/src/keystone/llvm/lib/Support/APInt.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===-- APInt.cpp - Implement APInt class ---------------------------------===// |
2 | | // |
3 | | // The LLVM Compiler Infrastructure |
4 | | // |
5 | | // This file is distributed under the University of Illinois Open Source |
6 | | // License. See LICENSE.TXT for details. |
7 | | // |
8 | | //===----------------------------------------------------------------------===// |
9 | | // |
10 | | // This file implements a class to represent arbitrary precision integer |
11 | | // constant values and provide a variety of arithmetic operations on them. |
12 | | // |
13 | | //===----------------------------------------------------------------------===// |
14 | | |
15 | | #include "llvm/ADT/APInt.h" |
16 | | #include "llvm/ADT/FoldingSet.h" |
17 | | #include "llvm/ADT/Hashing.h" |
18 | | #include "llvm/ADT/SmallString.h" |
19 | | #include "llvm/ADT/StringRef.h" |
20 | | #include "llvm/Support/Debug.h" |
21 | | #include "llvm/Support/ErrorHandling.h" |
22 | | #include "llvm/Support/MathExtras.h" |
23 | | #include "llvm/Support/raw_ostream.h" |
24 | | #include <cmath> |
25 | | #include <cstdlib> |
26 | | #include <cstring> |
27 | | #include <limits> |
28 | | using namespace llvm_ks; |
29 | | |
30 | | #define DEBUG_TYPE "apint" |
31 | | |
32 | | /// A utility function for allocating memory, checking for allocation failures, |
33 | | /// and ensuring the contents are zeroed. |
34 | 5.69M | inline static uint64_t* getClearedMemory(unsigned numWords) { |
35 | 5.69M | uint64_t * result = new uint64_t[numWords]; |
36 | 5.69M | assert(result && "APInt memory allocation fails!"); |
37 | 5.69M | memset(result, 0, numWords * sizeof(uint64_t)); |
38 | 5.69M | return result; |
39 | 5.69M | } |
40 | | |
41 | | /// A utility function for allocating memory and checking for allocation |
42 | | /// failure. The content is not zeroed. |
43 | 10.0M | inline static uint64_t* getMemory(unsigned numWords) { |
44 | 10.0M | uint64_t * result = new uint64_t[numWords]; |
45 | 10.0M | assert(result && "APInt memory allocation fails!"); |
46 | 10.0M | return result; |
47 | 10.0M | } |
48 | | |
49 | | /// A utility function that converts a character to a digit. |
50 | 0 | inline static unsigned getDigit(char cdigit, uint8_t radix) { |
51 | 0 | unsigned r; |
52 | |
|
53 | 0 | if (radix == 16 || radix == 36) { |
54 | 0 | r = cdigit - '0'; |
55 | 0 | if (r <= 9) |
56 | 0 | return r; |
57 | | |
58 | 0 | r = cdigit - 'A'; |
59 | 0 | if (r <= radix - 11U) |
60 | 0 | return r + 10; |
61 | | |
62 | 0 | r = cdigit - 'a'; |
63 | 0 | if (r <= radix - 11U) |
64 | 0 | return r + 10; |
65 | | |
66 | 0 | radix = 10; |
67 | 0 | } |
68 | | |
69 | 0 | r = cdigit - '0'; |
70 | 0 | if (r < radix) |
71 | 0 | return r; |
72 | | |
73 | 0 | return -1U; |
74 | 0 | } |
75 | | |
76 | | |
77 | 5.69M | void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { |
78 | 5.69M | pVal = getClearedMemory(getNumWords()); |
79 | 5.69M | pVal[0] = val; |
80 | 5.69M | if (isSigned && int64_t(val) < 0) |
81 | 0 | for (unsigned i = 1; i < getNumWords(); ++i) |
82 | 0 | pVal[i] = -1ULL; |
83 | 5.69M | } |
84 | | |
85 | 9.81M | void APInt::initSlowCase(const APInt& that) { |
86 | 9.81M | pVal = getMemory(getNumWords()); |
87 | 9.81M | memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); |
88 | 9.81M | } |
89 | | |
90 | 0 | void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { |
91 | 0 | assert(BitWidth && "Bitwidth too small"); |
92 | 0 | assert(bigVal.data() && "Null pointer detected!"); |
93 | 0 | if (isSingleWord()) |
94 | 0 | VAL = bigVal[0]; |
95 | 0 | else { |
96 | | // Get memory, cleared to 0 |
97 | 0 | pVal = getClearedMemory(getNumWords()); |
98 | | // Calculate the number of words to copy |
99 | 0 | unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); |
100 | | // Copy the words from bigVal to pVal |
101 | 0 | memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); |
102 | 0 | } |
103 | | // Make sure unused high bits are cleared |
104 | 0 | clearUnusedBits(); |
105 | 0 | } |
106 | | |
107 | | APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) |
108 | 0 | : BitWidth(numBits), VAL(0) { |
109 | 0 | initFromArray(bigVal); |
110 | 0 | } |
111 | | |
112 | | APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) |
113 | 0 | : BitWidth(numBits), VAL(0) { |
114 | 0 | initFromArray(makeArrayRef(bigVal, numWords)); |
115 | 0 | } |
116 | | |
117 | | APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) |
118 | 0 | : BitWidth(numbits), VAL(0) { |
119 | 0 | assert(BitWidth && "Bitwidth too small"); |
120 | 0 | fromString(numbits, Str, radix); |
121 | 0 | } |
122 | | |
123 | 216k | APInt& APInt::AssignSlowCase(const APInt& RHS) { |
124 | | // Don't do anything for X = X |
125 | 216k | if (this == &RHS) |
126 | 0 | return *this; |
127 | | |
128 | 216k | if (BitWidth == RHS.getBitWidth()) { |
129 | | // assume same bit-width single-word case is already handled |
130 | 3.88k | assert(!isSingleWord()); |
131 | 3.88k | memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); |
132 | 3.88k | return *this; |
133 | 3.88k | } |
134 | | |
135 | 212k | if (isSingleWord()) { |
136 | | // assume case where both are single words is already handled |
137 | 205k | assert(!RHS.isSingleWord()); |
138 | 205k | VAL = 0; |
139 | 205k | pVal = getMemory(RHS.getNumWords()); |
140 | 205k | memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); |
141 | 205k | } else if (getNumWords() == RHS.getNumWords()) |
142 | 140 | memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); |
143 | 6.18k | else if (RHS.isSingleWord()) { |
144 | 5.77k | delete [] pVal; |
145 | 5.77k | VAL = RHS.VAL; |
146 | 5.77k | } else { |
147 | 409 | delete [] pVal; |
148 | 409 | pVal = getMemory(RHS.getNumWords()); |
149 | 409 | memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); |
150 | 409 | } |
151 | 212k | BitWidth = RHS.BitWidth; |
152 | 212k | return clearUnusedBits(); |
153 | 212k | } |
154 | | |
155 | 4.77M | APInt& APInt::operator=(uint64_t RHS) { |
156 | 4.77M | if (isSingleWord()) |
157 | 815 | VAL = RHS; |
158 | 4.77M | else { |
159 | 4.77M | pVal[0] = RHS; |
160 | 4.77M | memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
161 | 4.77M | } |
162 | 4.77M | return clearUnusedBits(); |
163 | 4.77M | } |
164 | | |
165 | | /// This method 'profiles' an APInt for use with FoldingSet. |
166 | 0 | void APInt::Profile(FoldingSetNodeID& ID) const { |
167 | | #if 0 |
168 | | ID.AddInteger(BitWidth); |
169 | | |
170 | | if (isSingleWord()) { |
171 | | ID.AddInteger(VAL); |
172 | | return; |
173 | | } |
174 | | |
175 | | unsigned NumWords = getNumWords(); |
176 | | for (unsigned i = 0; i < NumWords; ++i) |
177 | | ID.AddInteger(pVal[i]); |
178 | | #endif |
179 | 0 | } |
180 | | |
181 | | /// This function adds a single "digit" integer, y, to the multiple |
182 | | /// "digit" integer array, x[]. x[] is modified to reflect the addition and |
183 | | /// 1 is returned if there is a carry out, otherwise 0 is returned. |
184 | | /// @returns the carry of the addition. |
185 | 0 | static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { |
186 | 0 | for (unsigned i = 0; i < len; ++i) { |
187 | 0 | dest[i] = y + x[i]; |
188 | 0 | if (dest[i] < y) |
189 | 0 | y = 1; // Carry one to next digit. |
190 | 0 | else { |
191 | 0 | y = 0; // No need to carry so exit early |
192 | 0 | break; |
193 | 0 | } |
194 | 0 | } |
195 | 0 | return y; |
196 | 0 | } |
197 | | |
198 | | /// @brief Prefix increment operator. Increments the APInt by one. |
199 | 0 | APInt& APInt::operator++() { |
200 | 0 | if (isSingleWord()) |
201 | 0 | ++VAL; |
202 | 0 | else |
203 | 0 | add_1(pVal, pVal, getNumWords(), 1); |
204 | 0 | return clearUnusedBits(); |
205 | 0 | } |
206 | | |
207 | | /// This function subtracts a single "digit" (64-bit word), y, from |
208 | | /// the multi-digit integer array, x[], propagating the borrowed 1 value until |
209 | | /// no further borrowing is neeeded or it runs out of "digits" in x. The result |
210 | | /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. |
211 | | /// In other words, if y > x then this function returns 1, otherwise 0. |
212 | | /// @returns the borrow out of the subtraction |
213 | 0 | static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { |
214 | 0 | for (unsigned i = 0; i < len; ++i) { |
215 | 0 | uint64_t X = x[i]; |
216 | 0 | x[i] -= y; |
217 | 0 | if (y > X) |
218 | 0 | y = 1; // We have to "borrow 1" from next "digit" |
219 | 0 | else { |
220 | 0 | y = 0; // No need to borrow |
221 | 0 | break; // Remaining digits are unchanged so exit early |
222 | 0 | } |
223 | 0 | } |
224 | 0 | return bool(y); |
225 | 0 | } |
226 | | |
227 | | /// @brief Prefix decrement operator. Decrements the APInt by one. |
228 | 0 | APInt& APInt::operator--() { |
229 | 0 | if (isSingleWord()) |
230 | 0 | --VAL; |
231 | 0 | else |
232 | 0 | sub_1(pVal, getNumWords(), 1); |
233 | 0 | return clearUnusedBits(); |
234 | 0 | } |
235 | | |
236 | | /// This function adds the integer array x to the integer array Y and |
237 | | /// places the result in dest. |
238 | | /// @returns the carry out from the addition |
239 | | /// @brief General addition of 64-bit integer arrays |
240 | | static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, |
241 | 14.2k | unsigned len) { |
242 | 14.2k | bool carry = false; |
243 | 795k | for (unsigned i = 0; i< len; ++i) { |
244 | 780k | uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x |
245 | 780k | dest[i] = x[i] + y[i] + carry; |
246 | 780k | carry = dest[i] < limit || (carry && dest[i] == limit); |
247 | 780k | } |
248 | 14.2k | return carry; |
249 | 14.2k | } |
250 | | |
251 | | /// Adds the RHS APint to this APInt. |
252 | | /// @returns this, after addition of RHS. |
253 | | /// @brief Addition assignment operator. |
254 | 14.9k | APInt& APInt::operator+=(const APInt& RHS) { |
255 | 14.9k | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
256 | 14.9k | if (isSingleWord()) |
257 | 716 | VAL += RHS.VAL; |
258 | 14.2k | else { |
259 | 14.2k | add(pVal, pVal, RHS.pVal, getNumWords()); |
260 | 14.2k | } |
261 | 14.9k | return clearUnusedBits(); |
262 | 14.9k | } |
263 | | |
264 | | /// Subtracts the integer array y from the integer array x |
265 | | /// @returns returns the borrow out. |
266 | | /// @brief Generalized subtraction of 64-bit integer arrays. |
267 | | static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, |
268 | 0 | unsigned len) { |
269 | 0 | bool borrow = false; |
270 | 0 | for (unsigned i = 0; i < len; ++i) { |
271 | 0 | uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; |
272 | 0 | borrow = y[i] > x_tmp || (borrow && x[i] == 0); |
273 | 0 | dest[i] = x_tmp - y[i]; |
274 | 0 | } |
275 | 0 | return borrow; |
276 | 0 | } |
277 | | |
278 | | /// Subtracts the RHS APInt from this APInt |
279 | | /// @returns this, after subtraction |
280 | | /// @brief Subtraction assignment operator. |
281 | 0 | APInt& APInt::operator-=(const APInt& RHS) { |
282 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
283 | 0 | if (isSingleWord()) |
284 | 0 | VAL -= RHS.VAL; |
285 | 0 | else |
286 | 0 | sub(pVal, pVal, RHS.pVal, getNumWords()); |
287 | 0 | return clearUnusedBits(); |
288 | 0 | } |
289 | | |
290 | | /// Multiplies an integer array, x, by a uint64_t integer and places the result |
291 | | /// into dest. |
292 | | /// @returns the carry out of the multiplication. |
293 | | /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. |
294 | 14.1k | static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { |
295 | | // Split y into high 32-bit part (hy) and low 32-bit part (ly) |
296 | 14.1k | uint64_t ly = y & 0xffffffffULL, hy = y >> 32; |
297 | 14.1k | uint64_t carry = 0; |
298 | | |
299 | | // For each digit of x. |
300 | 341k | for (unsigned i = 0; i < len; ++i) { |
301 | | // Split x into high and low words |
302 | 327k | uint64_t lx = x[i] & 0xffffffffULL; |
303 | 327k | uint64_t hx = x[i] >> 32; |
304 | | // hasCarry - A flag to indicate if there is a carry to the next digit. |
305 | | // hasCarry == 0, no carry |
306 | | // hasCarry == 1, has carry |
307 | | // hasCarry == 2, no carry and the calculation result == 0. |
308 | 327k | uint8_t hasCarry = 0; |
309 | 327k | dest[i] = carry + lx * ly; |
310 | | // Determine if the add above introduces carry. |
311 | 327k | hasCarry = (dest[i] < carry) ? 1 : 0; |
312 | 327k | carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); |
313 | | // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + |
314 | | // (2^32 - 1) + 2^32 = 2^64. |
315 | 327k | hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); |
316 | | |
317 | 327k | carry += (lx * hy) & 0xffffffffULL; |
318 | 327k | dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); |
319 | 327k | carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + |
320 | 327k | (carry >> 32) + ((lx * hy) >> 32) + hx * hy; |
321 | 327k | } |
322 | 14.1k | return carry; |
323 | 14.1k | } |
324 | | |
325 | | /// Multiplies integer array x by integer array y and stores the result into |
326 | | /// the integer array dest. Note that dest's size must be >= xlen + ylen. |
327 | | /// @brief Generalized multiplicate of integer arrays. |
328 | | static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], |
329 | 14.1k | unsigned ylen) { |
330 | 14.1k | dest[xlen] = mul_1(dest, x, xlen, y[0]); |
331 | 14.1k | for (unsigned i = 1; i < ylen; ++i) { |
332 | 0 | uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; |
333 | 0 | uint64_t carry = 0, lx = 0, hx = 0; |
334 | 0 | for (unsigned j = 0; j < xlen; ++j) { |
335 | 0 | lx = x[j] & 0xffffffffULL; |
336 | 0 | hx = x[j] >> 32; |
337 | | // hasCarry - A flag to indicate if has carry. |
338 | | // hasCarry == 0, no carry |
339 | | // hasCarry == 1, has carry |
340 | | // hasCarry == 2, no carry and the calculation result == 0. |
341 | 0 | uint8_t hasCarry = 0; |
342 | 0 | uint64_t resul = carry + lx * ly; |
343 | 0 | hasCarry = (resul < carry) ? 1 : 0; |
344 | 0 | carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); |
345 | 0 | hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); |
346 | |
|
347 | 0 | carry += (lx * hy) & 0xffffffffULL; |
348 | 0 | resul = (carry << 32) | (resul & 0xffffffffULL); |
349 | 0 | dest[i+j] += resul; |
350 | 0 | carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ |
351 | 0 | (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + |
352 | 0 | ((lx * hy) >> 32) + hx * hy; |
353 | 0 | } |
354 | 0 | dest[i+xlen] = carry; |
355 | 0 | } |
356 | 14.1k | } |
357 | | |
358 | 14.9k | APInt& APInt::operator*=(const APInt& RHS) { |
359 | 14.9k | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
360 | 14.9k | if (isSingleWord()) { |
361 | 716 | VAL *= RHS.VAL; |
362 | 716 | clearUnusedBits(); |
363 | 716 | return *this; |
364 | 716 | } |
365 | | |
366 | | // Get some bit facts about LHS and check for zero |
367 | 14.2k | unsigned lhsBits = getActiveBits(); |
368 | 14.2k | unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; |
369 | 14.2k | if (!lhsWords) |
370 | | // 0 * X ===> 0 |
371 | 109 | return *this; |
372 | | |
373 | | // Get some bit facts about RHS and check for zero |
374 | 14.1k | unsigned rhsBits = RHS.getActiveBits(); |
375 | 14.1k | unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; |
376 | 14.1k | if (!rhsWords) { |
377 | | // X * 0 ===> 0 |
378 | 0 | clearAllBits(); |
379 | 0 | return *this; |
380 | 0 | } |
381 | | |
382 | | // Allocate space for the result |
383 | 14.1k | unsigned destWords = rhsWords + lhsWords; |
384 | 14.1k | uint64_t *dest = getMemory(destWords); |
385 | | |
386 | | // Perform the long multiply |
387 | 14.1k | mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); |
388 | | |
389 | | // Copy result back into *this |
390 | 14.1k | clearAllBits(); |
391 | 14.1k | unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; |
392 | 14.1k | memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); |
393 | 14.1k | clearUnusedBits(); |
394 | | |
395 | | // delete dest array and return |
396 | 14.1k | delete[] dest; |
397 | 14.1k | return *this; |
398 | 14.1k | } |
399 | | |
400 | 0 | APInt& APInt::operator&=(const APInt& RHS) { |
401 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
402 | 0 | if (isSingleWord()) { |
403 | 0 | VAL &= RHS.VAL; |
404 | 0 | return *this; |
405 | 0 | } |
406 | 0 | unsigned numWords = getNumWords(); |
407 | 0 | for (unsigned i = 0; i < numWords; ++i) |
408 | 0 | pVal[i] &= RHS.pVal[i]; |
409 | 0 | return *this; |
410 | 0 | } |
411 | | |
412 | 0 | APInt& APInt::operator|=(const APInt& RHS) { |
413 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
414 | 0 | if (isSingleWord()) { |
415 | 0 | VAL |= RHS.VAL; |
416 | 0 | return *this; |
417 | 0 | } |
418 | 0 | unsigned numWords = getNumWords(); |
419 | 0 | for (unsigned i = 0; i < numWords; ++i) |
420 | 0 | pVal[i] |= RHS.pVal[i]; |
421 | 0 | return *this; |
422 | 0 | } |
423 | | |
424 | 0 | APInt& APInt::operator^=(const APInt& RHS) { |
425 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
426 | 0 | if (isSingleWord()) { |
427 | 0 | VAL ^= RHS.VAL; |
428 | 0 | this->clearUnusedBits(); |
429 | 0 | return *this; |
430 | 0 | } |
431 | 0 | unsigned numWords = getNumWords(); |
432 | 0 | for (unsigned i = 0; i < numWords; ++i) |
433 | 0 | pVal[i] ^= RHS.pVal[i]; |
434 | 0 | return clearUnusedBits(); |
435 | 0 | } |
436 | | |
437 | 0 | APInt APInt::AndSlowCase(const APInt& RHS) const { |
438 | 0 | unsigned numWords = getNumWords(); |
439 | 0 | uint64_t* val = getMemory(numWords); |
440 | 0 | for (unsigned i = 0; i < numWords; ++i) |
441 | 0 | val[i] = pVal[i] & RHS.pVal[i]; |
442 | 0 | return APInt(val, getBitWidth()); |
443 | 0 | } |
444 | | |
445 | 0 | APInt APInt::OrSlowCase(const APInt& RHS) const { |
446 | 0 | unsigned numWords = getNumWords(); |
447 | 0 | uint64_t *val = getMemory(numWords); |
448 | 0 | for (unsigned i = 0; i < numWords; ++i) |
449 | 0 | val[i] = pVal[i] | RHS.pVal[i]; |
450 | 0 | return APInt(val, getBitWidth()); |
451 | 0 | } |
452 | | |
453 | 0 | APInt APInt::XorSlowCase(const APInt& RHS) const { |
454 | 0 | unsigned numWords = getNumWords(); |
455 | 0 | uint64_t *val = getMemory(numWords); |
456 | 0 | for (unsigned i = 0; i < numWords; ++i) |
457 | 0 | val[i] = pVal[i] ^ RHS.pVal[i]; |
458 | |
|
459 | 0 | APInt Result(val, getBitWidth()); |
460 | | // 0^0==1 so clear the high bits in case they got set. |
461 | 0 | Result.clearUnusedBits(); |
462 | 0 | return Result; |
463 | 0 | } |
464 | | |
465 | 0 | APInt APInt::operator*(const APInt& RHS) const { |
466 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
467 | 0 | if (isSingleWord()) |
468 | 0 | return APInt(BitWidth, VAL * RHS.VAL); |
469 | 0 | APInt Result(*this); |
470 | 0 | Result *= RHS; |
471 | 0 | return Result; |
472 | 0 | } |
473 | | |
474 | 0 | APInt APInt::operator+(const APInt& RHS) const { |
475 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
476 | 0 | if (isSingleWord()) |
477 | 0 | return APInt(BitWidth, VAL + RHS.VAL); |
478 | 0 | APInt Result(BitWidth, 0); |
479 | 0 | add(Result.pVal, this->pVal, RHS.pVal, getNumWords()); |
480 | 0 | Result.clearUnusedBits(); |
481 | 0 | return Result; |
482 | 0 | } |
483 | | |
484 | 0 | APInt APInt::operator-(const APInt& RHS) const { |
485 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
486 | 0 | if (isSingleWord()) |
487 | 0 | return APInt(BitWidth, VAL - RHS.VAL); |
488 | 0 | APInt Result(BitWidth, 0); |
489 | 0 | sub(Result.pVal, this->pVal, RHS.pVal, getNumWords()); |
490 | 0 | Result.clearUnusedBits(); |
491 | 0 | return Result; |
492 | 0 | } |
493 | | |
494 | 0 | bool APInt::EqualSlowCase(const APInt& RHS) const { |
495 | | // Get some facts about the number of bits used in the two operands. |
496 | 0 | unsigned n1 = getActiveBits(); |
497 | 0 | unsigned n2 = RHS.getActiveBits(); |
498 | | |
499 | | // If the number of bits isn't the same, they aren't equal |
500 | 0 | if (n1 != n2) |
501 | 0 | return false; |
502 | | |
503 | | // If the number of bits fits in a word, we only need to compare the low word. |
504 | 0 | if (n1 <= APINT_BITS_PER_WORD) |
505 | 0 | return pVal[0] == RHS.pVal[0]; |
506 | | |
507 | | // Otherwise, compare everything |
508 | 0 | for (int i = whichWord(n1 - 1); i >= 0; --i) |
509 | 0 | if (pVal[i] != RHS.pVal[i]) |
510 | 0 | return false; |
511 | 0 | return true; |
512 | 0 | } |
513 | | |
514 | 0 | bool APInt::EqualSlowCase(uint64_t Val) const { |
515 | 0 | unsigned n = getActiveBits(); |
516 | 0 | if (n <= APINT_BITS_PER_WORD) |
517 | 0 | return pVal[0] == Val; |
518 | 0 | else |
519 | 0 | return false; |
520 | 0 | } |
521 | | |
522 | 0 | bool APInt::ult(const APInt& RHS) const { |
523 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); |
524 | 0 | if (isSingleWord()) |
525 | 0 | return VAL < RHS.VAL; |
526 | | |
527 | | // Get active bit length of both operands |
528 | 0 | unsigned n1 = getActiveBits(); |
529 | 0 | unsigned n2 = RHS.getActiveBits(); |
530 | | |
531 | | // If magnitude of LHS is less than RHS, return true. |
532 | 0 | if (n1 < n2) |
533 | 0 | return true; |
534 | | |
535 | | // If magnitude of RHS is greather than LHS, return false. |
536 | 0 | if (n2 < n1) |
537 | 0 | return false; |
538 | | |
539 | | // If they bot fit in a word, just compare the low order word |
540 | 0 | if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) |
541 | 0 | return pVal[0] < RHS.pVal[0]; |
542 | | |
543 | | // Otherwise, compare all words |
544 | 0 | unsigned topWord = whichWord(std::max(n1,n2)-1); |
545 | 0 | for (int i = topWord; i >= 0; --i) { |
546 | 0 | if (pVal[i] > RHS.pVal[i]) |
547 | 0 | return false; |
548 | 0 | if (pVal[i] < RHS.pVal[i]) |
549 | 0 | return true; |
550 | 0 | } |
551 | 0 | return false; |
552 | 0 | } |
553 | | |
554 | 0 | bool APInt::slt(const APInt& RHS) const { |
555 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); |
556 | 0 | if (isSingleWord()) { |
557 | 0 | int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); |
558 | 0 | int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); |
559 | 0 | return lhsSext < rhsSext; |
560 | 0 | } |
561 | | |
562 | 0 | APInt lhs(*this); |
563 | 0 | APInt rhs(RHS); |
564 | 0 | bool lhsNeg = isNegative(); |
565 | 0 | bool rhsNeg = rhs.isNegative(); |
566 | 0 | if (lhsNeg) { |
567 | | // Sign bit is set so perform two's complement to make it positive |
568 | 0 | lhs.flipAllBits(); |
569 | 0 | ++lhs; |
570 | 0 | } |
571 | 0 | if (rhsNeg) { |
572 | | // Sign bit is set so perform two's complement to make it positive |
573 | 0 | rhs.flipAllBits(); |
574 | 0 | ++rhs; |
575 | 0 | } |
576 | | |
577 | | // Now we have unsigned values to compare so do the comparison if necessary |
578 | | // based on the negativeness of the values. |
579 | 0 | if (lhsNeg) |
580 | 0 | if (rhsNeg) |
581 | 0 | return lhs.ugt(rhs); |
582 | 0 | else |
583 | 0 | return true; |
584 | 0 | else if (rhsNeg) |
585 | 0 | return false; |
586 | 0 | else |
587 | 0 | return lhs.ult(rhs); |
588 | 0 | } |
589 | | |
590 | 0 | void APInt::setBit(unsigned bitPosition) { |
591 | 0 | if (isSingleWord()) |
592 | 0 | VAL |= maskBit(bitPosition); |
593 | 0 | else |
594 | 0 | pVal[whichWord(bitPosition)] |= maskBit(bitPosition); |
595 | 0 | } |
596 | | |
597 | | /// Set the given bit to 0 whose position is given as "bitPosition". |
598 | | /// @brief Set a given bit to 0. |
599 | 0 | void APInt::clearBit(unsigned bitPosition) { |
600 | 0 | if (isSingleWord()) |
601 | 0 | VAL &= ~maskBit(bitPosition); |
602 | 0 | else |
603 | 0 | pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); |
604 | 0 | } |
605 | | |
606 | | /// @brief Toggle every bit to its opposite value. |
607 | | |
608 | | /// Toggle a given bit to its opposite value whose position is given |
609 | | /// as "bitPosition". |
610 | | /// @brief Toggles a given bit to its opposite value. |
611 | 0 | void APInt::flipBit(unsigned bitPosition) { |
612 | 0 | assert(bitPosition < BitWidth && "Out of the bit-width range!"); |
613 | 0 | if ((*this)[bitPosition]) clearBit(bitPosition); |
614 | 0 | else setBit(bitPosition); |
615 | 0 | } |
616 | | |
617 | 0 | unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { |
618 | 0 | assert(!str.empty() && "Invalid string length"); |
619 | 0 | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || |
620 | 0 | radix == 36) && |
621 | 0 | "Radix should be 2, 8, 10, 16, or 36!"); |
622 | | |
623 | 0 | size_t slen = str.size(); |
624 | | |
625 | | // Each computation below needs to know if it's negative. |
626 | 0 | StringRef::iterator p = str.begin(); |
627 | 0 | unsigned isNegative = *p == '-'; |
628 | 0 | if (*p == '-' || *p == '+') { |
629 | 0 | p++; |
630 | 0 | slen--; |
631 | 0 | assert(slen && "String is only a sign, needs a value."); |
632 | 0 | } |
633 | | |
634 | | // For radixes of power-of-two values, the bits required is accurately and |
635 | | // easily computed |
636 | 0 | if (radix == 2) |
637 | 0 | return slen + isNegative; |
638 | 0 | if (radix == 8) |
639 | 0 | return slen * 3 + isNegative; |
640 | 0 | if (radix == 16) |
641 | 0 | return slen * 4 + isNegative; |
642 | | |
643 | | // FIXME: base 36 |
644 | | |
645 | | // This is grossly inefficient but accurate. We could probably do something |
646 | | // with a computation of roughly slen*64/20 and then adjust by the value of |
647 | | // the first few digits. But, I'm not sure how accurate that could be. |
648 | | |
649 | | // Compute a sufficient number of bits that is always large enough but might |
650 | | // be too large. This avoids the assertion in the constructor. This |
651 | | // calculation doesn't work appropriately for the numbers 0-9, so just use 4 |
652 | | // bits in that case. |
653 | 0 | unsigned sufficient |
654 | 0 | = radix == 10? (slen == 1 ? 4 : slen * 64/18) |
655 | 0 | : (slen == 1 ? 7 : slen * 16/3); |
656 | | |
657 | | // Convert to the actual binary value. |
658 | 0 | APInt tmp(sufficient, StringRef(p, slen), radix); |
659 | | |
660 | | // Compute how many bits are required. If the log is infinite, assume we need |
661 | | // just bit. |
662 | 0 | unsigned log = tmp.logBase2(); |
663 | 0 | if (log == (unsigned)-1) { |
664 | 0 | return isNegative + 1; |
665 | 0 | } else { |
666 | 0 | return isNegative + log + 1; |
667 | 0 | } |
668 | 0 | } |
669 | | |
670 | 0 | hash_code llvm_ks::hash_value(const APInt &Arg) { |
671 | 0 | if (Arg.isSingleWord()) |
672 | 0 | return hash_combine(Arg.VAL); |
673 | | |
674 | 0 | return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords()); |
675 | 0 | } |
676 | | |
677 | 0 | bool APInt::isSplat(unsigned SplatSizeInBits) const { |
678 | 0 | assert(getBitWidth() % SplatSizeInBits == 0 && |
679 | 0 | "SplatSizeInBits must divide width!"); |
680 | | // We can check that all parts of an integer are equal by making use of a |
681 | | // little trick: rotate and check if it's still the same value. |
682 | 0 | return *this == rotl(SplatSizeInBits); |
683 | 0 | } |
684 | | |
685 | | /// This function returns the high "numBits" bits of this APInt. |
686 | 4.48k | APInt APInt::getHiBits(unsigned numBits) const { |
687 | 4.48k | return APIntOps::lshr(*this, BitWidth - numBits); |
688 | 4.48k | } |
689 | | |
690 | | /// This function returns the low "numBits" bits of this APInt. |
691 | 4.48k | APInt APInt::getLoBits(unsigned numBits) const { |
692 | 4.48k | return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), |
693 | 4.48k | BitWidth - numBits); |
694 | 4.48k | } |
695 | | |
696 | 7.53M | unsigned APInt::countLeadingZerosSlowCase() const { |
697 | | // Treat the most significand word differently because it might have |
698 | | // meaningless bits set beyond the precision. |
699 | 7.53M | unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD; |
700 | 7.53M | integerPart MSWMask; |
701 | 7.53M | if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1; |
702 | 7.46M | else { |
703 | 7.46M | MSWMask = ~integerPart(0); |
704 | 7.46M | BitsInMSW = APINT_BITS_PER_WORD; |
705 | 7.46M | } |
706 | | |
707 | 7.53M | unsigned i = getNumWords(); |
708 | 7.53M | integerPart MSW = pVal[i-1] & MSWMask; |
709 | 7.53M | if (MSW) |
710 | 122k | return llvm_ks::countLeadingZeros(MSW) - (APINT_BITS_PER_WORD - BitsInMSW); |
711 | | |
712 | 7.41M | unsigned Count = BitsInMSW; |
713 | 8.60M | for (--i; i > 0u; --i) { |
714 | 8.60M | if (pVal[i-1] == 0) |
715 | 1.19M | Count += APINT_BITS_PER_WORD; |
716 | 7.40M | else { |
717 | 7.40M | Count += llvm_ks::countLeadingZeros(pVal[i-1]); |
718 | 7.40M | break; |
719 | 7.40M | } |
720 | 8.60M | } |
721 | 7.41M | return Count; |
722 | 7.53M | } |
723 | | |
724 | 104 | unsigned APInt::countLeadingOnes() const { |
725 | 104 | if (isSingleWord()) |
726 | 104 | return llvm_ks::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth)); |
727 | | |
728 | 0 | unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; |
729 | 0 | unsigned shift; |
730 | 0 | if (!highWordBits) { |
731 | 0 | highWordBits = APINT_BITS_PER_WORD; |
732 | 0 | shift = 0; |
733 | 0 | } else { |
734 | 0 | shift = APINT_BITS_PER_WORD - highWordBits; |
735 | 0 | } |
736 | 0 | int i = getNumWords() - 1; |
737 | 0 | unsigned Count = llvm_ks::countLeadingOnes(pVal[i] << shift); |
738 | 0 | if (Count == highWordBits) { |
739 | 0 | for (i--; i >= 0; --i) { |
740 | 0 | if (pVal[i] == -1ULL) |
741 | 0 | Count += APINT_BITS_PER_WORD; |
742 | 0 | else { |
743 | 0 | Count += llvm_ks::countLeadingOnes(pVal[i]); |
744 | 0 | break; |
745 | 0 | } |
746 | 0 | } |
747 | 0 | } |
748 | 0 | return Count; |
749 | 104 | } |
750 | | |
751 | 0 | unsigned APInt::countTrailingZeros() const { |
752 | 0 | if (isSingleWord()) |
753 | 0 | return std::min(unsigned(llvm_ks::countTrailingZeros(VAL)), BitWidth); |
754 | 0 | unsigned Count = 0; |
755 | 0 | unsigned i = 0; |
756 | 0 | for (; i < getNumWords() && pVal[i] == 0; ++i) |
757 | 0 | Count += APINT_BITS_PER_WORD; |
758 | 0 | if (i < getNumWords()) |
759 | 0 | Count += llvm_ks::countTrailingZeros(pVal[i]); |
760 | 0 | return std::min(Count, BitWidth); |
761 | 0 | } |
762 | | |
763 | 0 | unsigned APInt::countTrailingOnesSlowCase() const { |
764 | 0 | unsigned Count = 0; |
765 | 0 | unsigned i = 0; |
766 | 0 | for (; i < getNumWords() && pVal[i] == -1ULL; ++i) |
767 | 0 | Count += APINT_BITS_PER_WORD; |
768 | 0 | if (i < getNumWords()) |
769 | 0 | Count += llvm_ks::countTrailingOnes(pVal[i]); |
770 | 0 | return std::min(Count, BitWidth); |
771 | 0 | } |
772 | | |
773 | 0 | unsigned APInt::countPopulationSlowCase() const { |
774 | 0 | unsigned Count = 0; |
775 | 0 | for (unsigned i = 0; i < getNumWords(); ++i) |
776 | 0 | Count += llvm_ks::countPopulation(pVal[i]); |
777 | 0 | return Count; |
778 | 0 | } |
779 | | |
780 | | /// Perform a logical right-shift from Src to Dst, which must be equal or |
781 | | /// non-overlapping, of Words words, by Shift, which must be less than 64. |
782 | | static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, |
783 | 0 | unsigned Shift) { |
784 | 0 | uint64_t Carry = 0; |
785 | 0 | for (int I = Words - 1; I >= 0; --I) { |
786 | 0 | uint64_t Tmp = Src[I]; |
787 | 0 | Dst[I] = (Tmp >> Shift) | Carry; |
788 | 0 | Carry = Tmp << (64 - Shift); |
789 | 0 | } |
790 | 0 | } |
791 | | |
792 | 0 | APInt APInt::byteSwap() const { |
793 | 0 | assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); |
794 | 0 | if (BitWidth == 16) |
795 | 0 | return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); |
796 | 0 | if (BitWidth == 32) |
797 | 0 | return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); |
798 | 0 | if (BitWidth == 48) { |
799 | 0 | unsigned Tmp1 = unsigned(VAL >> 16); |
800 | 0 | Tmp1 = ByteSwap_32(Tmp1); |
801 | 0 | uint16_t Tmp2 = uint16_t(VAL); |
802 | 0 | Tmp2 = ByteSwap_16(Tmp2); |
803 | 0 | return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); |
804 | 0 | } |
805 | 0 | if (BitWidth == 64) |
806 | 0 | return APInt(BitWidth, ByteSwap_64(VAL)); |
807 | | |
808 | 0 | APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); |
809 | 0 | for (unsigned I = 0, N = getNumWords(); I != N; ++I) |
810 | 0 | Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); |
811 | 0 | if (Result.BitWidth != BitWidth) { |
812 | 0 | lshrNear(Result.pVal, Result.pVal, getNumWords(), |
813 | 0 | Result.BitWidth - BitWidth); |
814 | 0 | Result.BitWidth = BitWidth; |
815 | 0 | } |
816 | 0 | return Result; |
817 | 0 | } |
818 | | |
819 | | APInt llvm_ks::APIntOps::GreatestCommonDivisor(const APInt& API1, |
820 | 0 | const APInt& API2) { |
821 | 0 | APInt A = API1, B = API2; |
822 | 0 | while (!!B) { |
823 | 0 | APInt T = B; |
824 | 0 | B = APIntOps::urem(A, B); |
825 | 0 | A = T; |
826 | 0 | } |
827 | 0 | return A; |
828 | 0 | } |
829 | | |
830 | 0 | APInt llvm_ks::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { |
831 | 0 | union { |
832 | 0 | double D; |
833 | 0 | uint64_t I; |
834 | 0 | } T; |
835 | 0 | T.D = Double; |
836 | | |
837 | | // Get the sign bit from the highest order bit |
838 | 0 | bool isNeg = T.I >> 63; |
839 | | |
840 | | // Get the 11-bit exponent and adjust for the 1023 bit bias |
841 | 0 | int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; |
842 | | |
843 | | // If the exponent is negative, the value is < 0 so just return 0. |
844 | 0 | if (exp < 0) |
845 | 0 | return APInt(width, 0u); |
846 | | |
847 | | // Extract the mantissa by clearing the top 12 bits (sign + exponent). |
848 | 0 | uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; |
849 | | |
850 | | // If the exponent doesn't shift all bits out of the mantissa |
851 | 0 | if (exp < 52) |
852 | 0 | return isNeg ? -APInt(width, mantissa >> (52 - exp)) : |
853 | 0 | APInt(width, mantissa >> (52 - exp)); |
854 | | |
855 | | // If the client didn't provide enough bits for us to shift the mantissa into |
856 | | // then the result is undefined, just return 0 |
857 | 0 | if (width <= exp - 52) |
858 | 0 | return APInt(width, 0); |
859 | | |
860 | | // Otherwise, we have to shift the mantissa bits up to the right location |
861 | 0 | APInt Tmp(width, mantissa); |
862 | 0 | Tmp = Tmp.shl((unsigned)exp - 52); |
863 | 0 | return isNeg ? -Tmp : Tmp; |
864 | 0 | } |
865 | | |
866 | | /// This function converts this APInt to a double. |
867 | | /// The layout for double is as following (IEEE Standard 754): |
868 | | /// -------------------------------------- |
869 | | /// | Sign Exponent Fraction Bias | |
870 | | /// |-------------------------------------- | |
871 | | /// | 1[63] 11[62-52] 52[51-00] 1023 | |
872 | | /// -------------------------------------- |
873 | 0 | double APInt::roundToDouble(bool isSigned) const { |
874 | | |
875 | | // Handle the simple case where the value is contained in one uint64_t. |
876 | | // It is wrong to optimize getWord(0) to VAL; there might be more than one word. |
877 | 0 | if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { |
878 | 0 | if (isSigned) { |
879 | 0 | int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth); |
880 | 0 | return double(sext); |
881 | 0 | } else |
882 | 0 | return double(getWord(0)); |
883 | 0 | } |
884 | | |
885 | | // Determine if the value is negative. |
886 | 0 | bool isNeg = isSigned ? (*this)[BitWidth-1] : false; |
887 | | |
888 | | // Construct the absolute value if we're negative. |
889 | 0 | APInt Tmp(isNeg ? -(*this) : (*this)); |
890 | | |
891 | | // Figure out how many bits we're using. |
892 | 0 | unsigned n = Tmp.getActiveBits(); |
893 | | |
894 | | // The exponent (without bias normalization) is just the number of bits |
895 | | // we are using. Note that the sign bit is gone since we constructed the |
896 | | // absolute value. |
897 | 0 | uint64_t exp = n; |
898 | | |
899 | | // Return infinity for exponent overflow |
900 | 0 | if (exp > 1023) { |
901 | 0 | if (!isSigned || !isNeg) |
902 | 0 | return std::numeric_limits<double>::infinity(); |
903 | 0 | else |
904 | 0 | return -std::numeric_limits<double>::infinity(); |
905 | 0 | } |
906 | 0 | exp += 1023; // Increment for 1023 bias |
907 | | |
908 | | // Number of bits in mantissa is 52. To obtain the mantissa value, we must |
909 | | // extract the high 52 bits from the correct words in pVal. |
910 | 0 | uint64_t mantissa; |
911 | 0 | unsigned hiWord = whichWord(n-1); |
912 | 0 | if (hiWord == 0) { |
913 | 0 | mantissa = Tmp.pVal[0]; |
914 | 0 | if (n > 52) |
915 | 0 | mantissa >>= n - 52; // shift down, we want the top 52 bits. |
916 | 0 | } else { |
917 | 0 | assert(hiWord > 0 && "huh?"); |
918 | 0 | uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); |
919 | 0 | uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); |
920 | 0 | mantissa = hibits | lobits; |
921 | 0 | } |
922 | | |
923 | | // The leading bit of mantissa is implicit, so get rid of it. |
924 | 0 | uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; |
925 | 0 | union { |
926 | 0 | double D; |
927 | 0 | uint64_t I; |
928 | 0 | } T; |
929 | 0 | T.I = sign | (exp << 52) | mantissa; |
930 | 0 | return T.D; |
931 | 0 | } |
932 | | |
933 | | // Truncate to new width. |
934 | 0 | APInt APInt::trunc(unsigned width) const { |
935 | 0 | assert(width < BitWidth && "Invalid APInt Truncate request"); |
936 | 0 | assert(width && "Can't truncate to 0 bits"); |
937 | | |
938 | 0 | if (width <= APINT_BITS_PER_WORD) |
939 | 0 | return APInt(width, getRawData()[0]); |
940 | | |
941 | 0 | APInt Result(getMemory(getNumWords(width)), width); |
942 | | |
943 | | // Copy full words. |
944 | 0 | unsigned i; |
945 | 0 | for (i = 0; i != width / APINT_BITS_PER_WORD; i++) |
946 | 0 | Result.pVal[i] = pVal[i]; |
947 | | |
948 | | // Truncate and copy any partial word. |
949 | 0 | unsigned bits = (0 - width) % APINT_BITS_PER_WORD; |
950 | 0 | if (bits != 0) |
951 | 0 | Result.pVal[i] = pVal[i] << bits >> bits; |
952 | |
|
953 | 0 | return Result; |
954 | 0 | } |
955 | | |
956 | | // Sign extend to a new width. |
957 | 0 | APInt APInt::sext(unsigned width) const { |
958 | 0 | assert(width > BitWidth && "Invalid APInt SignExtend request"); |
959 | | |
960 | 0 | if (width <= APINT_BITS_PER_WORD) { |
961 | 0 | uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); |
962 | 0 | val = (int64_t)val >> (width - BitWidth); |
963 | 0 | return APInt(width, val >> (APINT_BITS_PER_WORD - width)); |
964 | 0 | } |
965 | | |
966 | 0 | APInt Result(getMemory(getNumWords(width)), width); |
967 | | |
968 | | // Copy full words. |
969 | 0 | unsigned i; |
970 | 0 | uint64_t word = 0; |
971 | 0 | for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { |
972 | 0 | word = getRawData()[i]; |
973 | 0 | Result.pVal[i] = word; |
974 | 0 | } |
975 | | |
976 | | // Read and sign-extend any partial word. |
977 | 0 | unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; |
978 | 0 | if (bits != 0) |
979 | 0 | word = (int64_t)getRawData()[i] << bits >> bits; |
980 | 0 | else |
981 | 0 | word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); |
982 | | |
983 | | // Write remaining full words. |
984 | 0 | for (; i != width / APINT_BITS_PER_WORD; i++) { |
985 | 0 | Result.pVal[i] = word; |
986 | 0 | word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); |
987 | 0 | } |
988 | | |
989 | | // Write any partial word. |
990 | 0 | bits = (0 - width) % APINT_BITS_PER_WORD; |
991 | 0 | if (bits != 0) |
992 | 0 | Result.pVal[i] = word << bits >> bits; |
993 | |
|
994 | 0 | return Result; |
995 | 0 | } |
996 | | |
997 | | // Zero extend to a new width. |
998 | 46.2k | APInt APInt::zext(unsigned width) const { |
999 | 46.2k | assert(width > BitWidth && "Invalid APInt ZeroExtend request"); |
1000 | | |
1001 | 46.2k | if (width <= APINT_BITS_PER_WORD) |
1002 | 99 | return APInt(width, VAL); |
1003 | | |
1004 | 46.1k | APInt Result(getMemory(getNumWords(width)), width); |
1005 | | |
1006 | | // Copy words. |
1007 | 46.1k | unsigned i; |
1008 | 138k | for (i = 0; i != getNumWords(); i++) |
1009 | 92.1k | Result.pVal[i] = getRawData()[i]; |
1010 | | |
1011 | | // Zero remaining words. |
1012 | 46.1k | memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); |
1013 | | |
1014 | 46.1k | return Result; |
1015 | 46.2k | } |
1016 | | |
1017 | 0 | APInt APInt::zextOrTrunc(unsigned width) const { |
1018 | 0 | if (BitWidth < width) |
1019 | 0 | return zext(width); |
1020 | 0 | if (BitWidth > width) |
1021 | 0 | return trunc(width); |
1022 | 0 | return *this; |
1023 | 0 | } |
1024 | | |
1025 | 0 | APInt APInt::sextOrTrunc(unsigned width) const { |
1026 | 0 | if (BitWidth < width) |
1027 | 0 | return sext(width); |
1028 | 0 | if (BitWidth > width) |
1029 | 0 | return trunc(width); |
1030 | 0 | return *this; |
1031 | 0 | } |
1032 | | |
1033 | 0 | APInt APInt::zextOrSelf(unsigned width) const { |
1034 | 0 | if (BitWidth < width) |
1035 | 0 | return zext(width); |
1036 | 0 | return *this; |
1037 | 0 | } |
1038 | | |
1039 | 0 | APInt APInt::sextOrSelf(unsigned width) const { |
1040 | 0 | if (BitWidth < width) |
1041 | 0 | return sext(width); |
1042 | 0 | return *this; |
1043 | 0 | } |
1044 | | |
1045 | | /// Arithmetic right-shift this APInt by shiftAmt. |
1046 | | /// @brief Arithmetic right-shift function. |
1047 | 0 | APInt APInt::ashr(const APInt &shiftAmt) const { |
1048 | 0 | return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); |
1049 | 0 | } |
1050 | | |
1051 | | /// Arithmetic right-shift this APInt by shiftAmt. |
1052 | | /// @brief Arithmetic right-shift function. |
1053 | 0 | APInt APInt::ashr(unsigned shiftAmt) const { |
1054 | 0 | assert(shiftAmt <= BitWidth && "Invalid shift amount"); |
1055 | | // Handle a degenerate case |
1056 | 0 | if (shiftAmt == 0) |
1057 | 0 | return *this; |
1058 | | |
1059 | | // Handle single word shifts with built-in ashr |
1060 | 0 | if (isSingleWord()) { |
1061 | 0 | if (shiftAmt == BitWidth) |
1062 | 0 | return APInt(BitWidth, 0); // undefined |
1063 | 0 | else { |
1064 | 0 | unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; |
1065 | 0 | return APInt(BitWidth, |
1066 | 0 | (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); |
1067 | 0 | } |
1068 | 0 | } |
1069 | | |
1070 | | // If all the bits were shifted out, the result is, technically, undefined. |
1071 | | // We return -1 if it was negative, 0 otherwise. We check this early to avoid |
1072 | | // issues in the algorithm below. |
1073 | 0 | if (shiftAmt == BitWidth) { |
1074 | 0 | if (isNegative()) |
1075 | 0 | return APInt(BitWidth, -1ULL, true); |
1076 | 0 | else |
1077 | 0 | return APInt(BitWidth, 0); |
1078 | 0 | } |
1079 | | |
1080 | | // Create some space for the result. |
1081 | 0 | uint64_t * val = new uint64_t[getNumWords()]; |
1082 | | |
1083 | | // Compute some values needed by the following shift algorithms |
1084 | 0 | unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word |
1085 | 0 | unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift |
1086 | 0 | unsigned breakWord = getNumWords() - 1 - offset; // last word affected |
1087 | 0 | unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? |
1088 | 0 | if (bitsInWord == 0) |
1089 | 0 | bitsInWord = APINT_BITS_PER_WORD; |
1090 | | |
1091 | | // If we are shifting whole words, just move whole words |
1092 | 0 | if (wordShift == 0) { |
1093 | | // Move the words containing significant bits |
1094 | 0 | for (unsigned i = 0; i <= breakWord; ++i) |
1095 | 0 | val[i] = pVal[i+offset]; // move whole word |
1096 | | |
1097 | | // Adjust the top significant word for sign bit fill, if negative |
1098 | 0 | if (isNegative()) |
1099 | 0 | if (bitsInWord < APINT_BITS_PER_WORD) |
1100 | 0 | val[breakWord] |= ~0ULL << bitsInWord; // set high bits |
1101 | 0 | } else { |
1102 | | // Shift the low order words |
1103 | 0 | for (unsigned i = 0; i < breakWord; ++i) { |
1104 | | // This combines the shifted corresponding word with the low bits from |
1105 | | // the next word (shifted into this word's high bits). |
1106 | 0 | val[i] = (pVal[i+offset] >> wordShift) | |
1107 | 0 | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); |
1108 | 0 | } |
1109 | | |
1110 | | // Shift the break word. In this case there are no bits from the next word |
1111 | | // to include in this word. |
1112 | 0 | val[breakWord] = pVal[breakWord+offset] >> wordShift; |
1113 | | |
1114 | | // Deal with sign extension in the break word, and possibly the word before |
1115 | | // it. |
1116 | 0 | if (isNegative()) { |
1117 | 0 | if (wordShift > bitsInWord) { |
1118 | 0 | if (breakWord > 0) |
1119 | 0 | val[breakWord-1] |= |
1120 | 0 | ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); |
1121 | 0 | val[breakWord] |= ~0ULL; |
1122 | 0 | } else |
1123 | 0 | val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); |
1124 | 0 | } |
1125 | 0 | } |
1126 | | |
1127 | | // Remaining words are 0 or -1, just assign them. |
1128 | 0 | uint64_t fillValue = (isNegative() ? -1ULL : 0); |
1129 | 0 | for (unsigned i = breakWord+1; i < getNumWords(); ++i) |
1130 | 0 | val[i] = fillValue; |
1131 | 0 | APInt Result(val, BitWidth); |
1132 | 0 | Result.clearUnusedBits(); |
1133 | 0 | return Result; |
1134 | 0 | } |
1135 | | |
1136 | | /// Logical right-shift this APInt by shiftAmt. |
1137 | | /// @brief Logical right-shift function. |
1138 | 0 | APInt APInt::lshr(const APInt &shiftAmt) const { |
1139 | 0 | return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); |
1140 | 0 | } |
1141 | | |
1142 | | /// Logical right-shift this APInt by shiftAmt. |
1143 | | /// @brief Logical right-shift function. |
1144 | 11.2k | APInt APInt::lshr(unsigned shiftAmt) const { |
1145 | 11.2k | if (isSingleWord()) { |
1146 | 2.30k | if (shiftAmt >= BitWidth) |
1147 | 0 | return APInt(BitWidth, 0); |
1148 | 2.30k | else |
1149 | 2.30k | return APInt(BitWidth, this->VAL >> shiftAmt); |
1150 | 2.30k | } |
1151 | | |
1152 | | // If all the bits were shifted out, the result is 0. This avoids issues |
1153 | | // with shifting by the size of the integer type, which produces undefined |
1154 | | // results. We define these "undefined results" to always be 0. |
1155 | 8.97k | if (shiftAmt >= BitWidth) |
1156 | 0 | return APInt(BitWidth, 0); |
1157 | | |
1158 | | // If none of the bits are shifted out, the result is *this. This avoids |
1159 | | // issues with shifting by the size of the integer type, which produces |
1160 | | // undefined results in the code below. This is also an optimization. |
1161 | 8.97k | if (shiftAmt == 0) |
1162 | 0 | return *this; |
1163 | | |
1164 | | // Create some space for the result. |
1165 | 8.97k | uint64_t * val = new uint64_t[getNumWords()]; |
1166 | | |
1167 | | // If we are shifting less than a word, compute the shift with a simple carry |
1168 | 8.97k | if (shiftAmt < APINT_BITS_PER_WORD) { |
1169 | 0 | lshrNear(val, pVal, getNumWords(), shiftAmt); |
1170 | 0 | APInt Result(val, BitWidth); |
1171 | 0 | Result.clearUnusedBits(); |
1172 | 0 | return Result; |
1173 | 0 | } |
1174 | | |
1175 | | // Compute some values needed by the remaining shift algorithms |
1176 | 8.97k | unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; |
1177 | 8.97k | unsigned offset = shiftAmt / APINT_BITS_PER_WORD; |
1178 | | |
1179 | | // If we are shifting whole words, just move whole words |
1180 | 8.97k | if (wordShift == 0) { |
1181 | 17.9k | for (unsigned i = 0; i < getNumWords() - offset; ++i) |
1182 | 8.97k | val[i] = pVal[i+offset]; |
1183 | 17.8k | for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) |
1184 | 8.94k | val[i] = 0; |
1185 | 8.94k | APInt Result(val, BitWidth); |
1186 | 8.94k | Result.clearUnusedBits(); |
1187 | 8.94k | return Result; |
1188 | 8.94k | } |
1189 | | |
1190 | | // Shift the low order words |
1191 | 36 | unsigned breakWord = getNumWords() - offset -1; |
1192 | 72 | for (unsigned i = 0; i < breakWord; ++i) |
1193 | 36 | val[i] = (pVal[i+offset] >> wordShift) | |
1194 | 36 | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); |
1195 | | // Shift the break word. |
1196 | 36 | val[breakWord] = pVal[breakWord+offset] >> wordShift; |
1197 | | |
1198 | | // Remaining words are 0 |
1199 | 72 | for (unsigned i = breakWord+1; i < getNumWords(); ++i) |
1200 | 36 | val[i] = 0; |
1201 | 36 | APInt Result(val, BitWidth); |
1202 | 36 | Result.clearUnusedBits(); |
1203 | 36 | return Result; |
1204 | 8.97k | } |
1205 | | |
1206 | | /// Left-shift this APInt by shiftAmt. |
1207 | | /// @brief Left-shift function. |
1208 | 0 | APInt APInt::shl(const APInt &shiftAmt) const { |
1209 | | // It's undefined behavior in C to shift by BitWidth or greater. |
1210 | 0 | return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); |
1211 | 0 | } |
1212 | | |
1213 | 14.5M | APInt APInt::shlSlowCase(unsigned shiftAmt) const { |
1214 | | // If all the bits were shifted out, the result is 0. This avoids issues |
1215 | | // with shifting by the size of the integer type, which produces undefined |
1216 | | // results. We define these "undefined results" to always be 0. |
1217 | 14.5M | if (shiftAmt == BitWidth) |
1218 | 0 | return APInt(BitWidth, 0); |
1219 | | |
1220 | | // If none of the bits are shifted out, the result is *this. This avoids a |
1221 | | // lshr by the words size in the loop below which can produce incorrect |
1222 | | // results. It also avoids the expensive computation below for a common case. |
1223 | 14.5M | if (shiftAmt == 0) |
1224 | 0 | return *this; |
1225 | | |
1226 | | // Create some space for the result. |
1227 | 14.5M | uint64_t * val = new uint64_t[getNumWords()]; |
1228 | | |
1229 | | // If we are shifting less than a word, do it the easy way |
1230 | 14.5M | if (shiftAmt < APINT_BITS_PER_WORD) { |
1231 | 14.5M | uint64_t carry = 0; |
1232 | 205M | for (unsigned i = 0; i < getNumWords(); i++) { |
1233 | 190M | val[i] = pVal[i] << shiftAmt | carry; |
1234 | 190M | carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); |
1235 | 190M | } |
1236 | 14.5M | APInt Result(val, BitWidth); |
1237 | 14.5M | Result.clearUnusedBits(); |
1238 | 14.5M | return Result; |
1239 | 14.5M | } |
1240 | | |
1241 | | // Compute some values needed by the remaining shift algorithms |
1242 | 4.48k | unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; |
1243 | 4.48k | unsigned offset = shiftAmt / APINT_BITS_PER_WORD; |
1244 | | |
1245 | | // If we are shifting whole words, just move whole words |
1246 | 4.48k | if (wordShift == 0) { |
1247 | 8.90k | for (unsigned i = 0; i < offset; i++) |
1248 | 4.45k | val[i] = 0; |
1249 | 8.90k | for (unsigned i = offset; i < getNumWords(); i++) |
1250 | 4.45k | val[i] = pVal[i-offset]; |
1251 | 4.45k | APInt Result(val, BitWidth); |
1252 | 4.45k | Result.clearUnusedBits(); |
1253 | 4.45k | return Result; |
1254 | 4.45k | } |
1255 | | |
1256 | | // Copy whole words from this to Result. |
1257 | 36 | unsigned i = getNumWords() - 1; |
1258 | 72 | for (; i > offset; --i) |
1259 | 36 | val[i] = pVal[i-offset] << wordShift | |
1260 | 36 | pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); |
1261 | 36 | val[offset] = pVal[0] << wordShift; |
1262 | 72 | for (i = 0; i < offset; ++i) |
1263 | 36 | val[i] = 0; |
1264 | 36 | APInt Result(val, BitWidth); |
1265 | 36 | Result.clearUnusedBits(); |
1266 | 36 | return Result; |
1267 | 4.48k | } |
1268 | | |
1269 | 0 | APInt APInt::rotl(const APInt &rotateAmt) const { |
1270 | 0 | return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); |
1271 | 0 | } |
1272 | | |
1273 | 0 | APInt APInt::rotl(unsigned rotateAmt) const { |
1274 | 0 | rotateAmt %= BitWidth; |
1275 | 0 | if (rotateAmt == 0) |
1276 | 0 | return *this; |
1277 | 0 | return shl(rotateAmt) | lshr(BitWidth - rotateAmt); |
1278 | 0 | } |
1279 | | |
1280 | 0 | APInt APInt::rotr(const APInt &rotateAmt) const { |
1281 | 0 | return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); |
1282 | 0 | } |
1283 | | |
1284 | 0 | APInt APInt::rotr(unsigned rotateAmt) const { |
1285 | 0 | rotateAmt %= BitWidth; |
1286 | 0 | if (rotateAmt == 0) |
1287 | 0 | return *this; |
1288 | 0 | return lshr(rotateAmt) | shl(BitWidth - rotateAmt); |
1289 | 0 | } |
1290 | | |
1291 | | // Square Root - this method computes and returns the square root of "this". |
1292 | | // Three mechanisms are used for computation. For small values (<= 5 bits), |
1293 | | // a table lookup is done. This gets some performance for common cases. For |
1294 | | // values using less than 52 bits, the value is converted to double and then |
1295 | | // the libc sqrt function is called. The result is rounded and then converted |
1296 | | // back to a uint64_t which is then used to construct the result. Finally, |
1297 | | // the Babylonian method for computing square roots is used. |
1298 | 0 | APInt APInt::sqrt() const { |
1299 | | |
1300 | | // Determine the magnitude of the value. |
1301 | 0 | unsigned magnitude = getActiveBits(); |
1302 | | |
1303 | | // Use a fast table for some small values. This also gets rid of some |
1304 | | // rounding errors in libc sqrt for small values. |
1305 | 0 | if (magnitude <= 5) { |
1306 | 0 | static const uint8_t results[32] = { |
1307 | 0 | /* 0 */ 0, |
1308 | 0 | /* 1- 2 */ 1, 1, |
1309 | 0 | /* 3- 6 */ 2, 2, 2, 2, |
1310 | 0 | /* 7-12 */ 3, 3, 3, 3, 3, 3, |
1311 | 0 | /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, |
1312 | 0 | /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
1313 | 0 | /* 31 */ 6 |
1314 | 0 | }; |
1315 | 0 | return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); |
1316 | 0 | } |
1317 | | |
1318 | | // If the magnitude of the value fits in less than 52 bits (the precision of |
1319 | | // an IEEE double precision floating point value), then we can use the |
1320 | | // libc sqrt function which will probably use a hardware sqrt computation. |
1321 | | // This should be faster than the algorithm below. |
1322 | 0 | if (magnitude < 52) { |
1323 | 0 | return APInt(BitWidth, |
1324 | 0 | uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); |
1325 | 0 | } |
1326 | | |
1327 | | // Okay, all the short cuts are exhausted. We must compute it. The following |
1328 | | // is a classical Babylonian method for computing the square root. This code |
1329 | | // was adapted to APInt from a wikipedia article on such computations. |
1330 | | // See http://www.wikipedia.org/ and go to the page named |
1331 | | // Calculate_an_integer_square_root. |
1332 | 0 | unsigned nbits = BitWidth, i = 4; |
1333 | 0 | APInt testy(BitWidth, 16); |
1334 | 0 | APInt x_old(BitWidth, 1); |
1335 | 0 | APInt x_new(BitWidth, 0); |
1336 | 0 | APInt two(BitWidth, 2); |
1337 | | |
1338 | | // Select a good starting value using binary logarithms. |
1339 | 0 | for (;; i += 2, testy = testy.shl(2)) |
1340 | 0 | if (i >= nbits || this->ule(testy)) { |
1341 | 0 | x_old = x_old.shl(i / 2); |
1342 | 0 | break; |
1343 | 0 | } |
1344 | | |
1345 | | // Use the Babylonian method to arrive at the integer square root: |
1346 | 0 | for (;;) { |
1347 | 0 | x_new = (this->udiv(x_old) + x_old).udiv(two); |
1348 | 0 | if (x_old.ule(x_new)) |
1349 | 0 | break; |
1350 | 0 | x_old = x_new; |
1351 | 0 | } |
1352 | | |
1353 | | // Make sure we return the closest approximation |
1354 | | // NOTE: The rounding calculation below is correct. It will produce an |
1355 | | // off-by-one discrepancy with results from pari/gp. That discrepancy has been |
1356 | | // determined to be a rounding issue with pari/gp as it begins to use a |
1357 | | // floating point representation after 192 bits. There are no discrepancies |
1358 | | // between this algorithm and pari/gp for bit widths < 192 bits. |
1359 | 0 | APInt square(x_old * x_old); |
1360 | 0 | APInt nextSquare((x_old + 1) * (x_old +1)); |
1361 | 0 | if (this->ult(square)) |
1362 | 0 | return x_old; |
1363 | 0 | assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); |
1364 | 0 | APInt midpoint((nextSquare - square).udiv(two)); |
1365 | 0 | APInt offset(*this - square); |
1366 | 0 | if (offset.ult(midpoint)) |
1367 | 0 | return x_old; |
1368 | 0 | return x_old + 1; |
1369 | 0 | } |
1370 | | |
1371 | | /// Computes the multiplicative inverse of this APInt for a given modulo. The |
1372 | | /// iterative extended Euclidean algorithm is used to solve for this value, |
1373 | | /// however we simplify it to speed up calculating only the inverse, and take |
1374 | | /// advantage of div+rem calculations. We also use some tricks to avoid copying |
1375 | | /// (potentially large) APInts around. |
1376 | 0 | APInt APInt::multiplicativeInverse(const APInt& modulo) const { |
1377 | 0 | assert(ult(modulo) && "This APInt must be smaller than the modulo"); |
1378 | | |
1379 | | // Using the properties listed at the following web page (accessed 06/21/08): |
1380 | | // http://www.numbertheory.org/php/euclid.html |
1381 | | // (especially the properties numbered 3, 4 and 9) it can be proved that |
1382 | | // BitWidth bits suffice for all the computations in the algorithm implemented |
1383 | | // below. More precisely, this number of bits suffice if the multiplicative |
1384 | | // inverse exists, but may not suffice for the general extended Euclidean |
1385 | | // algorithm. |
1386 | | |
1387 | 0 | APInt r[2] = { modulo, *this }; |
1388 | 0 | APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; |
1389 | 0 | APInt q(BitWidth, 0); |
1390 | |
|
1391 | 0 | unsigned i; |
1392 | 0 | for (i = 0; r[i^1] != 0; i ^= 1) { |
1393 | | // An overview of the math without the confusing bit-flipping: |
1394 | | // q = r[i-2] / r[i-1] |
1395 | | // r[i] = r[i-2] % r[i-1] |
1396 | | // t[i] = t[i-2] - t[i-1] * q |
1397 | 0 | udivrem(r[i], r[i^1], q, r[i]); |
1398 | 0 | t[i] -= t[i^1] * q; |
1399 | 0 | } |
1400 | | |
1401 | | // If this APInt and the modulo are not coprime, there is no multiplicative |
1402 | | // inverse, so return 0. We check this by looking at the next-to-last |
1403 | | // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean |
1404 | | // algorithm. |
1405 | 0 | if (r[i] != 1) |
1406 | 0 | return APInt(BitWidth, 0); |
1407 | | |
1408 | | // The next-to-last t is the multiplicative inverse. However, we are |
1409 | | // interested in a positive inverse. Calcuate a positive one from a negative |
1410 | | // one if necessary. A simple addition of the modulo suffices because |
1411 | | // abs(t[i]) is known to be less than *this/2 (see the link above). |
1412 | 0 | return t[i].isNegative() ? t[i] + modulo : t[i]; |
1413 | 0 | } |
1414 | | |
1415 | | /// Calculate the magic numbers required to implement a signed integer division |
1416 | | /// by a constant as a sequence of multiplies, adds and shifts. Requires that |
1417 | | /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. |
1418 | | /// Warren, Jr., chapter 10. |
1419 | 0 | APInt::ms APInt::magic() const { |
1420 | 0 | const APInt& d = *this; |
1421 | 0 | unsigned p; |
1422 | 0 | APInt ad, anc, delta, q1, r1, q2, r2, t; |
1423 | 0 | APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); |
1424 | 0 | struct ms mag; |
1425 | |
|
1426 | 0 | ad = d.abs(); |
1427 | 0 | t = signedMin + (d.lshr(d.getBitWidth() - 1)); |
1428 | 0 | anc = t - 1 - t.urem(ad); // absolute value of nc |
1429 | 0 | p = d.getBitWidth() - 1; // initialize p |
1430 | 0 | q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) |
1431 | 0 | r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
1432 | 0 | q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) |
1433 | 0 | r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) |
1434 | 0 | do { |
1435 | 0 | p = p + 1; |
1436 | 0 | q1 = q1<<1; // update q1 = 2p/abs(nc) |
1437 | 0 | r1 = r1<<1; // update r1 = rem(2p/abs(nc)) |
1438 | 0 | if (r1.uge(anc)) { // must be unsigned comparison |
1439 | 0 | q1 = q1 + 1; |
1440 | 0 | r1 = r1 - anc; |
1441 | 0 | } |
1442 | 0 | q2 = q2<<1; // update q2 = 2p/abs(d) |
1443 | 0 | r2 = r2<<1; // update r2 = rem(2p/abs(d)) |
1444 | 0 | if (r2.uge(ad)) { // must be unsigned comparison |
1445 | 0 | q2 = q2 + 1; |
1446 | 0 | r2 = r2 - ad; |
1447 | 0 | } |
1448 | 0 | delta = ad - r2; |
1449 | 0 | } while (q1.ult(delta) || (q1 == delta && r1 == 0)); |
1450 | |
|
1451 | 0 | mag.m = q2 + 1; |
1452 | 0 | if (d.isNegative()) mag.m = -mag.m; // resulting magic number |
1453 | 0 | mag.s = p - d.getBitWidth(); // resulting shift |
1454 | 0 | return mag; |
1455 | 0 | } |
1456 | | |
1457 | | /// Calculate the magic numbers required to implement an unsigned integer |
1458 | | /// division by a constant as a sequence of multiplies, adds and shifts. |
1459 | | /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry |
1460 | | /// S. Warren, Jr., chapter 10. |
1461 | | /// LeadingZeros can be used to simplify the calculation if the upper bits |
1462 | | /// of the divided value are known zero. |
1463 | 0 | APInt::mu APInt::magicu(unsigned LeadingZeros) const { |
1464 | 0 | const APInt& d = *this; |
1465 | 0 | unsigned p; |
1466 | 0 | APInt nc, delta, q1, r1, q2, r2; |
1467 | 0 | struct mu magu; |
1468 | 0 | magu.a = 0; // initialize "add" indicator |
1469 | 0 | APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); |
1470 | 0 | APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); |
1471 | 0 | APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); |
1472 | |
|
1473 | 0 | nc = allOnes - (allOnes - d).urem(d); |
1474 | 0 | p = d.getBitWidth() - 1; // initialize p |
1475 | 0 | q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc |
1476 | 0 | r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) |
1477 | 0 | q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d |
1478 | 0 | r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) |
1479 | 0 | do { |
1480 | 0 | p = p + 1; |
1481 | 0 | if (r1.uge(nc - r1)) { |
1482 | 0 | q1 = q1 + q1 + 1; // update q1 |
1483 | 0 | r1 = r1 + r1 - nc; // update r1 |
1484 | 0 | } |
1485 | 0 | else { |
1486 | 0 | q1 = q1+q1; // update q1 |
1487 | 0 | r1 = r1+r1; // update r1 |
1488 | 0 | } |
1489 | 0 | if ((r2 + 1).uge(d - r2)) { |
1490 | 0 | if (q2.uge(signedMax)) magu.a = 1; |
1491 | 0 | q2 = q2+q2 + 1; // update q2 |
1492 | 0 | r2 = r2+r2 + 1 - d; // update r2 |
1493 | 0 | } |
1494 | 0 | else { |
1495 | 0 | if (q2.uge(signedMin)) magu.a = 1; |
1496 | 0 | q2 = q2+q2; // update q2 |
1497 | 0 | r2 = r2+r2 + 1; // update r2 |
1498 | 0 | } |
1499 | 0 | delta = d - 1 - r2; |
1500 | 0 | } while (p < d.getBitWidth()*2 && |
1501 | 0 | (q1.ult(delta) || (q1 == delta && r1 == 0))); |
1502 | 0 | magu.m = q2 + 1; // resulting magic number |
1503 | 0 | magu.s = p - d.getBitWidth(); // resulting shift |
1504 | 0 | return magu; |
1505 | 0 | } |
1506 | | |
1507 | | /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) |
1508 | | /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The |
1509 | | /// variables here have the same names as in the algorithm. Comments explain |
1510 | | /// the algorithm and any deviation from it. |
1511 | | static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, |
1512 | 0 | unsigned m, unsigned n) { |
1513 | 0 | assert(u && "Must provide dividend"); |
1514 | 0 | assert(v && "Must provide divisor"); |
1515 | 0 | assert(q && "Must provide quotient"); |
1516 | 0 | assert(u != v && u != q && v != q && "Must use different memory"); |
1517 | 0 | assert(n>1 && "n must be > 1"); |
1518 | | |
1519 | | // b denotes the base of the number system. In our case b is 2^32. |
1520 | 0 | LLVM_CONSTEXPR uint64_t b = uint64_t(1) << 32; |
1521 | | |
1522 | | // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of |
1523 | | // u and v by d. Note that we have taken Knuth's advice here to use a power |
1524 | | // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of |
1525 | | // 2 allows us to shift instead of multiply and it is easy to determine the |
1526 | | // shift amount from the leading zeros. We are basically normalizing the u |
1527 | | // and v so that its high bits are shifted to the top of v's range without |
1528 | | // overflow. Note that this can require an extra word in u so that u must |
1529 | | // be of length m+n+1. |
1530 | 0 | unsigned shift = countLeadingZeros(v[n-1]); |
1531 | 0 | unsigned v_carry = 0; |
1532 | 0 | unsigned u_carry = 0; |
1533 | 0 | if (shift) { |
1534 | 0 | for (unsigned i = 0; i < m+n; ++i) { |
1535 | 0 | unsigned u_tmp = u[i] >> (32 - shift); |
1536 | 0 | u[i] = (u[i] << shift) | u_carry; |
1537 | 0 | u_carry = u_tmp; |
1538 | 0 | } |
1539 | 0 | for (unsigned i = 0; i < n; ++i) { |
1540 | 0 | unsigned v_tmp = v[i] >> (32 - shift); |
1541 | 0 | v[i] = (v[i] << shift) | v_carry; |
1542 | 0 | v_carry = v_tmp; |
1543 | 0 | } |
1544 | 0 | } |
1545 | 0 | u[m+n] = u_carry; |
1546 | | |
1547 | | // D2. [Initialize j.] Set j to m. This is the loop counter over the places. |
1548 | 0 | int j = m; |
1549 | 0 | do { |
1550 | | // D3. [Calculate q'.]. |
1551 | | // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') |
1552 | | // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') |
1553 | | // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease |
1554 | | // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test |
1555 | | // on v[n-2] determines at high speed most of the cases in which the trial |
1556 | | // value qp is one too large, and it eliminates all cases where qp is two |
1557 | | // too large. |
1558 | 0 | uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); |
1559 | 0 | uint64_t qp = dividend / v[n-1]; |
1560 | 0 | uint64_t rp = dividend % v[n-1]; |
1561 | 0 | if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { |
1562 | 0 | qp--; |
1563 | 0 | rp += v[n-1]; |
1564 | 0 | if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) |
1565 | 0 | qp--; |
1566 | 0 | } |
1567 | | |
1568 | | // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with |
1569 | | // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation |
1570 | | // consists of a simple multiplication by a one-place number, combined with |
1571 | | // a subtraction. |
1572 | | // The digits (u[j+n]...u[j]) should be kept positive; if the result of |
1573 | | // this step is actually negative, (u[j+n]...u[j]) should be left as the |
1574 | | // true value plus b**(n+1), namely as the b's complement of |
1575 | | // the true value, and a "borrow" to the left should be remembered. |
1576 | 0 | int64_t borrow = 0; |
1577 | 0 | for (unsigned i = 0; i < n; ++i) { |
1578 | 0 | uint64_t p = uint64_t(qp) * uint64_t(v[i]); |
1579 | 0 | int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p; |
1580 | 0 | u[j+i] = (unsigned)subres; |
1581 | 0 | borrow = (p >> 32) - (subres >> 32); |
1582 | 0 | } |
1583 | 0 | bool isNeg = u[j+n] < borrow; |
1584 | 0 | u[j+n] -= (unsigned)borrow; |
1585 | | |
1586 | | // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was |
1587 | | // negative, go to step D6; otherwise go on to step D7. |
1588 | 0 | q[j] = (unsigned)qp; |
1589 | 0 | if (isNeg) { |
1590 | | // D6. [Add back]. The probability that this step is necessary is very |
1591 | | // small, on the order of only 2/b. Make sure that test data accounts for |
1592 | | // this possibility. Decrease q[j] by 1 |
1593 | 0 | q[j]--; |
1594 | | // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). |
1595 | | // A carry will occur to the left of u[j+n], and it should be ignored |
1596 | | // since it cancels with the borrow that occurred in D4. |
1597 | 0 | bool carry = false; |
1598 | 0 | for (unsigned i = 0; i < n; i++) { |
1599 | 0 | unsigned limit = std::min(u[j+i],v[i]); |
1600 | 0 | u[j+i] += v[i] + carry; |
1601 | 0 | carry = u[j+i] < limit || (carry && u[j+i] == limit); |
1602 | 0 | } |
1603 | 0 | u[j+n] += carry; |
1604 | 0 | } |
1605 | | |
1606 | | // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. |
1607 | 0 | } while (--j >= 0); |
1608 | | |
1609 | | // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired |
1610 | | // remainder may be obtained by dividing u[...] by d. If r is non-null we |
1611 | | // compute the remainder (urem uses this). |
1612 | 0 | if (r) { |
1613 | | // The value d is expressed by the "shift" value above since we avoided |
1614 | | // multiplication by d by using a shift left. So, all we have to do is |
1615 | | // shift right here. In order to mak |
1616 | 0 | if (shift) { |
1617 | 0 | unsigned carry = 0; |
1618 | 0 | for (int i = n-1; i >= 0; i--) { |
1619 | 0 | r[i] = (u[i] >> shift) | carry; |
1620 | 0 | carry = u[i] << (32 - shift); |
1621 | 0 | } |
1622 | 0 | } else { |
1623 | 0 | for (int i = n-1; i >= 0; i--) { |
1624 | 0 | r[i] = u[i]; |
1625 | 0 | } |
1626 | 0 | } |
1627 | 0 | } |
1628 | 0 | } |
1629 | | |
1630 | | void APInt::divide(const APInt LHS, unsigned lhsWords, |
1631 | | const APInt &RHS, unsigned rhsWords, |
1632 | | APInt *Quotient, APInt *Remainder) |
1633 | 0 | { |
1634 | 0 | assert(lhsWords >= rhsWords && "Fractional result"); |
1635 | | |
1636 | | // First, compose the values into an array of 32-bit words instead of |
1637 | | // 64-bit words. This is a necessity of both the "short division" algorithm |
1638 | | // and the Knuth "classical algorithm" which requires there to be native |
1639 | | // operations for +, -, and * on an m bit value with an m*2 bit result. We |
1640 | | // can't use 64-bit operands here because we don't have native results of |
1641 | | // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't |
1642 | | // work on large-endian machines. |
1643 | 0 | uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); |
1644 | 0 | unsigned n = rhsWords * 2; |
1645 | 0 | unsigned m = (lhsWords * 2) - n; |
1646 | | |
1647 | | // Allocate space for the temporary values we need either on the stack, if |
1648 | | // it will fit, or on the heap if it won't. |
1649 | 0 | unsigned SPACE[128]; |
1650 | 0 | unsigned *U = nullptr; |
1651 | 0 | unsigned *V = nullptr; |
1652 | 0 | unsigned *Q = nullptr; |
1653 | 0 | unsigned *R = nullptr; |
1654 | 0 | if ((Remainder?4:3)*n+2*m+1 <= 128) { |
1655 | 0 | U = &SPACE[0]; |
1656 | 0 | V = &SPACE[m+n+1]; |
1657 | 0 | Q = &SPACE[(m+n+1) + n]; |
1658 | 0 | if (Remainder) |
1659 | 0 | R = &SPACE[(m+n+1) + n + (m+n)]; |
1660 | 0 | } else { |
1661 | 0 | U = new unsigned[m + n + 1]; |
1662 | 0 | V = new unsigned[n]; |
1663 | 0 | Q = new unsigned[m+n]; |
1664 | 0 | if (Remainder) |
1665 | 0 | R = new unsigned[n]; |
1666 | 0 | } |
1667 | | |
1668 | | // Initialize the dividend |
1669 | 0 | memset(U, 0, (m+n+1)*sizeof(unsigned)); |
1670 | 0 | for (unsigned i = 0; i < lhsWords; ++i) { |
1671 | 0 | uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); |
1672 | 0 | U[i * 2] = (unsigned)(tmp & mask); |
1673 | 0 | U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); |
1674 | 0 | } |
1675 | 0 | U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. |
1676 | | |
1677 | | // Initialize the divisor |
1678 | 0 | memset(V, 0, (n)*sizeof(unsigned)); |
1679 | 0 | for (unsigned i = 0; i < rhsWords; ++i) { |
1680 | 0 | uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); |
1681 | 0 | V[i * 2] = (unsigned)(tmp & mask); |
1682 | 0 | V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); |
1683 | 0 | } |
1684 | | |
1685 | | // initialize the quotient and remainder |
1686 | 0 | memset(Q, 0, (m+n) * sizeof(unsigned)); |
1687 | 0 | if (Remainder) |
1688 | 0 | memset(R, 0, n * sizeof(unsigned)); |
1689 | | |
1690 | | // Now, adjust m and n for the Knuth division. n is the number of words in |
1691 | | // the divisor. m is the number of words by which the dividend exceeds the |
1692 | | // divisor (i.e. m+n is the length of the dividend). These sizes must not |
1693 | | // contain any zero words or the Knuth algorithm fails. |
1694 | 0 | for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { |
1695 | 0 | n--; |
1696 | 0 | m++; |
1697 | 0 | } |
1698 | 0 | for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) |
1699 | 0 | m--; |
1700 | | |
1701 | | // If we're left with only a single word for the divisor, Knuth doesn't work |
1702 | | // so we implement the short division algorithm here. This is much simpler |
1703 | | // and faster because we are certain that we can divide a 64-bit quantity |
1704 | | // by a 32-bit quantity at hardware speed and short division is simply a |
1705 | | // series of such operations. This is just like doing short division but we |
1706 | | // are using base 2^32 instead of base 10. |
1707 | 0 | assert(n != 0 && "Divide by zero?"); |
1708 | 0 | if (n == 1) { |
1709 | 0 | unsigned divisor = V[0]; |
1710 | 0 | unsigned remainder = 0; |
1711 | 0 | for (int i = m+n-1; i >= 0; i--) { |
1712 | 0 | uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; |
1713 | 0 | if (partial_dividend == 0) { |
1714 | 0 | Q[i] = 0; |
1715 | 0 | remainder = 0; |
1716 | 0 | } else if (partial_dividend < divisor) { |
1717 | 0 | Q[i] = 0; |
1718 | 0 | remainder = (unsigned)partial_dividend; |
1719 | 0 | } else if (partial_dividend == divisor) { |
1720 | 0 | Q[i] = 1; |
1721 | 0 | remainder = 0; |
1722 | 0 | } else { |
1723 | 0 | Q[i] = (unsigned)(partial_dividend / divisor); |
1724 | 0 | remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); |
1725 | 0 | } |
1726 | 0 | } |
1727 | 0 | if (R) |
1728 | 0 | R[0] = remainder; |
1729 | 0 | } else { |
1730 | | // Now we're ready to invoke the Knuth classical divide algorithm. In this |
1731 | | // case n > 1. |
1732 | 0 | KnuthDiv(U, V, Q, R, m, n); |
1733 | 0 | } |
1734 | | |
1735 | | // If the caller wants the quotient |
1736 | 0 | if (Quotient) { |
1737 | | // Set up the Quotient value's memory. |
1738 | 0 | if (Quotient->BitWidth != LHS.BitWidth) { |
1739 | 0 | if (Quotient->isSingleWord()) |
1740 | 0 | Quotient->VAL = 0; |
1741 | 0 | else |
1742 | 0 | delete [] Quotient->pVal; |
1743 | 0 | Quotient->BitWidth = LHS.BitWidth; |
1744 | 0 | if (!Quotient->isSingleWord()) |
1745 | 0 | Quotient->pVal = getClearedMemory(Quotient->getNumWords()); |
1746 | 0 | } else |
1747 | 0 | Quotient->clearAllBits(); |
1748 | | |
1749 | | // The quotient is in Q. Reconstitute the quotient into Quotient's low |
1750 | | // order words. |
1751 | | // This case is currently dead as all users of divide() handle trivial cases |
1752 | | // earlier. |
1753 | 0 | if (lhsWords == 1) { |
1754 | 0 | uint64_t tmp = |
1755 | 0 | uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); |
1756 | 0 | if (Quotient->isSingleWord()) |
1757 | 0 | Quotient->VAL = tmp; |
1758 | 0 | else |
1759 | 0 | Quotient->pVal[0] = tmp; |
1760 | 0 | } else { |
1761 | 0 | assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); |
1762 | 0 | for (unsigned i = 0; i < lhsWords; ++i) |
1763 | 0 | Quotient->pVal[i] = |
1764 | 0 | uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); |
1765 | 0 | } |
1766 | 0 | } |
1767 | | |
1768 | | // If the caller wants the remainder |
1769 | 0 | if (Remainder) { |
1770 | | // Set up the Remainder value's memory. |
1771 | 0 | if (Remainder->BitWidth != RHS.BitWidth) { |
1772 | 0 | if (Remainder->isSingleWord()) |
1773 | 0 | Remainder->VAL = 0; |
1774 | 0 | else |
1775 | 0 | delete [] Remainder->pVal; |
1776 | 0 | Remainder->BitWidth = RHS.BitWidth; |
1777 | 0 | if (!Remainder->isSingleWord()) |
1778 | 0 | Remainder->pVal = getClearedMemory(Remainder->getNumWords()); |
1779 | 0 | } else |
1780 | 0 | Remainder->clearAllBits(); |
1781 | | |
1782 | | // The remainder is in R. Reconstitute the remainder into Remainder's low |
1783 | | // order words. |
1784 | 0 | if (rhsWords == 1) { |
1785 | 0 | uint64_t tmp = |
1786 | 0 | uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); |
1787 | 0 | if (Remainder->isSingleWord()) |
1788 | 0 | Remainder->VAL = tmp; |
1789 | 0 | else |
1790 | 0 | Remainder->pVal[0] = tmp; |
1791 | 0 | } else { |
1792 | 0 | assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); |
1793 | 0 | for (unsigned i = 0; i < rhsWords; ++i) |
1794 | 0 | Remainder->pVal[i] = |
1795 | 0 | uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); |
1796 | 0 | } |
1797 | 0 | } |
1798 | | |
1799 | | // Clean up the memory we allocated. |
1800 | 0 | if (U != &SPACE[0]) { |
1801 | 0 | delete [] U; |
1802 | 0 | delete [] V; |
1803 | 0 | delete [] Q; |
1804 | 0 | delete [] R; |
1805 | 0 | } |
1806 | 0 | } |
1807 | | |
1808 | 0 | APInt APInt::udiv(const APInt& RHS) const { |
1809 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
1810 | | |
1811 | | // First, deal with the easy case |
1812 | 0 | if (isSingleWord()) { |
1813 | 0 | assert(RHS.VAL != 0 && "Divide by zero?"); |
1814 | 0 | return APInt(BitWidth, VAL / RHS.VAL); |
1815 | 0 | } |
1816 | | |
1817 | | // Get some facts about the LHS and RHS number of bits and words |
1818 | 0 | unsigned rhsBits = RHS.getActiveBits(); |
1819 | 0 | unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); |
1820 | 0 | assert(rhsWords && "Divided by zero???"); |
1821 | 0 | unsigned lhsBits = this->getActiveBits(); |
1822 | 0 | unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); |
1823 | | |
1824 | | // Deal with some degenerate cases |
1825 | 0 | if (!lhsWords) |
1826 | | // 0 / X ===> 0 |
1827 | 0 | return APInt(BitWidth, 0); |
1828 | 0 | else if (lhsWords < rhsWords || this->ult(RHS)) { |
1829 | | // X / Y ===> 0, iff X < Y |
1830 | 0 | return APInt(BitWidth, 0); |
1831 | 0 | } else if (*this == RHS) { |
1832 | | // X / X ===> 1 |
1833 | 0 | return APInt(BitWidth, 1); |
1834 | 0 | } else if (lhsWords == 1 && rhsWords == 1) { |
1835 | | // All high words are zero, just use native divide |
1836 | 0 | return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); |
1837 | 0 | } |
1838 | | |
1839 | | // We have to compute it the hard way. Invoke the Knuth divide algorithm. |
1840 | 0 | APInt Quotient(1,0); // to hold result. |
1841 | 0 | divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr); |
1842 | 0 | return Quotient; |
1843 | 0 | } |
1844 | | |
1845 | 0 | APInt APInt::sdiv(const APInt &RHS) const { |
1846 | 0 | if (isNegative()) { |
1847 | 0 | if (RHS.isNegative()) |
1848 | 0 | return (-(*this)).udiv(-RHS); |
1849 | 0 | return -((-(*this)).udiv(RHS)); |
1850 | 0 | } |
1851 | 0 | if (RHS.isNegative()) |
1852 | 0 | return -(this->udiv(-RHS)); |
1853 | 0 | return this->udiv(RHS); |
1854 | 0 | } |
1855 | | |
1856 | 0 | APInt APInt::urem(const APInt& RHS) const { |
1857 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
1858 | 0 | if (isSingleWord()) { |
1859 | 0 | assert(RHS.VAL != 0 && "Remainder by zero?"); |
1860 | 0 | return APInt(BitWidth, VAL % RHS.VAL); |
1861 | 0 | } |
1862 | | |
1863 | | // Get some facts about the LHS |
1864 | 0 | unsigned lhsBits = getActiveBits(); |
1865 | 0 | unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); |
1866 | | |
1867 | | // Get some facts about the RHS |
1868 | 0 | unsigned rhsBits = RHS.getActiveBits(); |
1869 | 0 | unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); |
1870 | 0 | assert(rhsWords && "Performing remainder operation by zero ???"); |
1871 | | |
1872 | | // Check the degenerate cases |
1873 | 0 | if (lhsWords == 0) { |
1874 | | // 0 % Y ===> 0 |
1875 | 0 | return APInt(BitWidth, 0); |
1876 | 0 | } else if (lhsWords < rhsWords || this->ult(RHS)) { |
1877 | | // X % Y ===> X, iff X < Y |
1878 | 0 | return *this; |
1879 | 0 | } else if (*this == RHS) { |
1880 | | // X % X == 0; |
1881 | 0 | return APInt(BitWidth, 0); |
1882 | 0 | } else if (lhsWords == 1) { |
1883 | | // All high words are zero, just use native remainder |
1884 | 0 | return APInt(BitWidth, pVal[0] % RHS.pVal[0]); |
1885 | 0 | } |
1886 | | |
1887 | | // We have to compute it the hard way. Invoke the Knuth divide algorithm. |
1888 | 0 | APInt Remainder(1,0); |
1889 | 0 | divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder); |
1890 | 0 | return Remainder; |
1891 | 0 | } |
1892 | | |
1893 | 0 | APInt APInt::srem(const APInt &RHS) const { |
1894 | 0 | if (isNegative()) { |
1895 | 0 | if (RHS.isNegative()) |
1896 | 0 | return -((-(*this)).urem(-RHS)); |
1897 | 0 | return -((-(*this)).urem(RHS)); |
1898 | 0 | } |
1899 | 0 | if (RHS.isNegative()) |
1900 | 0 | return this->urem(-RHS); |
1901 | 0 | return this->urem(RHS); |
1902 | 0 | } |
1903 | | |
1904 | | void APInt::udivrem(const APInt &LHS, const APInt &RHS, |
1905 | 0 | APInt &Quotient, APInt &Remainder) { |
1906 | 0 | assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
1907 | | |
1908 | | // First, deal with the easy case |
1909 | 0 | if (LHS.isSingleWord()) { |
1910 | 0 | assert(RHS.VAL != 0 && "Divide by zero?"); |
1911 | 0 | uint64_t QuotVal = LHS.VAL / RHS.VAL; |
1912 | 0 | uint64_t RemVal = LHS.VAL % RHS.VAL; |
1913 | 0 | Quotient = APInt(LHS.BitWidth, QuotVal); |
1914 | 0 | Remainder = APInt(LHS.BitWidth, RemVal); |
1915 | 0 | return; |
1916 | 0 | } |
1917 | | |
1918 | | // Get some size facts about the dividend and divisor |
1919 | 0 | unsigned lhsBits = LHS.getActiveBits(); |
1920 | 0 | unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); |
1921 | 0 | unsigned rhsBits = RHS.getActiveBits(); |
1922 | 0 | unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); |
1923 | | |
1924 | | // Check the degenerate cases |
1925 | 0 | if (lhsWords == 0) { |
1926 | 0 | Quotient = 0; // 0 / Y ===> 0 |
1927 | 0 | Remainder = 0; // 0 % Y ===> 0 |
1928 | 0 | return; |
1929 | 0 | } |
1930 | | |
1931 | 0 | if (lhsWords < rhsWords || LHS.ult(RHS)) { |
1932 | 0 | Remainder = LHS; // X % Y ===> X, iff X < Y |
1933 | 0 | Quotient = 0; // X / Y ===> 0, iff X < Y |
1934 | 0 | return; |
1935 | 0 | } |
1936 | | |
1937 | 0 | if (LHS == RHS) { |
1938 | 0 | Quotient = 1; // X / X ===> 1 |
1939 | 0 | Remainder = 0; // X % X ===> 0; |
1940 | 0 | return; |
1941 | 0 | } |
1942 | | |
1943 | 0 | if (lhsWords == 1 && rhsWords == 1) { |
1944 | | // There is only one word to consider so use the native versions. |
1945 | 0 | uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; |
1946 | 0 | uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
1947 | 0 | Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); |
1948 | 0 | Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); |
1949 | 0 | return; |
1950 | 0 | } |
1951 | | |
1952 | | // Okay, lets do it the long way |
1953 | 0 | divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); |
1954 | 0 | } |
1955 | | |
1956 | | void APInt::sdivrem(const APInt &LHS, const APInt &RHS, |
1957 | 0 | APInt &Quotient, APInt &Remainder) { |
1958 | 0 | if (LHS.isNegative()) { |
1959 | 0 | if (RHS.isNegative()) |
1960 | 0 | APInt::udivrem(-LHS, -RHS, Quotient, Remainder); |
1961 | 0 | else { |
1962 | 0 | APInt::udivrem(-LHS, RHS, Quotient, Remainder); |
1963 | 0 | Quotient = -Quotient; |
1964 | 0 | } |
1965 | 0 | Remainder = -Remainder; |
1966 | 0 | } else if (RHS.isNegative()) { |
1967 | 0 | APInt::udivrem(LHS, -RHS, Quotient, Remainder); |
1968 | 0 | Quotient = -Quotient; |
1969 | 0 | } else { |
1970 | 0 | APInt::udivrem(LHS, RHS, Quotient, Remainder); |
1971 | 0 | } |
1972 | 0 | } |
1973 | | |
1974 | 0 | APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { |
1975 | 0 | APInt Res = *this+RHS; |
1976 | 0 | Overflow = isNonNegative() == RHS.isNonNegative() && |
1977 | 0 | Res.isNonNegative() != isNonNegative(); |
1978 | 0 | return Res; |
1979 | 0 | } |
1980 | | |
1981 | 0 | APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { |
1982 | 0 | APInt Res = *this+RHS; |
1983 | 0 | Overflow = Res.ult(RHS); |
1984 | 0 | return Res; |
1985 | 0 | } |
1986 | | |
1987 | 0 | APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { |
1988 | 0 | APInt Res = *this - RHS; |
1989 | 0 | Overflow = isNonNegative() != RHS.isNonNegative() && |
1990 | 0 | Res.isNonNegative() != isNonNegative(); |
1991 | 0 | return Res; |
1992 | 0 | } |
1993 | | |
1994 | 0 | APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { |
1995 | 0 | APInt Res = *this-RHS; |
1996 | 0 | Overflow = Res.ugt(*this); |
1997 | 0 | return Res; |
1998 | 0 | } |
1999 | | |
2000 | 0 | APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { |
2001 | | // MININT/-1 --> overflow. |
2002 | 0 | Overflow = isMinSignedValue() && RHS.isAllOnesValue(); |
2003 | 0 | return sdiv(RHS); |
2004 | 0 | } |
2005 | | |
2006 | 0 | APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { |
2007 | 0 | APInt Res = *this * RHS; |
2008 | | |
2009 | 0 | if (*this != 0 && RHS != 0) |
2010 | 0 | Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; |
2011 | 0 | else |
2012 | 0 | Overflow = false; |
2013 | 0 | return Res; |
2014 | 0 | } |
2015 | | |
2016 | 0 | APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { |
2017 | 0 | APInt Res = *this * RHS; |
2018 | |
|
2019 | 0 | if (*this != 0 && RHS != 0) |
2020 | 0 | Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; |
2021 | 0 | else |
2022 | 0 | Overflow = false; |
2023 | 0 | return Res; |
2024 | 0 | } |
2025 | | |
2026 | 0 | APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { |
2027 | 0 | Overflow = ShAmt.uge(getBitWidth()); |
2028 | 0 | if (Overflow) |
2029 | 0 | return APInt(BitWidth, 0); |
2030 | | |
2031 | 0 | if (isNonNegative()) // Don't allow sign change. |
2032 | 0 | Overflow = ShAmt.uge(countLeadingZeros()); |
2033 | 0 | else |
2034 | 0 | Overflow = ShAmt.uge(countLeadingOnes()); |
2035 | | |
2036 | 0 | return *this << ShAmt; |
2037 | 0 | } |
2038 | | |
2039 | 0 | APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { |
2040 | 0 | Overflow = ShAmt.uge(getBitWidth()); |
2041 | 0 | if (Overflow) |
2042 | 0 | return APInt(BitWidth, 0); |
2043 | | |
2044 | 0 | Overflow = ShAmt.ugt(countLeadingZeros()); |
2045 | |
|
2046 | 0 | return *this << ShAmt; |
2047 | 0 | } |
2048 | | |
2049 | | |
2050 | | |
2051 | | |
2052 | 0 | void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { |
2053 | | // Check our assumptions here |
2054 | 0 | assert(!str.empty() && "Invalid string length"); |
2055 | 0 | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || |
2056 | 0 | radix == 36) && |
2057 | 0 | "Radix should be 2, 8, 10, 16, or 36!"); |
2058 | | |
2059 | 0 | StringRef::iterator p = str.begin(); |
2060 | 0 | size_t slen = str.size(); |
2061 | 0 | bool isNeg = *p == '-'; |
2062 | 0 | if (*p == '-' || *p == '+') { |
2063 | 0 | p++; |
2064 | 0 | slen--; |
2065 | 0 | assert(slen && "String is only a sign, needs a value."); |
2066 | 0 | } |
2067 | 0 | assert((slen <= numbits || radix != 2) && "Insufficient bit width"); |
2068 | 0 | assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); |
2069 | 0 | assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); |
2070 | 0 | assert((((slen-1)*64)/22 <= numbits || radix != 10) && |
2071 | 0 | "Insufficient bit width"); |
2072 | | |
2073 | | // Allocate memory |
2074 | 0 | if (!isSingleWord()) |
2075 | 0 | pVal = getClearedMemory(getNumWords()); |
2076 | | |
2077 | | // Figure out if we can shift instead of multiply |
2078 | 0 | unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); |
2079 | | |
2080 | | // Set up an APInt for the digit to add outside the loop so we don't |
2081 | | // constantly construct/destruct it. |
2082 | 0 | APInt apdigit(getBitWidth(), 0); |
2083 | 0 | APInt apradix(getBitWidth(), radix); |
2084 | | |
2085 | | // Enter digit traversal loop |
2086 | 0 | for (StringRef::iterator e = str.end(); p != e; ++p) { |
2087 | 0 | unsigned digit = getDigit(*p, radix); |
2088 | 0 | assert(digit < radix && "Invalid character in digit string"); |
2089 | | |
2090 | | // Shift or multiply the value by the radix |
2091 | 0 | if (slen > 1) { |
2092 | 0 | if (shift) |
2093 | 0 | *this <<= shift; |
2094 | 0 | else |
2095 | 0 | *this *= apradix; |
2096 | 0 | } |
2097 | | |
2098 | | // Add in the digit we just interpreted |
2099 | 0 | if (apdigit.isSingleWord()) |
2100 | 0 | apdigit.VAL = digit; |
2101 | 0 | else |
2102 | 0 | apdigit.pVal[0] = digit; |
2103 | 0 | *this += apdigit; |
2104 | 0 | } |
2105 | | // If its negative, put it in two's complement form |
2106 | 0 | if (isNeg) { |
2107 | 0 | --(*this); |
2108 | 0 | this->flipAllBits(); |
2109 | 0 | } |
2110 | 0 | } |
2111 | | |
2112 | | void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, |
2113 | 0 | bool Signed, bool formatAsCLiteral) const { |
2114 | 0 | assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || |
2115 | 0 | Radix == 36) && |
2116 | 0 | "Radix should be 2, 8, 10, 16, or 36!"); |
2117 | | |
2118 | 0 | const char *Prefix = ""; |
2119 | 0 | if (formatAsCLiteral) { |
2120 | 0 | switch (Radix) { |
2121 | 0 | case 2: |
2122 | | // Binary literals are a non-standard extension added in gcc 4.3: |
2123 | | // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html |
2124 | 0 | Prefix = "0b"; |
2125 | 0 | break; |
2126 | 0 | case 8: |
2127 | 0 | Prefix = "0"; |
2128 | 0 | break; |
2129 | 0 | case 10: |
2130 | 0 | break; // No prefix |
2131 | 0 | case 16: |
2132 | 0 | Prefix = "0x"; |
2133 | 0 | break; |
2134 | 0 | default: |
2135 | 0 | llvm_unreachable("Invalid radix!"); |
2136 | 0 | } |
2137 | 0 | } |
2138 | | |
2139 | | // First, check for a zero value and just short circuit the logic below. |
2140 | 0 | if (*this == 0) { |
2141 | 0 | while (*Prefix) { |
2142 | 0 | Str.push_back(*Prefix); |
2143 | 0 | ++Prefix; |
2144 | 0 | }; |
2145 | 0 | Str.push_back('0'); |
2146 | 0 | return; |
2147 | 0 | } |
2148 | | |
2149 | 0 | static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; |
2150 | |
|
2151 | 0 | if (isSingleWord()) { |
2152 | 0 | char Buffer[65]; |
2153 | 0 | char *BufPtr = Buffer+65; |
2154 | |
|
2155 | 0 | uint64_t N; |
2156 | 0 | if (!Signed) { |
2157 | 0 | N = getZExtValue(); |
2158 | 0 | } else { |
2159 | 0 | int64_t I = getSExtValue(); |
2160 | 0 | if (I >= 0) { |
2161 | 0 | N = I; |
2162 | 0 | } else { |
2163 | 0 | Str.push_back('-'); |
2164 | 0 | N = -(uint64_t)I; |
2165 | 0 | } |
2166 | 0 | } |
2167 | |
|
2168 | 0 | while (*Prefix) { |
2169 | 0 | Str.push_back(*Prefix); |
2170 | 0 | ++Prefix; |
2171 | 0 | }; |
2172 | |
|
2173 | 0 | while (N) { |
2174 | 0 | *--BufPtr = Digits[N % Radix]; |
2175 | 0 | N /= Radix; |
2176 | 0 | } |
2177 | 0 | Str.append(BufPtr, Buffer+65); |
2178 | 0 | return; |
2179 | 0 | } |
2180 | | |
2181 | 0 | APInt Tmp(*this); |
2182 | |
|
2183 | 0 | if (Signed && isNegative()) { |
2184 | | // They want to print the signed version and it is a negative value |
2185 | | // Flip the bits and add one to turn it into the equivalent positive |
2186 | | // value and put a '-' in the result. |
2187 | 0 | Tmp.flipAllBits(); |
2188 | 0 | ++Tmp; |
2189 | 0 | Str.push_back('-'); |
2190 | 0 | } |
2191 | |
|
2192 | 0 | while (*Prefix) { |
2193 | 0 | Str.push_back(*Prefix); |
2194 | 0 | ++Prefix; |
2195 | 0 | }; |
2196 | | |
2197 | | // We insert the digits backward, then reverse them to get the right order. |
2198 | 0 | unsigned StartDig = Str.size(); |
2199 | | |
2200 | | // For the 2, 8 and 16 bit cases, we can just shift instead of divide |
2201 | | // because the number of bits per digit (1, 3 and 4 respectively) divides |
2202 | | // equaly. We just shift until the value is zero. |
2203 | 0 | if (Radix == 2 || Radix == 8 || Radix == 16) { |
2204 | | // Just shift tmp right for each digit width until it becomes zero |
2205 | 0 | unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); |
2206 | 0 | unsigned MaskAmt = Radix - 1; |
2207 | |
|
2208 | 0 | while (Tmp != 0) { |
2209 | 0 | unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; |
2210 | 0 | Str.push_back(Digits[Digit]); |
2211 | 0 | Tmp = Tmp.lshr(ShiftAmt); |
2212 | 0 | } |
2213 | 0 | } else { |
2214 | 0 | APInt divisor(Radix == 10? 4 : 8, Radix); |
2215 | 0 | while (Tmp != 0) { |
2216 | 0 | APInt APdigit(1, 0); |
2217 | 0 | APInt tmp2(Tmp.getBitWidth(), 0); |
2218 | 0 | divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, |
2219 | 0 | &APdigit); |
2220 | 0 | unsigned Digit = (unsigned)APdigit.getZExtValue(); |
2221 | 0 | assert(Digit < Radix && "divide failed"); |
2222 | 0 | Str.push_back(Digits[Digit]); |
2223 | 0 | Tmp = tmp2; |
2224 | 0 | } |
2225 | 0 | } |
2226 | | |
2227 | | // Reverse the digits before returning. |
2228 | 0 | std::reverse(Str.begin()+StartDig, Str.end()); |
2229 | 0 | } |
2230 | | |
2231 | | /// Returns the APInt as a std::string. Note that this is an inefficient method. |
2232 | | /// It is better to pass in a SmallVector/SmallString to the methods above. |
2233 | 0 | std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { |
2234 | 0 | SmallString<40> S; |
2235 | 0 | toString(S, Radix, Signed, /* formatAsCLiteral = */false); |
2236 | 0 | return S.str(); |
2237 | 0 | } |
2238 | | |
2239 | | |
2240 | 0 | LLVM_DUMP_METHOD void APInt::dump() const { |
2241 | 0 | SmallString<40> S, U; |
2242 | 0 | this->toStringUnsigned(U); |
2243 | 0 | this->toStringSigned(S); |
2244 | 0 | } |
2245 | | |
2246 | 0 | void APInt::print(raw_ostream &OS, bool isSigned) const { |
2247 | 0 | SmallString<40> S; |
2248 | 0 | this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); |
2249 | 0 | OS << S; |
2250 | 0 | } |
2251 | | |
2252 | | // This implements a variety of operations on a representation of |
2253 | | // arbitrary precision, two's-complement, bignum integer values. |
2254 | | |
2255 | | // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe |
2256 | | // and unrestricting assumption. |
2257 | | static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!"); |
2258 | | |
2259 | | /* Some handy functions local to this file. */ |
2260 | | namespace { |
2261 | | |
2262 | | /* Returns the integer part with the least significant BITS set. |
2263 | | BITS cannot be zero. */ |
2264 | | static inline integerPart |
2265 | | lowBitMask(unsigned int bits) |
2266 | 19.1M | { |
2267 | 19.1M | assert(bits != 0 && bits <= integerPartWidth); |
2268 | | |
2269 | 19.1M | return ~(integerPart) 0 >> (integerPartWidth - bits); |
2270 | 19.1M | } |
2271 | | |
2272 | | /* Returns the value of the lower half of PART. */ |
2273 | | static inline integerPart |
2274 | | lowHalf(integerPart part) |
2275 | 17.7M | { |
2276 | 17.7M | return part & lowBitMask(integerPartWidth / 2); |
2277 | 17.7M | } |
2278 | | |
2279 | | /* Returns the value of the upper half of PART. */ |
2280 | | static inline integerPart |
2281 | | highHalf(integerPart part) |
2282 | 26.6M | { |
2283 | 26.6M | return part >> (integerPartWidth / 2); |
2284 | 26.6M | } |
2285 | | |
2286 | | /* Returns the bit number of the most significant set bit of a part. |
2287 | | If the input number has no bits set -1U is returned. */ |
2288 | | static unsigned int |
2289 | | partMSB(integerPart value) |
2290 | 3.65M | { |
2291 | 3.65M | return findLastSet(value, ZB_Max); |
2292 | 3.65M | } |
2293 | | |
2294 | | /* Returns the bit number of the least significant set bit of a |
2295 | | part. If the input number has no bits set -1U is returned. */ |
2296 | | static unsigned int |
2297 | | partLSB(integerPart value) |
2298 | 622k | { |
2299 | 622k | return findFirstSet(value, ZB_Max); |
2300 | 622k | } |
2301 | | } |
2302 | | |
2303 | | /* Sets the least significant part of a bignum to the input value, and |
2304 | | zeroes out higher parts. */ |
2305 | | void |
2306 | | APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) |
2307 | 813k | { |
2308 | 813k | unsigned int i; |
2309 | | |
2310 | 813k | assert(parts > 0); |
2311 | | |
2312 | 813k | dst[0] = part; |
2313 | 1.24M | for (i = 1; i < parts; i++) |
2314 | 434k | dst[i] = 0; |
2315 | 813k | } |
2316 | | |
2317 | | /* Assign one bignum to another. */ |
2318 | | void |
2319 | | APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) |
2320 | 1.46M | { |
2321 | 1.46M | unsigned int i; |
2322 | | |
2323 | 3.20M | for (i = 0; i < parts; i++) |
2324 | 1.73M | dst[i] = src[i]; |
2325 | 1.46M | } |
2326 | | |
2327 | | /* Returns true if a bignum is zero, false otherwise. */ |
2328 | | bool |
2329 | | APInt::tcIsZero(const integerPart *src, unsigned int parts) |
2330 | 1.21M | { |
2331 | 1.21M | unsigned int i; |
2332 | | |
2333 | 1.33M | for (i = 0; i < parts; i++) |
2334 | 1.32M | if (src[i]) |
2335 | 1.19M | return false; |
2336 | | |
2337 | 13.2k | return true; |
2338 | 1.21M | } |
2339 | | |
2340 | | /* Extract the given bit of a bignum; returns 0 or 1. */ |
2341 | | int |
2342 | | APInt::tcExtractBit(const integerPart *parts, unsigned int bit) |
2343 | 935k | { |
2344 | 935k | return (parts[bit / integerPartWidth] & |
2345 | 935k | ((integerPart) 1 << bit % integerPartWidth)) != 0; |
2346 | 935k | } |
2347 | | |
2348 | | /* Set the given bit of a bignum. */ |
2349 | | void |
2350 | | APInt::tcSetBit(integerPart *parts, unsigned int bit) |
2351 | 16.7M | { |
2352 | 16.7M | parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); |
2353 | 16.7M | } |
2354 | | |
2355 | | /* Clears the given bit of a bignum. */ |
2356 | | void |
2357 | | APInt::tcClearBit(integerPart *parts, unsigned int bit) |
2358 | 0 | { |
2359 | 0 | parts[bit / integerPartWidth] &= |
2360 | 0 | ~((integerPart) 1 << (bit % integerPartWidth)); |
2361 | 0 | } |
2362 | | |
2363 | | /* Returns the bit number of the least significant set bit of a |
2364 | | number. If the input number has no bits set -1U is returned. */ |
2365 | | unsigned int |
2366 | | APInt::tcLSB(const integerPart *parts, unsigned int n) |
2367 | 622k | { |
2368 | 622k | unsigned int i, lsb; |
2369 | | |
2370 | 659k | for (i = 0; i < n; i++) { |
2371 | 659k | if (parts[i] != 0) { |
2372 | 622k | lsb = partLSB(parts[i]); |
2373 | | |
2374 | 622k | return lsb + i * integerPartWidth; |
2375 | 622k | } |
2376 | 659k | } |
2377 | | |
2378 | 0 | return -1U; |
2379 | 622k | } |
2380 | | |
2381 | | /* Returns the bit number of the most significant set bit of a number. |
2382 | | If the input number has no bits set -1U is returned. */ |
2383 | | unsigned int |
2384 | | APInt::tcMSB(const integerPart *parts, unsigned int n) |
2385 | 3.66M | { |
2386 | 3.66M | unsigned int msb; |
2387 | | |
2388 | 3.72M | do { |
2389 | 3.72M | --n; |
2390 | | |
2391 | 3.72M | if (parts[n] != 0) { |
2392 | 3.65M | msb = partMSB(parts[n]); |
2393 | | |
2394 | 3.65M | return msb + n * integerPartWidth; |
2395 | 3.65M | } |
2396 | 3.72M | } while (n); |
2397 | | |
2398 | 14.4k | return -1U; |
2399 | 3.66M | } |
2400 | | |
2401 | | /* Copy the bit vector of width srcBITS from SRC, starting at bit |
2402 | | srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes |
2403 | | the least significant bit of DST. All high bits above srcBITS in |
2404 | | DST are zero-filled. */ |
2405 | | void |
2406 | | APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, |
2407 | | unsigned int srcBits, unsigned int srcLSB) |
2408 | 1.38M | { |
2409 | 1.38M | unsigned int firstSrcPart, dstParts, shift, n; |
2410 | | |
2411 | 1.38M | dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; |
2412 | 1.38M | assert(dstParts <= dstCount); |
2413 | | |
2414 | 1.38M | firstSrcPart = srcLSB / integerPartWidth; |
2415 | 1.38M | tcAssign (dst, src + firstSrcPart, dstParts); |
2416 | | |
2417 | 1.38M | shift = srcLSB % integerPartWidth; |
2418 | 1.38M | tcShiftRight (dst, dstParts, shift); |
2419 | | |
2420 | | /* We now have (dstParts * integerPartWidth - shift) bits from SRC |
2421 | | in DST. If this is less that srcBits, append the rest, else |
2422 | | clear the high bits. */ |
2423 | 1.38M | n = dstParts * integerPartWidth - shift; |
2424 | 1.38M | if (n < srcBits) { |
2425 | 45.2k | integerPart mask = lowBitMask (srcBits - n); |
2426 | 45.2k | dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) |
2427 | 45.2k | << n % integerPartWidth); |
2428 | 1.34M | } else if (n > srcBits) { |
2429 | 1.33M | if (srcBits % integerPartWidth) |
2430 | 1.33M | dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); |
2431 | 1.33M | } |
2432 | | |
2433 | | /* Clear high parts. */ |
2434 | 1.45M | while (dstParts < dstCount) |
2435 | 68.6k | dst[dstParts++] = 0; |
2436 | 1.38M | } |
2437 | | |
2438 | | /* DST += RHS + C where C is zero or one. Returns the carry flag. */ |
2439 | | integerPart |
2440 | | APInt::tcAdd(integerPart *dst, const integerPart *rhs, |
2441 | | integerPart c, unsigned int parts) |
2442 | 0 | { |
2443 | 0 | unsigned int i; |
2444 | |
|
2445 | 0 | assert(c <= 1); |
2446 | | |
2447 | 0 | for (i = 0; i < parts; i++) { |
2448 | 0 | integerPart l; |
2449 | |
|
2450 | 0 | l = dst[i]; |
2451 | 0 | if (c) { |
2452 | 0 | dst[i] += rhs[i] + 1; |
2453 | 0 | c = (dst[i] <= l); |
2454 | 0 | } else { |
2455 | 0 | dst[i] += rhs[i]; |
2456 | 0 | c = (dst[i] < l); |
2457 | 0 | } |
2458 | 0 | } |
2459 | |
|
2460 | 0 | return c; |
2461 | 0 | } |
2462 | | |
2463 | | /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ |
2464 | | integerPart |
2465 | | APInt::tcSubtract(integerPart *dst, const integerPart *rhs, |
2466 | | integerPart c, unsigned int parts) |
2467 | 16.7M | { |
2468 | 16.7M | unsigned int i; |
2469 | | |
2470 | 16.7M | assert(c <= 1); |
2471 | | |
2472 | 266M | for (i = 0; i < parts; i++) { |
2473 | 250M | integerPart l; |
2474 | | |
2475 | 250M | l = dst[i]; |
2476 | 250M | if (c) { |
2477 | 59.8M | dst[i] -= rhs[i] + 1; |
2478 | 59.8M | c = (dst[i] >= l); |
2479 | 190M | } else { |
2480 | 190M | dst[i] -= rhs[i]; |
2481 | 190M | c = (dst[i] > l); |
2482 | 190M | } |
2483 | 250M | } |
2484 | | |
2485 | 16.7M | return c; |
2486 | 16.7M | } |
2487 | | |
2488 | | /* Negate a bignum in-place. */ |
2489 | | void |
2490 | | APInt::tcNegate(integerPart *dst, unsigned int parts) |
2491 | 0 | { |
2492 | 0 | tcComplement(dst, parts); |
2493 | 0 | tcIncrement(dst, parts); |
2494 | 0 | } |
2495 | | |
2496 | | /* DST += SRC * MULTIPLIER + CARRY if add is true |
2497 | | DST = SRC * MULTIPLIER + CARRY if add is false |
2498 | | |
2499 | | Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC |
2500 | | they must start at the same point, i.e. DST == SRC. |
2501 | | |
2502 | | If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is |
2503 | | returned. Otherwise DST is filled with the least significant |
2504 | | DSTPARTS parts of the result, and if all of the omitted higher |
2505 | | parts were zero return zero, otherwise overflow occurred and |
2506 | | return one. */ |
2507 | | int |
2508 | | APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, |
2509 | | integerPart multiplier, integerPart carry, |
2510 | | unsigned int srcParts, unsigned int dstParts, |
2511 | | bool add) |
2512 | 955k | { |
2513 | 955k | unsigned int i, n; |
2514 | | |
2515 | | /* Otherwise our writes of DST kill our later reads of SRC. */ |
2516 | 955k | assert(dst <= src || dst >= src + srcParts); |
2517 | 955k | assert(dstParts <= srcParts + 1); |
2518 | | |
2519 | | /* N loops; minimum of dstParts and srcParts. */ |
2520 | 955k | n = dstParts < srcParts ? dstParts: srcParts; |
2521 | | |
2522 | 5.80M | for (i = 0; i < n; i++) { |
2523 | 4.84M | integerPart low, mid, high, srcPart; |
2524 | | |
2525 | | /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. |
2526 | | |
2527 | | This cannot overflow, because |
2528 | | |
2529 | | (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) |
2530 | | |
2531 | | which is less than n^2. */ |
2532 | | |
2533 | 4.84M | srcPart = src[i]; |
2534 | | |
2535 | 4.84M | if (multiplier == 0 || srcPart == 0) { |
2536 | 404k | low = carry; |
2537 | 404k | high = 0; |
2538 | 4.44M | } else { |
2539 | 4.44M | low = lowHalf(srcPart) * lowHalf(multiplier); |
2540 | 4.44M | high = highHalf(srcPart) * highHalf(multiplier); |
2541 | | |
2542 | 4.44M | mid = lowHalf(srcPart) * highHalf(multiplier); |
2543 | 4.44M | high += highHalf(mid); |
2544 | 4.44M | mid <<= integerPartWidth / 2; |
2545 | 4.44M | if (low + mid < low) |
2546 | 977k | high++; |
2547 | 4.44M | low += mid; |
2548 | | |
2549 | 4.44M | mid = highHalf(srcPart) * lowHalf(multiplier); |
2550 | 4.44M | high += highHalf(mid); |
2551 | 4.44M | mid <<= integerPartWidth / 2; |
2552 | 4.44M | if (low + mid < low) |
2553 | 2.07M | high++; |
2554 | 4.44M | low += mid; |
2555 | | |
2556 | | /* Now add carry. */ |
2557 | 4.44M | if (low + carry < low) |
2558 | 905k | high++; |
2559 | 4.44M | low += carry; |
2560 | 4.44M | } |
2561 | | |
2562 | 4.84M | if (add) { |
2563 | | /* And now DST[i], and store the new low part there. */ |
2564 | 2.11M | if (low + dst[i] < low) |
2565 | 712k | high++; |
2566 | 2.11M | dst[i] += low; |
2567 | 2.11M | } else |
2568 | 2.73M | dst[i] = low; |
2569 | | |
2570 | 4.84M | carry = high; |
2571 | 4.84M | } |
2572 | | |
2573 | 955k | if (i < dstParts) { |
2574 | | /* Full multiplication, there is no overflow. */ |
2575 | 955k | assert(i + 1 == dstParts); |
2576 | 955k | dst[i] = carry; |
2577 | 955k | return 0; |
2578 | 955k | } else { |
2579 | | /* We overflowed if there is carry. */ |
2580 | 0 | if (carry) |
2581 | 0 | return 1; |
2582 | | |
2583 | | /* We would overflow if any significant unwritten parts would be |
2584 | | non-zero. This is true if any remaining src parts are non-zero |
2585 | | and the multiplier is non-zero. */ |
2586 | 0 | if (multiplier) |
2587 | 0 | for (; i < srcParts; i++) |
2588 | 0 | if (src[i]) |
2589 | 0 | return 1; |
2590 | | |
2591 | | /* We fitted in the narrow destination. */ |
2592 | 0 | return 0; |
2593 | 0 | } |
2594 | 955k | } |
2595 | | |
2596 | | /* DST = LHS * RHS, where DST has the same width as the operands and |
2597 | | is filled with the least significant parts of the result. Returns |
2598 | | one if overflow occurred, otherwise zero. DST must be disjoint |
2599 | | from both operands. */ |
2600 | | int |
2601 | | APInt::tcMultiply(integerPart *dst, const integerPart *lhs, |
2602 | | const integerPart *rhs, unsigned int parts) |
2603 | 0 | { |
2604 | 0 | unsigned int i; |
2605 | 0 | int overflow; |
2606 | |
|
2607 | 0 | assert(dst != lhs && dst != rhs); |
2608 | | |
2609 | 0 | overflow = 0; |
2610 | 0 | tcSet(dst, 0, parts); |
2611 | |
|
2612 | 0 | for (i = 0; i < parts; i++) |
2613 | 0 | overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, |
2614 | 0 | parts - i, true); |
2615 | |
|
2616 | 0 | return overflow; |
2617 | 0 | } |
2618 | | |
2619 | | /* DST = LHS * RHS, where DST has width the sum of the widths of the |
2620 | | operands. No overflow occurs. DST must be disjoint from both |
2621 | | operands. Returns the number of parts required to hold the |
2622 | | result. */ |
2623 | | unsigned int |
2624 | | APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, |
2625 | | const integerPart *rhs, unsigned int lhsParts, |
2626 | | unsigned int rhsParts) |
2627 | 247k | { |
2628 | | /* Put the narrower number on the LHS for less loops below. */ |
2629 | 247k | if (lhsParts > rhsParts) { |
2630 | 0 | return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); |
2631 | 247k | } else { |
2632 | 247k | unsigned int n; |
2633 | | |
2634 | 247k | assert(dst != lhs && dst != rhs); |
2635 | | |
2636 | 247k | tcSet(dst, 0, rhsParts); |
2637 | | |
2638 | 667k | for (n = 0; n < lhsParts; n++) |
2639 | 419k | tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); |
2640 | | |
2641 | 247k | n = lhsParts + rhsParts; |
2642 | | |
2643 | 247k | return n - (dst[n - 1] == 0); |
2644 | 247k | } |
2645 | 247k | } |
2646 | | |
2647 | | /* If RHS is zero LHS and REMAINDER are left unchanged, return one. |
2648 | | Otherwise set LHS to LHS / RHS with the fractional part discarded, |
2649 | | set REMAINDER to the remainder, return zero. i.e. |
2650 | | |
2651 | | OLD_LHS = RHS * LHS + REMAINDER |
2652 | | |
2653 | | SCRATCH is a bignum of the same size as the operands and result for |
2654 | | use by the routine; its contents need not be initialized and are |
2655 | | destroyed. LHS, REMAINDER and SCRATCH must be distinct. |
2656 | | */ |
2657 | | int |
2658 | | APInt::tcDivide(integerPart *lhs, const integerPart *rhs, |
2659 | | integerPart *remainder, integerPart *srhs, |
2660 | | unsigned int parts) |
2661 | 0 | { |
2662 | 0 | unsigned int n, shiftCount; |
2663 | 0 | integerPart mask; |
2664 | |
|
2665 | 0 | assert(lhs != remainder && lhs != srhs && remainder != srhs); |
2666 | | |
2667 | 0 | shiftCount = tcMSB(rhs, parts) + 1; |
2668 | 0 | if (shiftCount == 0) |
2669 | 0 | return true; |
2670 | | |
2671 | 0 | shiftCount = parts * integerPartWidth - shiftCount; |
2672 | 0 | n = shiftCount / integerPartWidth; |
2673 | 0 | mask = (integerPart) 1 << (shiftCount % integerPartWidth); |
2674 | |
|
2675 | 0 | tcAssign(srhs, rhs, parts); |
2676 | 0 | tcShiftLeft(srhs, parts, shiftCount); |
2677 | 0 | tcAssign(remainder, lhs, parts); |
2678 | 0 | tcSet(lhs, 0, parts); |
2679 | | |
2680 | | /* Loop, subtracting SRHS if REMAINDER is greater and adding that to |
2681 | | the total. */ |
2682 | 0 | for (;;) { |
2683 | 0 | int compare; |
2684 | |
|
2685 | 0 | compare = tcCompare(remainder, srhs, parts); |
2686 | 0 | if (compare >= 0) { |
2687 | 0 | tcSubtract(remainder, srhs, 0, parts); |
2688 | 0 | lhs[n] |= mask; |
2689 | 0 | } |
2690 | |
|
2691 | 0 | if (shiftCount == 0) |
2692 | 0 | break; |
2693 | 0 | shiftCount--; |
2694 | 0 | tcShiftRight(srhs, parts, 1); |
2695 | 0 | if ((mask >>= 1) == 0) |
2696 | 0 | mask = (integerPart) 1 << (integerPartWidth - 1), n--; |
2697 | 0 | } |
2698 | |
|
2699 | 0 | return false; |
2700 | 0 | } |
2701 | | |
2702 | | /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero. |
2703 | | There are no restrictions on COUNT. */ |
2704 | | void |
2705 | | APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) |
2706 | 35.0M | { |
2707 | 35.0M | if (count) { |
2708 | 35.0M | unsigned int jump, shift; |
2709 | | |
2710 | | /* Jump is the inter-part jump; shift is is intra-part shift. */ |
2711 | 35.0M | jump = count / integerPartWidth; |
2712 | 35.0M | shift = count % integerPartWidth; |
2713 | | |
2714 | 620M | while (parts > jump) { |
2715 | 585M | integerPart part; |
2716 | | |
2717 | 585M | parts--; |
2718 | | |
2719 | | /* dst[i] comes from the two parts src[i - jump] and, if we have |
2720 | | an intra-part shift, src[i - jump - 1]. */ |
2721 | 585M | part = dst[parts - jump]; |
2722 | 585M | if (shift) { |
2723 | 585M | part <<= shift; |
2724 | 585M | if (parts >= jump + 1) |
2725 | 550M | part |= dst[parts - jump - 1] >> (integerPartWidth - shift); |
2726 | 585M | } |
2727 | | |
2728 | 585M | dst[parts] = part; |
2729 | 585M | } |
2730 | | |
2731 | 35.1M | while (parts > 0) |
2732 | 64.5k | dst[--parts] = 0; |
2733 | 35.0M | } |
2734 | 35.0M | } |
2735 | | |
2736 | | /* Shift a bignum right COUNT bits in-place. Shifted in bits are |
2737 | | zero. There are no restrictions on COUNT. */ |
2738 | | void |
2739 | | APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) |
2740 | 1.50M | { |
2741 | 1.50M | if (count) { |
2742 | 619k | unsigned int i, jump, shift; |
2743 | | |
2744 | | /* Jump is the inter-part jump; shift is is intra-part shift. */ |
2745 | 619k | jump = count / integerPartWidth; |
2746 | 619k | shift = count % integerPartWidth; |
2747 | | |
2748 | | /* Perform the shift. This leaves the most significant COUNT bits |
2749 | | of the result at zero. */ |
2750 | 1.37M | for (i = 0; i < parts; i++) { |
2751 | 754k | integerPart part; |
2752 | | |
2753 | 754k | if (i + jump >= parts) { |
2754 | 15.5k | part = 0; |
2755 | 738k | } else { |
2756 | 738k | part = dst[i + jump]; |
2757 | 738k | if (shift) { |
2758 | 738k | part >>= shift; |
2759 | 738k | if (i + jump + 1 < parts) |
2760 | 137k | part |= dst[i + jump + 1] << (integerPartWidth - shift); |
2761 | 738k | } |
2762 | 738k | } |
2763 | | |
2764 | 754k | dst[i] = part; |
2765 | 754k | } |
2766 | 619k | } |
2767 | 1.50M | } |
2768 | | |
2769 | | /* Bitwise and of two bignums. */ |
2770 | | void |
2771 | | APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) |
2772 | 0 | { |
2773 | 0 | unsigned int i; |
2774 | |
|
2775 | 0 | for (i = 0; i < parts; i++) |
2776 | 0 | dst[i] &= rhs[i]; |
2777 | 0 | } |
2778 | | |
2779 | | /* Bitwise inclusive or of two bignums. */ |
2780 | | void |
2781 | | APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) |
2782 | 0 | { |
2783 | 0 | unsigned int i; |
2784 | |
|
2785 | 0 | for (i = 0; i < parts; i++) |
2786 | 0 | dst[i] |= rhs[i]; |
2787 | 0 | } |
2788 | | |
2789 | | /* Bitwise exclusive or of two bignums. */ |
2790 | | void |
2791 | | APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) |
2792 | 0 | { |
2793 | 0 | unsigned int i; |
2794 | |
|
2795 | 0 | for (i = 0; i < parts; i++) |
2796 | 0 | dst[i] ^= rhs[i]; |
2797 | 0 | } |
2798 | | |
2799 | | /* Complement a bignum in-place. */ |
2800 | | void |
2801 | | APInt::tcComplement(integerPart *dst, unsigned int parts) |
2802 | 0 | { |
2803 | 0 | unsigned int i; |
2804 | |
|
2805 | 0 | for (i = 0; i < parts; i++) |
2806 | 0 | dst[i] = ~dst[i]; |
2807 | 0 | } |
2808 | | |
2809 | | /* Comparison (unsigned) of two bignums. */ |
2810 | | int |
2811 | | APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, |
2812 | | unsigned int parts) |
2813 | 35.0M | { |
2814 | 35.1M | while (parts) { |
2815 | 35.1M | parts--; |
2816 | 35.1M | if (lhs[parts] == rhs[parts]) |
2817 | 104k | continue; |
2818 | | |
2819 | 35.0M | if (lhs[parts] > rhs[parts]) |
2820 | 17.2M | return 1; |
2821 | 17.8M | else |
2822 | 17.8M | return -1; |
2823 | 35.0M | } |
2824 | | |
2825 | 25.6k | return 0; |
2826 | 35.0M | } |
2827 | | |
2828 | | /* Increment a bignum in-place, return the carry flag. */ |
2829 | | integerPart |
2830 | | APInt::tcIncrement(integerPart *dst, unsigned int parts) |
2831 | 364k | { |
2832 | 364k | unsigned int i; |
2833 | | |
2834 | 365k | for (i = 0; i < parts; i++) |
2835 | 365k | if (++dst[i] != 0) |
2836 | 364k | break; |
2837 | | |
2838 | 364k | return i == parts; |
2839 | 364k | } |
2840 | | |
2841 | | /* Decrement a bignum in-place, return the borrow flag. */ |
2842 | | integerPart |
2843 | 0 | APInt::tcDecrement(integerPart *dst, unsigned int parts) { |
2844 | 0 | for (unsigned int i = 0; i < parts; i++) { |
2845 | | // If the current word is non-zero, then the decrement has no effect on the |
2846 | | // higher-order words of the integer and no borrow can occur. Exit early. |
2847 | 0 | if (dst[i]--) |
2848 | 0 | return 0; |
2849 | 0 | } |
2850 | | // If every word was zero, then there is a borrow. |
2851 | 0 | return 1; |
2852 | 0 | } |
2853 | | |
2854 | | |
2855 | | /* Set the least significant BITS bits of a bignum, clear the |
2856 | | rest. */ |
2857 | | void |
2858 | | APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, |
2859 | | unsigned int bits) |
2860 | 0 | { |
2861 | 0 | unsigned int i; |
2862 | |
|
2863 | 0 | i = 0; |
2864 | 0 | while (bits > integerPartWidth) { |
2865 | 0 | dst[i++] = ~(integerPart) 0; |
2866 | 0 | bits -= integerPartWidth; |
2867 | 0 | } |
2868 | |
|
2869 | 0 | if (bits) |
2870 | 0 | dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); |
2871 | |
|
2872 | 0 | while (i < parts) |
2873 | 0 | dst[i++] = 0; |
2874 | 0 | } |