/src/aom/av1/encoder/encodeframe_utils.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2020, Alliance for Open Media. All rights reserved. |
3 | | * |
4 | | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | | * was not distributed with this source code in the LICENSE file, you can |
7 | | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | | * Media Patent License 1.0 was not distributed with this source code in the |
9 | | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | | */ |
11 | | |
12 | | #include "av1/common/common_data.h" |
13 | | #include "av1/common/quant_common.h" |
14 | | #include "av1/common/reconintra.h" |
15 | | |
16 | | #include "av1/encoder/encoder.h" |
17 | | #include "av1/encoder/encodeframe_utils.h" |
18 | | #include "av1/encoder/encoder_utils.h" |
19 | | #include "av1/encoder/rdopt.h" |
20 | | |
21 | | void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit, |
22 | | const BLOCK_SIZE bsize, const int mi_row, |
23 | 0 | const int mi_col, int *const rdmult) { |
24 | 0 | const AV1_COMMON *const cm = &cpi->common; |
25 | |
|
26 | 0 | const BLOCK_SIZE bsize_base = BLOCK_16X16; |
27 | 0 | const int num_mi_w = mi_size_wide[bsize_base]; |
28 | 0 | const int num_mi_h = mi_size_high[bsize_base]; |
29 | 0 | const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; |
30 | 0 | const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; |
31 | 0 | const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; |
32 | 0 | const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; |
33 | 0 | int row, col; |
34 | 0 | double num_of_mi = 0.0; |
35 | 0 | double geom_mean_of_scale = 1.0; |
36 | | |
37 | | // To avoid overflow of 'geom_mean_of_scale', bsize_base must be at least |
38 | | // BLOCK_8X8. |
39 | | // |
40 | | // For bsize=BLOCK_128X128 and bsize_base=BLOCK_8X8, the loop below would |
41 | | // iterate 256 times. Considering the maximum value of |
42 | | // cpi->ssim_rdmult_scaling_factors (see av1_set_mb_ssim_rdmult_scaling()), |
43 | | // geom_mean_of_scale can go up to 4.8323^256, which is within DBL_MAX |
44 | | // (maximum value a double data type can hold). If bsize_base is modified to |
45 | | // BLOCK_4X4 (minimum possible block size), geom_mean_of_scale can go up |
46 | | // to 4.8323^1024 and exceed DBL_MAX, resulting in data overflow. |
47 | 0 | assert(bsize_base >= BLOCK_8X8); |
48 | 0 | assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM || |
49 | 0 | cpi->oxcf.tune_cfg.tuning == AOM_TUNE_IQ); |
50 | |
|
51 | 0 | for (row = mi_row / num_mi_w; |
52 | 0 | row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { |
53 | 0 | for (col = mi_col / num_mi_h; |
54 | 0 | col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { |
55 | 0 | const int index = row * num_cols + col; |
56 | 0 | assert(cpi->ssim_rdmult_scaling_factors[index] != 0.0); |
57 | 0 | geom_mean_of_scale *= cpi->ssim_rdmult_scaling_factors[index]; |
58 | 0 | num_of_mi += 1.0; |
59 | 0 | } |
60 | 0 | } |
61 | 0 | geom_mean_of_scale = pow(geom_mean_of_scale, (1.0 / num_of_mi)); |
62 | |
|
63 | 0 | *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5); |
64 | 0 | *rdmult = AOMMAX(*rdmult, 0); |
65 | 0 | av1_set_error_per_bit(errorperbit, *rdmult); |
66 | 0 | } |
67 | | |
68 | | #if CONFIG_SALIENCY_MAP |
69 | | void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi, |
70 | | int *errorperbit, const BLOCK_SIZE bsize, |
71 | | const int mi_row, const int mi_col, |
72 | | int *const rdmult) { |
73 | | const AV1_COMMON *const cm = &cpi->common; |
74 | | const int num_mi_w = mi_size_wide[bsize]; |
75 | | const int num_mi_h = mi_size_high[bsize]; |
76 | | const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; |
77 | | |
78 | | *rdmult = |
79 | | (int)(*rdmult * cpi->sm_scaling_factor[(mi_row / num_mi_h) * num_cols + |
80 | | (mi_col / num_mi_w)]); |
81 | | |
82 | | *rdmult = AOMMAX(*rdmult, 0); |
83 | | av1_set_error_per_bit(errorperbit, *rdmult); |
84 | | } |
85 | | #endif |
86 | | |
87 | | // TODO(angiebird): Move this function to tpl_model.c |
88 | | #if !CONFIG_REALTIME_ONLY |
89 | | int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
90 | | const BLOCK_SIZE bsize, const int mi_row, |
91 | 0 | const int mi_col) { |
92 | 0 | const AV1_COMMON *const cm = &cpi->common; |
93 | 0 | assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
94 | 0 | cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
95 | 0 | const int tpl_idx = cpi->gf_frame_index; |
96 | 0 | int deltaq_rdmult = set_rdmult(cpi, x, -1); |
97 | 0 | if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult; |
98 | 0 | if (cm->superres_scale_denominator != SCALE_NUMERATOR) return deltaq_rdmult; |
99 | 0 | if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult; |
100 | 0 | if (x->rb == 0) return deltaq_rdmult; |
101 | | |
102 | 0 | TplParams *const tpl_data = &cpi->ppi->tpl_data; |
103 | 0 | TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; |
104 | 0 | TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
105 | |
|
106 | 0 | const int mi_wide = mi_size_wide[bsize]; |
107 | 0 | const int mi_high = mi_size_high[bsize]; |
108 | |
|
109 | 0 | int tpl_stride = tpl_frame->stride; |
110 | 0 | double intra_cost_base = 0; |
111 | 0 | double mc_dep_cost_base = 0; |
112 | 0 | double cbcmp_base = 0; |
113 | 0 | const int step = 1 << tpl_data->tpl_stats_block_mis_log2; |
114 | |
|
115 | 0 | for (int row = mi_row; row < mi_row + mi_high; row += step) { |
116 | 0 | for (int col = mi_col; col < mi_col + mi_wide; col += step) { |
117 | 0 | if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols) |
118 | 0 | continue; |
119 | | |
120 | 0 | TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( |
121 | 0 | row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; |
122 | |
|
123 | 0 | double cbcmp = (double)this_stats->srcrf_dist; |
124 | 0 | int64_t mc_dep_delta = |
125 | 0 | RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
126 | 0 | this_stats->mc_dep_dist); |
127 | 0 | double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS); |
128 | 0 | intra_cost_base += log(dist_scaled) * cbcmp; |
129 | 0 | mc_dep_cost_base += log(3 * dist_scaled + mc_dep_delta) * cbcmp; |
130 | 0 | cbcmp_base += cbcmp; |
131 | 0 | } |
132 | 0 | } |
133 | |
|
134 | 0 | if (cbcmp_base == 0) return deltaq_rdmult; |
135 | | |
136 | 0 | double rk = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base); |
137 | 0 | deltaq_rdmult = (int)(deltaq_rdmult * (rk / x->rb)); |
138 | |
|
139 | 0 | return AOMMAX(deltaq_rdmult, 1); |
140 | 0 | } |
141 | | #endif // !CONFIG_REALTIME_ONLY |
142 | | |
143 | | static inline void update_filter_type_count(FRAME_COUNTS *counts, |
144 | | const MACROBLOCKD *xd, |
145 | 0 | const MB_MODE_INFO *mbmi) { |
146 | 0 | int dir; |
147 | 0 | for (dir = 0; dir < 2; ++dir) { |
148 | 0 | const int ctx = av1_get_pred_context_switchable_interp(xd, dir); |
149 | 0 | InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); |
150 | | |
151 | | // Only allow the 3 valid SWITCHABLE_FILTERS. |
152 | 0 | assert(filter < SWITCHABLE_FILTERS); |
153 | 0 | ++counts->switchable_interp[ctx][filter]; |
154 | 0 | } |
155 | 0 | } |
156 | | |
157 | | // This function will copy the best reference mode information from |
158 | | // MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT. |
159 | | static inline void copy_mbmi_ext_frame_to_mbmi_ext( |
160 | | MB_MODE_INFO_EXT *mbmi_ext, |
161 | 0 | const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) { |
162 | 0 | memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack, |
163 | 0 | sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE])); |
164 | 0 | memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight, |
165 | 0 | sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE])); |
166 | 0 | mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context; |
167 | 0 | mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count; |
168 | 0 | memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs, |
169 | 0 | sizeof(mbmi_ext->global_mvs)); |
170 | 0 | } |
171 | | |
172 | | void av1_update_state(const AV1_COMP *const cpi, ThreadData *td, |
173 | | const PICK_MODE_CONTEXT *const ctx, int mi_row, |
174 | 0 | int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { |
175 | 0 | int i, x_idx, y; |
176 | 0 | const AV1_COMMON *const cm = &cpi->common; |
177 | 0 | const CommonModeInfoParams *const mi_params = &cm->mi_params; |
178 | 0 | const int num_planes = av1_num_planes(cm); |
179 | 0 | MACROBLOCK *const x = &td->mb; |
180 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
181 | 0 | struct macroblock_plane *const p = x->plane; |
182 | 0 | struct macroblockd_plane *const pd = xd->plane; |
183 | 0 | const MB_MODE_INFO *const mi = &ctx->mic; |
184 | 0 | MB_MODE_INFO *const mi_addr = xd->mi[0]; |
185 | 0 | const struct segmentation *const seg = &cm->seg; |
186 | 0 | assert(bsize < BLOCK_SIZES_ALL); |
187 | 0 | const int bw = mi_size_wide[mi->bsize]; |
188 | 0 | const int bh = mi_size_high[mi->bsize]; |
189 | 0 | const int mis = mi_params->mi_stride; |
190 | 0 | const int mi_width = mi_size_wide[bsize]; |
191 | 0 | const int mi_height = mi_size_high[bsize]; |
192 | 0 | TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
193 | |
|
194 | 0 | assert(mi->bsize == bsize); |
195 | |
|
196 | 0 | *mi_addr = *mi; |
197 | 0 | copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best, |
198 | 0 | av1_ref_frame_type(ctx->mic.ref_frame)); |
199 | |
|
200 | 0 | memcpy(txfm_info->blk_skip, ctx->blk_skip, |
201 | 0 | sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); |
202 | |
|
203 | 0 | txfm_info->skip_txfm = ctx->rd_stats.skip_txfm; |
204 | |
|
205 | 0 | xd->tx_type_map = ctx->tx_type_map; |
206 | 0 | xd->tx_type_map_stride = mi_size_wide[bsize]; |
207 | | // If not dry_run, copy the transform type data into the frame level buffer. |
208 | | // Encoder will fetch tx types when writing bitstream. |
209 | 0 | if (!dry_run) { |
210 | 0 | const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); |
211 | 0 | uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx; |
212 | 0 | const int mi_stride = mi_params->mi_stride; |
213 | 0 | for (int blk_row = 0; blk_row < bh; ++blk_row) { |
214 | 0 | av1_copy_array(tx_type_map + blk_row * mi_stride, |
215 | 0 | xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw); |
216 | 0 | } |
217 | 0 | xd->tx_type_map = tx_type_map; |
218 | 0 | xd->tx_type_map_stride = mi_stride; |
219 | 0 | } |
220 | | |
221 | | // If segmentation in use |
222 | 0 | if (seg->enabled) { |
223 | | // For in frame complexity AQ copy the segment id from the segment map. |
224 | 0 | if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) { |
225 | 0 | const uint8_t *const map = |
226 | 0 | seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; |
227 | 0 | mi_addr->segment_id = |
228 | 0 | map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0; |
229 | 0 | } |
230 | | // Else for cyclic refresh mode update the segment map, set the segment id |
231 | | // and then update the quantizer. |
232 | 0 | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
233 | 0 | mi_addr->segment_id != AM_SEGMENT_ID_INACTIVE && |
234 | 0 | !cpi->rc.rtc_external_ratectrl) { |
235 | 0 | av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize, |
236 | 0 | ctx->rd_stats.rate, ctx->rd_stats.dist, |
237 | 0 | txfm_info->skip_txfm, dry_run); |
238 | 0 | } |
239 | 0 | if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd)) |
240 | 0 | mi_addr->uv_mode = UV_DC_PRED; |
241 | |
|
242 | 0 | if (!dry_run && !mi_addr->skip_txfm) { |
243 | 0 | int cdf_num; |
244 | 0 | const uint8_t spatial_pred = av1_get_spatial_seg_pred( |
245 | 0 | cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4); |
246 | 0 | const uint8_t coded_id = av1_neg_interleave( |
247 | 0 | mi_addr->segment_id, spatial_pred, seg->last_active_segid + 1); |
248 | 0 | int64_t spatial_cost = x->mode_costs.spatial_pred_cost[cdf_num][coded_id]; |
249 | 0 | td->rd_counts.seg_tmp_pred_cost[0] += spatial_cost; |
250 | |
|
251 | 0 | const int pred_segment_id = |
252 | 0 | cm->last_frame_seg_map |
253 | 0 | ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row, |
254 | 0 | mi_col) |
255 | 0 | : 0; |
256 | 0 | const int use_tmp_pred = pred_segment_id == mi_addr->segment_id; |
257 | 0 | const uint8_t tmp_pred_ctx = av1_get_pred_context_seg_id(xd); |
258 | 0 | td->rd_counts.seg_tmp_pred_cost[1] += |
259 | 0 | x->mode_costs.tmp_pred_cost[tmp_pred_ctx][use_tmp_pred]; |
260 | 0 | if (!use_tmp_pred) { |
261 | 0 | td->rd_counts.seg_tmp_pred_cost[1] += spatial_cost; |
262 | 0 | } |
263 | 0 | } |
264 | 0 | } |
265 | | |
266 | | // Count zero motion vector. |
267 | 0 | if (!dry_run && !frame_is_intra_only(cm)) { |
268 | 0 | const MV mv = mi->mv[0].as_mv; |
269 | 0 | if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME && |
270 | 0 | abs(mv.row) < 8 && abs(mv.col) < 8) { |
271 | 0 | const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh); |
272 | | // Accumulate low_content_frame. |
273 | 0 | for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1; |
274 | 0 | } |
275 | 0 | } |
276 | |
|
277 | 0 | for (i = 0; i < num_planes; ++i) { |
278 | 0 | p[i].coeff = ctx->coeff[i]; |
279 | 0 | p[i].qcoeff = ctx->qcoeff[i]; |
280 | 0 | p[i].dqcoeff = ctx->dqcoeff[i]; |
281 | 0 | p[i].eobs = ctx->eobs[i]; |
282 | 0 | p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
283 | 0 | } |
284 | 0 | for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
285 | | // Restore the coding context of the MB to that that was in place |
286 | | // when the mode was picked for it |
287 | |
|
288 | 0 | const int cols = |
289 | 0 | AOMMIN((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width, mi_width); |
290 | 0 | const int rows = AOMMIN( |
291 | 0 | (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height, mi_height); |
292 | 0 | for (y = 0; y < rows; y++) { |
293 | 0 | for (x_idx = 0; x_idx < cols; x_idx++) xd->mi[x_idx + y * mis] = mi_addr; |
294 | 0 | } |
295 | |
|
296 | 0 | if (cpi->oxcf.q_cfg.aq_mode) |
297 | 0 | av1_init_plane_quantizers(cpi, x, mi_addr->segment_id, 0); |
298 | |
|
299 | 0 | if (dry_run) return; |
300 | | |
301 | | #if CONFIG_INTERNAL_STATS |
302 | | { |
303 | | unsigned int *const mode_chosen_counts = |
304 | | (unsigned int *)cpi->mode_chosen_counts; // Cast const away. |
305 | | if (frame_is_intra_only(cm)) { |
306 | | static const int kf_mode_index[] = { |
307 | | THR_DC /*DC_PRED*/, |
308 | | THR_V_PRED /*V_PRED*/, |
309 | | THR_H_PRED /*H_PRED*/, |
310 | | THR_D45_PRED /*D45_PRED*/, |
311 | | THR_D135_PRED /*D135_PRED*/, |
312 | | THR_D113_PRED /*D113_PRED*/, |
313 | | THR_D157_PRED /*D157_PRED*/, |
314 | | THR_D203_PRED /*D203_PRED*/, |
315 | | THR_D67_PRED /*D67_PRED*/, |
316 | | THR_SMOOTH, /*SMOOTH_PRED*/ |
317 | | THR_SMOOTH_V, /*SMOOTH_V_PRED*/ |
318 | | THR_SMOOTH_H, /*SMOOTH_H_PRED*/ |
319 | | THR_PAETH /*PAETH_PRED*/, |
320 | | }; |
321 | | ++mode_chosen_counts[kf_mode_index[mi_addr->mode]]; |
322 | | } else { |
323 | | // Note how often each mode chosen as best |
324 | | ++mode_chosen_counts[ctx->best_mode_index]; |
325 | | } |
326 | | } |
327 | | #endif |
328 | 0 | if (!frame_is_intra_only(cm)) { |
329 | 0 | if (is_inter_block(mi) && cm->features.interp_filter == SWITCHABLE) { |
330 | | // When the frame interp filter is SWITCHABLE, several cases that always |
331 | | // use the default type (EIGHTTAP_REGULAR) are described in |
332 | | // av1_is_interp_needed(). Here, we should keep the counts for all |
333 | | // applicable blocks, so the frame filter resetting decision in |
334 | | // fix_interp_filter() is made correctly. |
335 | 0 | update_filter_type_count(td->counts, xd, mi_addr); |
336 | 0 | } |
337 | 0 | } |
338 | |
|
339 | 0 | const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col); |
340 | 0 | const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row); |
341 | 0 | if (cm->seq_params->order_hint_info.enable_ref_frame_mvs) |
342 | 0 | av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); |
343 | 0 | } |
344 | | |
345 | | void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, |
346 | 0 | PREDICTION_MODE mode, int16_t mode_context) { |
347 | 0 | (void)counts; |
348 | |
|
349 | 0 | int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
350 | 0 | if (mode == NEWMV) { |
351 | | #if CONFIG_ENTROPY_STATS |
352 | | ++counts->newmv_mode[mode_ctx][0]; |
353 | | #endif |
354 | 0 | update_cdf(fc->newmv_cdf[mode_ctx], 0, 2); |
355 | 0 | return; |
356 | 0 | } |
357 | | |
358 | | #if CONFIG_ENTROPY_STATS |
359 | | ++counts->newmv_mode[mode_ctx][1]; |
360 | | #endif |
361 | 0 | update_cdf(fc->newmv_cdf[mode_ctx], 1, 2); |
362 | |
|
363 | 0 | mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
364 | 0 | if (mode == GLOBALMV) { |
365 | | #if CONFIG_ENTROPY_STATS |
366 | | ++counts->zeromv_mode[mode_ctx][0]; |
367 | | #endif |
368 | 0 | update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2); |
369 | 0 | return; |
370 | 0 | } |
371 | | |
372 | | #if CONFIG_ENTROPY_STATS |
373 | | ++counts->zeromv_mode[mode_ctx][1]; |
374 | | #endif |
375 | 0 | update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2); |
376 | |
|
377 | 0 | mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
378 | | #if CONFIG_ENTROPY_STATS |
379 | | ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; |
380 | | #endif |
381 | 0 | update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2); |
382 | 0 | } |
383 | | |
384 | | static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, |
385 | 0 | FRAME_COUNTS *counts) { |
386 | 0 | FRAME_CONTEXT *fc = xd->tile_ctx; |
387 | 0 | const BLOCK_SIZE bsize = mbmi->bsize; |
388 | 0 | const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
389 | 0 | const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
390 | |
|
391 | 0 | (void)counts; |
392 | |
|
393 | 0 | if (mbmi->mode == DC_PRED) { |
394 | 0 | const int n = pmi->palette_size[0]; |
395 | 0 | const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); |
396 | |
|
397 | | #if CONFIG_ENTROPY_STATS |
398 | | ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0]; |
399 | | #endif |
400 | 0 | update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx], |
401 | 0 | n > 0, 2); |
402 | 0 | if (n > 0) { |
403 | | #if CONFIG_ENTROPY_STATS |
404 | | ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; |
405 | | #endif |
406 | 0 | update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx], |
407 | 0 | n - PALETTE_MIN_SIZE, PALETTE_SIZES); |
408 | 0 | } |
409 | 0 | } |
410 | |
|
411 | 0 | if (mbmi->uv_mode == UV_DC_PRED) { |
412 | 0 | const int n = pmi->palette_size[1]; |
413 | 0 | const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); |
414 | |
|
415 | | #if CONFIG_ENTROPY_STATS |
416 | | ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0]; |
417 | | #endif |
418 | 0 | update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2); |
419 | |
|
420 | 0 | if (n > 0) { |
421 | | #if CONFIG_ENTROPY_STATS |
422 | | ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; |
423 | | #endif |
424 | 0 | update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx], |
425 | 0 | n - PALETTE_MIN_SIZE, PALETTE_SIZES); |
426 | 0 | } |
427 | 0 | } |
428 | 0 | } |
429 | | |
430 | | void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts, |
431 | | MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, |
432 | | const MB_MODE_INFO *above_mi, |
433 | 0 | const MB_MODE_INFO *left_mi, const int intraonly) { |
434 | 0 | FRAME_CONTEXT *fc = xd->tile_ctx; |
435 | 0 | const PREDICTION_MODE y_mode = mbmi->mode; |
436 | 0 | (void)counts; |
437 | 0 | const BLOCK_SIZE bsize = mbmi->bsize; |
438 | |
|
439 | 0 | if (intraonly) { |
440 | | #if CONFIG_ENTROPY_STATS |
441 | | const PREDICTION_MODE above = av1_above_block_mode(above_mi); |
442 | | const PREDICTION_MODE left = av1_left_block_mode(left_mi); |
443 | | const int above_ctx = intra_mode_context[above]; |
444 | | const int left_ctx = intra_mode_context[left]; |
445 | | ++counts->kf_y_mode[above_ctx][left_ctx][y_mode]; |
446 | | #endif // CONFIG_ENTROPY_STATS |
447 | 0 | update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES); |
448 | 0 | } else { |
449 | | #if CONFIG_ENTROPY_STATS |
450 | | ++counts->y_mode[size_group_lookup[bsize]][y_mode]; |
451 | | #endif // CONFIG_ENTROPY_STATS |
452 | 0 | update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES); |
453 | 0 | } |
454 | |
|
455 | 0 | if (av1_filter_intra_allowed(cm, mbmi)) { |
456 | 0 | const int use_filter_intra_mode = |
457 | 0 | mbmi->filter_intra_mode_info.use_filter_intra; |
458 | | #if CONFIG_ENTROPY_STATS |
459 | | ++counts->filter_intra[mbmi->bsize][use_filter_intra_mode]; |
460 | | if (use_filter_intra_mode) { |
461 | | ++counts |
462 | | ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode]; |
463 | | } |
464 | | #endif // CONFIG_ENTROPY_STATS |
465 | 0 | update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2); |
466 | 0 | if (use_filter_intra_mode) { |
467 | 0 | update_cdf(fc->filter_intra_mode_cdf, |
468 | 0 | mbmi->filter_intra_mode_info.filter_intra_mode, |
469 | 0 | FILTER_INTRA_MODES); |
470 | 0 | } |
471 | 0 | } |
472 | 0 | if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { |
473 | | #if CONFIG_ENTROPY_STATS |
474 | | ++counts->angle_delta[mbmi->mode - V_PRED] |
475 | | [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA]; |
476 | | #endif |
477 | 0 | update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED], |
478 | 0 | mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA, |
479 | 0 | 2 * MAX_ANGLE_DELTA + 1); |
480 | 0 | } |
481 | |
|
482 | 0 | if (!xd->is_chroma_ref) return; |
483 | | |
484 | 0 | const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
485 | 0 | const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); |
486 | | #if CONFIG_ENTROPY_STATS |
487 | | ++counts->uv_mode[cfl_allowed][y_mode][uv_mode]; |
488 | | #endif // CONFIG_ENTROPY_STATS |
489 | 0 | update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode, |
490 | 0 | UV_INTRA_MODES - !cfl_allowed); |
491 | 0 | if (uv_mode == UV_CFL_PRED) { |
492 | 0 | const int8_t joint_sign = mbmi->cfl_alpha_signs; |
493 | 0 | const uint8_t idx = mbmi->cfl_alpha_idx; |
494 | |
|
495 | | #if CONFIG_ENTROPY_STATS |
496 | | ++counts->cfl_sign[joint_sign]; |
497 | | #endif |
498 | 0 | update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS); |
499 | 0 | if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { |
500 | 0 | aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
501 | |
|
502 | | #if CONFIG_ENTROPY_STATS |
503 | | ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)]; |
504 | | #endif |
505 | 0 | update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE); |
506 | 0 | } |
507 | 0 | if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { |
508 | 0 | aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
509 | |
|
510 | | #if CONFIG_ENTROPY_STATS |
511 | | ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)]; |
512 | | #endif |
513 | 0 | update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE); |
514 | 0 | } |
515 | 0 | } |
516 | 0 | const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode); |
517 | 0 | if (av1_is_directional_mode(intra_mode) && av1_use_angle_delta(bsize)) { |
518 | | #if CONFIG_ENTROPY_STATS |
519 | | ++counts->angle_delta[intra_mode - V_PRED] |
520 | | [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA]; |
521 | | #endif |
522 | 0 | update_cdf(fc->angle_delta_cdf[intra_mode - V_PRED], |
523 | 0 | mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA, |
524 | 0 | 2 * MAX_ANGLE_DELTA + 1); |
525 | 0 | } |
526 | 0 | if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { |
527 | 0 | update_palette_cdf(xd, mbmi, counts); |
528 | 0 | } |
529 | 0 | } |
530 | | |
531 | | void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, |
532 | | int mi_row, int mi_col, BLOCK_SIZE bsize, |
533 | 0 | const int num_planes) { |
534 | 0 | MACROBLOCKD *xd = &x->e_mbd; |
535 | 0 | int p; |
536 | 0 | const int num_4x4_blocks_wide = mi_size_wide[bsize]; |
537 | 0 | const int num_4x4_blocks_high = mi_size_high[bsize]; |
538 | 0 | int mi_width = mi_size_wide[bsize]; |
539 | 0 | int mi_height = mi_size_high[bsize]; |
540 | 0 | for (p = 0; p < num_planes; p++) { |
541 | 0 | int tx_col = mi_col; |
542 | 0 | int tx_row = mi_row & MAX_MIB_MASK; |
543 | 0 | memcpy( |
544 | 0 | xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), |
545 | 0 | ctx->a + num_4x4_blocks_wide * p, |
546 | 0 | (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
547 | 0 | xd->plane[p].subsampling_x); |
548 | 0 | memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), |
549 | 0 | ctx->l + num_4x4_blocks_high * p, |
550 | 0 | (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
551 | 0 | xd->plane[p].subsampling_y); |
552 | 0 | } |
553 | 0 | memcpy(xd->above_partition_context + mi_col, ctx->sa, |
554 | 0 | sizeof(*xd->above_partition_context) * mi_width); |
555 | 0 | memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl, |
556 | 0 | sizeof(xd->left_partition_context[0]) * mi_height); |
557 | 0 | xd->above_txfm_context = ctx->p_ta; |
558 | 0 | xd->left_txfm_context = ctx->p_tl; |
559 | 0 | memcpy(xd->above_txfm_context, ctx->ta, |
560 | 0 | sizeof(*xd->above_txfm_context) * mi_width); |
561 | 0 | memcpy(xd->left_txfm_context, ctx->tl, |
562 | 0 | sizeof(*xd->left_txfm_context) * mi_height); |
563 | 0 | } |
564 | | |
565 | | void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, |
566 | | int mi_row, int mi_col, BLOCK_SIZE bsize, |
567 | 0 | const int num_planes) { |
568 | 0 | const MACROBLOCKD *xd = &x->e_mbd; |
569 | 0 | int p; |
570 | 0 | int mi_width = mi_size_wide[bsize]; |
571 | 0 | int mi_height = mi_size_high[bsize]; |
572 | | |
573 | | // buffer the above/left context information of the block in search. |
574 | 0 | for (p = 0; p < num_planes; ++p) { |
575 | 0 | int tx_col = mi_col; |
576 | 0 | int tx_row = mi_row & MAX_MIB_MASK; |
577 | 0 | memcpy( |
578 | 0 | ctx->a + mi_width * p, |
579 | 0 | xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), |
580 | 0 | (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x); |
581 | 0 | memcpy(ctx->l + mi_height * p, |
582 | 0 | xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), |
583 | 0 | (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y); |
584 | 0 | } |
585 | 0 | memcpy(ctx->sa, xd->above_partition_context + mi_col, |
586 | 0 | sizeof(*xd->above_partition_context) * mi_width); |
587 | 0 | memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK), |
588 | 0 | sizeof(xd->left_partition_context[0]) * mi_height); |
589 | 0 | memcpy(ctx->ta, xd->above_txfm_context, |
590 | 0 | sizeof(*xd->above_txfm_context) * mi_width); |
591 | 0 | memcpy(ctx->tl, xd->left_txfm_context, |
592 | 0 | sizeof(*xd->left_txfm_context) * mi_height); |
593 | 0 | ctx->p_ta = xd->above_txfm_context; |
594 | 0 | ctx->p_tl = xd->left_txfm_context; |
595 | 0 | } |
596 | | |
597 | | static void set_partial_sb_partition(const AV1_COMMON *const cm, |
598 | | MB_MODE_INFO *mi, int bh_in, int bw_in, |
599 | | int mi_rows_remaining, |
600 | | int mi_cols_remaining, BLOCK_SIZE bsize, |
601 | 0 | MB_MODE_INFO **mib) { |
602 | 0 | int bh = bh_in; |
603 | 0 | int r, c; |
604 | 0 | for (r = 0; r < cm->seq_params->mib_size; r += bh) { |
605 | 0 | int bw = bw_in; |
606 | 0 | for (c = 0; c < cm->seq_params->mib_size; c += bw) { |
607 | 0 | const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c); |
608 | 0 | const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c); |
609 | 0 | mib[grid_index] = mi + mi_index; |
610 | 0 | mib[grid_index]->bsize = find_partition_size( |
611 | 0 | bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); |
612 | 0 | } |
613 | 0 | } |
614 | 0 | } |
615 | | |
616 | | // This function attempts to set all mode info entries in a given superblock |
617 | | // to the same block partition size. |
618 | | // However, at the bottom and right borders of the image the requested size |
619 | | // may not be allowed in which case this code attempts to choose the largest |
620 | | // allowable partition. |
621 | | void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, |
622 | | MB_MODE_INFO **mib, int mi_row, int mi_col, |
623 | 0 | BLOCK_SIZE bsize) { |
624 | 0 | AV1_COMMON *const cm = &cpi->common; |
625 | 0 | const CommonModeInfoParams *const mi_params = &cm->mi_params; |
626 | 0 | const int mi_rows_remaining = tile->mi_row_end - mi_row; |
627 | 0 | const int mi_cols_remaining = tile->mi_col_end - mi_col; |
628 | 0 | MB_MODE_INFO *const mi_upper_left = |
629 | 0 | mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col); |
630 | 0 | int bh = mi_size_high[bsize]; |
631 | 0 | int bw = mi_size_wide[bsize]; |
632 | |
|
633 | 0 | assert(bsize >= mi_params->mi_alloc_bsize && |
634 | 0 | "Attempted to use bsize < mi_params->mi_alloc_bsize"); |
635 | 0 | assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); |
636 | | |
637 | | // Apply the requested partition size to the SB if it is all "in image" |
638 | 0 | if ((mi_cols_remaining >= cm->seq_params->mib_size) && |
639 | 0 | (mi_rows_remaining >= cm->seq_params->mib_size)) { |
640 | 0 | for (int block_row = 0; block_row < cm->seq_params->mib_size; |
641 | 0 | block_row += bh) { |
642 | 0 | for (int block_col = 0; block_col < cm->seq_params->mib_size; |
643 | 0 | block_col += bw) { |
644 | 0 | const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col); |
645 | 0 | const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col); |
646 | 0 | mib[grid_index] = mi_upper_left + mi_index; |
647 | 0 | mib[grid_index]->bsize = bsize; |
648 | 0 | } |
649 | 0 | } |
650 | 0 | } else { |
651 | | // Else this is a partial SB. |
652 | 0 | set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, |
653 | 0 | mi_cols_remaining, bsize, mib); |
654 | 0 | } |
655 | 0 | } |
656 | | |
657 | | int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col, |
658 | 0 | BLOCK_SIZE bsize) { |
659 | 0 | const int bs = mi_size_wide[bsize]; |
660 | 0 | const int hbs = bs / 2; |
661 | 0 | assert(bsize >= BLOCK_8X8); |
662 | 0 | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
663 | |
|
664 | 0 | for (int i = 0; i < 4; i++) { |
665 | 0 | int x_idx = (i & 1) * hbs; |
666 | 0 | int y_idx = (i >> 1) * hbs; |
667 | 0 | if ((mi_row + y_idx >= cm->mi_params.mi_rows) || |
668 | 0 | (mi_col + x_idx >= cm->mi_params.mi_cols)) |
669 | 0 | return 0; |
670 | 0 | if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) != |
671 | 0 | PARTITION_NONE && |
672 | 0 | subsize != BLOCK_8X8) |
673 | 0 | return 0; |
674 | 0 | } |
675 | 0 | return 1; |
676 | 0 | } |
677 | | |
678 | | #if !CONFIG_REALTIME_ONLY |
679 | | int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, |
680 | 0 | int mi_col, int orig_rdmult) { |
681 | 0 | AV1_COMMON *const cm = &cpi->common; |
682 | 0 | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
683 | 0 | assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
684 | 0 | cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
685 | 0 | const int tpl_idx = cpi->gf_frame_index; |
686 | 0 | TplParams *const tpl_data = &cpi->ppi->tpl_data; |
687 | 0 | const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; |
688 | 0 | int64_t intra_cost = 0; |
689 | 0 | int64_t mc_dep_cost = 0; |
690 | 0 | const int mi_wide = mi_size_wide[bsize]; |
691 | 0 | const int mi_high = mi_size_high[bsize]; |
692 | |
|
693 | 0 | TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; |
694 | 0 | TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
695 | 0 | int tpl_stride = tpl_frame->stride; |
696 | |
|
697 | 0 | if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) { |
698 | 0 | return orig_rdmult; |
699 | 0 | } |
700 | 0 | if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) { |
701 | 0 | return orig_rdmult; |
702 | 0 | } |
703 | | |
704 | | #ifndef NDEBUG |
705 | | int mi_count = 0; |
706 | | #endif |
707 | 0 | const int mi_col_sr = |
708 | 0 | coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
709 | 0 | const int mi_col_end_sr = |
710 | 0 | coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); |
711 | 0 | const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
712 | 0 | const int step = 1 << block_mis_log2; |
713 | 0 | const int row_step = step; |
714 | 0 | const int col_step_sr = |
715 | 0 | coded_to_superres_mi(step, cm->superres_scale_denominator); |
716 | 0 | for (int row = mi_row; row < mi_row + mi_high; row += row_step) { |
717 | 0 | for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { |
718 | 0 | if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; |
719 | 0 | TplDepStats *this_stats = |
720 | 0 | &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; |
721 | 0 | int64_t mc_dep_delta = |
722 | 0 | RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
723 | 0 | this_stats->mc_dep_dist); |
724 | 0 | intra_cost += this_stats->recrf_dist << RDDIV_BITS; |
725 | 0 | mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta; |
726 | | #ifndef NDEBUG |
727 | | mi_count++; |
728 | | #endif |
729 | 0 | } |
730 | 0 | } |
731 | 0 | assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); |
732 | |
|
733 | 0 | double beta = 1.0; |
734 | 0 | if (mc_dep_cost > 0 && intra_cost > 0) { |
735 | 0 | const double r0 = cpi->rd.r0; |
736 | 0 | const double rk = (double)intra_cost / mc_dep_cost; |
737 | 0 | beta = (r0 / rk); |
738 | 0 | } |
739 | |
|
740 | 0 | int rdmult = av1_get_adaptive_rdmult(cpi, beta); |
741 | |
|
742 | 0 | rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2); |
743 | 0 | rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2); |
744 | |
|
745 | 0 | rdmult = AOMMAX(1, rdmult); |
746 | |
|
747 | 0 | return rdmult; |
748 | 0 | } |
749 | | |
750 | | // Checks to see if a super block is on a horizontal image edge. |
751 | | // In most cases this is the "real" edge unless there are formatting |
752 | | // bars embedded in the stream. |
753 | 0 | int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { |
754 | 0 | int top_edge = 0; |
755 | 0 | int bottom_edge = cpi->common.mi_params.mi_rows; |
756 | 0 | int is_active_h_edge = 0; |
757 | | |
758 | | // For two pass account for any formatting bars detected. |
759 | 0 | if (is_stat_consumption_stage_twopass(cpi)) { |
760 | 0 | const AV1_COMMON *const cm = &cpi->common; |
761 | 0 | const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats( |
762 | 0 | &cpi->ppi->twopass, cm->current_frame.display_order_hint); |
763 | 0 | if (this_frame_stats == NULL) return AOM_CODEC_ERROR; |
764 | | |
765 | | // The inactive region is specified in MBs not mi units. |
766 | | // The image edge is in the following MB row. |
767 | 0 | top_edge += (int)(this_frame_stats->inactive_zone_rows * 4); |
768 | |
|
769 | 0 | bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4); |
770 | 0 | bottom_edge = AOMMAX(top_edge, bottom_edge); |
771 | 0 | } |
772 | | |
773 | 0 | if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || |
774 | 0 | ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { |
775 | 0 | is_active_h_edge = 1; |
776 | 0 | } |
777 | 0 | return is_active_h_edge; |
778 | 0 | } |
779 | | |
780 | | // Checks to see if a super block is on a vertical image edge. |
781 | | // In most cases this is the "real" edge unless there are formatting |
782 | | // bars embedded in the stream. |
783 | 0 | int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { |
784 | 0 | int left_edge = 0; |
785 | 0 | int right_edge = cpi->common.mi_params.mi_cols; |
786 | 0 | int is_active_v_edge = 0; |
787 | | |
788 | | // For two pass account for any formatting bars detected. |
789 | 0 | if (is_stat_consumption_stage_twopass(cpi)) { |
790 | 0 | const AV1_COMMON *const cm = &cpi->common; |
791 | 0 | const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats( |
792 | 0 | &cpi->ppi->twopass, cm->current_frame.display_order_hint); |
793 | 0 | if (this_frame_stats == NULL) return AOM_CODEC_ERROR; |
794 | | |
795 | | // The inactive region is specified in MBs not mi units. |
796 | | // The image edge is in the following MB row. |
797 | 0 | left_edge += (int)(this_frame_stats->inactive_zone_cols * 4); |
798 | |
|
799 | 0 | right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4); |
800 | 0 | right_edge = AOMMAX(left_edge, right_edge); |
801 | 0 | } |
802 | | |
803 | 0 | if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || |
804 | 0 | ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { |
805 | 0 | is_active_v_edge = 1; |
806 | 0 | } |
807 | 0 | return is_active_v_edge; |
808 | 0 | } |
809 | | |
810 | | void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, |
811 | 0 | int mi_col, SuperBlockEnc *sb_enc) { |
812 | 0 | sb_enc->tpl_data_count = 0; |
813 | |
|
814 | 0 | if (!cpi->oxcf.algo_cfg.enable_tpl_model) return; |
815 | 0 | if (cpi->common.current_frame.frame_type == KEY_FRAME) return; |
816 | 0 | const FRAME_UPDATE_TYPE update_type = |
817 | 0 | get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
818 | 0 | if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE) |
819 | 0 | return; |
820 | 0 | assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
821 | 0 | cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
822 | |
|
823 | 0 | AV1_COMMON *const cm = &cpi->common; |
824 | 0 | const int gf_group_index = cpi->gf_frame_index; |
825 | 0 | TplParams *const tpl_data = &cpi->ppi->tpl_data; |
826 | 0 | if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return; |
827 | 0 | const int mi_wide = mi_size_wide[bsize]; |
828 | 0 | const int mi_high = mi_size_high[bsize]; |
829 | |
|
830 | 0 | TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index]; |
831 | 0 | TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
832 | 0 | int tpl_stride = tpl_frame->stride; |
833 | |
|
834 | 0 | int mi_count = 0; |
835 | 0 | int count = 0; |
836 | 0 | const int mi_col_sr = |
837 | 0 | coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
838 | 0 | const int mi_col_end_sr = |
839 | 0 | coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); |
840 | | // mi_cols_sr is mi_cols at superres case. |
841 | 0 | const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
842 | | |
843 | | // TPL store unit size is not the same as the motion estimation unit size. |
844 | | // Here always use motion estimation size to avoid getting repetitive inter/ |
845 | | // intra cost. |
846 | 0 | const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d); |
847 | 0 | assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]); |
848 | 0 | const int row_step = mi_size_high[tpl_bsize]; |
849 | 0 | const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize], |
850 | 0 | cm->superres_scale_denominator); |
851 | | |
852 | | // Stride is only based on SB size, and we fill in values for every 16x16 |
853 | | // block in a SB. |
854 | 0 | sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr; |
855 | |
|
856 | 0 | for (int row = mi_row; row < mi_row + mi_high; row += row_step) { |
857 | 0 | for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { |
858 | 0 | assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); |
859 | | // Handle partial SB, so that no invalid values are used later. |
860 | 0 | if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) { |
861 | 0 | sb_enc->tpl_inter_cost[count] = INT64_MAX; |
862 | 0 | sb_enc->tpl_intra_cost[count] = INT64_MAX; |
863 | 0 | for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
864 | 0 | sb_enc->tpl_mv[count][i].as_int = INVALID_MV; |
865 | 0 | } |
866 | 0 | count++; |
867 | 0 | continue; |
868 | 0 | } |
869 | | |
870 | 0 | TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( |
871 | 0 | row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; |
872 | 0 | sb_enc->tpl_inter_cost[count] = this_stats->inter_cost |
873 | 0 | << TPL_DEP_COST_SCALE_LOG2; |
874 | 0 | sb_enc->tpl_intra_cost[count] = this_stats->intra_cost |
875 | 0 | << TPL_DEP_COST_SCALE_LOG2; |
876 | 0 | memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv)); |
877 | 0 | mi_count++; |
878 | 0 | count++; |
879 | 0 | } |
880 | 0 | } |
881 | |
|
882 | 0 | assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); |
883 | 0 | sb_enc->tpl_data_count = mi_count; |
884 | 0 | } |
885 | | |
886 | | // analysis_type 0: Use mc_dep_cost and intra_cost |
887 | | // analysis_type 1: Use count of best inter predictor chosen |
888 | | // analysis_type 2: Use cost reduction from intra to inter for best inter |
889 | | // predictor chosen |
890 | | int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td, |
891 | | int64_t *delta_dist, BLOCK_SIZE bsize, |
892 | 0 | int mi_row, int mi_col) { |
893 | 0 | AV1_COMMON *const cm = &cpi->common; |
894 | 0 | assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
895 | 0 | cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
896 | 0 | const int tpl_idx = cpi->gf_frame_index; |
897 | 0 | TplParams *const tpl_data = &cpi->ppi->tpl_data; |
898 | 0 | const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; |
899 | 0 | double intra_cost = 0; |
900 | 0 | double mc_dep_reg = 0; |
901 | 0 | double mc_dep_cost = 0; |
902 | 0 | double cbcmp_base = 1; |
903 | 0 | double srcrf_dist = 0; |
904 | 0 | double srcrf_sse = 0; |
905 | 0 | double srcrf_rate = 0; |
906 | 0 | const int mi_wide = mi_size_wide[bsize]; |
907 | 0 | const int mi_high = mi_size_high[bsize]; |
908 | 0 | const int base_qindex = cm->quant_params.base_qindex; |
909 | |
|
910 | 0 | if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex; |
911 | | |
912 | 0 | TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; |
913 | 0 | TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
914 | 0 | int tpl_stride = tpl_frame->stride; |
915 | 0 | if (!tpl_frame->is_valid) return base_qindex; |
916 | | |
917 | | #ifndef NDEBUG |
918 | | int mi_count = 0; |
919 | | #endif |
920 | 0 | const int mi_col_sr = |
921 | 0 | coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
922 | 0 | const int mi_col_end_sr = |
923 | 0 | coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); |
924 | 0 | const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
925 | 0 | const int step = 1 << block_mis_log2; |
926 | 0 | const int row_step = step; |
927 | 0 | const int col_step_sr = |
928 | 0 | coded_to_superres_mi(step, cm->superres_scale_denominator); |
929 | 0 | for (int row = mi_row; row < mi_row + mi_high; row += row_step) { |
930 | 0 | for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { |
931 | 0 | if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; |
932 | 0 | TplDepStats *this_stats = |
933 | 0 | &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; |
934 | 0 | double cbcmp = (double)this_stats->srcrf_dist; |
935 | 0 | int64_t mc_dep_delta = |
936 | 0 | RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
937 | 0 | this_stats->mc_dep_dist); |
938 | 0 | double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS); |
939 | 0 | intra_cost += log(dist_scaled) * cbcmp; |
940 | 0 | mc_dep_cost += log(dist_scaled + mc_dep_delta) * cbcmp; |
941 | 0 | mc_dep_reg += log(3 * dist_scaled + mc_dep_delta) * cbcmp; |
942 | 0 | srcrf_dist += (double)(this_stats->srcrf_dist << RDDIV_BITS); |
943 | 0 | srcrf_sse += (double)(this_stats->srcrf_sse << RDDIV_BITS); |
944 | 0 | srcrf_rate += (double)(this_stats->srcrf_rate << TPL_DEP_COST_SCALE_LOG2); |
945 | | #ifndef NDEBUG |
946 | | mi_count++; |
947 | | #endif |
948 | 0 | cbcmp_base += cbcmp; |
949 | 0 | } |
950 | 0 | } |
951 | 0 | assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); |
952 | |
|
953 | 0 | int offset = 0; |
954 | 0 | double beta = 1.0; |
955 | 0 | double rk; |
956 | 0 | if (mc_dep_cost > 0 && intra_cost > 0) { |
957 | 0 | const double r0 = cpi->rd.r0; |
958 | 0 | rk = exp((intra_cost - mc_dep_cost) / cbcmp_base); |
959 | 0 | td->mb.rb = exp((intra_cost - mc_dep_reg) / cbcmp_base); |
960 | 0 | beta = (r0 / rk); |
961 | 0 | assert(beta > 0.0); |
962 | 0 | } else { |
963 | 0 | return base_qindex; |
964 | 0 | } |
965 | 0 | offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta); |
966 | |
|
967 | 0 | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
968 | 0 | offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); |
969 | 0 | offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); |
970 | 0 | int qindex = cm->quant_params.base_qindex + offset; |
971 | 0 | qindex = AOMMIN(qindex, MAXQ); |
972 | 0 | qindex = AOMMAX(qindex, MINQ); |
973 | |
|
974 | 0 | int frm_qstep = av1_dc_quant_QTX(base_qindex, 0, cm->seq_params->bit_depth); |
975 | 0 | int sbs_qstep = |
976 | 0 | av1_dc_quant_QTX(base_qindex, offset, cm->seq_params->bit_depth); |
977 | |
|
978 | 0 | if (delta_dist) { |
979 | 0 | double sbs_dist = srcrf_dist * pow((double)sbs_qstep / frm_qstep, 2.0); |
980 | 0 | double sbs_rate = srcrf_rate * ((double)frm_qstep / sbs_qstep); |
981 | 0 | sbs_dist = AOMMIN(sbs_dist, srcrf_sse); |
982 | 0 | *delta_dist = (int64_t)((sbs_dist - srcrf_dist) / rk); |
983 | 0 | *delta_dist += RDCOST(tpl_frame->base_rdmult, 4 * 256, 0); |
984 | 0 | *delta_dist += RDCOST(tpl_frame->base_rdmult, sbs_rate - srcrf_rate, 0); |
985 | 0 | } |
986 | 0 | return qindex; |
987 | 0 | } |
988 | | |
989 | | #if !DISABLE_HDR_LUMA_DELTAQ |
990 | | // offset table defined in Table3 of T-REC-H.Sup15 document. |
991 | | static const int hdr_thres[HDR_QP_LEVELS + 1] = { 0, 301, 367, 434, 501, 567, |
992 | | 634, 701, 767, 834, 1024 }; |
993 | | |
994 | | static const int hdr10_qp_offset[HDR_QP_LEVELS] = { 3, 2, 1, 0, -1, |
995 | | -2, -3, -4, -5, -6 }; |
996 | | #endif |
997 | | |
998 | | int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x, |
999 | 0 | BLOCK_SIZE bsize, int mi_row, int mi_col) { |
1000 | 0 | AV1_COMMON *const cm = &cpi->common; |
1001 | 0 | assert(cm->seq_params->bit_depth == AOM_BITS_10); |
1002 | |
|
1003 | 0 | #if DISABLE_HDR_LUMA_DELTAQ |
1004 | 0 | (void)x; |
1005 | 0 | (void)bsize; |
1006 | 0 | (void)mi_row; |
1007 | 0 | (void)mi_col; |
1008 | 0 | return cm->quant_params.base_qindex; |
1009 | | #else |
1010 | | // calculate pixel average |
1011 | | const int block_luma_avg = av1_log_block_avg(cpi, x, bsize, mi_row, mi_col); |
1012 | | // adjust offset based on average of the pixel block |
1013 | | int offset = 0; |
1014 | | for (int i = 0; i < HDR_QP_LEVELS; i++) { |
1015 | | if (block_luma_avg >= hdr_thres[i] && block_luma_avg < hdr_thres[i + 1]) { |
1016 | | offset = (int)(hdr10_qp_offset[i] * QP_SCALE_FACTOR); |
1017 | | break; |
1018 | | } |
1019 | | } |
1020 | | |
1021 | | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
1022 | | offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); |
1023 | | offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); |
1024 | | int qindex = cm->quant_params.base_qindex + offset; |
1025 | | qindex = AOMMIN(qindex, MAXQ); |
1026 | | qindex = AOMMAX(qindex, MINQ); |
1027 | | |
1028 | | return qindex; |
1029 | | #endif |
1030 | 0 | } |
1031 | | #endif // !CONFIG_REALTIME_ONLY |
1032 | | |
1033 | | void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree, |
1034 | 0 | BLOCK_SIZE bsize) { |
1035 | 0 | if (sms_tree == NULL) return; |
1036 | 0 | sms_tree->partitioning = PARTITION_NONE; |
1037 | |
|
1038 | 0 | if (bsize >= BLOCK_8X8) { |
1039 | 0 | BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
1040 | 0 | for (int idx = 0; idx < 4; ++idx) |
1041 | 0 | av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize); |
1042 | 0 | } |
1043 | 0 | } |
1044 | | |
1045 | | // Record the ref frames that have been selected by square partition blocks. |
1046 | | void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type, |
1047 | | BLOCK_SIZE bsize, int mib_size, |
1048 | 0 | int mi_row, int mi_col) { |
1049 | 0 | assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
1050 | 0 | const int sb_size_mask = mib_size - 1; |
1051 | 0 | const int mi_row_in_sb = mi_row & sb_size_mask; |
1052 | 0 | const int mi_col_in_sb = mi_col & sb_size_mask; |
1053 | 0 | const int mi_size = mi_size_wide[bsize]; |
1054 | 0 | for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) { |
1055 | 0 | for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) { |
1056 | 0 | x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type; |
1057 | 0 | } |
1058 | 0 | } |
1059 | 0 | } |
1060 | | |
1061 | | static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr, |
1062 | | int num_cdfs, int cdf_stride, int nsymbs, |
1063 | 0 | int wt_left, int wt_tr) { |
1064 | 0 | for (int i = 0; i < num_cdfs; i++) { |
1065 | 0 | for (int j = 0; j <= nsymbs; j++) { |
1066 | 0 | cdf_ptr_left[i * cdf_stride + j] = |
1067 | 0 | (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left + |
1068 | 0 | (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr + |
1069 | 0 | ((wt_left + wt_tr) / 2)) / |
1070 | 0 | (wt_left + wt_tr)); |
1071 | 0 | assert(cdf_ptr_left[i * cdf_stride + j] >= 0 && |
1072 | 0 | cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP); |
1073 | 0 | } |
1074 | 0 | } |
1075 | 0 | } |
1076 | | |
1077 | | #define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \ |
1078 | 0 | AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs)) |
1079 | | |
1080 | | #define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \ |
1081 | 0 | do { \ |
1082 | 0 | aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \ |
1083 | 0 | aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \ |
1084 | 0 | int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \ |
1085 | 0 | int num_cdfs = array_size / cdf_stride; \ |
1086 | 0 | avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \ |
1087 | 0 | wt_left, wt_tr); \ |
1088 | 0 | } while (0) |
1089 | | |
1090 | | static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left, |
1091 | 0 | int wt_tr) { |
1092 | 0 | AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4); |
1093 | 0 | for (int i = 0; i < 2; i++) { |
1094 | 0 | AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf, |
1095 | 0 | MV_CLASSES); |
1096 | 0 | AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf, |
1097 | 0 | nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE); |
1098 | 0 | AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE); |
1099 | 0 | AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2); |
1100 | 0 | AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf, |
1101 | 0 | nmv_tr->comps[i].class0_hp_cdf, 2); |
1102 | 0 | AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2); |
1103 | 0 | AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf, |
1104 | 0 | CLASS0_SIZE); |
1105 | 0 | AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2); |
1106 | 0 | } |
1107 | 0 | } |
1108 | | |
1109 | | // In case of row-based multi-threading of encoder, since we always |
1110 | | // keep a top - right sync, we can average the top - right SB's CDFs and |
1111 | | // the left SB's CDFs and use the same for current SB's encoding to |
1112 | | // improve the performance. This function facilitates the averaging |
1113 | | // of CDF and used only when row-mt is enabled in encoder. |
1114 | | void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr, |
1115 | 0 | int wt_left, int wt_tr) { |
1116 | 0 | AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2); |
1117 | 0 | AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2); |
1118 | 0 | AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2); |
1119 | 0 | AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5); |
1120 | 0 | AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6); |
1121 | 0 | AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7); |
1122 | 0 | AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8); |
1123 | 0 | AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9); |
1124 | 0 | AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10); |
1125 | 0 | AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11); |
1126 | 0 | AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3); |
1127 | 0 | AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4); |
1128 | 0 | AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE); |
1129 | 0 | AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2); |
1130 | 0 | AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2); |
1131 | 0 | AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2); |
1132 | 0 | AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2); |
1133 | 0 | AVERAGE_CDF(ctx_left->inter_compound_mode_cdf, |
1134 | 0 | ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES); |
1135 | 0 | AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf, |
1136 | 0 | MASKED_COMPOUND_TYPES); |
1137 | 0 | AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16); |
1138 | 0 | AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2); |
1139 | 0 | AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2); |
1140 | 0 | AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf, |
1141 | 0 | INTERINTRA_MODES); |
1142 | 0 | AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES); |
1143 | 0 | AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2); |
1144 | 0 | AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf, |
1145 | 0 | PALETTE_SIZES); |
1146 | 0 | AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf, |
1147 | 0 | PALETTE_SIZES); |
1148 | 0 | for (int j = 0; j < PALETTE_SIZES; j++) { |
1149 | 0 | int nsymbs = j + PALETTE_MIN_SIZE; |
1150 | 0 | AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j], |
1151 | 0 | ctx_tr->palette_y_color_index_cdf[j], nsymbs, |
1152 | 0 | CDF_SIZE(PALETTE_COLORS)); |
1153 | 0 | AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j], |
1154 | 0 | ctx_tr->palette_uv_color_index_cdf[j], nsymbs, |
1155 | 0 | CDF_SIZE(PALETTE_COLORS)); |
1156 | 0 | } |
1157 | 0 | AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2); |
1158 | 0 | AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2); |
1159 | 0 | AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2); |
1160 | 0 | AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2); |
1161 | 0 | AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2); |
1162 | 0 | AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2); |
1163 | 0 | AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2); |
1164 | 0 | AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2); |
1165 | 0 | AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2); |
1166 | 0 | AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2); |
1167 | 0 | AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2); |
1168 | 0 | AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2); |
1169 | 0 | AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2); |
1170 | 0 | AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2); |
1171 | 0 | avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr); |
1172 | 0 | avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr); |
1173 | 0 | AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2); |
1174 | 0 | AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2); |
1175 | 0 | AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf, |
1176 | 0 | ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS); |
1177 | 0 | AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2); |
1178 | 0 | AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf, |
1179 | 0 | FILTER_INTRA_MODES); |
1180 | 0 | AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf, |
1181 | 0 | RESTORE_SWITCHABLE_TYPES); |
1182 | 0 | AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2); |
1183 | 0 | AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2); |
1184 | 0 | AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES); |
1185 | 0 | AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0], |
1186 | 0 | UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES)); |
1187 | 0 | AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES); |
1188 | 0 | for (int i = 0; i < PARTITION_CONTEXTS; i++) { |
1189 | 0 | if (i < 4) { |
1190 | 0 | AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4, |
1191 | 0 | CDF_SIZE(10)); |
1192 | 0 | } else if (i < 16) { |
1193 | 0 | AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10); |
1194 | 0 | } else { |
1195 | 0 | AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8, |
1196 | 0 | CDF_SIZE(10)); |
1197 | 0 | } |
1198 | 0 | } |
1199 | 0 | AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf, |
1200 | 0 | SWITCHABLE_FILTERS); |
1201 | 0 | AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES); |
1202 | 0 | AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf, |
1203 | 0 | 2 * MAX_ANGLE_DELTA + 1); |
1204 | 0 | AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH, |
1205 | 0 | CDF_SIZE(MAX_TX_DEPTH + 1)); |
1206 | 0 | AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1], |
1207 | 0 | MAX_TX_DEPTH + 1); |
1208 | 0 | AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2], |
1209 | 0 | MAX_TX_DEPTH + 1); |
1210 | 0 | AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3], |
1211 | 0 | MAX_TX_DEPTH + 1); |
1212 | 0 | AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1); |
1213 | 0 | AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1); |
1214 | 0 | for (int i = 0; i < FRAME_LF_COUNT; i++) { |
1215 | 0 | AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i], |
1216 | 0 | DELTA_LF_PROBS + 1); |
1217 | 0 | } |
1218 | 0 | AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7, |
1219 | 0 | CDF_SIZE(TX_TYPES)); |
1220 | 0 | AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5, |
1221 | 0 | CDF_SIZE(TX_TYPES)); |
1222 | 0 | AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16, |
1223 | 0 | CDF_SIZE(TX_TYPES)); |
1224 | 0 | AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12, |
1225 | 0 | CDF_SIZE(TX_TYPES)); |
1226 | 0 | AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2, |
1227 | 0 | CDF_SIZE(TX_TYPES)); |
1228 | 0 | AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS); |
1229 | 0 | AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf, |
1230 | 0 | CFL_ALPHABET_SIZE); |
1231 | 0 | } |
1232 | | |
1233 | | // Check neighbor blocks' motion information. |
1234 | | static int check_neighbor_blocks(MB_MODE_INFO **mi, int mi_stride, |
1235 | | const TileInfo *const tile_info, int mi_row, |
1236 | 0 | int mi_col) { |
1237 | 0 | int is_above_low_motion = 1; |
1238 | 0 | int is_left_low_motion = 1; |
1239 | 0 | const int thr = 24; |
1240 | | |
1241 | | // Check above block. |
1242 | 0 | if (mi_row > tile_info->mi_row_start) { |
1243 | 0 | const MB_MODE_INFO *above_mbmi = mi[-mi_stride]; |
1244 | 0 | const int_mv above_mv = above_mbmi->mv[0]; |
1245 | 0 | if (above_mbmi->mode >= INTRA_MODE_END && |
1246 | 0 | (abs(above_mv.as_mv.row) > thr || abs(above_mv.as_mv.col) > thr)) |
1247 | 0 | is_above_low_motion = 0; |
1248 | 0 | } |
1249 | | |
1250 | | // Check left block. |
1251 | 0 | if (mi_col > tile_info->mi_col_start) { |
1252 | 0 | const MB_MODE_INFO *left_mbmi = mi[-1]; |
1253 | 0 | const int_mv left_mv = left_mbmi->mv[0]; |
1254 | 0 | if (left_mbmi->mode >= INTRA_MODE_END && |
1255 | 0 | (abs(left_mv.as_mv.row) > thr || abs(left_mv.as_mv.col) > thr)) |
1256 | 0 | is_left_low_motion = 0; |
1257 | 0 | } |
1258 | |
|
1259 | 0 | return (is_above_low_motion && is_left_low_motion); |
1260 | 0 | } |
1261 | | |
1262 | | // Check this block's motion in a fast way. |
1263 | | static int fast_detect_non_zero_motion(AV1_COMP *cpi, const uint8_t *src_y, |
1264 | | int src_ystride, |
1265 | | const uint8_t *last_src_y, |
1266 | | int last_src_ystride, int mi_row, |
1267 | 0 | int mi_col) { |
1268 | 0 | AV1_COMMON *const cm = &cpi->common; |
1269 | 0 | const BLOCK_SIZE bsize = cm->seq_params->sb_size; |
1270 | 0 | unsigned int blk_sad = INT_MAX; |
1271 | 0 | if (cpi->src_sad_blk_64x64 != NULL) { |
1272 | 0 | const int sb_size_by_mb = (bsize == BLOCK_128X128) |
1273 | 0 | ? (cm->seq_params->mib_size >> 1) |
1274 | 0 | : cm->seq_params->mib_size; |
1275 | 0 | const int sb_cols = |
1276 | 0 | (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; |
1277 | 0 | const int sbi_col = mi_col / sb_size_by_mb; |
1278 | 0 | const int sbi_row = mi_row / sb_size_by_mb; |
1279 | 0 | blk_sad = (unsigned int)cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols]; |
1280 | 0 | } else { |
1281 | 0 | blk_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, |
1282 | 0 | last_src_ystride); |
1283 | 0 | } |
1284 | | |
1285 | | // Search 4 1-away points. |
1286 | 0 | const uint8_t *const search_pos[4] = { |
1287 | 0 | last_src_y - last_src_ystride, |
1288 | 0 | last_src_y - 1, |
1289 | 0 | last_src_y + 1, |
1290 | 0 | last_src_y + last_src_ystride, |
1291 | 0 | }; |
1292 | 0 | unsigned int sad_arr[4]; |
1293 | 0 | cpi->ppi->fn_ptr[bsize].sdx4df(src_y, src_ystride, search_pos, |
1294 | 0 | last_src_ystride, sad_arr); |
1295 | |
|
1296 | 0 | blk_sad = (blk_sad * 5) >> 3; |
1297 | 0 | return (blk_sad < sad_arr[0] && blk_sad < sad_arr[1] && |
1298 | 0 | blk_sad < sad_arr[2] && blk_sad < sad_arr[3]); |
1299 | 0 | } |
1300 | | |
1301 | | // Grade the temporal variation of the source by comparing the current sb and |
1302 | | // its collocated block in the last frame. |
1303 | | void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data, |
1304 | 0 | int mi_row, int mi_col) { |
1305 | 0 | if (cpi->last_source->y_width != cpi->source->y_width || |
1306 | 0 | cpi->last_source->y_height != cpi->source->y_height) |
1307 | 0 | return; |
1308 | 0 | #if CONFIG_AV1_HIGHBITDEPTH |
1309 | 0 | if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return; |
1310 | 0 | #endif |
1311 | | |
1312 | 0 | unsigned int tmp_sse; |
1313 | 0 | unsigned int tmp_variance; |
1314 | 0 | const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size; |
1315 | 0 | uint8_t *src_y = cpi->source->y_buffer; |
1316 | 0 | const int src_ystride = cpi->source->y_stride; |
1317 | 0 | const int src_offset = src_ystride * (mi_row << 2) + (mi_col << 2); |
1318 | 0 | uint8_t *last_src_y = cpi->last_source->y_buffer; |
1319 | 0 | const int last_src_ystride = cpi->last_source->y_stride; |
1320 | 0 | const int last_src_offset = last_src_ystride * (mi_row << 2) + (mi_col << 2); |
1321 | 0 | uint64_t avg_source_sse_threshold_verylow = 10000; // ~1.5*1.5*(64*64) |
1322 | 0 | uint64_t avg_source_sse_threshold_low[2] = { 100000, // ~5*5*(64*64) |
1323 | 0 | 36000 }; // ~3*3*(64*64) |
1324 | |
|
1325 | 0 | uint64_t avg_source_sse_threshold_high = 1000000; // ~15*15*(64*64) |
1326 | 0 | if (cpi->sf.rt_sf.increase_source_sad_thresh) { |
1327 | 0 | avg_source_sse_threshold_high = avg_source_sse_threshold_high << 1; |
1328 | 0 | avg_source_sse_threshold_low[0] = avg_source_sse_threshold_low[0] << 1; |
1329 | 0 | avg_source_sse_threshold_verylow = avg_source_sse_threshold_verylow << 1; |
1330 | 0 | } |
1331 | 0 | uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5 |
1332 | 0 | src_y += src_offset; |
1333 | 0 | last_src_y += last_src_offset; |
1334 | 0 | tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y, |
1335 | 0 | last_src_ystride, &tmp_sse); |
1336 | | // rd thresholds |
1337 | 0 | if (tmp_sse < avg_source_sse_threshold_low[1]) |
1338 | 0 | x->content_state_sb.source_sad_rd = kLowSad; |
1339 | | |
1340 | | // nonrd thresholds |
1341 | 0 | if (tmp_sse == 0) { |
1342 | 0 | x->content_state_sb.source_sad_nonrd = kZeroSad; |
1343 | 0 | return; |
1344 | 0 | } |
1345 | 0 | if (tmp_sse < avg_source_sse_threshold_verylow) |
1346 | 0 | x->content_state_sb.source_sad_nonrd = kVeryLowSad; |
1347 | 0 | else if (tmp_sse < avg_source_sse_threshold_low[0]) |
1348 | 0 | x->content_state_sb.source_sad_nonrd = kLowSad; |
1349 | 0 | else if (tmp_sse > avg_source_sse_threshold_high) |
1350 | 0 | x->content_state_sb.source_sad_nonrd = kHighSad; |
1351 | | |
1352 | | // Detect large lighting change. |
1353 | | // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12) |
1354 | 0 | if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh) |
1355 | 0 | x->content_state_sb.lighting_change = 1; |
1356 | 0 | if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1)) |
1357 | 0 | x->content_state_sb.low_sumdiff = 1; |
1358 | |
|
1359 | 0 | if (tmp_sse > ((avg_source_sse_threshold_high * 7) >> 3) && |
1360 | 0 | !x->content_state_sb.lighting_change && !x->content_state_sb.low_sumdiff) |
1361 | 0 | x->sb_force_fixed_part = 0; |
1362 | |
|
1363 | 0 | if (!cpi->sf.rt_sf.use_rtc_tf || cpi->rc.high_source_sad || |
1364 | 0 | cpi->rc.frame_source_sad > 20000 || cpi->svc.number_spatial_layers > 1) |
1365 | 0 | return; |
1366 | | |
1367 | | // In-place temporal filter. If psnr calculation is enabled, we store the |
1368 | | // source for that. |
1369 | 0 | AV1_COMMON *const cm = &cpi->common; |
1370 | | // Calculate n*mean^2 |
1371 | 0 | const unsigned int nmean2 = tmp_sse - tmp_variance; |
1372 | 0 | const int ac_q_step = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0, |
1373 | 0 | cm->seq_params->bit_depth); |
1374 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
1375 | 0 | const int avg_q_step = av1_ac_quant_QTX(p_rc->avg_frame_qindex[INTER_FRAME], |
1376 | 0 | 0, cm->seq_params->bit_depth); |
1377 | |
|
1378 | 0 | const unsigned int threshold = |
1379 | 0 | (cpi->sf.rt_sf.use_rtc_tf == 1) |
1380 | 0 | ? (clamp(avg_q_step, 250, 1000)) * ac_q_step |
1381 | 0 | : 250 * ac_q_step; |
1382 | | |
1383 | | // TODO(yunqing): use a weighted sum instead of averaging in filtering. |
1384 | 0 | if (tmp_variance <= threshold && nmean2 <= 15) { |
1385 | | // Check neighbor blocks. If neighbor blocks aren't low-motion blocks, |
1386 | | // skip temporal filtering for this block. |
1387 | 0 | MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + |
1388 | 0 | get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); |
1389 | 0 | const TileInfo *const tile_info = &tile_data->tile_info; |
1390 | 0 | const int is_neighbor_blocks_low_motion = check_neighbor_blocks( |
1391 | 0 | mi, cm->mi_params.mi_stride, tile_info, mi_row, mi_col); |
1392 | 0 | if (!is_neighbor_blocks_low_motion) return; |
1393 | | |
1394 | | // Only consider 64x64 SB for now. Need to extend to 128x128 for large SB |
1395 | | // size. |
1396 | | // Test several nearby points. If non-zero mv exists, don't do temporal |
1397 | | // filtering. |
1398 | 0 | const int is_this_blk_low_motion = fast_detect_non_zero_motion( |
1399 | 0 | cpi, src_y, src_ystride, last_src_y, last_src_ystride, mi_row, mi_col); |
1400 | |
|
1401 | 0 | if (!is_this_blk_low_motion) return; |
1402 | | |
1403 | 0 | const int shift_x[2] = { 0, cpi->source->subsampling_x }; |
1404 | 0 | const int shift_y[2] = { 0, cpi->source->subsampling_y }; |
1405 | 0 | const uint8_t h = block_size_high[bsize]; |
1406 | 0 | const uint8_t w = block_size_wide[bsize]; |
1407 | |
|
1408 | 0 | for (int plane = 0; plane < av1_num_planes(cm); ++plane) { |
1409 | 0 | uint8_t *src = cpi->source->buffers[plane]; |
1410 | 0 | const int src_stride = cpi->source->strides[plane != 0]; |
1411 | 0 | uint8_t *last_src = cpi->last_source->buffers[plane]; |
1412 | 0 | const int last_src_stride = cpi->last_source->strides[plane != 0]; |
1413 | 0 | src += src_stride * (mi_row << (2 - shift_y[plane != 0])) + |
1414 | 0 | (mi_col << (2 - shift_x[plane != 0])); |
1415 | 0 | last_src += last_src_stride * (mi_row << (2 - shift_y[plane != 0])) + |
1416 | 0 | (mi_col << (2 - shift_x[plane != 0])); |
1417 | |
|
1418 | 0 | for (int i = 0; i < (h >> shift_y[plane != 0]); ++i) { |
1419 | 0 | for (int j = 0; j < (w >> shift_x[plane != 0]); ++j) { |
1420 | 0 | src[j] = (last_src[j] + src[j]) >> 1; |
1421 | 0 | } |
1422 | 0 | src += src_stride; |
1423 | 0 | last_src += last_src_stride; |
1424 | 0 | } |
1425 | 0 | } |
1426 | 0 | } |
1427 | 0 | } |
1428 | | |
1429 | | // Memset the mbmis at the current superblock to 0 |
1430 | | void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size, |
1431 | 0 | int mi_row, int mi_col) { |
1432 | | // size of sb in unit of mi (BLOCK_4X4) |
1433 | 0 | const int sb_size_mi = mi_size_wide[sb_size]; |
1434 | 0 | const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; |
1435 | | // size of sb in unit of allocated mi size |
1436 | 0 | const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d; |
1437 | 0 | assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 && |
1438 | 0 | "mi is not allocated as a multiple of sb!"); |
1439 | 0 | assert(mi_params->mi_stride % sb_size_mi == 0 && |
1440 | 0 | "mi_grid_base is not allocated as a multiple of sb!"); |
1441 | |
|
1442 | 0 | const int mi_rows = mi_size_high[sb_size]; |
1443 | 0 | for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) { |
1444 | 0 | assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) < |
1445 | 0 | mi_params->mi_stride); |
1446 | 0 | const int mi_grid_idx = |
1447 | 0 | get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col); |
1448 | 0 | const int alloc_mi_idx = |
1449 | 0 | get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col); |
1450 | 0 | memset(&mi_params->mi_grid_base[mi_grid_idx], 0, |
1451 | 0 | sb_size_mi * sizeof(*mi_params->mi_grid_base)); |
1452 | 0 | memset(&mi_params->tx_type_map[mi_grid_idx], 0, |
1453 | 0 | sb_size_mi * sizeof(*mi_params->tx_type_map)); |
1454 | 0 | if (cur_mi_row % mi_alloc_size_1d == 0) { |
1455 | 0 | memset(&mi_params->mi_alloc[alloc_mi_idx], 0, |
1456 | 0 | sb_size_alloc_mi * sizeof(*mi_params->mi_alloc)); |
1457 | 0 | } |
1458 | 0 | } |
1459 | 0 | } |
1460 | | |
1461 | | void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi, |
1462 | | ThreadData *td, const TileDataEnc *tile_data, |
1463 | 0 | int mi_row, int mi_col) { |
1464 | 0 | MACROBLOCK *x = &td->mb; |
1465 | 0 | MACROBLOCKD *xd = &x->e_mbd; |
1466 | 0 | const TileInfo *tile_info = &tile_data->tile_info; |
1467 | |
|
1468 | 0 | const AV1_COMMON *cm = &cpi->common; |
1469 | 0 | const int num_planes = av1_num_planes(cm); |
1470 | 0 | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
1471 | |
|
1472 | 0 | xd->above_txfm_context = |
1473 | 0 | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
1474 | 0 | xd->left_txfm_context = |
1475 | 0 | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
1476 | 0 | av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes); |
1477 | |
|
1478 | 0 | sb_fp_stats->rd_count = td->rd_counts; |
1479 | 0 | sb_fp_stats->split_count = x->txfm_search_info.txb_split_count; |
1480 | |
|
1481 | 0 | sb_fp_stats->fc = *td->counts; |
1482 | | |
1483 | | // Don't copy in row_mt case, otherwise run into data race. No behavior change |
1484 | | // in row_mt case. |
1485 | 0 | if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { |
1486 | 0 | memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models, |
1487 | 0 | sizeof(sb_fp_stats->inter_mode_rd_models)); |
1488 | 0 | } |
1489 | |
|
1490 | 0 | memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact, |
1491 | 0 | sizeof(sb_fp_stats->thresh_freq_fact)); |
1492 | |
|
1493 | 0 | const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); |
1494 | 0 | sb_fp_stats->current_qindex = |
1495 | 0 | cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; |
1496 | |
|
1497 | | #if CONFIG_INTERNAL_STATS |
1498 | | memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts, |
1499 | | sizeof(sb_fp_stats->mode_chosen_counts)); |
1500 | | #endif // CONFIG_INTERNAL_STATS |
1501 | 0 | } |
1502 | | |
1503 | | void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi, |
1504 | | ThreadData *td, TileDataEnc *tile_data, int mi_row, |
1505 | 0 | int mi_col) { |
1506 | 0 | MACROBLOCK *x = &td->mb; |
1507 | |
|
1508 | 0 | const AV1_COMMON *cm = &cpi->common; |
1509 | 0 | const int num_planes = av1_num_planes(cm); |
1510 | 0 | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
1511 | |
|
1512 | 0 | av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, |
1513 | 0 | num_planes); |
1514 | |
|
1515 | 0 | td->rd_counts = sb_fp_stats->rd_count; |
1516 | 0 | x->txfm_search_info.txb_split_count = sb_fp_stats->split_count; |
1517 | |
|
1518 | 0 | *td->counts = sb_fp_stats->fc; |
1519 | |
|
1520 | 0 | if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { |
1521 | 0 | memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models, |
1522 | 0 | sizeof(sb_fp_stats->inter_mode_rd_models)); |
1523 | 0 | } |
1524 | |
|
1525 | 0 | memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact, |
1526 | 0 | sizeof(sb_fp_stats->thresh_freq_fact)); |
1527 | |
|
1528 | 0 | const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); |
1529 | 0 | cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = |
1530 | 0 | sb_fp_stats->current_qindex; |
1531 | |
|
1532 | | #if CONFIG_INTERNAL_STATS |
1533 | | memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts, |
1534 | | sizeof(sb_fp_stats->mode_chosen_counts)); |
1535 | | #endif // CONFIG_INTERNAL_STATS |
1536 | 0 | } |
1537 | | |
1538 | | /*! Checks whether to skip updating the entropy cost based on tile info. |
1539 | | * |
1540 | | * This function contains the common code used to skip the cost update of coeff, |
1541 | | * mode, mv and dv symbols. |
1542 | | */ |
1543 | | static int skip_cost_update(const SequenceHeader *seq_params, |
1544 | | const TileInfo *const tile_info, const int mi_row, |
1545 | | const int mi_col, |
1546 | 0 | INTERNAL_COST_UPDATE_TYPE upd_level) { |
1547 | 0 | if (upd_level == INTERNAL_COST_UPD_SB) return 0; |
1548 | 0 | if (upd_level == INTERNAL_COST_UPD_OFF) return 1; |
1549 | | |
1550 | | // upd_level is at most as frequent as each sb_row in a tile. |
1551 | 0 | if (mi_col != tile_info->mi_col_start) return 1; |
1552 | | |
1553 | 0 | if (upd_level == INTERNAL_COST_UPD_SBROW_SET) { |
1554 | 0 | const int mib_size_log2 = seq_params->mib_size_log2; |
1555 | 0 | const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2; |
1556 | 0 | const int sb_size = seq_params->mib_size * MI_SIZE; |
1557 | 0 | const int tile_height = |
1558 | 0 | (tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE; |
1559 | | // When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens |
1560 | | // once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However, |
1561 | | // as the update will not be equally spaced in smaller resolutions making |
1562 | | // it equally spaced by calculating (mv_num_rows_cost_update) the number of |
1563 | | // rows after which the cost update should happen. |
1564 | 0 | const int sb_size_update_freq_map[2] = { 2, 4 }; |
1565 | 0 | const int update_freq_sb_rows = |
1566 | 0 | sb_size_update_freq_map[sb_size != MAX_SB_SIZE]; |
1567 | 0 | const int update_freq_num_rows = sb_size * update_freq_sb_rows; |
1568 | | // Round-up the division result to next integer. |
1569 | 0 | const int num_updates_per_tile = |
1570 | 0 | (tile_height + update_freq_num_rows - 1) / update_freq_num_rows; |
1571 | 0 | const int num_rows_update_per_tile = num_updates_per_tile * sb_size; |
1572 | | // Round-up the division result to next integer. |
1573 | 0 | const int num_sb_rows_per_update = |
1574 | 0 | (tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile; |
1575 | 0 | if ((sb_row % num_sb_rows_per_update) != 0) return 1; |
1576 | 0 | } |
1577 | 0 | return 0; |
1578 | 0 | } |
1579 | | |
1580 | | // Checks for skip status of mv cost update. |
1581 | | static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info, |
1582 | 0 | const int mi_row, const int mi_col) { |
1583 | 0 | const AV1_COMMON *cm = &cpi->common; |
1584 | | // For intra frames, mv cdfs are not updated during the encode. Hence, the mv |
1585 | | // cost calculation is skipped in this case. |
1586 | 0 | if (frame_is_intra_only(cm)) return 1; |
1587 | | |
1588 | 0 | return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, |
1589 | 0 | cpi->sf.inter_sf.mv_cost_upd_level); |
1590 | 0 | } |
1591 | | |
1592 | | // Checks for skip status of dv cost update. |
1593 | | static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info, |
1594 | 0 | const int mi_row, const int mi_col) { |
1595 | 0 | const AV1_COMMON *cm = &cpi->common; |
1596 | | // Intrabc is only applicable to intra frames. So skip if intrabc is not |
1597 | | // allowed. |
1598 | 0 | if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) { |
1599 | 0 | return 1; |
1600 | 0 | } |
1601 | | |
1602 | 0 | return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, |
1603 | 0 | cpi->sf.intra_sf.dv_cost_upd_level); |
1604 | 0 | } |
1605 | | |
1606 | | // Update the rate costs of some symbols according to the frequency directed |
1607 | | // by speed features |
1608 | | void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td, |
1609 | | const TileInfo *const tile_info, const int mi_row, |
1610 | 0 | const int mi_col) { |
1611 | 0 | AV1_COMMON *const cm = &cpi->common; |
1612 | 0 | const int num_planes = av1_num_planes(cm); |
1613 | 0 | MACROBLOCK *const x = &td->mb; |
1614 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
1615 | |
|
1616 | 0 | if (cm->features.disable_cdf_update) { |
1617 | 0 | return; |
1618 | 0 | } |
1619 | | |
1620 | 0 | switch (cpi->sf.inter_sf.coeff_cost_upd_level) { |
1621 | 0 | case INTERNAL_COST_UPD_OFF: |
1622 | 0 | case INTERNAL_COST_UPD_TILE: // Tile level |
1623 | 0 | break; |
1624 | 0 | case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile |
1625 | 0 | case INTERNAL_COST_UPD_SBROW: // SB row level in tile |
1626 | 0 | case INTERNAL_COST_UPD_SB: // SB level |
1627 | 0 | if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, |
1628 | 0 | cpi->sf.inter_sf.coeff_cost_upd_level)) |
1629 | 0 | break; |
1630 | 0 | av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes); |
1631 | 0 | break; |
1632 | 0 | default: assert(0); |
1633 | 0 | } |
1634 | | |
1635 | 0 | switch (cpi->sf.inter_sf.mode_cost_upd_level) { |
1636 | 0 | case INTERNAL_COST_UPD_OFF: |
1637 | 0 | case INTERNAL_COST_UPD_TILE: // Tile level |
1638 | 0 | break; |
1639 | 0 | case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile |
1640 | 0 | case INTERNAL_COST_UPD_SBROW: // SB row level in tile |
1641 | 0 | case INTERNAL_COST_UPD_SB: // SB level |
1642 | 0 | if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, |
1643 | 0 | cpi->sf.inter_sf.mode_cost_upd_level)) |
1644 | 0 | break; |
1645 | 0 | av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx); |
1646 | 0 | break; |
1647 | 0 | default: assert(0); |
1648 | 0 | } |
1649 | | |
1650 | 0 | switch (cpi->sf.inter_sf.mv_cost_upd_level) { |
1651 | 0 | case INTERNAL_COST_UPD_OFF: |
1652 | 0 | case INTERNAL_COST_UPD_TILE: // Tile level |
1653 | 0 | break; |
1654 | 0 | case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile |
1655 | 0 | case INTERNAL_COST_UPD_SBROW: // SB row level in tile |
1656 | 0 | case INTERNAL_COST_UPD_SB: // SB level |
1657 | | // Checks for skip status of mv cost update. |
1658 | 0 | if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break; |
1659 | 0 | av1_fill_mv_costs(&xd->tile_ctx->nmvc, |
1660 | 0 | cm->features.cur_frame_force_integer_mv, |
1661 | 0 | cm->features.allow_high_precision_mv, x->mv_costs); |
1662 | 0 | break; |
1663 | 0 | default: assert(0); |
1664 | 0 | } |
1665 | | |
1666 | 0 | switch (cpi->sf.intra_sf.dv_cost_upd_level) { |
1667 | 0 | case INTERNAL_COST_UPD_OFF: |
1668 | 0 | case INTERNAL_COST_UPD_TILE: // Tile level |
1669 | 0 | break; |
1670 | 0 | case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile |
1671 | 0 | case INTERNAL_COST_UPD_SBROW: // SB row level in tile |
1672 | 0 | case INTERNAL_COST_UPD_SB: // SB level |
1673 | | // Checks for skip status of dv cost update. |
1674 | 0 | if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break; |
1675 | 0 | av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs); |
1676 | 0 | break; |
1677 | 0 | default: assert(0); |
1678 | 0 | } |
1679 | 0 | } |
1680 | | |
1681 | 0 | void av1_dealloc_src_diff_buf(struct macroblock *mb, int num_planes) { |
1682 | 0 | for (int plane = 0; plane < num_planes; ++plane) { |
1683 | 0 | aom_free(mb->plane[plane].src_diff); |
1684 | 0 | mb->plane[plane].src_diff = NULL; |
1685 | 0 | } |
1686 | 0 | } |
1687 | | |
1688 | 0 | void av1_alloc_src_diff_buf(const struct AV1Common *cm, struct macroblock *mb) { |
1689 | 0 | const int num_planes = av1_num_planes(cm); |
1690 | | #ifndef NDEBUG |
1691 | | for (int plane = 0; plane < num_planes; ++plane) { |
1692 | | assert(!mb->plane[plane].src_diff); |
1693 | | } |
1694 | | #endif |
1695 | 0 | for (int plane = 0; plane < num_planes; ++plane) { |
1696 | 0 | const int subsampling_xy = |
1697 | 0 | plane ? cm->seq_params->subsampling_x + cm->seq_params->subsampling_y |
1698 | 0 | : 0; |
1699 | 0 | const int sb_size = MAX_SB_SQUARE >> subsampling_xy; |
1700 | 0 | CHECK_MEM_ERROR(cm, mb->plane[plane].src_diff, |
1701 | 0 | (int16_t *)aom_memalign( |
1702 | 0 | 32, sizeof(*mb->plane[plane].src_diff) * sb_size)); |
1703 | 0 | } |
1704 | 0 | } |