/src/aom/av1/encoder/cnn.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2019, Alliance for Open Media. All rights reserved. |
3 | | * |
4 | | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | | * was not distributed with this source code in the LICENSE file, you can |
7 | | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | | * Media Patent License 1.0 was not distributed with this source code in the |
9 | | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | | */ |
11 | | |
12 | | #include <assert.h> |
13 | | #include <math.h> |
14 | | #include <stdbool.h> |
15 | | |
16 | | #include "aom_dsp/aom_dsp_common.h" |
17 | | #include "av1/common/av1_common_int.h" |
18 | | #include "av1/encoder/cnn.h" |
19 | | |
20 | 0 | #define CLAMPINDEX(a, hi) ((a) < 0 ? 0 : ((a) >= (hi) ? ((hi)-1) : (a))) |
21 | | |
22 | | typedef struct { |
23 | | const float **input; |
24 | | int in_width; |
25 | | int in_height; |
26 | | int in_stride; |
27 | | const CNN_LAYER_CONFIG *layer_config; |
28 | | float **output; |
29 | | int out_stride; |
30 | | int start_idx; |
31 | | int th_step; |
32 | | } CONVOLVE_OPS; |
33 | | |
34 | 0 | static inline float softsign(float x) { return x / (fabsf(x) + 1.0f); } |
35 | | |
36 | 0 | static inline float relu(float x) { return (x < 0) ? 0 : x; } |
37 | | |
38 | | typedef struct { |
39 | | int allocsize; |
40 | | int channels; |
41 | | int width, height, stride; |
42 | | float *buf[CNN_MAX_CHANNELS]; |
43 | | } TENSOR; |
44 | | |
45 | 0 | static void init_tensor(TENSOR *tensor) { memset(tensor, 0, sizeof(*tensor)); } |
46 | | |
47 | 0 | static void free_tensor(TENSOR *tensor) { |
48 | 0 | if (tensor->allocsize) { |
49 | 0 | aom_free(tensor->buf[0]); |
50 | 0 | tensor->buf[0] = NULL; |
51 | 0 | tensor->allocsize = 0; |
52 | 0 | } |
53 | 0 | } |
54 | | |
55 | | static bool realloc_tensor(TENSOR *tensor, int channels, int width, |
56 | 0 | int height) { |
57 | 0 | const int newallocsize = channels * width * height; |
58 | 0 | if (tensor->allocsize < newallocsize) { |
59 | 0 | free_tensor(tensor); |
60 | 0 | tensor->buf[0] = |
61 | 0 | (float *)aom_malloc(sizeof(*tensor->buf[0]) * newallocsize); |
62 | 0 | if (!tensor->buf[0]) return false; |
63 | 0 | tensor->allocsize = newallocsize; |
64 | 0 | } |
65 | 0 | tensor->width = width; |
66 | 0 | tensor->height = height; |
67 | 0 | tensor->stride = width; |
68 | 0 | tensor->channels = channels; |
69 | 0 | for (int c = 1; c < channels; ++c) |
70 | 0 | tensor->buf[c] = &tensor->buf[0][c * width * height]; |
71 | 0 | return true; |
72 | 0 | } |
73 | | |
74 | | static void copy_tensor(const TENSOR *src, int copy_channels, int dst_offset, |
75 | 0 | TENSOR *dst) { |
76 | 0 | assert(src->width == dst->width); |
77 | 0 | assert(src->height == dst->height); |
78 | 0 | assert(copy_channels <= src->channels); |
79 | 0 | if (src->stride == dst->width && dst->stride == dst->width) { |
80 | 0 | for (int c = 0; c < copy_channels; ++c) { |
81 | 0 | memcpy(dst->buf[dst_offset + c], src->buf[c], |
82 | 0 | sizeof(*dst->buf[0]) * src->width * src->height); |
83 | 0 | } |
84 | 0 | } else { |
85 | 0 | for (int c = 0; c < copy_channels; ++c) { |
86 | 0 | for (int r = 0; r < dst->height; ++r) { |
87 | 0 | memcpy(&dst->buf[dst_offset + c][r * dst->stride], |
88 | 0 | &src->buf[c][r * src->stride], |
89 | 0 | dst->width * sizeof(*dst->buf[c])); |
90 | 0 | } |
91 | 0 | } |
92 | 0 | } |
93 | 0 | } |
94 | | |
95 | | static void assign_tensor(TENSOR *tensor, float *buf[CNN_MAX_CHANNELS], |
96 | 0 | int channels, int width, int height, int stride) { |
97 | 0 | tensor->allocsize = 0; |
98 | 0 | tensor->channels = channels; |
99 | 0 | tensor->width = width; |
100 | 0 | tensor->height = height; |
101 | 0 | tensor->stride = stride; |
102 | 0 | if (buf) { |
103 | 0 | for (int c = 0; c < channels; ++c) tensor->buf[c] = buf[c]; |
104 | 0 | } else { |
105 | 0 | for (int c = 0; c < channels; ++c) tensor->buf[c] = NULL; |
106 | 0 | } |
107 | 0 | } |
108 | | |
109 | 0 | static void swap_tensor(TENSOR *t1, TENSOR *t2) { |
110 | 0 | TENSOR t = *t1; |
111 | 0 | *t1 = *t2; |
112 | 0 | *t2 = t; |
113 | 0 | } |
114 | | |
115 | | // The concatenated tensor goes into dst with first the channels in |
116 | | // original dst followed by the channels in the src |
117 | 0 | static bool concat_tensor(const TENSOR *src, TENSOR *dst) { |
118 | 0 | assert(src->width == dst->width); |
119 | 0 | assert(src->height == dst->height); |
120 | |
|
121 | 0 | const int dst_channels = dst->channels; |
122 | 0 | const int channels = dst->channels + src->channels; |
123 | 0 | const int newallocsize = channels * dst->width * dst->height; |
124 | 0 | if (dst->allocsize < newallocsize) { |
125 | 0 | TENSOR t; |
126 | 0 | init_tensor(&t); |
127 | | // allocate new buffers and copy first the dst channels |
128 | 0 | if (!realloc_tensor(&t, channels, dst->width, dst->height)) return false; |
129 | 0 | copy_tensor(dst, dst->channels, 0, &t); |
130 | | // Swap the tensors and free the old buffers |
131 | 0 | swap_tensor(dst, &t); |
132 | 0 | free_tensor(&t); |
133 | 0 | } |
134 | 0 | for (int c = 1; c < channels; ++c) |
135 | 0 | dst->buf[c] = &dst->buf[0][c * dst->width * dst->height]; |
136 | | // Copy the channels in src after the first dst_channels channels. |
137 | 0 | copy_tensor(src, src->channels, dst_channels, dst); |
138 | 0 | return true; |
139 | 0 | } |
140 | | |
141 | | #ifndef NDEBUG |
142 | | static int check_tensor_equal_dims(TENSOR *t1, TENSOR *t2) { |
143 | | return (t1->width == t2->width && t1->height == t2->height); |
144 | | } |
145 | | |
146 | | static int check_tensor_equal_size(TENSOR *t1, TENSOR *t2) { |
147 | | return (t1->channels == t2->channels && t1->width == t2->width && |
148 | | t1->height == t2->height); |
149 | | } |
150 | | #endif // NDEBUG |
151 | | |
152 | | void av1_find_cnn_layer_output_size(int in_width, int in_height, |
153 | | const CNN_LAYER_CONFIG *layer_config, |
154 | 0 | int *out_width, int *out_height) { |
155 | 0 | assert(layer_config->skip_width > 0); |
156 | 0 | assert(layer_config->skip_height > 0); |
157 | 0 | if (!layer_config->deconvolve) { |
158 | 0 | switch (layer_config->pad) { |
159 | 0 | case PADDING_SAME_ZERO: |
160 | 0 | case PADDING_SAME_REPLICATE: |
161 | 0 | *out_width = (in_width + layer_config->skip_width - 1) / |
162 | 0 | layer_config->skip_width; |
163 | 0 | *out_height = (in_height + layer_config->skip_height - 1) / |
164 | 0 | layer_config->skip_height; |
165 | 0 | break; |
166 | 0 | case PADDING_VALID: |
167 | 0 | *out_width = |
168 | 0 | (in_width - layer_config->filter_width + layer_config->skip_width) / |
169 | 0 | layer_config->skip_width; |
170 | 0 | *out_height = (in_height - layer_config->filter_height + |
171 | 0 | layer_config->skip_height) / |
172 | 0 | layer_config->skip_height; |
173 | 0 | break; |
174 | 0 | default: assert(0 && "Unknown padding type"); |
175 | 0 | } |
176 | 0 | } else { |
177 | 0 | switch (layer_config->pad) { |
178 | 0 | case PADDING_SAME_ZERO: |
179 | 0 | case PADDING_SAME_REPLICATE: |
180 | 0 | *out_width = in_width * layer_config->skip_width; |
181 | 0 | *out_height = in_height * layer_config->skip_height; |
182 | 0 | break; |
183 | 0 | case PADDING_VALID: |
184 | 0 | *out_width = (in_width - 1) * layer_config->skip_width + |
185 | 0 | layer_config->filter_width; |
186 | 0 | *out_height = (in_height - 1) * layer_config->skip_height + |
187 | 0 | layer_config->filter_height; |
188 | 0 | break; |
189 | 0 | default: assert(0 && "Unknown padding type"); |
190 | 0 | } |
191 | 0 | } |
192 | 0 | } |
193 | | |
194 | | static void find_cnn_out_channels(const CNN_LAYER_CONFIG *layer_config, |
195 | 0 | int channels_per_branch[]) { |
196 | 0 | int branch = layer_config->branch; |
197 | 0 | const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; |
198 | 0 | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
199 | 0 | if ((branch_config->input_to_branches & (1 << b)) && b != branch) { |
200 | 0 | if (layer_config->branch_copy_type == BRANCH_INPUT) { |
201 | 0 | channels_per_branch[b] = layer_config->in_channels; |
202 | 0 | } else if (layer_config->branch_copy_type == BRANCH_OUTPUT) { |
203 | 0 | channels_per_branch[b] = layer_config->out_channels; |
204 | 0 | } else if (layer_config->branch_copy_type == BRANCH_COMBINED) { |
205 | 0 | channels_per_branch[b] = layer_config->out_channels; |
206 | 0 | for (int c = 0; c < CNN_MAX_BRANCHES; ++c) { |
207 | 0 | if ((branch_config->branches_to_combine & (1 << c)) && c != branch) { |
208 | 0 | assert(channels_per_branch[c] > 0); |
209 | 0 | channels_per_branch[b] += channels_per_branch[c]; |
210 | 0 | } |
211 | 0 | } |
212 | 0 | } |
213 | 0 | } |
214 | 0 | } |
215 | 0 | channels_per_branch[branch] = layer_config->out_channels; |
216 | 0 | for (int c = 0; c < CNN_MAX_BRANCHES; ++c) { |
217 | 0 | if ((branch_config->branches_to_combine & (1 << c)) && c != branch) { |
218 | 0 | assert(channels_per_branch[c] > 0); |
219 | 0 | channels_per_branch[branch] += channels_per_branch[c]; |
220 | 0 | } |
221 | 0 | } |
222 | 0 | } |
223 | | |
224 | | #if CONFIG_DEBUG |
225 | | static inline int cnn_has_at_least_one_output(const CNN_CONFIG *cnn_config) { |
226 | | const int num_layers = cnn_config->num_layers; |
227 | | const CNN_LAYER_CONFIG *layer_configs = cnn_config->layer_config; |
228 | | |
229 | | for (int idx = 0; idx < num_layers; idx++) { |
230 | | if (layer_configs[idx].output_num != -1) { |
231 | | return 1; |
232 | | } |
233 | | } |
234 | | return 0; |
235 | | } |
236 | | #endif |
237 | | |
238 | | void av1_find_cnn_output_size(int in_width, int in_height, |
239 | | const CNN_CONFIG *cnn_config, int *out_width, |
240 | 0 | int *out_height, int *out_channels) { |
241 | 0 | int channels_per_branch[CNN_MAX_BRANCHES] = { 0 }; |
242 | 0 | int i_width[CNN_MAX_BRANCHES] = { 0 }; |
243 | 0 | int i_height[CNN_MAX_BRANCHES] = { 0 }; |
244 | 0 | i_width[0] = in_width + cnn_config->ext_width * 2; |
245 | 0 | i_height[0] = in_height + cnn_config->ext_height * 2; |
246 | |
|
247 | | #if CONFIG_DEBUG |
248 | | assert(cnn_has_at_least_one_output(cnn_config)); |
249 | | #endif |
250 | |
|
251 | 0 | for (int i = 0; i < cnn_config->num_layers; ++i) { |
252 | 0 | const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[i]; |
253 | 0 | const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; |
254 | 0 | const int branch = layer_config->branch; |
255 | 0 | int o_width = 0, o_height = 0; |
256 | |
|
257 | 0 | if (layer_config->branch_copy_type == BRANCH_INPUT) { |
258 | 0 | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
259 | 0 | if ((branch_config->input_to_branches & (1 << b)) && b != branch) { |
260 | 0 | assert(i_width[branch] > 0 && i_height[branch] > 0); |
261 | 0 | i_width[b] = i_width[branch]; |
262 | 0 | i_height[b] = i_height[branch]; |
263 | 0 | } |
264 | 0 | } |
265 | 0 | } |
266 | |
|
267 | 0 | av1_find_cnn_layer_output_size(i_width[branch], i_height[branch], |
268 | 0 | layer_config, &o_width, &o_height); |
269 | 0 | i_width[branch] = o_width; |
270 | 0 | i_height[branch] = o_height; |
271 | |
|
272 | 0 | if (layer_config->branch_copy_type == BRANCH_OUTPUT) { |
273 | 0 | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
274 | 0 | if ((branch_config->input_to_branches & (1 << b)) && b != branch) { |
275 | 0 | i_width[b] = o_width; |
276 | 0 | i_height[b] = o_height; |
277 | 0 | } |
278 | 0 | } |
279 | 0 | } |
280 | |
|
281 | 0 | find_cnn_out_channels(layer_config, channels_per_branch); |
282 | |
|
283 | 0 | const int output_num = layer_config->output_num; |
284 | 0 | if (output_num != -1) { // Current layer is an output layer |
285 | 0 | out_width[output_num] = o_width; |
286 | 0 | out_height[output_num] = o_height; |
287 | 0 | out_channels[output_num] = channels_per_branch[layer_config->branch]; |
288 | 0 | } |
289 | 0 | } |
290 | 0 | } |
291 | | |
292 | | static inline int get_start_shift_convolve(int width, int filt_width, |
293 | 0 | int stride) { |
294 | 0 | const int mod = (width % stride); |
295 | 0 | const int filt_off = (filt_width - 1) / 2; |
296 | 0 | const int dif = (mod ? mod - 1 : stride - 1); |
297 | 0 | return AOMMIN((dif + (filt_width % 2)) / 2, filt_off); |
298 | 0 | } |
299 | | |
300 | | void av1_cnn_add_c(float **output, int channels, int width, int height, |
301 | 0 | int stride, const float **add) { |
302 | 0 | for (int c = 0; c < channels; ++c) { |
303 | 0 | for (int i = 0; i < height; ++i) |
304 | 0 | for (int j = 0; j < width; ++j) |
305 | 0 | output[c][i * stride + j] += add[c][i * stride + j]; |
306 | 0 | } |
307 | 0 | } |
308 | | |
309 | | void av1_cnn_activate_c(float **output, int channels, int width, int height, |
310 | 0 | int stride, ACTIVATION layer_activation) { |
311 | 0 | if (layer_activation == RELU) { |
312 | 0 | for (int c = 0; c < channels; ++c) { |
313 | 0 | for (int i = 0; i < height; ++i) |
314 | 0 | for (int j = 0; j < width; ++j) |
315 | 0 | output[c][i * stride + j] = relu(output[c][i * stride + j]); |
316 | 0 | } |
317 | 0 | } else if (layer_activation == SOFTSIGN) { |
318 | 0 | for (int c = 0; c < channels; ++c) { |
319 | 0 | for (int i = 0; i < height; ++i) |
320 | 0 | for (int j = 0; j < width; ++j) |
321 | 0 | output[c][i * stride + j] = softsign(output[c][i * stride + j]); |
322 | 0 | } |
323 | 0 | } else if (layer_activation == SIGMOID) { |
324 | 0 | assert(0 && "Sigmoid has not been supported in CNN."); // TO DO |
325 | 0 | } else if (layer_activation != NONE) { |
326 | 0 | assert(0 && "Unknown activation type"); |
327 | 0 | } |
328 | 0 | } |
329 | | |
330 | | static bool copy_active_tensor_to_branches(const TENSOR *layer_active_tensor, |
331 | | const CNN_LAYER_CONFIG *layer_config, |
332 | 0 | int branch, TENSOR branch_output[]) { |
333 | 0 | const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; |
334 | 0 | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
335 | 0 | if ((branch_config->input_to_branches & (1 << b)) && b != branch) { |
336 | | // Copy layer's active tensor to output tensor of branch b if set in |
337 | | // mask. The output becomes the input of the first layer of the branch |
338 | | // because the layer of the branch is not the first layer. |
339 | 0 | int copy_channels = branch_config->channels_to_copy > 0 |
340 | 0 | ? branch_config->channels_to_copy |
341 | 0 | : layer_active_tensor->channels; |
342 | 0 | if (!realloc_tensor(&branch_output[b], copy_channels, |
343 | 0 | layer_active_tensor->width, |
344 | 0 | layer_active_tensor->height)) { |
345 | 0 | return false; |
346 | 0 | } |
347 | 0 | copy_tensor(layer_active_tensor, copy_channels, 0, &branch_output[b]); |
348 | 0 | } |
349 | 0 | } |
350 | 0 | return true; |
351 | 0 | } |
352 | | |
353 | | // CNNConvolve specific to maxpool set as 1, either skip_width or skip_height |
354 | | // greater than 1 and padding equal to PADDING_SAME_ZERO. |
355 | | static void convolve_maxpool_padding_zero( |
356 | | const float **input, int in_width, int in_height, int in_stride, |
357 | | const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
358 | | const int cstep, const int filter_width_half, |
359 | 0 | const int filter_height_half) { |
360 | 0 | for (int i = 0; i < layer_config->out_channels; ++i) { |
361 | 0 | for (int h = 0, u = 0; h < in_height; h += layer_config->skip_height, ++u) { |
362 | 0 | for (int w = 0, v = 0; w < in_width; w += layer_config->skip_width, ++v) { |
363 | 0 | for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height); |
364 | 0 | ++hh) { |
365 | 0 | for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width); |
366 | 0 | ++ww) { |
367 | 0 | float sum = layer_config->bias[i]; |
368 | 0 | for (int k = 0; k < layer_config->in_channels; ++k) { |
369 | 0 | int off = k * layer_config->out_channels + i; |
370 | 0 | for (int l = 0; l < layer_config->filter_height; ++l) { |
371 | 0 | const int ii = hh + l - filter_height_half; |
372 | 0 | for (int m = 0; m < layer_config->filter_width; |
373 | 0 | ++m, off += cstep) { |
374 | 0 | const int jj = ww + m - filter_width_half; |
375 | 0 | if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) |
376 | 0 | continue; |
377 | 0 | sum += layer_config->weights[off] * |
378 | 0 | input[k][ii * in_stride + jj]; |
379 | 0 | } |
380 | 0 | } |
381 | 0 | } |
382 | 0 | const float a = sum; |
383 | 0 | if (h == hh && w == ww) |
384 | 0 | output[i][u * out_stride + v] = a; |
385 | 0 | else |
386 | 0 | output[i][u * out_stride + v] = |
387 | 0 | AOMMAX(output[i][u * out_stride + v], a); |
388 | 0 | } |
389 | 0 | } |
390 | 0 | } |
391 | 0 | } |
392 | 0 | } |
393 | 0 | } |
394 | | |
395 | | // CNNConvolve specific to maxpool set as 1, either skip_width or skip_height |
396 | | // greater than 1 and padding equal to PADDING_SAME_REPLICATE. |
397 | | static void convolve_maxpool_padding_replicate( |
398 | | const float **input, int in_width, int in_height, int in_stride, |
399 | | const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
400 | | const int cstep, const int filter_width_half, |
401 | 0 | const int filter_height_half) { |
402 | 0 | for (int i = 0; i < layer_config->out_channels; ++i) { |
403 | 0 | for (int h = 0, u = 0; h < in_height; h += layer_config->skip_height, ++u) { |
404 | 0 | for (int w = 0, v = 0; w < in_width; w += layer_config->skip_width, ++v) { |
405 | 0 | for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height); |
406 | 0 | ++hh) { |
407 | 0 | for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width); |
408 | 0 | ++ww) { |
409 | 0 | float sum = layer_config->bias[i]; |
410 | 0 | for (int k = 0; k < layer_config->in_channels; ++k) { |
411 | 0 | int off = k * layer_config->out_channels + i; |
412 | 0 | for (int l = 0; l < layer_config->filter_height; ++l) { |
413 | 0 | const int ii = |
414 | 0 | CLAMPINDEX(hh + l - filter_height_half, in_height); |
415 | 0 | for (int m = 0; m < layer_config->filter_width; |
416 | 0 | ++m, off += cstep) { |
417 | 0 | const int jj = |
418 | 0 | CLAMPINDEX(ww + m - filter_width_half, in_width); |
419 | 0 | assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); |
420 | 0 | sum += layer_config->weights[off] * |
421 | 0 | input[k][ii * in_stride + jj]; |
422 | 0 | } |
423 | 0 | } |
424 | 0 | } |
425 | 0 | const float a = sum; |
426 | 0 | if (h == hh && w == ww) |
427 | 0 | output[i][u * out_stride + v] = a; |
428 | 0 | else |
429 | 0 | output[i][u * out_stride + v] = |
430 | 0 | AOMMAX(output[i][u * out_stride + v], a); |
431 | 0 | } |
432 | 0 | } |
433 | 0 | } |
434 | 0 | } |
435 | 0 | } |
436 | 0 | } |
437 | | |
438 | | // CNNConvolve specific to maxpool set as 1, either skip_width or skip_height |
439 | | // greater than 1 and padding equal to PADDING_VALID. |
440 | | static void convolve_maxpool_padding_valid( |
441 | | const float **input, int in_width, int in_height, int in_stride, |
442 | | const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
443 | 0 | const int cstep) { |
444 | 0 | for (int i = 0; i < layer_config->out_channels; ++i) { |
445 | 0 | for (int h = 0, u = 0; h < in_height - layer_config->filter_height + 1; |
446 | 0 | h += layer_config->skip_height, ++u) { |
447 | 0 | for (int w = 0, v = 0; w < in_width - layer_config->filter_width + 1; |
448 | 0 | w += layer_config->skip_width, ++v) { |
449 | 0 | for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height); |
450 | 0 | ++hh) { |
451 | 0 | for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width); |
452 | 0 | ++ww) { |
453 | 0 | float sum = layer_config->bias[i]; |
454 | 0 | for (int k = 0; k < layer_config->in_channels; ++k) { |
455 | 0 | int off = k * layer_config->out_channels + i; |
456 | 0 | for (int l = 0; l < layer_config->filter_height; ++l) { |
457 | 0 | const int ii = hh + l; |
458 | 0 | for (int m = 0; m < layer_config->filter_width; |
459 | 0 | ++m, off += cstep) { |
460 | 0 | const int jj = ww + m; |
461 | 0 | assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); |
462 | 0 | sum += layer_config->weights[off] * |
463 | 0 | input[k][ii * in_stride + jj]; |
464 | 0 | } |
465 | 0 | } |
466 | 0 | } |
467 | 0 | const float a = sum; |
468 | 0 | if (h == hh && w == ww) |
469 | 0 | output[i][u * out_stride + v] = a; |
470 | 0 | else |
471 | 0 | output[i][u * out_stride + v] = |
472 | 0 | AOMMAX(output[i][u * out_stride + v], a); |
473 | 0 | } |
474 | 0 | } |
475 | 0 | } |
476 | 0 | } |
477 | 0 | } |
478 | 0 | } |
479 | | |
480 | | // CNNConvolve specific to maxpool set as 0 with filter_height and filter_width |
481 | | // equal to 1. |
482 | | static void convolve_element_wise(const float **input, int in_width, |
483 | | int in_height, int in_stride, |
484 | | const CNN_LAYER_CONFIG *const layer_config, |
485 | | float **output, int out_stride, int start_idx, |
486 | 0 | int step) { |
487 | 0 | const int start_h = get_start_shift_convolve( |
488 | 0 | in_height, layer_config->filter_height, layer_config->skip_height); |
489 | 0 | const int start_w = |
490 | 0 | get_start_shift_convolve(in_width, layer_config->filter_width, |
491 | 0 | layer_config->skip_width) + |
492 | 0 | start_idx * layer_config->skip_width; |
493 | 0 | const int out_w_step = AOMMAX(step, 1); |
494 | 0 | const int in_w_step = layer_config->skip_width * out_w_step; |
495 | 0 | for (int i = 0; i < layer_config->out_channels; ++i) { |
496 | 0 | for (int h = start_h, u = 0; h < in_height; |
497 | 0 | h += layer_config->skip_height, ++u) { |
498 | 0 | const int in_h = h * in_stride; |
499 | 0 | const int out_h = u * out_stride + start_idx; |
500 | 0 | for (int w = start_w, out_index = out_h; w < in_width; |
501 | 0 | w += in_w_step, out_index += out_w_step) { |
502 | 0 | float sum = layer_config->bias[i]; |
503 | 0 | for (int k = 0; k < layer_config->in_channels; ++k) { |
504 | 0 | sum += layer_config->weights[k * layer_config->out_channels + i] * |
505 | 0 | input[k][in_h + w]; |
506 | 0 | } |
507 | 0 | output[i][out_index] = sum; |
508 | 0 | } |
509 | 0 | } |
510 | 0 | } |
511 | 0 | } |
512 | | |
513 | | // CNNConvolve specific to maxpool set as 0 and padding equal to |
514 | | // PADDING_SAME_ZERO. |
515 | | static void convolve_no_maxpool_padding_zero( |
516 | | const float **input, int in_width, int in_height, int in_stride, |
517 | | const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
518 | | int start_idx, const int cstep, const int filter_width_half, |
519 | | const int filter_height_half, const int ii_shift, const int jj_shift, |
520 | 0 | const int channel_step) { |
521 | 0 | const int start_h = get_start_shift_convolve( |
522 | 0 | in_height, layer_config->filter_height, layer_config->skip_height); |
523 | 0 | const int start_w = get_start_shift_convolve( |
524 | 0 | in_width, layer_config->filter_width, layer_config->skip_width); |
525 | 0 | const int end_ii_shift = filter_height_half + 1; |
526 | 0 | const int end_jj_shift = filter_width_half + 1; |
527 | | // *_filter_margin stores the number of pixels along a dimension in the |
528 | | // intersection of the complement of the image in the extended image |
529 | | // and the filter. |
530 | 0 | const int top_filter_margin = layer_config->filter_width * ii_shift; |
531 | 0 | const int right_filter_margin = end_jj_shift - in_width; |
532 | 0 | for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { |
533 | 0 | for (int h = start_h, u = 0; h < in_height; |
534 | 0 | h += layer_config->skip_height, ++u) { |
535 | 0 | const int out_h = u * out_stride; |
536 | 0 | const int top_cstep = |
537 | 0 | AOMMAX(0, top_filter_margin - h * layer_config->filter_width) * |
538 | 0 | cstep + |
539 | 0 | i; |
540 | 0 | const int start_ii = AOMMAX(0, h - ii_shift); |
541 | 0 | const int end_ii = AOMMIN(in_height, h + end_ii_shift); |
542 | 0 | for (int w = start_w, out_index = out_h; w < in_width; |
543 | 0 | w += layer_config->skip_width, ++out_index) { |
544 | 0 | const int left_cstep = AOMMAX(0, jj_shift - w) * cstep; |
545 | 0 | const int right_cstep = AOMMAX(0, right_filter_margin + w) * cstep; |
546 | 0 | const int start_jj = AOMMAX(0, w - jj_shift); |
547 | 0 | const int end_jj = AOMMIN(in_width, w + end_jj_shift); |
548 | 0 | float sum = layer_config->bias[i]; |
549 | 0 | for (int k = 0; k < layer_config->in_channels; ++k) { |
550 | 0 | int off = k * layer_config->out_channels + top_cstep; |
551 | 0 | for (int ii = start_ii; ii < end_ii; ++ii) { |
552 | 0 | off += left_cstep; |
553 | 0 | for (int jj = start_jj; jj < end_jj; ++jj, off += cstep) { |
554 | 0 | sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; |
555 | 0 | } |
556 | 0 | off += right_cstep; |
557 | 0 | } |
558 | 0 | } |
559 | 0 | output[i][out_index] = sum; |
560 | 0 | } |
561 | 0 | } |
562 | 0 | } |
563 | 0 | } |
564 | | |
565 | | // CNNConvolve specific to maxpool set as 0 and padding equal to |
566 | | // PADDING_SAME_REPLICATE. |
567 | | static void convolve_no_maxpool_padding_replicate( |
568 | | const float **input, int in_width, int in_height, int in_stride, |
569 | | const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride, |
570 | | int start_idx, const int cstep, const int ii_shift, const int jj_shift, |
571 | 0 | const int channel_step) { |
572 | | // h and w are shifted to an offset coordinate system to reduce in-loop |
573 | | // computation. |
574 | 0 | const int start_h = |
575 | 0 | get_start_shift_convolve(in_height, layer_config->filter_height, |
576 | 0 | layer_config->skip_height) - |
577 | 0 | ii_shift; |
578 | 0 | const int start_w = |
579 | 0 | get_start_shift_convolve(in_width, layer_config->filter_width, |
580 | 0 | layer_config->skip_width) - |
581 | 0 | jj_shift; |
582 | 0 | const int end_h = in_height - ii_shift; |
583 | 0 | const int end_w = in_width - jj_shift; |
584 | 0 | for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { |
585 | 0 | for (int h = start_h, u = 0; h < end_h; |
586 | 0 | h += layer_config->skip_height, ++u) { |
587 | 0 | const int out_h = u * out_stride; |
588 | 0 | const int upper_ii_index = layer_config->filter_height + h; |
589 | 0 | for (int w = start_w, out_index = out_h; w < end_w; |
590 | 0 | w += layer_config->skip_width, ++out_index) { |
591 | 0 | const int upper_jj_index = layer_config->filter_width + w; |
592 | 0 | float sum = layer_config->bias[i]; |
593 | 0 | for (int k = 0; k < layer_config->in_channels; ++k) { |
594 | 0 | int off = k * layer_config->out_channels + i; |
595 | 0 | for (int ii = h; ii < upper_ii_index; ++ii) { |
596 | 0 | const int clamped_ii = CLAMPINDEX(ii, in_height); |
597 | 0 | for (int jj = w; jj < upper_jj_index; ++jj) { |
598 | 0 | const int clamped_jj = CLAMPINDEX(jj, in_width); |
599 | 0 | assert(clamped_ii >= 0 && clamped_ii < in_height && |
600 | 0 | clamped_jj >= 0 && clamped_jj < in_width); |
601 | 0 | sum += layer_config->weights[off] * |
602 | 0 | input[k][clamped_ii * in_stride + clamped_jj]; |
603 | 0 | off += cstep; |
604 | 0 | } |
605 | 0 | } |
606 | 0 | } |
607 | 0 | output[i][out_index] = sum; |
608 | 0 | } |
609 | 0 | } |
610 | 0 | } |
611 | 0 | } |
612 | | |
613 | | // CNNConvolve specific to maxpool set as 0 and padding equal to |
614 | | // PADDING_VALID. |
615 | | void av1_cnn_convolve_no_maxpool_padding_valid_c( |
616 | | const float **input, int in_width, int in_height, int in_stride, |
617 | | const CNN_LAYER_CONFIG *layer_config, float **output, int out_stride, |
618 | 0 | int start_idx, int cstep, int channel_step) { |
619 | 0 | assert((layer_config->skip_height == 1 && layer_config->skip_width == 1) || |
620 | 0 | !layer_config->maxpool); |
621 | 0 | assert(layer_config->filter_height > 1 || layer_config->filter_width > 1); |
622 | 0 | assert(layer_config->pad == PADDING_VALID); |
623 | 0 | for (int i = start_idx; i < layer_config->out_channels; i += channel_step) { |
624 | 0 | for (int h = 0, u = 0; h < in_height - layer_config->filter_height + 1; |
625 | 0 | h += layer_config->skip_height, ++u) { |
626 | 0 | const int out_h = u * out_stride; |
627 | 0 | const int upper_ii_index = layer_config->filter_height + h; |
628 | 0 | for (int w = 0, out_index = out_h; |
629 | 0 | w < in_width - layer_config->filter_width + 1; |
630 | 0 | w += layer_config->skip_width, ++out_index) { |
631 | 0 | const int upper_jj_index = layer_config->filter_width + w; |
632 | 0 | float sum = layer_config->bias[i]; |
633 | 0 | for (int k = 0; k < layer_config->in_channels; ++k) { |
634 | 0 | int off = k * layer_config->out_channels + i; |
635 | 0 | for (int ii = h; ii < upper_ii_index; ++ii) { |
636 | 0 | for (int jj = w; jj < upper_jj_index; ++jj) { |
637 | 0 | assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); |
638 | 0 | sum += layer_config->weights[off] * input[k][ii * in_stride + jj]; |
639 | 0 | off += cstep; |
640 | 0 | } |
641 | 0 | } |
642 | 0 | } |
643 | 0 | output[i][out_index] = sum; |
644 | 0 | } |
645 | 0 | } |
646 | 0 | } |
647 | 0 | } |
648 | | |
649 | | static void av1_cnn_convolve(const float **input, int in_width, int in_height, |
650 | | int in_stride, |
651 | | const CNN_LAYER_CONFIG *layer_config, |
652 | | float **output, int out_stride, int start_idx, |
653 | 0 | int step) { |
654 | 0 | assert(!layer_config->deconvolve); |
655 | 0 | const int cstep = layer_config->in_channels * layer_config->out_channels; |
656 | 0 | const int filter_height_half = layer_config->filter_height >> 1; |
657 | 0 | const int filter_width_half = layer_config->filter_width >> 1; |
658 | 0 | const int channel_step = AOMMAX(step, 1); |
659 | |
|
660 | 0 | if (layer_config->maxpool && |
661 | 0 | (layer_config->skip_height > 1 || layer_config->skip_width > 1)) { |
662 | 0 | switch (layer_config->pad) { |
663 | 0 | case PADDING_SAME_ZERO: |
664 | 0 | convolve_maxpool_padding_zero(input, in_width, in_height, in_stride, |
665 | 0 | layer_config, output, out_stride, cstep, |
666 | 0 | filter_width_half, filter_height_half); |
667 | 0 | break; |
668 | 0 | case PADDING_SAME_REPLICATE: |
669 | 0 | convolve_maxpool_padding_replicate( |
670 | 0 | input, in_width, in_height, in_stride, layer_config, output, |
671 | 0 | out_stride, cstep, filter_width_half, filter_height_half); |
672 | 0 | break; |
673 | 0 | case PADDING_VALID: |
674 | 0 | convolve_maxpool_padding_valid(input, in_width, in_height, in_stride, |
675 | 0 | layer_config, output, out_stride, cstep); |
676 | 0 | break; |
677 | 0 | default: assert(0 && "Unknown padding type"); |
678 | 0 | } |
679 | 0 | } else { |
680 | | // Results in element-wise matrix multiplication. |
681 | 0 | if (layer_config->filter_height == 1 && layer_config->filter_width == 1) { |
682 | 0 | convolve_element_wise(input, in_width, in_height, in_stride, layer_config, |
683 | 0 | output, out_stride, start_idx, step); |
684 | 0 | return; |
685 | 0 | } |
686 | 0 | const int ii_shift = |
687 | 0 | filter_height_half - (layer_config->filter_height - 1) % 2; |
688 | 0 | const int jj_shift = |
689 | 0 | filter_width_half - (layer_config->filter_width - 1) % 2; |
690 | 0 | switch (layer_config->pad) { |
691 | 0 | case PADDING_SAME_ZERO: |
692 | 0 | convolve_no_maxpool_padding_zero( |
693 | 0 | input, in_width, in_height, in_stride, layer_config, output, |
694 | 0 | out_stride, start_idx, cstep, filter_width_half, filter_height_half, |
695 | 0 | ii_shift, jj_shift, channel_step); |
696 | 0 | break; |
697 | 0 | case PADDING_SAME_REPLICATE: |
698 | 0 | convolve_no_maxpool_padding_replicate( |
699 | 0 | input, in_width, in_height, in_stride, layer_config, output, |
700 | 0 | out_stride, start_idx, cstep, ii_shift, jj_shift, channel_step); |
701 | 0 | break; |
702 | 0 | case PADDING_VALID: |
703 | 0 | av1_cnn_convolve_no_maxpool_padding_valid( |
704 | 0 | input, in_width, in_height, in_stride, layer_config, output, |
705 | 0 | out_stride, start_idx, cstep, channel_step); |
706 | 0 | break; |
707 | 0 | default: assert(0 && "Unknown padding type"); |
708 | 0 | } |
709 | 0 | } |
710 | 0 | } |
711 | | |
712 | 0 | static int convolve_layer(void *arg1, void *arg2) { |
713 | 0 | const CONVOLVE_OPS *convolve_ops = arg1; |
714 | 0 | (void)arg2; |
715 | 0 | av1_cnn_convolve( |
716 | 0 | convolve_ops->input, convolve_ops->in_width, convolve_ops->in_height, |
717 | 0 | convolve_ops->in_stride, convolve_ops->layer_config, convolve_ops->output, |
718 | 0 | convolve_ops->out_stride, convolve_ops->start_idx, convolve_ops->th_step); |
719 | 0 | return 1; |
720 | 0 | } |
721 | | |
722 | | static void convolve_layer_mt(const float **input, int in_width, int in_height, |
723 | | int in_stride, |
724 | | const CNN_LAYER_CONFIG *layer_config, |
725 | | const CNN_THREAD_DATA *thread_data, |
726 | 0 | float **output, int out_stride) { |
727 | 0 | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
728 | 0 | const int num_workers = thread_data->num_workers; |
729 | 0 | assert(thread_data->workers); |
730 | |
|
731 | 0 | CONVOLVE_OPS convolve_ops[CNN_MAX_THREADS]; |
732 | 0 | for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) { |
733 | 0 | AVxWorker *const worker = &thread_data->workers[th]; |
734 | 0 | winterface->reset(worker); |
735 | |
|
736 | 0 | CONVOLVE_OPS convolve_op = { input, in_width, in_height, |
737 | 0 | in_stride, layer_config, output, |
738 | 0 | out_stride, th, num_workers }; |
739 | 0 | convolve_ops[th] = convolve_op; |
740 | 0 | worker->hook = convolve_layer; |
741 | 0 | worker->data1 = &(convolve_ops[th]); |
742 | 0 | worker->data2 = NULL; |
743 | | |
744 | | // Start convolving. |
745 | 0 | if (th == num_workers - 1) { |
746 | 0 | winterface->execute(worker); |
747 | 0 | } else { |
748 | 0 | winterface->launch(worker); |
749 | 0 | } |
750 | 0 | } |
751 | | |
752 | | // Wait until all workers have finished. |
753 | 0 | for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) { |
754 | 0 | winterface->sync(&thread_data->workers[th]); |
755 | 0 | } |
756 | 0 | } |
757 | | |
758 | 0 | static inline int get_start_shift_deconvolve(int filt_width, int stride) { |
759 | 0 | const int dif = AOMMAX(filt_width - stride, 0); |
760 | 0 | return dif / 2; |
761 | 0 | } |
762 | | |
763 | | void av1_cnn_batchnorm_c(float **image, int channels, int width, int height, |
764 | | int stride, const float *gamma, const float *beta, |
765 | 0 | const float *mean, const float *std) { |
766 | 0 | assert(gamma && beta && beta && std && "batchnorm has null parameter!"); |
767 | 0 | for (int ch = 0; ch < channels; ch++) { |
768 | 0 | const float ch_gamma = gamma[ch]; |
769 | 0 | const float ch_beta = beta[ch]; |
770 | 0 | const float ch_mean = mean[ch]; |
771 | 0 | const float ch_std = std[ch]; |
772 | 0 | float *image_row = image[ch]; |
773 | |
|
774 | 0 | for (int row = 0; row < height; row++) { |
775 | 0 | for (int col = 0; col < width; col++) { |
776 | 0 | image_row[col] = |
777 | 0 | ch_gamma * (image_row[col] - ch_mean) / ch_std + ch_beta; |
778 | 0 | } |
779 | 0 | image_row += stride; |
780 | 0 | } |
781 | 0 | } |
782 | 0 | } |
783 | | |
784 | | void av1_cnn_deconvolve_c(const float **input, int in_width, int in_height, |
785 | | int in_stride, const CNN_LAYER_CONFIG *layer_config, |
786 | 0 | float **output, int out_stride) { |
787 | 0 | assert(layer_config->deconvolve); |
788 | |
|
789 | 0 | const int cstep = layer_config->in_channels * layer_config->out_channels; |
790 | |
|
791 | 0 | int out_width = 0; |
792 | 0 | int out_height = 0; |
793 | 0 | av1_find_cnn_layer_output_size(in_width, in_height, layer_config, &out_width, |
794 | 0 | &out_height); |
795 | 0 | switch (layer_config->pad) { |
796 | 0 | case PADDING_SAME_ZERO: |
797 | 0 | for (int i = 0; i < layer_config->out_channels; ++i) { |
798 | 0 | for (int u = 0; u < out_height; ++u) { |
799 | 0 | for (int v = 0; v < out_width; ++v) { |
800 | 0 | float sum = layer_config->bias[i]; |
801 | 0 | for (int k = 0; k < layer_config->in_channels; ++k) { |
802 | 0 | int off = k * layer_config->out_channels + i; |
803 | 0 | for (int l = 0; l < layer_config->filter_height; ++l) { |
804 | 0 | const int h = |
805 | 0 | u - l + |
806 | 0 | get_start_shift_deconvolve(layer_config->filter_height, |
807 | 0 | layer_config->skip_height); |
808 | 0 | for (int m = 0; m < layer_config->filter_width; |
809 | 0 | ++m, off += cstep) { |
810 | 0 | const int w = |
811 | 0 | v - m + |
812 | 0 | get_start_shift_deconvolve(layer_config->filter_width, |
813 | 0 | layer_config->skip_width); |
814 | 0 | if ((h % layer_config->skip_height) != 0 || |
815 | 0 | (w % layer_config->skip_width) != 0) |
816 | 0 | continue; |
817 | 0 | const int ii = h / layer_config->skip_height; |
818 | 0 | const int jj = w / layer_config->skip_width; |
819 | 0 | if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) |
820 | 0 | continue; |
821 | 0 | sum += layer_config->weights[off] * |
822 | 0 | input[k][ii * in_stride + jj]; |
823 | 0 | } |
824 | 0 | } |
825 | 0 | } |
826 | 0 | output[i][u * out_stride + v] = sum; |
827 | 0 | } |
828 | 0 | } |
829 | 0 | } |
830 | 0 | break; |
831 | 0 | case PADDING_SAME_REPLICATE: |
832 | 0 | for (int i = 0; i < layer_config->out_channels; ++i) { |
833 | 0 | for (int u = 0; u < out_height; ++u) { |
834 | 0 | for (int v = 0; v < out_width; ++v) { |
835 | 0 | float sum = layer_config->bias[i]; |
836 | 0 | for (int k = 0; k < layer_config->in_channels; ++k) { |
837 | 0 | int off = k * layer_config->out_channels + i; |
838 | 0 | for (int l = 0; l < layer_config->filter_height; ++l) { |
839 | 0 | const int h = |
840 | 0 | u - l + |
841 | 0 | get_start_shift_deconvolve(layer_config->filter_height, |
842 | 0 | layer_config->skip_height); |
843 | 0 | for (int m = 0; m < layer_config->filter_width; |
844 | 0 | ++m, off += cstep) { |
845 | 0 | const int w = |
846 | 0 | v - m + |
847 | 0 | get_start_shift_deconvolve(layer_config->filter_width, |
848 | 0 | layer_config->skip_width); |
849 | 0 | if ((h % layer_config->skip_height) != 0 || |
850 | 0 | (w % layer_config->skip_width) != 0) |
851 | 0 | continue; |
852 | 0 | const int ii = |
853 | 0 | CLAMPINDEX(h / layer_config->skip_height, in_height); |
854 | 0 | const int jj = |
855 | 0 | CLAMPINDEX(w / layer_config->skip_width, in_width); |
856 | 0 | assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); |
857 | 0 | sum += layer_config->weights[off] * |
858 | 0 | input[k][ii * in_stride + jj]; |
859 | 0 | } |
860 | 0 | } |
861 | 0 | } |
862 | 0 | output[i][u * out_stride + v] = sum; |
863 | 0 | } |
864 | 0 | } |
865 | 0 | } |
866 | 0 | break; |
867 | 0 | case PADDING_VALID: |
868 | 0 | for (int i = 0; i < layer_config->out_channels; ++i) { |
869 | 0 | for (int u = 0; u < out_height; ++u) { |
870 | 0 | for (int v = 0; v < out_width; ++v) { |
871 | 0 | float sum = layer_config->bias[i]; |
872 | 0 | for (int k = 0; k < layer_config->in_channels; ++k) { |
873 | 0 | int off = k * layer_config->out_channels + i; |
874 | 0 | for (int l = 0; l < layer_config->filter_height; ++l) { |
875 | 0 | const int h = u - l; |
876 | 0 | for (int m = 0; m < layer_config->filter_width; |
877 | 0 | ++m, off += cstep) { |
878 | 0 | const int w = v - m; |
879 | 0 | if ((h % layer_config->skip_height) != 0 || |
880 | 0 | (w % layer_config->skip_width) != 0) |
881 | 0 | continue; |
882 | 0 | const int ii = h / layer_config->skip_height; |
883 | 0 | const int jj = w / layer_config->skip_width; |
884 | 0 | if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) |
885 | 0 | continue; |
886 | 0 | sum += layer_config->weights[off] * |
887 | 0 | input[k][ii * in_stride + jj]; |
888 | 0 | } |
889 | 0 | } |
890 | 0 | } |
891 | 0 | output[i][u * out_stride + v] = sum; |
892 | 0 | } |
893 | 0 | } |
894 | 0 | } |
895 | 0 | break; |
896 | 0 | default: assert(0 && "Unknown padding type"); |
897 | 0 | } |
898 | 0 | } |
899 | | |
900 | | bool av1_cnn_predict_c(const float **input, int in_width, int in_height, |
901 | | int in_stride, const CNN_CONFIG *cnn_config, |
902 | | const CNN_THREAD_DATA *thread_data, |
903 | 0 | CNN_MULTI_OUT *output_struct) { |
904 | 0 | bool success = false; |
905 | 0 | TENSOR tensor1[CNN_MAX_BRANCHES] = { { 0 } }; |
906 | 0 | TENSOR tensor2[CNN_MAX_BRANCHES] = { { 0 } }; |
907 | |
|
908 | 0 | float **output[CNN_MAX_BRANCHES]; |
909 | 0 | const int *out_chs = output_struct->output_channels; |
910 | 0 | output[0] = output_struct->output_buffer; |
911 | 0 | for (int out_idx = 1; out_idx < output_struct->num_outputs; out_idx++) { |
912 | 0 | output[out_idx] = output[out_idx - 1] + out_chs[out_idx - 1]; |
913 | 0 | } |
914 | |
|
915 | 0 | int i_width = in_width; |
916 | 0 | int i_height = in_height; |
917 | 0 | int o_width = 0, o_height = 0; |
918 | 0 | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
919 | 0 | init_tensor(&tensor1[b]); |
920 | 0 | init_tensor(&tensor2[b]); |
921 | 0 | } |
922 | |
|
923 | 0 | const int *out_stride = output_struct->output_strides; |
924 | 0 | for (int layer = 0; layer < cnn_config->num_layers; ++layer) { |
925 | 0 | const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[layer]; |
926 | 0 | const int branch = layer_config->branch; |
927 | 0 | const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; |
928 | | |
929 | | // Allocate input tensor |
930 | 0 | if (layer == 0) { // First layer |
931 | 0 | assert(branch == 0); // First layer must be primary branch |
932 | 0 | assign_tensor(&tensor1[branch], (float **)input, |
933 | 0 | layer_config->in_channels, in_width, in_height, in_stride); |
934 | 0 | } else { // Non-first layer |
935 | | // Swap tensor1 and tensor2 |
936 | 0 | swap_tensor(&tensor1[branch], &tensor2[branch]); |
937 | |
|
938 | 0 | i_width = tensor1[branch].width; |
939 | 0 | i_height = tensor1[branch].height; |
940 | 0 | } |
941 | | |
942 | | // Allocate output tensor |
943 | 0 | av1_find_cnn_layer_output_size(i_width, i_height, layer_config, &o_width, |
944 | 0 | &o_height); |
945 | 0 | const int output_num = layer_config->output_num; |
946 | 0 | if (output_num == -1) { // Non-output layer |
947 | 0 | if (!realloc_tensor(&tensor2[branch], layer_config->out_channels, o_width, |
948 | 0 | o_height)) { |
949 | 0 | goto Error; |
950 | 0 | } |
951 | 0 | } else { // Output layer |
952 | 0 | free_tensor(&tensor2[branch]); |
953 | 0 | assign_tensor(&tensor2[branch], output[output_num], |
954 | 0 | layer_config->out_channels, o_width, o_height, |
955 | 0 | out_stride[output_num]); |
956 | 0 | } |
957 | | |
958 | | // If we are combining branches make sure that the branch to combine |
959 | | // is different from the current branch. |
960 | 0 | assert(IMPLIES(layer_config->branch_combine_type != BRANCH_NOC, |
961 | 0 | !(branch_config->branches_to_combine & (1 << branch)))); |
962 | |
|
963 | 0 | if (layer_config->branch_copy_type == BRANCH_INPUT) { |
964 | 0 | if (!copy_active_tensor_to_branches(&tensor1[branch], layer_config, |
965 | 0 | branch, tensor2)) { |
966 | 0 | goto Error; |
967 | 0 | } |
968 | 0 | } |
969 | | // Check consistency of input and output channels |
970 | 0 | assert(tensor1[branch].channels == layer_config->in_channels); |
971 | 0 | assert(tensor2[branch].channels == layer_config->out_channels); |
972 | | |
973 | | // Convolve/Deconvolve |
974 | 0 | if (!cnn_config->layer_config[layer].deconvolve) { |
975 | 0 | if (thread_data->num_workers > 1) { |
976 | 0 | convolve_layer_mt((const float **)tensor1[branch].buf, |
977 | 0 | tensor1[branch].width, tensor1[branch].height, |
978 | 0 | tensor1[branch].stride, layer_config, thread_data, |
979 | 0 | tensor2[branch].buf, tensor2[branch].stride); |
980 | 0 | } else { |
981 | 0 | av1_cnn_convolve((const float **)tensor1[branch].buf, |
982 | 0 | tensor1[branch].width, tensor1[branch].height, |
983 | 0 | tensor1[branch].stride, layer_config, |
984 | 0 | tensor2[branch].buf, tensor2[branch].stride, 0, 1); |
985 | 0 | } |
986 | 0 | } else { |
987 | 0 | av1_cnn_deconvolve((const float **)tensor1[branch].buf, |
988 | 0 | tensor1[branch].width, tensor1[branch].height, |
989 | 0 | tensor1[branch].stride, layer_config, |
990 | 0 | tensor2[branch].buf, tensor2[branch].stride); |
991 | 0 | } |
992 | |
|
993 | 0 | if (layer_config->branch_copy_type == BRANCH_OUTPUT) { |
994 | 0 | if (!copy_active_tensor_to_branches(&tensor2[branch], layer_config, |
995 | 0 | branch, tensor2)) { |
996 | 0 | goto Error; |
997 | 0 | } |
998 | 0 | } |
999 | | |
1000 | | // Add tensors from other branches if needed |
1001 | 0 | if (layer_config->branch_combine_type == BRANCH_ADD) { |
1002 | 0 | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
1003 | 0 | if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { |
1004 | 0 | assert(check_tensor_equal_size(&tensor2[b], &tensor2[branch])); |
1005 | 0 | av1_cnn_add(tensor2[branch].buf, tensor2[branch].channels, |
1006 | 0 | tensor2[branch].width, tensor2[branch].height, |
1007 | 0 | tensor2[branch].stride, (const float **)tensor2[b].buf); |
1008 | 0 | } |
1009 | 0 | } |
1010 | 0 | } |
1011 | | |
1012 | | // Non-linearity |
1013 | 0 | av1_cnn_activate(tensor2[branch].buf, tensor2[branch].channels, |
1014 | 0 | tensor2[branch].width, tensor2[branch].height, |
1015 | 0 | tensor2[branch].stride, layer_config->activation); |
1016 | |
|
1017 | 0 | if (layer_config->bn_params.bn_gamma) { |
1018 | 0 | av1_cnn_batchnorm( |
1019 | 0 | tensor2[branch].buf, tensor2[branch].channels, tensor2[branch].width, |
1020 | 0 | tensor2[branch].height, tensor2[branch].stride, |
1021 | 0 | layer_config->bn_params.bn_gamma, layer_config->bn_params.bn_beta, |
1022 | 0 | layer_config->bn_params.bn_mean, layer_config->bn_params.bn_std); |
1023 | 0 | } |
1024 | | |
1025 | | // Concatenate tensors |
1026 | 0 | if (layer_config->branch_combine_type == BRANCH_CAT) { |
1027 | 0 | if (output_num == -1) { // Non-output layer |
1028 | 0 | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
1029 | 0 | if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { |
1030 | 0 | assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); |
1031 | 0 | assert(tensor2[b].channels > 0); |
1032 | 0 | if (!concat_tensor(&tensor2[b], &tensor2[branch])) goto Error; |
1033 | 0 | } |
1034 | 0 | } |
1035 | 0 | } else { // Output layer |
1036 | 0 | const int existing_channels = tensor2[branch].channels; |
1037 | 0 | int num_chs = existing_channels; |
1038 | 0 | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
1039 | 0 | if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { |
1040 | 0 | assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); |
1041 | | // Needed only to assign the new channel buffers |
1042 | 0 | num_chs += tensor2[b].channels; |
1043 | 0 | } |
1044 | 0 | } |
1045 | 0 | assign_tensor(&tensor2[branch], output[output_num], num_chs, o_width, |
1046 | 0 | o_height, out_stride[output_num]); |
1047 | |
|
1048 | 0 | num_chs = existing_channels; |
1049 | 0 | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
1050 | 0 | if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { |
1051 | 0 | assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); |
1052 | | // Needed only to assign the new channel buffers |
1053 | 0 | copy_tensor(&tensor2[b], tensor2[b].channels, num_chs, |
1054 | 0 | &tensor2[branch]); |
1055 | 0 | num_chs += tensor2[b].channels; |
1056 | 0 | } |
1057 | 0 | } |
1058 | 0 | } |
1059 | 0 | } |
1060 | | |
1061 | 0 | if (layer_config->branch_copy_type == BRANCH_COMBINED) { |
1062 | 0 | if (!copy_active_tensor_to_branches(&tensor2[branch], layer_config, |
1063 | 0 | branch, tensor2)) { |
1064 | 0 | goto Error; |
1065 | 0 | } |
1066 | 0 | } |
1067 | 0 | } |
1068 | | |
1069 | 0 | success = true; |
1070 | 0 | Error: |
1071 | 0 | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { |
1072 | 0 | free_tensor(&tensor1[b]); |
1073 | 0 | free_tensor(&tensor2[b]); |
1074 | 0 | } |
1075 | 0 | return success; |
1076 | 0 | } |
1077 | | |
1078 | | // Assume output already has proper allocation |
1079 | | // Assume input image buffers all have same resolution and strides |
1080 | | bool av1_cnn_predict_img_multi_out(uint8_t **dgd, int width, int height, |
1081 | | int stride, const CNN_CONFIG *cnn_config, |
1082 | | const CNN_THREAD_DATA *thread_data, |
1083 | 0 | CNN_MULTI_OUT *output) { |
1084 | 0 | const float max_val = 255.0; |
1085 | |
|
1086 | 0 | const int in_width = width + 2 * cnn_config->ext_width; |
1087 | 0 | const int in_height = height + 2 * cnn_config->ext_height; |
1088 | 0 | const int in_channels = cnn_config->layer_config[0].in_channels; |
1089 | 0 | float *inputs[CNN_MAX_CHANNELS]; |
1090 | 0 | float *input_ = |
1091 | 0 | (float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_)); |
1092 | 0 | if (!input_) return false; |
1093 | 0 | const int in_stride = in_width; |
1094 | |
|
1095 | 0 | for (int c = 0; c < in_channels; ++c) { |
1096 | 0 | inputs[c] = input_ + c * in_stride * in_height; |
1097 | 0 | float *input = |
1098 | 0 | inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width; |
1099 | |
|
1100 | 0 | if (cnn_config->strict_bounds) { |
1101 | 0 | for (int i = 0; i < height; ++i) |
1102 | 0 | for (int j = 0; j < width; ++j) |
1103 | 0 | input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; |
1104 | | // extend left and right |
1105 | 0 | for (int i = 0; i < height; ++i) { |
1106 | 0 | for (int j = -cnn_config->ext_width; j < 0; ++j) |
1107 | 0 | input[i * in_stride + j] = input[i * in_stride]; |
1108 | 0 | for (int j = width; j < width + cnn_config->ext_width; ++j) |
1109 | 0 | input[i * in_stride + j] = input[i * in_stride + width - 1]; |
1110 | 0 | } |
1111 | | // extend top and bottom |
1112 | 0 | for (int i = -cnn_config->ext_height; i < 0; ++i) |
1113 | 0 | memcpy(&input[i * in_stride - cnn_config->ext_width], |
1114 | 0 | &input[-cnn_config->ext_width], in_width * sizeof(*input)); |
1115 | 0 | for (int i = height; i < height + cnn_config->ext_height; ++i) |
1116 | 0 | memcpy(&input[i * in_stride - cnn_config->ext_width], |
1117 | 0 | &input[(height - 1) * in_stride - cnn_config->ext_width], |
1118 | 0 | in_width * sizeof(*input)); |
1119 | 0 | } else { |
1120 | 0 | for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height; |
1121 | 0 | ++i) |
1122 | 0 | for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width; |
1123 | 0 | ++j) |
1124 | 0 | input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; |
1125 | 0 | } |
1126 | 0 | } |
1127 | 0 | bool success = av1_cnn_predict((const float **)inputs, in_width, in_height, |
1128 | 0 | in_stride, cnn_config, thread_data, output); |
1129 | |
|
1130 | 0 | aom_free(input_); |
1131 | 0 | return success; |
1132 | 0 | } |
1133 | | |
1134 | | // Assume output already has proper allocation |
1135 | | // Assume input image buffers all have same resolution and strides |
1136 | | bool av1_cnn_predict_img_multi_out_highbd(uint16_t **dgd, int width, int height, |
1137 | | int stride, |
1138 | | const CNN_CONFIG *cnn_config, |
1139 | | const CNN_THREAD_DATA *thread_data, |
1140 | | int bit_depth, |
1141 | 0 | CNN_MULTI_OUT *output) { |
1142 | 0 | const float max_val = (float)((1 << bit_depth) - 1); |
1143 | |
|
1144 | 0 | const int in_width = width + 2 * cnn_config->ext_width; |
1145 | 0 | const int in_height = height + 2 * cnn_config->ext_height; |
1146 | 0 | const int in_channels = cnn_config->layer_config[0].in_channels; |
1147 | 0 | float *inputs[CNN_MAX_CHANNELS]; |
1148 | 0 | float *input_ = |
1149 | 0 | (float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_)); |
1150 | 0 | if (!input_) return false; |
1151 | 0 | const int in_stride = in_width; |
1152 | |
|
1153 | 0 | for (int c = 0; c < in_channels; ++c) { |
1154 | 0 | inputs[c] = input_ + c * in_stride * in_height; |
1155 | 0 | float *input = |
1156 | 0 | inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width; |
1157 | |
|
1158 | 0 | if (cnn_config->strict_bounds) { |
1159 | 0 | for (int i = 0; i < height; ++i) |
1160 | 0 | for (int j = 0; j < width; ++j) |
1161 | 0 | input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; |
1162 | | // extend left and right |
1163 | 0 | for (int i = 0; i < height; ++i) { |
1164 | 0 | for (int j = -cnn_config->ext_width; j < 0; ++j) |
1165 | 0 | input[i * in_stride + j] = input[i * in_stride]; |
1166 | 0 | for (int j = width; j < width + cnn_config->ext_width; ++j) |
1167 | 0 | input[i * in_stride + j] = input[i * in_stride + width - 1]; |
1168 | 0 | } |
1169 | | // extend top and bottom |
1170 | 0 | for (int i = -cnn_config->ext_height; i < 0; ++i) |
1171 | 0 | memcpy(&input[i * in_stride - cnn_config->ext_width], |
1172 | 0 | &input[-cnn_config->ext_width], in_width * sizeof(*input)); |
1173 | 0 | for (int i = height; i < height + cnn_config->ext_height; ++i) |
1174 | 0 | memcpy(&input[i * in_stride - cnn_config->ext_width], |
1175 | 0 | &input[(height - 1) * in_stride - cnn_config->ext_width], |
1176 | 0 | in_width * sizeof(*input)); |
1177 | 0 | } else { |
1178 | 0 | for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height; |
1179 | 0 | ++i) |
1180 | 0 | for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width; |
1181 | 0 | ++j) |
1182 | 0 | input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; |
1183 | 0 | } |
1184 | 0 | } |
1185 | |
|
1186 | 0 | bool success = av1_cnn_predict((const float **)inputs, in_width, in_height, |
1187 | 0 | in_stride, cnn_config, thread_data, output); |
1188 | |
|
1189 | 0 | aom_free(input_); |
1190 | 0 | return success; |
1191 | 0 | } |