Coverage Report

Created: 2025-06-22 08:04

/src/aom/av1/encoder/aq_variance.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <math.h>
13
#include <stdlib.h>
14
15
#include "aom_dsp/aom_dsp_common.h"
16
#include "aom_ports/mem.h"
17
18
#include "av1/encoder/aq_variance.h"
19
#include "av1/common/seg_common.h"
20
#include "av1/encoder/encodeframe.h"
21
#include "av1/encoder/ratectrl.h"
22
#include "av1/encoder/rd.h"
23
#include "av1/encoder/segmentation.h"
24
#include "av1/encoder/dwt.h"
25
#include "config/aom_config.h"
26
27
#if !CONFIG_REALTIME_ONLY
28
static const double rate_ratio[MAX_SEGMENTS] = { 2.2, 1.7, 1.3, 1.0,
29
                                                 0.9, .8,  .7,  .6 };
30
31
static const double deltaq_rate_ratio[MAX_SEGMENTS] = { 2.5,  2.0, 1.5, 1.0,
32
                                                        0.75, 1.0, 1.0, 1.0 };
33
0
#define ENERGY_MIN (-4)
34
0
#define ENERGY_MAX (1)
35
#define ENERGY_SPAN (ENERGY_MAX - ENERGY_MIN + 1)
36
#define ENERGY_IN_BOUNDS(energy) \
37
0
  assert((energy) >= ENERGY_MIN && (energy) <= ENERGY_MAX)
38
39
static const int segment_id[ENERGY_SPAN] = { 0, 1, 1, 2, 3, 4 };
40
41
0
#define SEGMENT_ID(i) segment_id[(i)-ENERGY_MIN]
42
43
0
void av1_vaq_frame_setup(AV1_COMP *cpi) {
44
0
  AV1_COMMON *cm = &cpi->common;
45
0
  const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
46
0
  const int base_qindex = cm->quant_params.base_qindex;
47
0
  struct segmentation *seg = &cm->seg;
48
0
  int i;
49
50
0
  int resolution_change =
51
0
      cm->prev_frame && (cm->width != cm->prev_frame->width ||
52
0
                         cm->height != cm->prev_frame->height);
53
0
  int avg_energy = (int)(cpi->twopass_frame.mb_av_energy - 2);
54
0
  double avg_ratio;
55
0
  if (avg_energy > 7) avg_energy = 7;
56
0
  if (avg_energy < 0) avg_energy = 0;
57
0
  avg_ratio = rate_ratio[avg_energy];
58
59
0
  if (resolution_change) {
60
0
    memset(cpi->enc_seg.map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols);
61
0
    av1_clearall_segfeatures(seg);
62
0
    av1_disable_segmentation(seg);
63
0
    return;
64
0
  }
65
0
  if (frame_is_intra_only(cm) || cm->features.error_resilient_mode ||
66
0
      refresh_frame->alt_ref_frame ||
67
0
      (refresh_frame->golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
68
0
    cpi->vaq_refresh = 1;
69
70
0
    av1_enable_segmentation(seg);
71
0
    av1_clearall_segfeatures(seg);
72
73
0
    for (i = 0; i < MAX_SEGMENTS; ++i) {
74
      // Set up avg segment id to be 1.0 and adjust the other segments around
75
      // it.
76
0
      int qindex_delta =
77
0
          av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type,
78
0
                                     base_qindex, rate_ratio[i] / avg_ratio);
79
80
      // We don't allow qindex 0 in a segment if the base value is not 0.
81
      // Q index 0 (lossless) implies 4x4 encoding only and in AQ mode a segment
82
      // Q delta is sometimes applied without going back around the rd loop.
83
      // This could lead to an illegal combination of partition size and q.
84
0
      if ((base_qindex != 0) && ((base_qindex + qindex_delta) == 0)) {
85
0
        qindex_delta = -base_qindex + 1;
86
0
      }
87
88
0
      av1_set_segdata(seg, i, SEG_LVL_ALT_Q, qindex_delta);
89
0
      av1_enable_segfeature(seg, i, SEG_LVL_ALT_Q);
90
0
    }
91
0
  }
92
0
}
93
94
int av1_log_block_avg(const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bs,
95
0
                      int mi_row, int mi_col) {
96
  // This functions returns the block average of luma block
97
0
  unsigned int sum, avg, num_pix;
98
0
  int r, c;
99
0
  const int pic_w = cpi->common.width;
100
0
  const int pic_h = cpi->common.height;
101
0
  const int bw = MI_SIZE * mi_size_wide[bs];
102
0
  const int bh = MI_SIZE * mi_size_high[bs];
103
0
  const uint16_t *x16 = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);
104
105
0
  sum = 0;
106
0
  num_pix = 0;
107
0
  avg = 0;
108
0
  int row = mi_row << MI_SIZE_LOG2;
109
0
  int col = mi_col << MI_SIZE_LOG2;
110
0
  for (r = row; (r < (row + bh)) && (r < pic_h); r++) {
111
0
    for (c = col; (c < (col + bw)) && (c < pic_w); c++) {
112
0
      sum += *(x16 + r * x->plane[0].src.stride + c);
113
0
      num_pix++;
114
0
    }
115
0
  }
116
0
  if (num_pix != 0) {
117
0
    avg = sum / num_pix;
118
0
  }
119
0
  return avg;
120
0
}
121
122
0
#define DEFAULT_E_MIDPOINT 10.0
123
124
0
static unsigned int haar_ac_energy(const MACROBLOCK *x, BLOCK_SIZE bs) {
125
0
  const MACROBLOCKD *xd = &x->e_mbd;
126
0
  int stride = x->plane[0].src.stride;
127
0
  const uint8_t *buf = x->plane[0].src.buf;
128
0
  const int num_8x8_cols = block_size_wide[bs] / 8;
129
0
  const int num_8x8_rows = block_size_high[bs] / 8;
130
0
  const int hbd = is_cur_buf_hbd(xd);
131
132
0
  int64_t var = av1_haar_ac_sad_mxn_uint8_input(buf, stride, hbd, num_8x8_rows,
133
0
                                                num_8x8_cols);
134
135
0
  return (unsigned int)((uint64_t)var * 256) >> num_pels_log2_lookup[bs];
136
0
}
137
138
0
static double log_block_wavelet_energy(const MACROBLOCK *x, BLOCK_SIZE bs) {
139
0
  unsigned int haar_sad = haar_ac_energy(x, bs);
140
0
  return log1p(haar_sad);
141
0
}
142
143
int av1_block_wavelet_energy_level(const AV1_COMP *cpi, const MACROBLOCK *x,
144
0
                                   BLOCK_SIZE bs) {
145
0
  double energy, energy_midpoint;
146
0
  energy_midpoint = (is_stat_consumption_stage_twopass(cpi))
147
0
                        ? cpi->twopass_frame.frame_avg_haar_energy
148
0
                        : DEFAULT_E_MIDPOINT;
149
0
  energy = log_block_wavelet_energy(x, bs) - energy_midpoint;
150
0
  return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX);
151
0
}
152
153
int av1_compute_q_from_energy_level_deltaq_mode(const AV1_COMP *const cpi,
154
0
                                                int block_var_level) {
155
0
  int rate_level;
156
0
  const AV1_COMMON *const cm = &cpi->common;
157
158
0
  if (DELTA_Q_PERCEPTUAL_MODULATION == 1) {
159
0
    ENERGY_IN_BOUNDS(block_var_level);
160
0
    rate_level = SEGMENT_ID(block_var_level);
161
0
  } else {
162
0
    rate_level = block_var_level;
163
0
  }
164
0
  const int base_qindex = cm->quant_params.base_qindex;
165
0
  int qindex_delta =
166
0
      av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type, base_qindex,
167
0
                                 deltaq_rate_ratio[rate_level]);
168
169
0
  if ((base_qindex != 0) && ((base_qindex + qindex_delta) == 0)) {
170
0
    qindex_delta = -base_qindex + 1;
171
0
  }
172
0
  return base_qindex + qindex_delta;
173
0
}
174
175
// Comparer used by qsort() to order an array of unsigned int from smallest to
176
// largest.
177
0
static int comp_unsigned_int(const void *a, const void *b) {
178
0
  unsigned int arg1 = *(const unsigned int *)a;
179
0
  unsigned int arg2 = *(const unsigned int *)b;
180
181
0
  return (arg1 > arg2) - (arg1 < arg2);
182
0
}
183
184
unsigned int av1_get_variance_boost_block_variance(const AV1_COMP *cpi,
185
0
                                                   const MACROBLOCK *x) {
186
0
#define SUPERBLOCK_SIZE 64
187
0
#define SUBBLOCK_SIZE 8
188
0
#define SUBBLOCKS_IN_SB_DIM (SUPERBLOCK_SIZE / SUBBLOCK_SIZE)
189
0
#define SUBBLOCKS_IN_SB (SUBBLOCKS_IN_SB_DIM * SUBBLOCKS_IN_SB_DIM)
190
0
#define SUBBLOCKS_IN_OCTILE (SUBBLOCKS_IN_SB / 8)
191
0
  DECLARE_ALIGNED(16, static const uint16_t,
192
0
                  av1_highbd_all_zeros[SUBBLOCK_SIZE]) = { 0 };
193
0
  DECLARE_ALIGNED(16, static const uint8_t,
194
0
                  av1_all_zeros[SUBBLOCK_SIZE]) = { 0 };
195
196
0
  const MACROBLOCKD *xd = &x->e_mbd;
197
0
  unsigned int sse;
198
  // Octile is currently hard-coded and optimized for still pictures. In the
199
  // future, we might want to expose this as a parameter that can be fine-tuned
200
  // by the caller.
201
  // An octile of 5 was chosen because it was found to strike the best balance
202
  // between quality and consistency. Lower octiles tend to score lower in
203
  // SSIMU2, while higher octiles tend to harm subjective quality consistency,
204
  // especially in <1 MP images.
205
0
  const int octile = 5;
206
0
  const uint8_t *all_zeros = is_cur_buf_hbd(xd)
207
0
                                 ? CONVERT_TO_BYTEPTR(av1_highbd_all_zeros)
208
0
                                 : av1_all_zeros;
209
0
  unsigned int variances[SUBBLOCKS_IN_SB];
210
211
  // Calculate subblock variances.
212
0
  aom_variance_fn_t vf = cpi->ppi->fn_ptr[BLOCK_8X8].vf;
213
0
  for (int subb_i = 0; subb_i < SUBBLOCKS_IN_SB_DIM; subb_i++) {
214
0
    int i = subb_i * SUBBLOCK_SIZE;
215
0
    for (int subb_j = 0; subb_j < SUBBLOCKS_IN_SB_DIM; subb_j++) {
216
0
      int j = subb_j * SUBBLOCK_SIZE;
217
      // Truncating values to integers (i.e. the 64 term) was found to perform
218
      // better than rounding, or returning them as doubles.
219
0
      variances[subb_i * SUBBLOCKS_IN_SB_DIM + subb_j] =
220
0
          vf(x->plane[0].src.buf + i * x->plane[0].src.stride + j,
221
0
             x->plane[0].src.stride, all_zeros, 0, &sse) /
222
0
          64;
223
0
    }
224
0
  }
225
226
  // Order the 8x8 SB values from smallest to largest variance.
227
0
  qsort(variances, SUBBLOCKS_IN_SB, sizeof(unsigned int), comp_unsigned_int);
228
229
  // Sample three 8x8 variance values: at the specified octile, previous octile,
230
  // and next octile. Make sure we use the last subblock in each octile as the
231
  // representative of the octile.
232
0
  assert(octile >= 1 && octile <= 8);
233
0
  const int middle_index = octile * SUBBLOCKS_IN_OCTILE - 1;
234
0
  const int lower_index =
235
0
      AOMMAX(SUBBLOCKS_IN_OCTILE - 1, middle_index - SUBBLOCKS_IN_OCTILE);
236
0
  const int upper_index =
237
0
      AOMMIN(SUBBLOCKS_IN_SB - 1, middle_index + SUBBLOCKS_IN_OCTILE);
238
239
  // Weigh the three variances in a 1:2:1 ratio, with rounding (the +2 term).
240
  // This allows for smoother delta-q transitions among superblocks with
241
  // mixed-variance features.
242
0
  const unsigned int variance =
243
0
      (variances[lower_index] + (variances[middle_index] * 2) +
244
0
       variances[upper_index] + 2) /
245
0
      4;
246
247
0
  return variance;
248
0
}
249
#endif  // !CONFIG_REALTIME_ONLY
250
251
0
int av1_log_block_var(const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bs) {
252
0
  DECLARE_ALIGNED(16, static const uint16_t,
253
0
                  av1_highbd_all_zeros[MAX_SB_SIZE]) = { 0 };
254
0
  DECLARE_ALIGNED(16, static const uint8_t, av1_all_zeros[MAX_SB_SIZE]) = { 0 };
255
256
  // This function returns a score for the blocks local variance as calculated
257
  // by: sum of the log of the (4x4 variances) of each subblock to the current
258
  // block (x,bs)
259
  // * 32 / number of pixels in the block_size.
260
  // This is used for segmentation because to avoid situations in which a large
261
  // block with a gentle gradient gets marked high variance even though each
262
  // subblock has a low variance.   This allows us to assign the same segment
263
  // number for the same sorts of area regardless of how the partitioning goes.
264
265
0
  const MACROBLOCKD *xd = &x->e_mbd;
266
0
  double var = 0;
267
0
  unsigned int sse;
268
0
  int i, j;
269
270
0
  int right_overflow =
271
0
      (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0;
272
0
  int bottom_overflow =
273
0
      (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0;
274
275
0
  const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow;
276
0
  const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow;
277
278
0
  aom_variance_fn_t vf = cpi->ppi->fn_ptr[BLOCK_4X4].vf;
279
0
  for (i = 0; i < bh; i += 4) {
280
0
    for (j = 0; j < bw; j += 4) {
281
0
      if (is_cur_buf_hbd(xd)) {
282
0
        var += log1p(vf(x->plane[0].src.buf + i * x->plane[0].src.stride + j,
283
0
                        x->plane[0].src.stride,
284
0
                        CONVERT_TO_BYTEPTR(av1_highbd_all_zeros), 0, &sse) /
285
0
                     16.0);
286
0
      } else {
287
0
        var += log1p(vf(x->plane[0].src.buf + i * x->plane[0].src.stride + j,
288
0
                        x->plane[0].src.stride, av1_all_zeros, 0, &sse) /
289
0
                     16.0);
290
0
      }
291
0
    }
292
0
  }
293
  // Use average of 4x4 log variance. The range for 8 bit 0 - 9.704121561.
294
0
  var /= (bw / 4 * bh / 4);
295
0
  if (var > 7) var = 7;
296
297
0
  return (int)(var);
298
0
}