Coverage Report

Created: 2025-06-22 08:04

/src/aom/aom_dsp/fwd_txfm.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <assert.h>
13
#include "aom_dsp/txfm_common.h"
14
#include "config/aom_dsp_rtcd.h"
15
16
0
void aom_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
17
  // The 2D transform is done with two passes which are actually pretty
18
  // similar. In the first one, we transform the columns and transpose
19
  // the results. In the second one, we transform the rows.
20
  // We need an intermediate buffer between passes.
21
0
  tran_low_t intermediate[4 * 4];
22
0
  const tran_low_t *in_low = NULL;
23
0
  tran_low_t *out = intermediate;
24
  // Do the two transform passes
25
0
  for (int pass = 0; pass < 2; ++pass) {
26
0
    tran_high_t in_high[4];  // canbe16
27
0
    tran_high_t step[4];     // canbe16
28
0
    tran_low_t temp[4];
29
0
    for (int i = 0; i < 4; ++i) {
30
      // Load inputs.
31
0
      if (pass == 0) {
32
0
        in_high[0] = input[0 * stride] * 16;
33
0
        in_high[1] = input[1 * stride] * 16;
34
0
        in_high[2] = input[2 * stride] * 16;
35
0
        in_high[3] = input[3 * stride] * 16;
36
0
        if (i == 0 && in_high[0]) {
37
0
          ++in_high[0];
38
0
        }
39
0
        ++input;  // Next column
40
0
      } else {
41
0
        assert(in_low != NULL);
42
0
        in_high[0] = in_low[0 * 4];
43
0
        in_high[1] = in_low[1 * 4];
44
0
        in_high[2] = in_low[2 * 4];
45
0
        in_high[3] = in_low[3 * 4];
46
0
        ++in_low;  // Next column (which is a transposed row)
47
0
      }
48
      // Transform.
49
0
      step[0] = in_high[0] + in_high[3];
50
0
      step[1] = in_high[1] + in_high[2];
51
0
      step[2] = in_high[1] - in_high[2];
52
0
      step[3] = in_high[0] - in_high[3];
53
0
      temp[0] = (tran_low_t)fdct_round_shift((step[0] + step[1]) * cospi_16_64);
54
0
      temp[2] = (tran_low_t)fdct_round_shift((step[0] - step[1]) * cospi_16_64);
55
0
      temp[1] = (tran_low_t)fdct_round_shift(step[2] * cospi_24_64 +
56
0
                                             step[3] * cospi_8_64);
57
0
      temp[3] = (tran_low_t)fdct_round_shift(-step[2] * cospi_8_64 +
58
0
                                             step[3] * cospi_24_64);
59
      // Only transpose the first pass.
60
0
      if (pass == 0) {
61
0
        out[0] = temp[0];
62
0
        out[1] = temp[1];
63
0
        out[2] = temp[2];
64
0
        out[3] = temp[3];
65
0
        out += 4;
66
0
      } else {
67
0
        out[0 * 4] = temp[0];
68
0
        out[1 * 4] = temp[1];
69
0
        out[2 * 4] = temp[2];
70
0
        out[3 * 4] = temp[3];
71
0
        ++out;
72
0
      }
73
0
    }
74
    // Setup in/out for next pass.
75
0
    in_low = intermediate;
76
0
    out = output;
77
0
  }
78
79
0
  for (int i = 0; i < 4; ++i) {
80
0
    for (int j = 0; j < 4; ++j)
81
0
      output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
82
0
  }
83
0
}
84
85
0
void aom_fdct4x4_lp_c(const int16_t *input, int16_t *output, int stride) {
86
  // The 2D transform is done with two passes which are actually pretty
87
  // similar. In the first one, we transform the columns and transpose
88
  // the results. In the second one, we transform the rows.
89
  // We need an intermediate buffer between passes.
90
0
  int16_t intermediate[4 * 4];
91
0
  const int16_t *in_low = NULL;
92
0
  int16_t *out = intermediate;
93
  // Do the two transform passes
94
0
  for (int pass = 0; pass < 2; ++pass) {
95
0
    int32_t in_high[4];  // canbe16
96
0
    int32_t step[4];     // canbe16
97
0
    int16_t temp[4];
98
0
    for (int i = 0; i < 4; ++i) {
99
      // Load inputs.
100
0
      if (pass == 0) {
101
0
        in_high[0] = input[0 * stride] * 16;
102
0
        in_high[1] = input[1 * stride] * 16;
103
0
        in_high[2] = input[2 * stride] * 16;
104
0
        in_high[3] = input[3 * stride] * 16;
105
0
        ++input;
106
0
        if (i == 0 && in_high[0]) {
107
0
          ++in_high[0];
108
0
        }
109
0
      } else {
110
0
        assert(in_low != NULL);
111
0
        in_high[0] = in_low[0 * 4];
112
0
        in_high[1] = in_low[1 * 4];
113
0
        in_high[2] = in_low[2 * 4];
114
0
        in_high[3] = in_low[3 * 4];
115
0
        ++in_low;
116
0
      }
117
      // Transform.
118
0
      step[0] = in_high[0] + in_high[3];
119
0
      step[1] = in_high[1] + in_high[2];
120
0
      step[2] = in_high[1] - in_high[2];
121
0
      step[3] = in_high[0] - in_high[3];
122
0
      temp[0] = (int16_t)fdct_round_shift((step[0] + step[1]) * cospi_16_64);
123
0
      temp[2] = (int16_t)fdct_round_shift((step[0] - step[1]) * cospi_16_64);
124
0
      temp[1] = (int16_t)fdct_round_shift(step[2] * cospi_24_64 +
125
0
                                          step[3] * cospi_8_64);
126
0
      temp[3] = (int16_t)fdct_round_shift(-step[2] * cospi_8_64 +
127
0
                                          step[3] * cospi_24_64);
128
      // Only transpose the first pass.
129
0
      if (pass == 0) {
130
0
        out[0] = temp[0];
131
0
        out[1] = temp[1];
132
0
        out[2] = temp[2];
133
0
        out[3] = temp[3];
134
0
        out += 4;
135
0
      } else {
136
0
        out[0 * 4] = temp[0];
137
0
        out[1 * 4] = temp[1];
138
0
        out[2 * 4] = temp[2];
139
0
        out[3 * 4] = temp[3];
140
0
        ++out;
141
0
      }
142
0
    }
143
    // Setup in/out for next pass.
144
0
    in_low = intermediate;
145
0
    out = output;
146
0
  }
147
148
0
  for (int i = 0; i < 4; ++i) {
149
0
    for (int j = 0; j < 4; ++j)
150
0
      output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
151
0
  }
152
0
}
153
154
#if CONFIG_INTERNAL_STATS
155
void aom_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
156
  int i, j;
157
  tran_low_t intermediate[64];
158
  int pass;
159
  tran_low_t *output = intermediate;
160
  const tran_low_t *in = NULL;
161
162
  // Transform columns
163
  for (pass = 0; pass < 2; ++pass) {
164
    tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16
165
    tran_high_t t0, t1, t2, t3;                  // needs32
166
    tran_high_t x0, x1, x2, x3;                  // canbe16
167
168
    for (i = 0; i < 8; i++) {
169
      // stage 1
170
      if (pass == 0) {
171
        s0 = (input[0 * stride] + input[7 * stride]) * 4;
172
        s1 = (input[1 * stride] + input[6 * stride]) * 4;
173
        s2 = (input[2 * stride] + input[5 * stride]) * 4;
174
        s3 = (input[3 * stride] + input[4 * stride]) * 4;
175
        s4 = (input[3 * stride] - input[4 * stride]) * 4;
176
        s5 = (input[2 * stride] - input[5 * stride]) * 4;
177
        s6 = (input[1 * stride] - input[6 * stride]) * 4;
178
        s7 = (input[0 * stride] - input[7 * stride]) * 4;
179
        ++input;
180
      } else {
181
        s0 = in[0 * 8] + in[7 * 8];
182
        s1 = in[1 * 8] + in[6 * 8];
183
        s2 = in[2 * 8] + in[5 * 8];
184
        s3 = in[3 * 8] + in[4 * 8];
185
        s4 = in[3 * 8] - in[4 * 8];
186
        s5 = in[2 * 8] - in[5 * 8];
187
        s6 = in[1 * 8] - in[6 * 8];
188
        s7 = in[0 * 8] - in[7 * 8];
189
        ++in;
190
      }
191
192
      // fdct4(step, step);
193
      x0 = s0 + s3;
194
      x1 = s1 + s2;
195
      x2 = s1 - s2;
196
      x3 = s0 - s3;
197
      t0 = (x0 + x1) * cospi_16_64;
198
      t1 = (x0 - x1) * cospi_16_64;
199
      t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
200
      t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
201
      output[0] = (tran_low_t)fdct_round_shift(t0);
202
      output[2] = (tran_low_t)fdct_round_shift(t2);
203
      output[4] = (tran_low_t)fdct_round_shift(t1);
204
      output[6] = (tran_low_t)fdct_round_shift(t3);
205
206
      // Stage 2
207
      t0 = (s6 - s5) * cospi_16_64;
208
      t1 = (s6 + s5) * cospi_16_64;
209
      t2 = fdct_round_shift(t0);
210
      t3 = fdct_round_shift(t1);
211
212
      // Stage 3
213
      x0 = s4 + t2;
214
      x1 = s4 - t2;
215
      x2 = s7 - t3;
216
      x3 = s7 + t3;
217
218
      // Stage 4
219
      t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
220
      t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
221
      t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
222
      t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
223
      output[1] = (tran_low_t)fdct_round_shift(t0);
224
      output[3] = (tran_low_t)fdct_round_shift(t2);
225
      output[5] = (tran_low_t)fdct_round_shift(t1);
226
      output[7] = (tran_low_t)fdct_round_shift(t3);
227
      output += 8;
228
    }
229
    in = intermediate;
230
    output = final_output;
231
  }
232
233
  // Rows
234
  for (i = 0; i < 8; ++i) {
235
    for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2;
236
  }
237
}
238
#endif  // CONFIG_INTERNAL_STATS
239
240
#if CONFIG_AV1_HIGHBITDEPTH && CONFIG_INTERNAL_STATS
241
void aom_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
242
                          int stride) {
243
  aom_fdct8x8_c(input, final_output, stride);
244
}
245
#endif