Coverage Report

Created: 2026-02-07 06:11

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/keystone/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
Line
Count
Source
1
//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file implements the X86MCCodeEmitter class.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "MCTargetDesc/X86MCTargetDesc.h"
15
#include "MCTargetDesc/X86BaseInfo.h"
16
#include "MCTargetDesc/X86FixupKinds.h"
17
#include "llvm/MC/MCCodeEmitter.h"
18
#include "llvm/MC/MCContext.h"
19
#include "llvm/MC/MCExpr.h"
20
#include "llvm/MC/MCInst.h"
21
#include "llvm/MC/MCInstrInfo.h"
22
#include "llvm/MC/MCRegisterInfo.h"
23
#include "llvm/MC/MCSubtargetInfo.h"
24
#include "llvm/MC/MCSymbol.h"
25
#include "llvm/Support/raw_ostream.h"
26
27
#include <keystone/keystone.h>
28
29
using namespace llvm_ks;
30
31
#define DEBUG_TYPE "mccodeemitter"
32
33
namespace {
34
class X86MCCodeEmitter : public MCCodeEmitter {
35
  X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
36
  void operator=(const X86MCCodeEmitter &) = delete;
37
  const MCInstrInfo &MCII;
38
  MCContext &Ctx;
39
public:
40
  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
41
16.6k
    : MCII(mcii), Ctx(ctx) {
42
16.6k
  }
43
44
0
  ~X86MCCodeEmitter() override {}
45
46
181k
  bool is64BitMode(const MCSubtargetInfo &STI) const {
47
181k
    return STI.getFeatureBits()[X86::Mode64Bit];
48
181k
  }
49
50
103k
  bool is32BitMode(const MCSubtargetInfo &STI) const {
51
103k
    return STI.getFeatureBits()[X86::Mode32Bit];
52
103k
  }
53
54
141k
  bool is16BitMode(const MCSubtargetInfo &STI) const {
55
141k
    return STI.getFeatureBits()[X86::Mode16Bit];
56
141k
  }
57
58
  /// Is16BitMemOperand - Return true if the specified instruction has
59
  /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
60
  bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
61
19.0k
                         const MCSubtargetInfo &STI) const {
62
19.0k
    const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
63
19.0k
    const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
64
19.0k
    const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
65
66
19.0k
    if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
67
2.36k
        Disp.isImm() && Disp.getImm() < 0x10000)
68
340
      return true;
69
18.7k
    if ((BaseReg.getReg() != 0 &&
70
2.48k
         X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
71
18.6k
        (IndexReg.getReg() != 0 &&
72
981
         X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
73
105
      return true;
74
18.6k
    return false;
75
18.7k
  }
76
77
2.98k
  unsigned GetX86RegNum(const MCOperand &MO) const {
78
2.98k
    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
79
2.98k
  }
80
81
  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
82
  // 0-7 and the difference between the 2 groups is given by the REX prefix.
83
  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
84
  // in 1's complement form, example:
85
  //
86
  //  ModRM field => XMM9 => 1
87
  //  VEX.VVVV    => XMM9 => ~9
88
  //
89
  // See table 4-35 of Intel AVX Programming Reference for details.
90
  unsigned char getVEXRegisterEncoding(const MCInst &MI,
91
0
                                       unsigned OpNum) const {
92
0
    unsigned SrcReg = MI.getOperand(OpNum).getReg();
93
0
    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
94
0
    if (X86II::isX86_64ExtendedReg(SrcReg))
95
0
      SrcRegNum |= 8;
96
97
    // The registers represented through VEX_VVVV should
98
    // be encoded in 1's complement form.
99
0
    return (~SrcRegNum) & 0xf;
100
0
  }
101
102
  unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
103
0
                                             unsigned OpNum) const {
104
0
    assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
105
0
           "Invalid mask register as write-mask!");
106
0
    unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
107
0
    return MaskRegNum;
108
0
  }
109
110
175k
  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
111
175k
    OS << (char)C;
112
175k
    ++CurByte;
113
175k
  }
114
115
  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
116
33.8k
                    raw_ostream &OS) const {
117
    // Output the constant in little endian byte order.
118
122k
    for (unsigned i = 0; i != Size; ++i) {
119
88.4k
      EmitByte(Val & 255, CurByte, OS);
120
88.4k
      Val >>= 8;
121
88.4k
    }
122
33.8k
  }
123
124
  void EmitImmediate(const MCInst &MI, const MCOperand &Disp, SMLoc Loc,
125
                     unsigned ImmSize, MCFixupKind FixupKind,
126
                     unsigned &CurByte, raw_ostream &OS,
127
                     SmallVectorImpl<MCFixup> &Fixups,
128
                     unsigned int &KsError,
129
                     bool is64bit,
130
                     int ImmOffset = 0, bool RIP_rel = false) const;
131
132
  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
133
11.4k
                                        unsigned RM) {
134
11.4k
    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
135
11.4k
    return RM | (RegOpcode << 3) | (Mod << 6);
136
11.4k
  }
137
138
  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
139
351
                        unsigned &CurByte, raw_ostream &OS) const {
140
351
    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
141
351
  }
142
143
  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
144
1.56k
                   unsigned &CurByte, raw_ostream &OS) const {
145
    // SIB byte is in the same format as the ModRMByte.
146
1.56k
    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
147
1.56k
  }
148
149
150
  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
151
                        unsigned RegOpcodeField,
152
                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
153
                        SmallVectorImpl<MCFixup> &Fixups,
154
                        const MCSubtargetInfo &STI) const;
155
156
  void encodeInstruction(MCInst &MI, raw_ostream &OS,
157
                         SmallVectorImpl<MCFixup> &Fixups,
158
                         const MCSubtargetInfo &STI, unsigned int &KsError) const override;
159
160
  bool EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
161
                           const MCInst &MI, const MCInstrDesc &Desc,
162
                           raw_ostream &OS) const;
163
164
  bool EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
165
                                 const MCInst &MI, raw_ostream &OS, int BaseReg = 0) const;
166
167
  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
168
                        const MCInst &MI, const MCInstrDesc &Desc,
169
                        const MCSubtargetInfo &STI,
170
                        raw_ostream &OS) const;
171
};
172
173
} // end anonymous namespace
174
175
MCCodeEmitter *llvm_ks::createX86MCCodeEmitter(const MCInstrInfo &MCII,
176
                                            const MCRegisterInfo &MRI,
177
16.6k
                                            MCContext &Ctx) {
178
16.6k
  return new X86MCCodeEmitter(MCII, Ctx);
179
16.6k
}
180
181
/// isDisp8 - Return true if this signed displacement fits in a 8-bit
182
/// sign-extended field.
183
669
static bool isDisp8(int Value) {
184
669
  return Value == (signed char)Value;
185
669
}
186
187
/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
188
/// compressed dispacement field.
189
0
static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
190
0
  assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
191
0
         "Compressed 8-bit displacement is only valid for EVEX inst.");
192
193
0
  unsigned CD8_Scale =
194
0
    (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
195
0
  if (CD8_Scale == 0) {
196
0
    CValue = Value;
197
0
    return isDisp8(Value);
198
0
  }
199
200
0
  unsigned Mask = CD8_Scale - 1;
201
0
  assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
202
0
  if (Value & Mask) // Unaligned offset
203
0
    return false;
204
0
  Value /= (int)CD8_Scale;
205
0
  bool Ret = (Value == (signed char)Value);
206
207
0
  if (Ret)
208
0
    CValue = Value;
209
0
  return Ret;
210
0
}
211
212
/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
213
/// in an instruction with the specified TSFlags.
214
24.7k
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
215
24.7k
  unsigned Size = X86II::getSizeOfImm(TSFlags);
216
24.7k
  bool isPCRel = X86II::isImmPCRel(TSFlags);
217
218
24.7k
  if (X86II::isImmSigned(TSFlags)) {
219
1
    switch (Size) {
220
0
    default: llvm_unreachable("Unsupported signed fixup size!");
221
1
    case 4: return MCFixupKind(X86::reloc_signed_4byte);
222
1
    }
223
1
  }
224
24.7k
  return MCFixup::getKindForSize(Size, isPCRel);
225
24.7k
}
226
227
/// Is32BitMemOperand - Return true if the specified instruction has
228
/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
229
1.52k
static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
230
1.52k
  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
231
1.52k
  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
232
233
1.52k
  if ((BaseReg.getReg() != 0 &&
234
527
       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
235
1.52k
      (IndexReg.getReg() != 0 &&
236
179
       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
237
0
    return true;
238
1.52k
  return false;
239
1.52k
}
240
241
/// Is64BitMemOperand - Return true if the specified instruction has
242
/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
243
8.04k
static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
244
8.04k
  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
245
8.04k
  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
246
247
8.04k
  if ((BaseReg.getReg() != 0 &&
248
716
       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
249
8.04k
      (IndexReg.getReg() != 0 &&
250
342
       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
251
0
    return true;
252
8.04k
  return false;
253
8.04k
}
254
255
/// StartsWithGlobalOffsetTable - Check if this expression starts with
256
///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
257
///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
258
/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
259
/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
260
/// of a binary expression.
261
enum GlobalOffsetTableExprKind {
262
  GOT_None,
263
  GOT_Normal,
264
  GOT_SymDiff
265
};
266
static GlobalOffsetTableExprKind
267
7.94k
StartsWithGlobalOffsetTable(const MCExpr *Expr) {
268
7.94k
  const MCExpr *RHS = nullptr;
269
7.94k
  if (Expr->getKind() == MCExpr::Binary) {
270
194
    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
271
194
    Expr = BE->getLHS();
272
194
    RHS = BE->getRHS();
273
194
  }
274
275
7.94k
  if (Expr->getKind() != MCExpr::SymbolRef)
276
251
    return GOT_None;
277
278
7.69k
  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
279
7.69k
  const MCSymbol &S = Ref->getSymbol();
280
7.69k
  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
281
7.69k
    return GOT_None;
282
0
  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
283
0
    return GOT_SymDiff;
284
0
  return GOT_Normal;
285
0
}
286
287
7.97k
static bool HasSecRelSymbolRef(const MCExpr *Expr) {
288
7.97k
  if (Expr->getKind() == MCExpr::SymbolRef) {
289
7.77k
    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
290
7.77k
    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
291
7.77k
  }
292
205
  return false;
293
7.97k
}
294
295
// return false if Imm value is invalid for a given size
296
static bool validImmRange(int64_t Imm, unsigned int Size)
297
18.6k
{
298
18.6k
    if (Imm > 0 && Imm > 0xffffffff)
299
52
        return false;
300
301
18.6k
    return true;
302
18.6k
}
303
304
void X86MCCodeEmitter::
305
EmitImmediate(const MCInst &MI, const MCOperand &DispOp, SMLoc Loc, unsigned Size,
306
              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
307
              SmallVectorImpl<MCFixup> &Fixups,
308
              unsigned int &KsError, bool is64bit,
309
              int ImmOffset, bool RIP_rel) const
310
33.9k
{
311
33.9k
  KsError = 0;
312
33.9k
  const MCExpr *Expr = nullptr;
313
33.9k
  if (DispOp.isImm()) {
314
22.1k
    if (!is64bit && !validImmRange(DispOp.getImm(), Size)) {
315
52
        KsError = KS_ERR_ASM_INVALIDOPERAND;
316
52
        return;
317
52
    }
318
    // If this is a simple integer displacement that doesn't require a
319
    // relocation, emit it now.
320
22.0k
    if (FixupKind != FK_PCRel_1 &&
321
10.6k
        FixupKind != FK_PCRel_2 &&
322
10.6k
        FixupKind != FK_PCRel_4 &&
323
2.21k
        FixupKind != FK_PCRel_4 &&
324
2.21k
        (FixupKind != MCFixupKind(X86::reloc_riprel_4byte) || !RIP_rel)) {
325
2.12k
      EmitConstant(DispOp.getImm(), Size, CurByte, OS);
326
2.12k
      return;
327
2.12k
    }
328
19.9k
    Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
329
19.9k
  } else {
330
11.8k
    Expr = DispOp.getExpr();
331
11.8k
  }
332
333
  // If we have an immoffset, add it to the expression.
334
31.7k
  if ((FixupKind == FK_Data_4 ||
335
24.7k
       FixupKind == FK_Data_8 ||
336
24.7k
       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
337
7.94k
    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
338
7.94k
    if (Kind != GOT_None) {
339
0
      assert(ImmOffset == 0);
340
341
0
      if (Size == 8) {
342
0
        FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
343
0
      } else {
344
0
        assert(Size == 4);
345
0
        FixupKind = MCFixupKind(X86::reloc_global_offset_table);
346
0
      }
347
348
0
      if (Kind == GOT_Normal)
349
0
        ImmOffset = CurByte;
350
7.94k
    } else if (Expr->getKind() == MCExpr::SymbolRef) {
351
7.58k
      if (HasSecRelSymbolRef(Expr)) {
352
0
        FixupKind = MCFixupKind(FK_SecRel_4);
353
0
      }
354
7.58k
    } else if (Expr->getKind() == MCExpr::Binary) {
355
194
      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
356
194
      if (HasSecRelSymbolRef(Bin->getLHS())
357
194
          || HasSecRelSymbolRef(Bin->getRHS())) {
358
0
        FixupKind = MCFixupKind(FK_SecRel_4);
359
0
      }
360
194
    }
361
7.94k
  }
362
363
  // If the fixup is pc-relative, we need to bias the value to be relative to
364
  // the start of the field, not the end of the field.
365
31.7k
  if (FixupKind == FK_PCRel_4 ||
366
22.4k
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
367
22.3k
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
368
9.40k
    ImmOffset -= 4;
369
31.7k
  if (FixupKind == FK_PCRel_2)
370
363
    ImmOffset -= 2;
371
31.7k
  if (FixupKind == FK_PCRel_1)
372
13.3k
    ImmOffset -= 1;
373
374
31.7k
  if (ImmOffset)
375
23.0k
    Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
376
23.0k
                                   Ctx);
377
378
  // Emit a symbolic constant as a fixup and 4 zeros.
379
31.7k
  Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
380
31.7k
  EmitConstant(0, Size, CurByte, OS);
381
31.7k
}
382
383
188
#define ABS_SUB(a, b) (a < b? b - a: a - b)
384
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
385
                                        unsigned RegOpcodeField,
386
                                        uint64_t TSFlags, unsigned &CurByte,
387
                                        raw_ostream &OS,
388
                                        SmallVectorImpl<MCFixup> &Fixups,
389
                                        const MCSubtargetInfo &STI) const
390
9.56k
{
391
9.56k
  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
392
9.56k
  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
393
9.56k
  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
394
9.56k
  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
395
9.56k
  unsigned BaseReg = Base.getReg();
396
9.56k
  bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
397
9.56k
  unsigned int KsError;
398
9.56k
  bool RIP_rel = false;
399
400
  // do we need x64 RIP relative encoding?
401
9.56k
  if (BaseReg == 0 && is64BitMode(STI) && IndexReg.getReg() == 0 && Disp.isImm()) {
402
188
      if (ABS_SUB(MI.getAddress(), (uint64_t)Disp.getImm()) < 2 * (1UL << 30))
403
92
          RIP_rel = true;
404
188
  }
405
406
  // Handle %rip relative addressing.
407
9.56k
  if (RIP_rel || BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
408
92
    assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
409
92
    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
410
92
    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
411
412
92
    unsigned FixupKind = X86::reloc_riprel_4byte;
413
414
    // movq loads are handled with a special relocation form which allows the
415
    // linker to eliminate some loads for GOT references which end up in the
416
    // same linkage unit.
417
92
    if (MI.getOpcode() == X86::MOV64rm)
418
0
      FixupKind = X86::reloc_riprel_4byte_movq_load;
419
420
    // rip-relative addressing is actually relative to the *next* instruction.
421
    // Since an immediate can follow the mod/rm byte for an instruction, this
422
    // means that we need to bias the immediate field of the instruction with
423
    // the size of the immediate field.  If we have this case, add it into the
424
    // expression to emit.
425
92
    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
426
427
92
    EmitImmediate(MI, Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
428
92
                  CurByte, OS, Fixups, KsError, is64BitMode(STI), -ImmSize, RIP_rel);
429
430
92
    return;
431
92
  }
432
433
9.47k
  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
434
  //printf(">> BaseReg = %u, BaseRegNo = %u\n", BaseReg, BaseRegNo);
435
  //printf(">> CurByte = %u\n", CurByte);
436
437
  // 16-bit addressing forms of the ModR/M byte have a different encoding for
438
  // the R/M field and are far more limited in which registers can be used.
439
9.47k
  if (Is16BitMemOperand(MI, Op, STI)) {
440
220
    if (BaseReg) {
441
      // For 32-bit addressing, the row and column values in Table 2-2 are
442
      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
443
      // some special cases. And GetX86RegNum reflects that numbering.
444
      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
445
      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
446
      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
447
      // while values 0-3 indicate the allowed combinations (base+index) of
448
      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
449
      //
450
      // R16Table[] is a lookup from the normal RegNo, to the row values from
451
      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
452
49
      static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
453
49
      unsigned RMfield = R16Table[BaseRegNo];
454
455
49
      assert(RMfield && "invalid 16-bit base register");
456
457
49
      if (IndexReg.getReg()) {
458
0
        unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
459
460
0
        assert(IndexReg16 && "invalid 16-bit index register");
461
        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
462
0
        assert(((IndexReg16 ^ RMfield) & 2) &&
463
0
               "invalid 16-bit base/index register combination");
464
0
        assert(Scale.getImm() == 1 &&
465
0
               "invalid scale for 16-bit memory reference");
466
467
        // Allow base/index to appear in either order (although GAS doesn't).
468
0
        if (IndexReg16 & 2)
469
0
          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
470
0
        else
471
0
          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
472
0
      }
473
474
49
      if (Disp.isImm() && isDisp8(Disp.getImm())) {
475
10
        if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
476
          // There is no displacement; just the register.
477
5
          EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
478
5
          return;
479
5
        }
480
        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
481
5
        EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
482
5
        EmitImmediate(MI, Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, KsError,
483
5
                is64BitMode(STI));
484
5
        return;
485
10
      }
486
      // This is the [REG]+disp16 case.
487
39
      EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
488
171
    } else {
489
      // There is no BaseReg; this is the plain [disp16] case.
490
171
      EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
491
171
    }
492
493
    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
494
210
    EmitImmediate(MI, Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups, KsError,
495
210
                is64BitMode(STI));
496
210
    return;
497
220
  }
498
499
  // Determine whether a SIB byte is needed.
500
  // If no BaseReg, issue a RIP relative instruction only if the MCE can
501
  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
502
  // 2-7) and absolute references.
503
504
9.25k
  if (// The SIB byte must be used if there is an index register.
505
9.25k
      IndexReg.getReg() == 0 &&
506
      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
507
      // encode to an R/M value of 4, which indicates that a SIB byte is
508
      // present.
509
8.76k
      BaseRegNo != N86::ESP &&
510
      // If there is no base register and we're in 64-bit mode, we need a SIB
511
      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
512
8.56k
      (!is64BitMode(STI) || BaseReg != 0)) {
513
514
7.68k
    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
515
7.11k
      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
516
7.11k
      EmitImmediate(MI, Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups, KsError,
517
7.11k
                is64BitMode(STI));
518
7.11k
      return;
519
7.11k
    }
520
521
    // If the base is not EBP/ESP and there is no displacement, use simple
522
    // indirect register encoding, this handles addresses like [EAX].  The
523
    // encoding for [EBP] with no displacement means [disp32] so we handle it
524
    // by emitting a displacement of 0 below.
525
569
    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
526
326
      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
527
326
      return;
528
326
    }
529
530
    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
531
243
    if (Disp.isImm()) {
532
166
      if (!HasEVEX && isDisp8(Disp.getImm())) {
533
125
        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
534
125
        EmitImmediate(MI, Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, KsError,
535
125
                is64BitMode(STI));
536
125
        return;
537
125
      }
538
      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
539
      // 32-bit displacement.
540
41
      int CDisp8 = 0;
541
41
      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
542
0
        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
543
0
        EmitImmediate(MI, Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
544
0
                      KsError, is64BitMode(STI), CDisp8 - Disp.getImm());
545
0
        return;
546
0
      }
547
41
    }
548
549
    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
550
118
    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
551
118
    EmitImmediate(MI, Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
552
118
                  CurByte, OS, Fixups, KsError, is64BitMode(STI));
553
118
    return;
554
243
  }
555
556
  // We need a SIB byte, so start by outputting the ModR/M byte first
557
9.25k
  assert(IndexReg.getReg() != X86::ESP &&
558
1.56k
         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
559
560
  //printf(">> 22\n");
561
  //printf(">> CurByte = %u\n", CurByte);
562
1.56k
  bool ForceDisp32 = false;
563
1.56k
  bool ForceDisp8  = false;
564
1.56k
  int CDisp8 = 0;
565
1.56k
  int ImmOffset = 0;
566
1.56k
  if (BaseReg == 0) {
567
    // If there is no base register, we emit the special case SIB byte with
568
    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
569
942
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
570
942
    ForceDisp32 = true;
571
942
  } else if (!Disp.isImm()) {
572
    // Emit the normal disp32 encoding.
573
40
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
574
40
    ForceDisp32 = true;
575
585
  } else if (Disp.getImm() == 0 &&
576
             // Base reg can't be anything that ends up with '5' as the base
577
             // reg, it is the magic [*] nomenclature that indicates no base.
578
97
             BaseRegNo != N86::EBP) {
579
    // Emit no displacement ModR/M byte
580
93
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
581
492
  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
582
    //printf(">> 55\n");
583
    // Emit the disp8 encoding.
584
379
    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
585
379
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
586
379
  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
587
    // Emit the disp8 encoding.
588
0
    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
589
0
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
590
0
    ImmOffset = CDisp8 - Disp.getImm();
591
113
  } else {
592
    // Emit the normal disp32 encoding.
593
113
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
594
113
  }
595
596
  //printf(">> 88\n");
597
  //printf(">> CurByte = %u\n", CurByte);
598
  // Calculate what the SS field value should be...
599
1.56k
  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
600
1.56k
  unsigned SS = SSTable[Scale.getImm()];
601
602
  //printf(">> 99\n");
603
1.56k
  if (BaseReg == 0) {
604
    // Handle the SIB byte for the case where there is no base, see Intel
605
    // Manual 2A, table 2-7. The displacement has already been output.
606
942
    unsigned IndexRegNo;
607
942
    if (IndexReg.getReg())
608
60
      IndexRegNo = GetX86RegNum(IndexReg);
609
882
    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
610
882
      IndexRegNo = 4;
611
942
    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
612
942
  } else {
613
625
    unsigned IndexRegNo;
614
625
    if (IndexReg.getReg())
615
427
      IndexRegNo = GetX86RegNum(IndexReg);
616
198
    else
617
198
      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
618
    //printf(">> 10\n");
619
    //printf(">> CurByte = %u\n", CurByte);
620
625
    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
621
625
  }
622
  //printf(">> ++ CurByte = %u\n", CurByte);
623
624
  // Do we need to output a displacement?
625
1.56k
  if (ForceDisp8)
626
379
    EmitImmediate(MI, Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, KsError, is64BitMode(STI), ImmOffset);
627
1.18k
  else if (ForceDisp32 || Disp.getImm() != 0)
628
1.09k
    EmitImmediate(MI, Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
629
1.09k
                  CurByte, OS, Fixups, KsError, is64BitMode(STI));
630
1.56k
}
631
632
/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
633
/// called VEX.
634
bool X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
635
                                           int MemOperand, const MCInst &MI,
636
                                           const MCInstrDesc &Desc,
637
                                           raw_ostream &OS) const
638
0
{
639
0
  assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
640
641
0
  uint64_t Encoding = TSFlags & X86II::EncodingMask;
642
0
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
643
0
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
644
0
  bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
645
0
  bool HasMemOp4 = TSFlags & X86II::MemOp4;
646
0
  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
647
648
  // VEX_R: opcode externsion equivalent to REX.R in
649
  // 1's complement (inverted) form
650
  //
651
  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
652
  //  0: Same as REX_R=1 (64 bit mode only)
653
  //
654
0
  unsigned char VEX_R = 0x1;
655
0
  unsigned char EVEX_R2 = 0x1;
656
657
  // VEX_X: equivalent to REX.X, only used when a
658
  // register is used for index in SIB Byte.
659
  //
660
  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
661
  //  0: Same as REX.X=1 (64-bit mode only)
662
0
  unsigned char VEX_X = 0x1;
663
664
  // VEX_B:
665
  //
666
  //  1: Same as REX_B=0 (ignored in 32-bit mode)
667
  //  0: Same as REX_B=1 (64 bit mode only)
668
  //
669
0
  unsigned char VEX_B = 0x1;
670
671
  // VEX_W: opcode specific (use like REX.W, or used for
672
  // opcode extension, or ignored, depending on the opcode byte)
673
0
  unsigned char VEX_W = 0;
674
675
  // VEX_5M (VEX m-mmmmm field):
676
  //
677
  //  0b00000: Reserved for future use
678
  //  0b00001: implied 0F leading opcode
679
  //  0b00010: implied 0F 38 leading opcode bytes
680
  //  0b00011: implied 0F 3A leading opcode bytes
681
  //  0b00100-0b11111: Reserved for future use
682
  //  0b01000: XOP map select - 08h instructions with imm byte
683
  //  0b01001: XOP map select - 09h instructions with no imm byte
684
  //  0b01010: XOP map select - 0Ah instructions with imm dword
685
0
  unsigned char VEX_5M = 0;
686
687
  // VEX_4V (VEX vvvv field): a register specifier
688
  // (in 1's complement form) or 1111 if unused.
689
0
  unsigned char VEX_4V = 0xf;
690
0
  unsigned char EVEX_V2 = 0x1;
691
692
  // VEX_L (Vector Length):
693
  //
694
  //  0: scalar or 128-bit vector
695
  //  1: 256-bit vector
696
  //
697
0
  unsigned char VEX_L = 0;
698
0
  unsigned char EVEX_L2 = 0;
699
700
  // VEX_PP: opcode extension providing equivalent
701
  // functionality of a SIMD prefix
702
  //
703
  //  0b00: None
704
  //  0b01: 66
705
  //  0b10: F3
706
  //  0b11: F2
707
  //
708
0
  unsigned char VEX_PP = 0;
709
710
  // EVEX_U
711
0
  unsigned char EVEX_U = 1; // Always '1' so far
712
713
  // EVEX_z
714
0
  unsigned char EVEX_z = 0;
715
716
  // EVEX_b
717
0
  unsigned char EVEX_b = 0;
718
719
  // EVEX_rc
720
0
  unsigned char EVEX_rc = 0;
721
722
  // EVEX_aaa
723
0
  unsigned char EVEX_aaa = 0;
724
725
0
  bool EncodeRC = false;
726
727
0
  if (TSFlags & X86II::VEX_W)
728
0
    VEX_W = 1;
729
730
0
  if (TSFlags & X86II::VEX_L)
731
0
    VEX_L = 1;
732
0
  if (TSFlags & X86II::EVEX_L2)
733
0
    EVEX_L2 = 1;
734
735
0
  if (HasEVEX_K && (TSFlags & X86II::EVEX_Z))
736
0
    EVEX_z = 1;
737
738
0
  if ((TSFlags & X86II::EVEX_B))
739
0
    EVEX_b = 1;
740
741
0
  switch (TSFlags & X86II::OpPrefixMask) {
742
0
  default: break; // VEX_PP already correct
743
0
  case X86II::PD: VEX_PP = 0x1; break; // 66
744
0
  case X86II::XS: VEX_PP = 0x2; break; // F3
745
0
  case X86II::XD: VEX_PP = 0x3; break; // F2
746
0
  }
747
748
0
  switch (TSFlags & X86II::OpMapMask) {
749
0
  default: llvm_unreachable("Invalid prefix!");
750
0
  case X86II::TB:   VEX_5M = 0x1; break; // 0F
751
0
  case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
752
0
  case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
753
0
  case X86II::XOP8: VEX_5M = 0x8; break;
754
0
  case X86II::XOP9: VEX_5M = 0x9; break;
755
0
  case X86II::XOPA: VEX_5M = 0xA; break;
756
0
  }
757
758
  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
759
0
  unsigned NumOps = Desc.getNumOperands();
760
0
  unsigned CurOp = X86II::getOperandBias(Desc);
761
762
0
  switch (TSFlags & X86II::FormMask) {
763
0
  default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
764
0
  case X86II::RawFrm:
765
0
    break;
766
0
  case X86II::MRMDestMem: {
767
    // MRMDestMem instructions forms:
768
    //  MemAddr, src1(ModR/M)
769
    //  MemAddr, src1(VEX_4V), src2(ModR/M)
770
    //  MemAddr, src1(ModR/M), imm8
771
    //
772
0
    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
773
0
                                                 X86::AddrBaseReg).getReg()))
774
0
      VEX_B = 0x0;
775
0
    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
776
0
                                                 X86::AddrIndexReg).getReg()))
777
0
      VEX_X = 0x0;
778
0
    if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
779
0
                                          X86::AddrIndexReg).getReg()))
780
0
      EVEX_V2 = 0x0;
781
782
0
    CurOp += X86::AddrNumOperands;
783
784
0
    if (HasEVEX_K)
785
0
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
786
787
0
    if (HasVEX_4V) {
788
0
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
789
0
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
790
0
        EVEX_V2 = 0x0;
791
0
      CurOp++;
792
0
    }
793
794
0
    const MCOperand &MO = MI.getOperand(CurOp);
795
0
    if (MO.isReg()) {
796
0
      if (X86II::isX86_64ExtendedReg(MO.getReg()))
797
0
        VEX_R = 0x0;
798
0
      if (X86II::is32ExtendedReg(MO.getReg()))
799
0
        EVEX_R2 = 0x0;
800
0
    }
801
0
    break;
802
0
  }
803
0
  case X86II::MRMSrcMem:
804
    // MRMSrcMem instructions forms:
805
    //  src1(ModR/M), MemAddr
806
    //  src1(ModR/M), src2(VEX_4V), MemAddr
807
    //  src1(ModR/M), MemAddr, imm8
808
    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
809
    //
810
    //  FMA4:
811
    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
812
    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
813
0
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
814
0
      VEX_R = 0x0;
815
0
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
816
0
      EVEX_R2 = 0x0;
817
0
    CurOp++;
818
819
0
    if (HasEVEX_K)
820
0
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
821
822
0
    if (HasVEX_4V) {
823
0
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
824
0
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
825
0
        EVEX_V2 = 0x0;
826
0
      CurOp++;
827
0
    }
828
829
0
    if (X86II::isX86_64ExtendedReg(
830
0
               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
831
0
      VEX_B = 0x0;
832
0
    if (X86II::isX86_64ExtendedReg(
833
0
               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
834
0
      VEX_X = 0x0;
835
0
    if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
836
0
                               X86::AddrIndexReg).getReg()))
837
0
      EVEX_V2 = 0x0;
838
839
0
    if (HasVEX_4VOp3)
840
      // Instruction format for 4VOp3:
841
      //   src1(ModR/M), MemAddr, src3(VEX_4V)
842
      // CurOp points to start of the MemoryOperand,
843
      //   it skips TIED_TO operands if exist, then increments past src1.
844
      // CurOp + X86::AddrNumOperands will point to src3.
845
0
      VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
846
0
    break;
847
0
  case X86II::MRM0m: case X86II::MRM1m:
848
0
  case X86II::MRM2m: case X86II::MRM3m:
849
0
  case X86II::MRM4m: case X86II::MRM5m:
850
0
  case X86II::MRM6m: case X86II::MRM7m: {
851
    // MRM[0-9]m instructions forms:
852
    //  MemAddr
853
    //  src1(VEX_4V), MemAddr
854
0
    if (HasVEX_4V) {
855
0
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
856
0
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
857
0
        EVEX_V2 = 0x0;
858
0
      CurOp++;
859
0
    }
860
861
0
    if (HasEVEX_K)
862
0
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
863
864
0
    if (X86II::isX86_64ExtendedReg(
865
0
               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
866
0
      VEX_B = 0x0;
867
0
    if (X86II::isX86_64ExtendedReg(
868
0
               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
869
0
      VEX_X = 0x0;
870
0
    break;
871
0
  }
872
0
  case X86II::MRMSrcReg:
873
    // MRMSrcReg instructions forms:
874
    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
875
    //  dst(ModR/M), src1(ModR/M)
876
    //  dst(ModR/M), src1(ModR/M), imm8
877
    //
878
    //  FMA4:
879
    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
880
    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
881
0
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
882
0
      VEX_R = 0x0;
883
0
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
884
0
      EVEX_R2 = 0x0;
885
0
    CurOp++;
886
887
0
    if (HasEVEX_K)
888
0
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
889
890
0
    if (HasVEX_4V) {
891
0
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
892
0
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
893
0
        EVEX_V2 = 0x0;
894
0
      CurOp++;
895
0
    }
896
897
0
    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
898
0
      CurOp++;
899
900
0
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
901
0
      VEX_B = 0x0;
902
0
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
903
0
      VEX_X = 0x0;
904
0
    CurOp++;
905
0
    if (HasVEX_4VOp3)
906
0
      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
907
0
    if (EVEX_b) {
908
0
      if (HasEVEX_RC) {
909
0
        unsigned RcOperand = NumOps-1;
910
        //assert(RcOperand >= CurOp);
911
0
        if (RcOperand < CurOp || !MI.getOperand(RcOperand).isImm())
912
0
            return true;
913
0
        EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
914
0
      }
915
0
      EncodeRC = true;
916
0
    }
917
0
    break;
918
0
  case X86II::MRMDestReg:
919
    // MRMDestReg instructions forms:
920
    //  dst(ModR/M), src(ModR/M)
921
    //  dst(ModR/M), src(ModR/M), imm8
922
    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
923
0
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
924
0
      VEX_B = 0x0;
925
0
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
926
0
      VEX_X = 0x0;
927
0
    CurOp++;
928
929
0
    if (HasEVEX_K)
930
0
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
931
932
0
    if (HasVEX_4V) {
933
0
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
934
0
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
935
0
        EVEX_V2 = 0x0;
936
0
      CurOp++;
937
0
    }
938
939
0
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
940
0
      VEX_R = 0x0;
941
0
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
942
0
      EVEX_R2 = 0x0;
943
0
    if (EVEX_b)
944
0
      EncodeRC = true;
945
0
    break;
946
0
  case X86II::MRM0r: case X86II::MRM1r:
947
0
  case X86II::MRM2r: case X86II::MRM3r:
948
0
  case X86II::MRM4r: case X86II::MRM5r:
949
0
  case X86II::MRM6r: case X86II::MRM7r:
950
    // MRM0r-MRM7r instructions forms:
951
    //  dst(VEX_4V), src(ModR/M), imm8
952
0
    if (HasVEX_4V) {
953
0
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
954
0
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
955
0
          EVEX_V2 = 0x0;
956
0
      CurOp++;
957
0
    }
958
0
    if (HasEVEX_K)
959
0
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
960
961
0
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
962
0
      VEX_B = 0x0;
963
0
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
964
0
      VEX_X = 0x0;
965
0
    break;
966
0
  }
967
968
0
  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
969
    // VEX opcode prefix can have 2 or 3 bytes
970
    //
971
    //  3 bytes:
972
    //    +-----+ +--------------+ +-------------------+
973
    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
974
    //    +-----+ +--------------+ +-------------------+
975
    //  2 bytes:
976
    //    +-----+ +-------------------+
977
    //    | C5h | | R | vvvv | L | pp |
978
    //    +-----+ +-------------------+
979
    //
980
    //  XOP uses a similar prefix:
981
    //    +-----+ +--------------+ +-------------------+
982
    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
983
    //    +-----+ +--------------+ +-------------------+
984
0
    unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
985
986
    // Can we use the 2 byte VEX prefix?
987
0
    if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
988
0
      EmitByte(0xC5, CurByte, OS);
989
0
      EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
990
0
      return false;
991
0
    }
992
993
    // 3 byte VEX prefix
994
0
    EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
995
0
    EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
996
0
    EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
997
0
  } else {
998
0
    assert(Encoding == X86II::EVEX && "unknown encoding!");
999
    // EVEX opcode prefix can have 4 bytes
1000
    //
1001
    // +-----+ +--------------+ +-------------------+ +------------------------+
1002
    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
1003
    // +-----+ +--------------+ +-------------------+ +------------------------+
1004
0
    assert((VEX_5M & 0x3) == VEX_5M
1005
0
           && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
1006
1007
0
    VEX_5M &= 0x3;
1008
1009
0
    EmitByte(0x62, CurByte, OS);
1010
0
    EmitByte((VEX_R   << 7) |
1011
0
             (VEX_X   << 6) |
1012
0
             (VEX_B   << 5) |
1013
0
             (EVEX_R2 << 4) |
1014
0
             VEX_5M, CurByte, OS);
1015
0
    EmitByte((VEX_W   << 7) |
1016
0
             (VEX_4V  << 3) |
1017
0
             (EVEX_U  << 2) |
1018
0
             VEX_PP, CurByte, OS);
1019
0
    if (EncodeRC)
1020
0
      EmitByte((EVEX_z  << 7) |
1021
0
              (EVEX_rc << 5) |
1022
0
              (EVEX_b  << 4) |
1023
0
              (EVEX_V2 << 3) |
1024
0
              EVEX_aaa, CurByte, OS);
1025
0
    else
1026
0
      EmitByte((EVEX_z  << 7) |
1027
0
              (EVEX_L2 << 6) |
1028
0
              (VEX_L   << 5) |
1029
0
              (EVEX_b  << 4) |
1030
0
              (EVEX_V2 << 3) |
1031
0
              EVEX_aaa, CurByte, OS);
1032
0
  }
1033
1034
0
  return false;
1035
0
}
1036
1037
/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
1038
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
1039
/// size, and 3) use of X86-64 extended registers.
1040
static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
1041
6.51k
                                   const MCInstrDesc &Desc) {
1042
6.51k
  unsigned REX = 0;
1043
6.51k
  bool UsesHighByteReg = false;
1044
1045
6.51k
  if (TSFlags & X86II::REX_W)
1046
1.05k
    REX |= 1 << 3; // set REX.W
1047
1048
6.51k
  if (MI.getNumOperands() == 0) return REX;
1049
1050
5.89k
  unsigned NumOps = MI.getNumOperands();
1051
  // FIXME: MCInst should explicitize the two-addrness.
1052
5.89k
  bool isTwoAddr = NumOps > 1 &&
1053
2.67k
                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
1054
1055
  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1056
5.89k
  unsigned i = isTwoAddr ? 1 : 0;
1057
20.1k
  for (; i != NumOps; ++i) {
1058
14.2k
    const MCOperand &MO = MI.getOperand(i);
1059
14.2k
    if (!MO.isReg()) continue;
1060
8.00k
    unsigned Reg = MO.getReg();
1061
8.00k
    if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
1062
279
      UsesHighByteReg = true;
1063
8.00k
    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
1064
    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
1065
    // that returns non-zero.
1066
0
    REX |= 0x40; // REX fixed encoding prefix
1067
0
    break;
1068
8.00k
  }
1069
1070
5.89k
  switch (TSFlags & X86II::FormMask) {
1071
0
  case X86II::MRMSrcReg:
1072
0
    if (MI.getOperand(0).isReg() &&
1073
0
        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1074
0
      REX |= 1 << 2; // set REX.R
1075
0
    i = isTwoAddr ? 2 : 1;
1076
0
    for (; i != NumOps; ++i) {
1077
0
      const MCOperand &MO = MI.getOperand(i);
1078
0
      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1079
0
        REX |= 1 << 0; // set REX.B
1080
0
    }
1081
0
    break;
1082
89
  case X86II::MRMSrcMem: {
1083
89
    if (MI.getOperand(0).isReg() &&
1084
89
        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1085
0
      REX |= 1 << 2; // set REX.R
1086
89
    unsigned Bit = 0;
1087
89
    i = isTwoAddr ? 2 : 1;
1088
534
    for (; i != NumOps; ++i) {
1089
445
      const MCOperand &MO = MI.getOperand(i);
1090
445
      if (MO.isReg()) {
1091
267
        if (X86II::isX86_64ExtendedReg(MO.getReg()))
1092
0
          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
1093
267
        Bit++;
1094
267
      }
1095
445
    }
1096
89
    break;
1097
0
  }
1098
27
  case X86II::MRMXm:
1099
72
  case X86II::MRM0m: case X86II::MRM1m:
1100
990
  case X86II::MRM2m: case X86II::MRM3m:
1101
1.34k
  case X86II::MRM4m: case X86II::MRM5m:
1102
1.42k
  case X86II::MRM6m: case X86II::MRM7m:
1103
1.43k
  case X86II::MRMDestMem: {
1104
1.43k
    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
1105
1.43k
    i = isTwoAddr ? 1 : 0;
1106
1.43k
    if (NumOps > e && MI.getOperand(e).isReg() &&
1107
12
        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
1108
0
      REX |= 1 << 2; // set REX.R
1109
1.43k
    unsigned Bit = 0;
1110
8.59k
    for (; i != e; ++i) {
1111
7.16k
      const MCOperand &MO = MI.getOperand(i);
1112
7.16k
      if (MO.isReg()) {
1113
4.29k
        if (X86II::isX86_64ExtendedReg(MO.getReg()))
1114
0
          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
1115
4.29k
        Bit++;
1116
4.29k
      }
1117
7.16k
    }
1118
1.43k
    break;
1119
1.42k
  }
1120
4.37k
  default:
1121
4.37k
    if (MI.getOperand(0).isReg() &&
1122
1.21k
        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1123
0
      REX |= 1 << 0; // set REX.B
1124
4.37k
    i = isTwoAddr ? 2 : 1;
1125
6.55k
    for (unsigned e = NumOps; i != e; ++i) {
1126
2.18k
      const MCOperand &MO = MI.getOperand(i);
1127
2.18k
      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1128
0
        REX |= 1 << 2; // set REX.R
1129
2.18k
    }
1130
4.37k
    break;
1131
5.89k
  }
1132
5.89k
  if (REX && UsesHighByteReg)
1133
0
    report_fatal_error("Cannot encode high byte register in REX-prefixed instruction");
1134
1135
5.89k
  return REX;
1136
5.89k
}
1137
1138
/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1139
// return true on error
1140
bool X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
1141
                                                 unsigned SegOperand,
1142
                                                 const MCInst &MI,
1143
                                                 raw_ostream &OS,
1144
                                                 int BaseReg) const
1145
27.0k
{
1146
27.0k
  if (!MI.getOperand(SegOperand).isReg())
1147
0
      return true;
1148
1149
  // Check for explicit segment override on memory operand.
1150
27.0k
  switch (MI.getOperand(SegOperand).getReg()) {
1151
1
  default: return true;
1152
27.0k
  case 0: break;
1153
1
  case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1154
1
  case X86::SS:
1155
      // SS is the default segment register for stack memory operand
1156
1
      if (BaseReg != X86::ESP && BaseReg != X86::EBP)
1157
1
          EmitByte(0x36, CurByte, OS);
1158
1
      break;
1159
1
  case X86::DS: /* ignore default segment DS */ break;
1160
1
  case X86::ES: EmitByte(0x26, CurByte, OS); break;
1161
1
  case X86::FS: EmitByte(0x64, CurByte, OS); break;
1162
1
  case X86::GS: EmitByte(0x65, CurByte, OS); break;
1163
27.0k
  }
1164
1165
27.0k
  return false;
1166
27.0k
}
1167
1168
/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
1169
///
1170
/// MemOperand is the operand # of the start of a memory operand if present.  If
1171
/// Not present, it is -1.
1172
void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1173
                                        int MemOperand, const MCInst &MI,
1174
                                        const MCInstrDesc &Desc,
1175
                                        const MCSubtargetInfo &STI,
1176
                                        raw_ostream &OS) const
1177
60.4k
{
1178
  // Emit the operand size opcode prefix as needed.
1179
60.4k
  if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
1180
60.4k
                                                         : X86II::OpSize16)) {
1181
1.73k
    if (MI.getOpcode() != X86::MOV16sm)
1182
1.69k
        EmitByte(0x66, CurByte, OS);
1183
1.73k
  }
1184
1185
  // Emit the LOCK opcode prefix.
1186
60.4k
  if (TSFlags & X86II::LOCK)
1187
0
    EmitByte(0xF0, CurByte, OS);
1188
1189
60.4k
  switch (TSFlags & X86II::OpPrefixMask) {
1190
0
  case X86II::PD:   // 66
1191
0
    EmitByte(0x66, CurByte, OS);
1192
0
    break;
1193
0
  case X86II::XS:   // F3
1194
0
    EmitByte(0xF3, CurByte, OS);
1195
0
    break;
1196
0
  case X86II::XD:   // F2
1197
0
    EmitByte(0xF2, CurByte, OS);
1198
0
    break;
1199
60.4k
  }
1200
1201
  // Emit AddressSize and segment override prefixes before REX prefix.
1202
60.4k
  switch (TSFlags & X86II::FormMask) {
1203
3.80k
  case X86II::RawFrmDstSrc: {
1204
3.80k
    unsigned siReg = MI.getOperand(1).getReg();
1205
    // Emit segment override opcode prefix as needed (not for %ds).
1206
3.80k
    if (MI.getOperand(2).getReg() != X86::DS) {
1207
3.80k
      EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
1208
3.80k
    }
1209
    // Emit AdSize prefix as needed.
1210
3.80k
    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1211
3.80k
        (is32BitMode(STI) && siReg == X86::SI)) {
1212
0
      EmitByte(0x67, CurByte, OS);
1213
0
    }
1214
3.80k
    break;
1215
0
  }
1216
13.2k
  case X86II::RawFrmSrc: {
1217
13.2k
    unsigned siReg = MI.getOperand(0).getReg();
1218
    // Emit segment override opcode prefix as needed (not for %ds).
1219
13.2k
    if (MI.getOperand(1).getReg() != X86::DS) {
1220
13.2k
      EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1221
13.2k
    }
1222
    // Emit AdSize prefix as needed.
1223
13.2k
    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1224
13.2k
        (is32BitMode(STI) && siReg == X86::SI)) {
1225
0
      EmitByte(0x67, CurByte, OS);
1226
0
    }
1227
13.2k
    break;
1228
0
  }
1229
480
  case X86II::RawFrmDst: {
1230
480
    unsigned siReg = MI.getOperand(0).getReg();
1231
    // Emit AdSize prefix as needed.
1232
480
    if ((!is32BitMode(STI) && siReg == X86::EDI) ||
1233
480
        (is32BitMode(STI) && siReg == X86::DI)) {
1234
0
      EmitByte(0x67, CurByte, OS);
1235
0
    }
1236
480
    break;
1237
0
  }
1238
368
  case X86II::RawFrmMemOffs:
1239
    // Emit segment override opcode prefix as needed.
1240
368
    EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1241
368
    break;
1242
60.4k
  }
1243
1244
  // Handle REX prefix.
1245
  // FIXME: Can this come before F2 etc to simplify emission?
1246
60.4k
  if (is64BitMode(STI)) {
1247
6.51k
    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
1248
1.05k
      EmitByte(0x40 | REX, CurByte, OS);
1249
6.51k
  }
1250
1251
  // 0x0F escape code must be emitted just before the opcode.
1252
60.4k
  switch (TSFlags & X86II::OpMapMask) {
1253
8.92k
  case X86II::TB:  // Two-byte opcode map
1254
8.92k
  case X86II::T8:  // 0F 38
1255
8.92k
  case X86II::TA:  // 0F 3A
1256
8.92k
    EmitByte(0x0F, CurByte, OS);
1257
8.92k
    break;
1258
60.4k
  }
1259
1260
60.4k
  switch (TSFlags & X86II::OpMapMask) {
1261
0
  case X86II::T8:    // 0F 38
1262
0
    EmitByte(0x38, CurByte, OS);
1263
0
    break;
1264
0
  case X86II::TA:    // 0F 3A
1265
0
    EmitByte(0x3A, CurByte, OS);
1266
0
    break;
1267
60.4k
  }
1268
60.4k
}
1269
1270
void X86MCCodeEmitter::
1271
encodeInstruction(MCInst &MI, raw_ostream &OS,
1272
                  SmallVectorImpl<MCFixup> &Fixups,
1273
                  const MCSubtargetInfo &STI, unsigned int &KsError) const
1274
60.4k
{
1275
60.4k
  unsigned Opcode = MI.getOpcode();
1276
60.4k
  const MCInstrDesc &Desc = MCII.get(Opcode);
1277
60.4k
  uint64_t TSFlags = Desc.TSFlags;
1278
1279
60.4k
  KsError = 0;
1280
1281
  // Pseudo instructions don't get encoded.
1282
60.4k
  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1283
0
    return;
1284
1285
60.4k
  unsigned NumOps = Desc.getNumOperands();
1286
60.4k
  unsigned CurOp = X86II::getOperandBias(Desc);
1287
1288
  // Keep track of the current byte being emitted.
1289
60.4k
  unsigned CurByte = 0;
1290
1291
  // Encoding type for this instruction.
1292
60.4k
  uint64_t Encoding = TSFlags & X86II::EncodingMask;
1293
1294
  // It uses the VEX.VVVV field?
1295
60.4k
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1296
60.4k
  bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
1297
60.4k
  bool HasMemOp4 = TSFlags & X86II::MemOp4;
1298
60.4k
  const unsigned MemOp4_I8IMMOperand = 2;
1299
60.4k
  unsigned BaseReg = 0;
1300
60.4k
  unsigned SegReg = 0;
1301
1302
  // It uses the EVEX.aaa field?
1303
60.4k
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1304
60.4k
  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1305
1306
  // Determine where the memory operand starts, if present.
1307
60.4k
  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1308
60.4k
  if (MemoryOperand != -1) MemoryOperand += CurOp;
1309
1310
  // Emit segment override opcode prefix as needed.
1311
60.4k
  if (MemoryOperand >= 0) {
1312
9.57k
    const MCOperand &Base = MI.getOperand(MemoryOperand + X86::AddrBaseReg);
1313
9.57k
    const MCOperand &Seg = MI.getOperand(MemoryOperand + X86::AddrSegmentReg);
1314
1315
9.57k
    BaseReg = Base.getReg();
1316
9.57k
    SegReg = Seg.getReg();
1317
1318
9.57k
    if ((SegReg != X86::SS) || (BaseReg != X86::ESP && BaseReg != X86::EBP)) {
1319
9.57k
        if (EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
1320
9.57k
                MI, OS)) {
1321
1
            KsError = KS_ERR_ASM_INVALIDOPERAND;
1322
1
            return;
1323
1
        }
1324
9.57k
    }
1325
9.57k
  }
1326
1327
  // Emit the repeat opcode prefix as needed.
1328
60.4k
  if (TSFlags & X86II::REP)
1329
0
    EmitByte(0xF3, CurByte, OS);
1330
1331
  // Emit the address size opcode prefix as needed.
1332
60.4k
  bool need_address_override;
1333
60.4k
  uint64_t AdSize = TSFlags & X86II::AdSizeMask;
1334
60.4k
  if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
1335
60.4k
      (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
1336
60.4k
      (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
1337
0
    need_address_override = true;
1338
60.4k
  } else if (MemoryOperand < 0) {
1339
50.8k
    need_address_override = false;
1340
50.8k
  } else if (is64BitMode(STI)) {
1341
    //assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
1342
1.52k
    if (Is16BitMemOperand(MI, MemoryOperand, STI)) {
1343
5
        KsError = KS_ERR_ASM_INSN_UNSUPPORTED;
1344
5
        return;
1345
5
    }
1346
1.52k
    need_address_override = Is32BitMemOperand(MI, MemoryOperand);
1347
8.04k
  } else if (is32BitMode(STI)) {
1348
    //assert(!Is64BitMemOperand(MI, MemoryOperand));
1349
6.42k
    if (Is64BitMemOperand(MI, MemoryOperand)) {
1350
0
        KsError = KS_ERR_ASM_INSN_UNSUPPORTED;
1351
0
        return;
1352
0
    }
1353
6.42k
    need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
1354
6.42k
  } else {
1355
    //assert(is16BitMode(STI));
1356
    //assert(!Is64BitMemOperand(MI, MemoryOperand));
1357
1.61k
    if (!is16BitMode(STI) || Is64BitMemOperand(MI, MemoryOperand)) {
1358
0
        KsError = KS_ERR_ASM_INSN_UNSUPPORTED;
1359
0
        return;
1360
0
    }
1361
1.61k
    need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
1362
1.61k
  }
1363
1364
60.4k
  if (need_address_override)
1365
1.46k
      EmitByte(0x67, CurByte, OS);
1366
1367
60.4k
  if (Encoding == 0)
1368
60.4k
      EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
1369
0
  else {
1370
0
      if (EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS)) {
1371
0
          KsError = KS_ERR_ASM_INVALIDOPERAND;
1372
0
          return;
1373
0
      }
1374
0
  }
1375
1376
60.4k
  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1377
1378
60.4k
  if (TSFlags & X86II::Has3DNow0F0FOpcode)
1379
0
    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
1380
1381
60.4k
  unsigned SrcRegNum = 0;
1382
60.4k
  switch (TSFlags & X86II::FormMask) {
1383
0
  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1384
0
    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1385
0
  case X86II::Pseudo:
1386
0
    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1387
3.80k
  case X86II::RawFrmDstSrc: {
1388
    //printf(">> aa\n");
1389
3.80k
    unsigned siReg = MI.getOperand(1).getReg();
1390
    //assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
1391
    //        (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
1392
    //        (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
1393
    //       "SI and DI register sizes do not match");
1394
3.80k
    if (!(siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) &&
1395
2.75k
            !(siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) &&
1396
1.03k
            !(siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) {
1397
0
        KsError = KS_ERR_ASM_INSN_UNSUPPORTED;
1398
0
        return;
1399
0
    }
1400
3.80k
    CurOp += 3; // Consume operands.
1401
3.80k
    EmitByte(BaseOpcode, CurByte, OS);
1402
3.80k
    break;
1403
3.80k
  }
1404
13.2k
  case X86II::RawFrmSrc: {
1405
    //printf(">> bb\n");
1406
13.2k
    CurOp += 2; // Consume operands.
1407
13.2k
    EmitByte(BaseOpcode, CurByte, OS);
1408
13.2k
    break;
1409
3.80k
  }
1410
480
  case X86II::RawFrmDst: {
1411
    //printf(">> cc\n");
1412
480
    ++CurOp; // Consume operand.
1413
480
    EmitByte(BaseOpcode, CurByte, OS);
1414
480
    break;
1415
3.80k
  }
1416
30.7k
  case X86II::RawFrm:
1417
    //printf(">> dd\n");
1418
30.7k
    EmitByte(BaseOpcode, CurByte, OS);
1419
30.7k
    break;
1420
368
  case X86II::RawFrmMemOffs:
1421
    //printf(">> ee\n");
1422
368
    EmitByte(BaseOpcode, CurByte, OS);
1423
368
    EmitImmediate(MI, MI.getOperand(CurOp++), MI.getLoc(),
1424
368
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1425
368
                  CurByte, OS, Fixups, KsError, is64BitMode(STI));
1426
368
    ++CurOp; // skip segment operand
1427
368
    break;
1428
0
  case X86II::RawFrmImm8:
1429
    //printf(">> ff\n");
1430
0
    EmitByte(BaseOpcode, CurByte, OS);
1431
0
    EmitImmediate(MI, MI.getOperand(CurOp++), MI.getLoc(),
1432
0
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1433
0
                  CurByte, OS, Fixups, KsError, is64BitMode(STI));
1434
0
    EmitImmediate(MI, MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1435
0
                  OS, Fixups, KsError, is64BitMode(STI));
1436
0
    break;
1437
1
  case X86II::RawFrmImm16:
1438
    //printf(">> gg\n");
1439
1
    EmitByte(BaseOpcode, CurByte, OS);
1440
1
    EmitImmediate(MI, MI.getOperand(CurOp++), MI.getLoc(),
1441
1
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1442
1
                  CurByte, OS, Fixups, KsError, is64BitMode(STI));
1443
1
    EmitImmediate(MI, MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1444
1
                  OS, Fixups, KsError, is64BitMode(STI));
1445
1
    break;
1446
1447
64
  case X86II::AddRegFrm:
1448
    //printf(">> hh = %x\n", BaseOpcode + GetX86RegNum(MI.getOperand(CurOp)));
1449
64
    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1450
64
    break;
1451
1452
4
  case X86II::MRMDestReg:
1453
    //printf(">> jj\n");
1454
4
    EmitByte(BaseOpcode, CurByte, OS);
1455
4
    SrcRegNum = CurOp + 1;
1456
1457
4
    if (HasEVEX_K) // Skip writemask
1458
0
      SrcRegNum++;
1459
1460
4
    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1461
0
      ++SrcRegNum;
1462
1463
4
    EmitRegModRMByte(MI.getOperand(CurOp),
1464
4
                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1465
4
    CurOp = SrcRegNum + 1;
1466
4
    break;
1467
1468
18
  case X86II::MRMDestMem:
1469
    //printf(">> kk\n");
1470
18
    EmitByte(BaseOpcode, CurByte, OS);
1471
18
    SrcRegNum = CurOp + X86::AddrNumOperands;
1472
1473
18
    if (HasEVEX_K) // Skip writemask
1474
0
      SrcRegNum++;
1475
1476
18
    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1477
0
      ++SrcRegNum;
1478
1479
18
    EmitMemModRMByte(MI, CurOp,
1480
18
                     GetX86RegNum(MI.getOperand(SrcRegNum)),
1481
18
                     TSFlags, CurByte, OS, Fixups, STI);
1482
18
    CurOp = SrcRegNum + 1;
1483
18
    break;
1484
1485
3
  case X86II::MRMSrcReg:
1486
    //printf(">> mm\n");
1487
3
    EmitByte(BaseOpcode, CurByte, OS);
1488
3
    SrcRegNum = CurOp + 1;
1489
1490
3
    if (HasEVEX_K) // Skip writemask
1491
0
      SrcRegNum++;
1492
1493
3
    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1494
0
      ++SrcRegNum;
1495
1496
3
    if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1497
0
      ++SrcRegNum;
1498
1499
3
    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1500
3
                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1501
1502
    // 2 operands skipped with HasMemOp4, compensate accordingly
1503
3
    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1504
3
    if (HasVEX_4VOp3)
1505
0
      ++CurOp;
1506
    // do not count the rounding control operand
1507
3
    if (HasEVEX_RC)
1508
0
      NumOps--;
1509
3
    break;
1510
1511
193
  case X86II::MRMSrcMem: {
1512
    //printf(">> nn\n");
1513
193
    int AddrOperands = X86::AddrNumOperands;
1514
193
    unsigned FirstMemOp = CurOp+1;
1515
1516
193
    if (HasEVEX_K) { // Skip writemask
1517
0
      ++AddrOperands;
1518
0
      ++FirstMemOp;
1519
0
    }
1520
1521
193
    if (HasVEX_4V) {
1522
0
      ++AddrOperands;
1523
0
      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1524
0
    }
1525
193
    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1526
0
      ++FirstMemOp;
1527
1528
193
    EmitByte(BaseOpcode, CurByte, OS);
1529
1530
193
    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1531
193
                     TSFlags, CurByte, OS, Fixups, STI);
1532
193
    CurOp += AddrOperands + 1;
1533
193
    if (HasVEX_4VOp3)
1534
0
      ++CurOp;
1535
193
    break;
1536
3.80k
  }
1537
1538
0
  case X86II::MRMXr:
1539
35
  case X86II::MRM0r: case X86II::MRM1r:
1540
64
  case X86II::MRM2r: case X86II::MRM3r:
1541
158
  case X86II::MRM4r: case X86II::MRM5r:
1542
344
  case X86II::MRM6r: case X86II::MRM7r: {
1543
    //printf(">> pp\n");
1544
344
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1545
0
      ++CurOp;
1546
344
    if (HasEVEX_K) // Skip writemask
1547
0
      ++CurOp;
1548
344
    EmitByte(BaseOpcode, CurByte, OS);
1549
344
    uint64_t Form = TSFlags & X86II::FormMask;
1550
344
    EmitRegModRMByte(MI.getOperand(CurOp++),
1551
344
                     (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
1552
344
                     CurByte, OS);
1553
344
    break;
1554
237
  }
1555
1556
195
  case X86II::MRMXm:
1557
318
  case X86II::MRM0m: case X86II::MRM1m:
1558
7.83k
  case X86II::MRM2m: case X86II::MRM3m:
1559
8.74k
  case X86II::MRM4m: case X86II::MRM5m:
1560
9.35k
  case X86II::MRM6m: case X86II::MRM7m: {
1561
    //printf(">> qq\n");
1562
9.35k
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1563
0
      ++CurOp;
1564
9.35k
    if (HasEVEX_K) // Skip writemask
1565
0
      ++CurOp;
1566
9.35k
    EmitByte(BaseOpcode, CurByte, OS);
1567
9.35k
    uint64_t Form = TSFlags & X86II::FormMask;
1568
9.35k
    EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
1569
9.35k
                     TSFlags, CurByte, OS, Fixups, STI);
1570
9.35k
    CurOp += X86::AddrNumOperands;
1571
9.35k
    break;
1572
9.07k
  }
1573
0
  case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1574
3
  case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1575
6
  case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1576
143
  case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1577
143
  case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1578
143
  case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1579
144
  case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1580
173
  case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1581
176
  case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1582
178
  case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1583
1.50k
  case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1584
1.66k
  case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1585
1.67k
  case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1586
1.69k
  case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1587
1.71k
  case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1588
1.72k
  case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1589
1.74k
  case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1590
1.74k
  case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1591
1.74k
  case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1592
1.74k
  case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1593
1.77k
  case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1594
1.78k
  case X86II::MRM_FF:
1595
    //printf(">> ss\n");
1596
1.78k
    EmitByte(BaseOpcode, CurByte, OS);
1597
1598
1.78k
    uint64_t Form = TSFlags & X86II::FormMask;
1599
1.78k
    EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
1600
1.78k
    break;
1601
60.4k
  }
1602
  //printf(">> tt CurByte = %x\n", CurByte);
1603
1604
  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1605
  // according to the right size for the instruction. Some instructions
1606
  // (SSE4a extrq and insertq) have two trailing immediates.
1607
84.8k
  while (CurOp != NumOps && NumOps - CurOp <= 2) {
1608
    // The last source register of a 4 operand instruction in AVX is encoded
1609
    // in bits[7:4] of a immediate byte.
1610
24.4k
    if (TSFlags & X86II::VEX_I8IMM) {
1611
0
      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1612
0
                                                    : CurOp);
1613
0
      ++CurOp;
1614
0
      unsigned RegNum = GetX86RegNum(MO) << 4;
1615
0
      if (X86II::isX86_64ExtendedReg(MO.getReg()))
1616
0
        RegNum |= 1 << 7;
1617
      // If there is an additional 5th operand it must be an immediate, which
1618
      // is encoded in bits[3:0]
1619
0
      if (CurOp != NumOps) {
1620
0
        const MCOperand &MIMM = MI.getOperand(CurOp++);
1621
0
        if (MIMM.isImm()) {
1622
0
          unsigned Val = MIMM.getImm();
1623
          // assert(Val < 16 && "Immediate operand value out of range");
1624
0
          if (Val >= 16) {
1625
0
              KsError = KS_ERR_ASM_INSN_UNSUPPORTED;
1626
0
              return;
1627
0
          }
1628
0
          RegNum |= Val;
1629
0
        }
1630
0
      }
1631
0
      EmitImmediate(MI, MCOperand::createImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1632
0
                    CurByte, OS, Fixups, KsError, is64BitMode(STI));
1633
24.4k
    } else {
1634
      //printf(">> vv BaseOpcode = %u, Opcode = %u\n", BaseOpcode, Opcode);
1635
24.4k
      EmitImmediate(MI, MI.getOperand(CurOp++), MI.getLoc(),
1636
24.4k
                X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1637
24.4k
                CurByte, OS, Fixups, KsError, is64BitMode(STI));
1638
24.4k
      if (KsError)
1639
23
          break;
1640
24.4k
    }
1641
24.4k
  }
1642
1643
60.4k
  if (KsError == 0 && TSFlags & X86II::Has3DNow0F0FOpcode)
1644
0
    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1645
1646
1647
  // Keystone: update Inst.Address to point to the next instruction
1648
60.4k
  MI.setAddress(MI.getAddress() + CurByte);
1649
1650
60.4k
#ifndef NDEBUG
1651
  // FIXME: Verify.
1652
60.4k
  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1653
0
    errs() << "Cannot encode all operands of: ";
1654
0
    MI.dump();
1655
0
    errs() << '\n';
1656
0
    abort();
1657
0
  }
1658
60.4k
#endif
1659
60.4k
}