.9k
      return true;
608
230
    case X86II::Imm8:
609
393
    case X86II::Imm16:
610
495
    case X86II::Imm32:
611
496
    case X86II::Imm32S:
612
503
    case X86II::Imm64:
613
503
      return false;
614
20.4k
    }
615
20.4k
  }
616
617
  /// isImmSigned - Return true if the immediate of the specified instruction's
618
  /// TSFlags indicates that it is signed.
619
20.4k
  inline unsigned isImmSigned(uint64_t TSFlags) {
620
20.4k
    switch (TSFlags & X86II::ImmMask) {
621
0
    default: llvm_unreachable("Unknown immediate signedness");
622
1
    case X86II::Imm32S:
623
1
      return true;
624
230
    case X86II::Imm8:
625
12.3k
    case X86II::Imm8PCRel:
626
12.5k
    case X86II::Imm16:
627
12.6k
    case X86II::Imm16PCRel:
628
12.7k
    case X86II::Imm32:
629
20.4k
    case X86II::Imm32PCRel:
630
20.4k
    case X86II::Imm64:
631
20.4k
      return false;
632
20.4k
    }
633
20.4k
  }
634
635
  /// getOperandBias - compute any additional adjustment needed to
636
  ///                  the offset to the start of the memory operand
637
  ///                  in this instruction.
638
  /// If this is a two-address instruction,skip one of the register operands.
639
  /// FIXME: This should be handled during MCInst lowering.
640
  inline int getOperandBias(const MCInstrDesc& Desc)
641
46.4k
  {
642
46.4k
    unsigned NumOps = Desc.getNumOperands();
643
46.4k
    unsigned CurOp = 0;
644
46.4k
    if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
645
65
      ++CurOp;
646
46.3k
    else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
647
46.3k
             Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
648
      // Special case for AVX-512 GATHER with 2 TIED_TO operands
649
      // Skip the first 2 operands: dst, mask_wb
650
0
      CurOp += 2;
651
46.3k
    else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
652
46.3k
             Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
653
      // Special case for GATHER with 2 TIED_TO operands
654
      // Skip the first 2 operands: dst, mask_wb
655
0
      CurOp += 2;
656
46.3k
    else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
657
      // SCATTER
658
0
      ++CurOp;
659
46.4k
    return CurOp;
660
46.4k
  }
661
662
  /// getMemoryOperandNo - The function returns the MCInst operand # for the
663
  /// first field of the memory operand.  If the instruction doesn't have a
664
  /// memory operand, this returns -1.
665
  ///
666
  /// Note that this ignores tied operands.  If there is a tied register which
667
  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
668
  /// counted as one operand.
669
  ///
670
46.4k
  inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
671
46.4k
    bool HasVEX_4V = TSFlags & X86II::VEX_4V;
672
46.4k
    bool HasMemOp4 = TSFlags & X86II::MemOp4;
673
46.4k
    bool HasEVEX_K = TSFlags & X86II::EVEX_K;
674
675
46.4k
    switch (TSFlags & X86II::FormMask) {
676
0
    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
677
0
    case X86II::Pseudo:
678
23.1k
    case X86II::RawFrm:
679
23.1k
    case X86II::AddRegFrm:
680
23.1k
    case X86II::MRMDestReg:
681
23.1k
    case X86II::MRMSrcReg:
682
23.1k
    case X86II::RawFrmImm8:
683
23.1k
    case X86II::RawFrmImm16:
684
23.2k
    case X86II::RawFrmMemOffs:
685
27.9k
    case X86II::RawFrmSrc:
686
28.2k
    case X86II::RawFrmDst:
687
30.6k
    case X86II::RawFrmDstSrc:
688
30.6k
      return -1;
689
34
    case X86II::MRMDestMem:
690
34
      return 0;
691
141
    case X86II::MRMSrcMem:
692
      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
693
      // mask register.
694
141
      return 1 + HasVEX_4V + HasMemOp4 + HasEVEX_K;
695
0
    case X86II::MRMXr:
696
14
    case X86II::MRM0r: case X86II::MRM1r:
697
26
    case X86II::MRM2r: case X86II::MRM3r:
698
88
    case X86II::MRM4r: case X86II::MRM5r:
699
225
    case X86II::MRM6r: case X86II::MRM7r:
700
225
      return -1;
701
624
    case X86II::MRMXm:
702
704
    case X86II::MRM0m: case X86II::MRM1m:
703
12.9k
    case X86II::MRM2m: case X86II::MRM3m:
704
14.0k
    case X86II::MRM4m: case X86II::MRM5m:
705
14.5k
    case X86II::MRM6m: case X86II::MRM7m:
706
      // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
707
14.5k
      return 0 + HasVEX_4V + HasEVEX_K;
708
0
    case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
709
1
    case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
710
4
    case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
711
145
    case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
712
145
    case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
713
145
    case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
714
146
    case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
715
174
    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
716
180
    case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
717
182
    case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
718
633
    case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
719
748
    case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
720
759
    case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
721
782
    case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
722
804
    case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
723
811
    case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
724
820
    case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
725
821
    case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
726
823
    case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
727
823
    case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
728
849
    case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
729
855
    case X86II::MRM_FF:
730
855
      return -1;
731
46.4k
    }
732
46.4k
  }
733
734
  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
735
  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
736
66.8k
  inline bool isX86_64ExtendedReg(unsigned RegNo) {
737
66.8k
    if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
738
66.8k
        (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
739
66.8k
        (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
740
66.8k
        (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
741
66.8k
        (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
742
66.8k
        (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
743
557
      return true;
744
745
66.2k
    switch (RegNo) {
746
65.3k
    default: break;
747
65.3k
    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
748
0
    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
749
52
    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
750
77
    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
751
129
    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
752
173
    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
753
214
    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
754
275
    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
755
310
    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
756
910
    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
757
910
      return true;
758
66.2k
    }
759
65.3k
    return false;
760
66.2k
  }
761
762
  /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
763
  /// registers? e.g. zmm21, etc.
764
0
  static inline bool is32ExtendedReg(unsigned RegNo) {
765
0
    return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
766
0
            (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
767
0
            (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
768
0
  }
Unexecuted instantiation: X86AsmParser.cpp:llvm_ks::X86II::is32ExtendedReg(unsigned int)
Unexecuted instantiation: X86AsmInstrumentation.cpp:llvm_ks::X86II::is32ExtendedReg(unsigned int)
Unexecuted instantiation: X86AsmBackend.cpp:llvm_ks::X86II::is32ExtendedReg(unsigned int)
Unexecuted instantiation: X86MCCodeEmitter.cpp:llvm_ks::X86II::is32ExtendedReg(unsigned int)
769
770
771
67.0k
  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
772
67.0k
    return (reg == X86::SPL || reg == X86::BPL ||
773
67.0k
            reg == X86::SIL || reg == X86::DIL);
774
67.0k
  }
775
}
776
777
} // end namespace llvm_ks;
778
779
#endif