Coverage Report

Created: 2025-06-22 08:04

/src/aom/av1/encoder/ethread.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <assert.h>
13
#include <stdbool.h>
14
15
#include "aom_util/aom_pthread.h"
16
17
#include "av1/common/warped_motion.h"
18
#include "av1/common/thread_common.h"
19
20
#include "av1/encoder/allintra_vis.h"
21
#include "av1/encoder/bitstream.h"
22
#include "av1/encoder/enc_enums.h"
23
#include "av1/encoder/encodeframe.h"
24
#include "av1/encoder/encodeframe_utils.h"
25
#include "av1/encoder/encoder.h"
26
#include "av1/encoder/encoder_alloc.h"
27
#include "av1/encoder/ethread.h"
28
#if !CONFIG_REALTIME_ONLY
29
#include "av1/encoder/firstpass.h"
30
#endif
31
#include "av1/encoder/global_motion.h"
32
#include "av1/encoder/global_motion_facade.h"
33
#include "av1/encoder/intra_mode_search_utils.h"
34
#include "av1/encoder/picklpf.h"
35
#include "av1/encoder/rdopt.h"
36
#include "aom_dsp/aom_dsp_common.h"
37
#include "av1/encoder/temporal_filter.h"
38
#include "av1/encoder/tpl_model.h"
39
40
0
static inline void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
41
0
  td->rd_counts.compound_ref_used_flag |=
42
0
      td_t->rd_counts.compound_ref_used_flag;
43
0
  td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;
44
45
0
  for (int i = 0; i < TX_SIZES_ALL; i++) {
46
0
    for (int j = 0; j < TX_TYPES; j++)
47
0
      td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j];
48
0
  }
49
50
0
  for (int i = 0; i < BLOCK_SIZES_ALL; i++) {
51
0
    for (int j = 0; j < 2; j++) {
52
0
      td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j];
53
0
    }
54
0
  }
55
56
0
  for (int i = 0; i < 2; i++) {
57
0
    td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i];
58
0
  }
59
60
0
  td->rd_counts.seg_tmp_pred_cost[0] += td_t->rd_counts.seg_tmp_pred_cost[0];
61
0
  td->rd_counts.seg_tmp_pred_cost[1] += td_t->rd_counts.seg_tmp_pred_cost[1];
62
63
0
  td->rd_counts.newmv_or_intra_blocks += td_t->rd_counts.newmv_or_intra_blocks;
64
0
}
65
66
0
static inline void update_delta_lf_for_row_mt(AV1_COMP *cpi) {
67
0
  AV1_COMMON *cm = &cpi->common;
68
0
  MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
69
0
  const int mib_size = cm->seq_params->mib_size;
70
0
  const int frame_lf_count =
71
0
      av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
72
0
  for (int row = 0; row < cm->tiles.rows; row++) {
73
0
    for (int col = 0; col < cm->tiles.cols; col++) {
74
0
      TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col];
75
0
      const TileInfo *const tile_info = &tile_data->tile_info;
76
0
      for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
77
0
           mi_row += mib_size) {
78
0
        if (mi_row == tile_info->mi_row_start)
79
0
          av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
80
0
        for (int mi_col = tile_info->mi_col_start;
81
0
             mi_col < tile_info->mi_col_end; mi_col += mib_size) {
82
0
          const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col;
83
0
          MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str;
84
0
          MB_MODE_INFO *mbmi = mi[0];
85
0
          if (mbmi->skip_txfm == 1 &&
86
0
              (mbmi->bsize == cm->seq_params->sb_size)) {
87
0
            for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
88
0
              mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
89
0
            mbmi->delta_lf_from_base = xd->delta_lf_from_base;
90
0
          } else {
91
0
            if (cm->delta_q_info.delta_lf_multi) {
92
0
              for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
93
0
                xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
94
0
            } else {
95
0
              xd->delta_lf_from_base = mbmi->delta_lf_from_base;
96
0
            }
97
0
          }
98
0
        }
99
0
      }
100
0
    }
101
0
  }
102
0
}
103
104
void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
105
0
                                int c) {
106
0
  (void)row_mt_sync;
107
0
  (void)r;
108
0
  (void)c;
109
0
}
110
111
void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
112
0
                                 int c, int cols) {
113
0
  (void)row_mt_sync;
114
0
  (void)r;
115
0
  (void)c;
116
0
  (void)cols;
117
0
}
118
119
0
void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) {
120
0
#if CONFIG_MULTITHREAD
121
0
  const int nsync = row_mt_sync->sync_range;
122
123
0
  if (r) {
124
0
    pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
125
0
    pthread_mutex_lock(mutex);
126
127
0
    while (c > row_mt_sync->num_finished_cols[r - 1] - nsync -
128
0
                   row_mt_sync->intrabc_extra_top_right_sb_delay) {
129
0
      pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
130
0
    }
131
0
    pthread_mutex_unlock(mutex);
132
0
  }
133
#else
134
  (void)row_mt_sync;
135
  (void)r;
136
  (void)c;
137
#endif  // CONFIG_MULTITHREAD
138
0
}
139
140
void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c,
141
0
                           int cols) {
142
0
#if CONFIG_MULTITHREAD
143
0
  const int nsync = row_mt_sync->sync_range;
144
0
  int cur;
145
  // Only signal when there are enough encoded blocks for next row to run.
146
0
  int sig = 1;
147
148
0
  if (c < cols - 1) {
149
0
    cur = c;
150
0
    if (c % nsync) sig = 0;
151
0
  } else {
152
0
    cur = cols + nsync + row_mt_sync->intrabc_extra_top_right_sb_delay;
153
0
  }
154
155
0
  if (sig) {
156
0
    pthread_mutex_lock(&row_mt_sync->mutex_[r]);
157
158
    // When a thread encounters an error, num_finished_cols[r] is set to maximum
159
    // column number. In this case, the AOMMAX operation here ensures that
160
    // num_finished_cols[r] is not overwritten with a smaller value thus
161
    // preventing the infinite waiting of threads in the relevant sync_read()
162
    // function.
163
0
    row_mt_sync->num_finished_cols[r] =
164
0
        AOMMAX(row_mt_sync->num_finished_cols[r], cur);
165
166
0
    pthread_cond_signal(&row_mt_sync->cond_[r]);
167
0
    pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
168
0
  }
169
#else
170
  (void)row_mt_sync;
171
  (void)r;
172
  (void)c;
173
  (void)cols;
174
#endif  // CONFIG_MULTITHREAD
175
0
}
176
177
// Allocate memory for row synchronization
178
static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync,
179
0
                                  AV1_COMMON *cm, int rows) {
180
0
#if CONFIG_MULTITHREAD
181
0
  int i;
182
183
0
  CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
184
0
                  aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
185
0
  if (row_mt_sync->mutex_) {
186
0
    for (i = 0; i < rows; ++i) {
187
0
      pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
188
0
    }
189
0
  }
190
191
0
  CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
192
0
                  aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
193
0
  if (row_mt_sync->cond_) {
194
0
    for (i = 0; i < rows; ++i) {
195
0
      pthread_cond_init(&row_mt_sync->cond_[i], NULL);
196
0
    }
197
0
  }
198
0
#endif  // CONFIG_MULTITHREAD
199
200
0
  CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
201
0
                  aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));
202
203
0
  row_mt_sync->rows = rows;
204
  // Set up nsync.
205
0
  row_mt_sync->sync_range = 1;
206
0
}
207
208
// Deallocate row based multi-threading synchronization related mutex and data
209
0
void av1_row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
210
0
  if (row_mt_sync != NULL) {
211
0
#if CONFIG_MULTITHREAD
212
0
    int i;
213
214
0
    if (row_mt_sync->mutex_ != NULL) {
215
0
      for (i = 0; i < row_mt_sync->rows; ++i) {
216
0
        pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
217
0
      }
218
0
      aom_free(row_mt_sync->mutex_);
219
0
    }
220
0
    if (row_mt_sync->cond_ != NULL) {
221
0
      for (i = 0; i < row_mt_sync->rows; ++i) {
222
0
        pthread_cond_destroy(&row_mt_sync->cond_[i]);
223
0
      }
224
0
      aom_free(row_mt_sync->cond_);
225
0
    }
226
0
#endif  // CONFIG_MULTITHREAD
227
0
    aom_free(row_mt_sync->num_finished_cols);
228
229
    // clear the structure as the source of this call may be dynamic change
230
    // in tiles in which case this call will be followed by an _alloc()
231
    // which may fail.
232
0
    av1_zero(*row_mt_sync);
233
0
  }
234
0
}
235
236
0
static inline int get_sb_rows_in_frame(AV1_COMMON *cm) {
237
0
  return CEIL_POWER_OF_TWO(cm->mi_params.mi_rows,
238
0
                           cm->seq_params->mib_size_log2);
239
0
}
240
241
static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols,
242
0
                             int alloc_row_ctx) {
243
0
  struct AV1Common *cm = &cpi->common;
244
0
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
245
0
  const int tile_cols = cm->tiles.cols;
246
0
  const int tile_rows = cm->tiles.rows;
247
0
  int tile_col, tile_row;
248
249
0
  av1_row_mt_mem_dealloc(cpi);
250
251
  // Allocate memory for row based multi-threading
252
0
  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
253
0
    for (tile_col = 0; tile_col < tile_cols; tile_col++) {
254
0
      int tile_index = tile_row * tile_cols + tile_col;
255
0
      TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
256
257
0
      row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows);
258
259
0
      if (alloc_row_ctx) {
260
0
        assert(max_cols > 0);
261
0
        const int num_row_ctx = AOMMAX(1, (max_cols - 1));
262
0
        CHECK_MEM_ERROR(cm, this_tile->row_ctx,
263
0
                        (FRAME_CONTEXT *)aom_memalign(
264
0
                            16, num_row_ctx * sizeof(*this_tile->row_ctx)));
265
0
      }
266
0
    }
267
0
  }
268
0
  const int sb_rows = get_sb_rows_in_frame(cm);
269
0
  CHECK_MEM_ERROR(
270
0
      cm, enc_row_mt->num_tile_cols_done,
271
0
      aom_malloc(sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows));
272
273
0
  enc_row_mt->allocated_rows = max_rows;
274
0
  enc_row_mt->allocated_cols = max_cols - 1;
275
0
  enc_row_mt->allocated_sb_rows = sb_rows;
276
0
}
277
278
0
void av1_row_mt_mem_dealloc(AV1_COMP *cpi) {
279
0
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
280
0
  const int tile_cols = enc_row_mt->allocated_tile_cols;
281
0
  const int tile_rows = enc_row_mt->allocated_tile_rows;
282
0
  int tile_col, tile_row;
283
284
  // Free row based multi-threading sync memory
285
0
  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
286
0
    for (tile_col = 0; tile_col < tile_cols; tile_col++) {
287
0
      int tile_index = tile_row * tile_cols + tile_col;
288
0
      TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
289
290
0
      av1_row_mt_sync_mem_dealloc(&this_tile->row_mt_sync);
291
292
0
      if (cpi->oxcf.algo_cfg.cdf_update_mode) {
293
0
        aom_free(this_tile->row_ctx);
294
0
        this_tile->row_ctx = NULL;
295
0
      }
296
0
    }
297
0
  }
298
0
  aom_free(enc_row_mt->num_tile_cols_done);
299
0
  enc_row_mt->num_tile_cols_done = NULL;
300
0
  enc_row_mt->allocated_rows = 0;
301
0
  enc_row_mt->allocated_cols = 0;
302
0
  enc_row_mt->allocated_sb_rows = 0;
303
0
}
304
305
static inline void assign_tile_to_thread(int *thread_id_to_tile_id,
306
0
                                         int num_tiles, int num_workers) {
307
0
  int tile_id = 0;
308
0
  int i;
309
310
0
  for (i = 0; i < num_workers; i++) {
311
0
    thread_id_to_tile_id[i] = tile_id++;
312
0
    if (tile_id == num_tiles) tile_id = 0;
313
0
  }
314
0
}
315
316
static inline int get_next_job(TileDataEnc *const tile_data,
317
0
                               int *current_mi_row, int mib_size) {
318
0
  AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
319
0
  const int mi_row_end = tile_data->tile_info.mi_row_end;
320
321
0
  if (row_mt_sync->next_mi_row < mi_row_end) {
322
0
    *current_mi_row = row_mt_sync->next_mi_row;
323
0
    row_mt_sync->num_threads_working++;
324
0
    row_mt_sync->next_mi_row += mib_size;
325
0
    return 1;
326
0
  }
327
0
  return 0;
328
0
}
329
330
static inline void switch_tile_and_get_next_job(
331
    AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id,
332
    int *current_mi_row, int *end_of_frame, int is_firstpass,
333
0
    const BLOCK_SIZE fp_block_size) {
334
0
  const int tile_cols = cm->tiles.cols;
335
0
  const int tile_rows = cm->tiles.rows;
336
337
0
  int tile_id = -1;  // Stores the tile ID with minimum proc done
338
0
  int max_mis_to_encode = 0;
339
0
  int min_num_threads_working = INT_MAX;
340
341
0
  for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
342
0
    for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
343
0
      int tile_index = tile_row * tile_cols + tile_col;
344
0
      TileDataEnc *const this_tile = &tile_data[tile_index];
345
0
      AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
346
347
#if CONFIG_REALTIME_ONLY
348
      int num_b_rows_in_tile =
349
          av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
350
      int num_b_cols_in_tile =
351
          av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
352
#else
353
0
      int num_b_rows_in_tile =
354
0
          is_firstpass
355
0
              ? av1_get_unit_rows_in_tile(&this_tile->tile_info, fp_block_size)
356
0
              : av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
357
0
      int num_b_cols_in_tile =
358
0
          is_firstpass
359
0
              ? av1_get_unit_cols_in_tile(&this_tile->tile_info, fp_block_size)
360
0
              : av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
361
0
#endif
362
0
      int theoretical_limit_on_threads =
363
0
          AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile);
364
0
      int num_threads_working = row_mt_sync->num_threads_working;
365
366
0
      if (num_threads_working < theoretical_limit_on_threads) {
367
0
        int num_mis_to_encode =
368
0
            this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row;
369
370
        // Tile to be processed by this thread is selected on the basis of
371
        // availability of jobs:
372
        // 1) If jobs are available, tile to be processed is chosen on the
373
        // basis of minimum number of threads working for that tile. If two or
374
        // more tiles have same number of threads working for them, then the
375
        // tile with maximum number of jobs available will be chosen.
376
        // 2) If no jobs are available, then end_of_frame is reached.
377
0
        if (num_mis_to_encode > 0) {
378
0
          if (num_threads_working < min_num_threads_working) {
379
0
            min_num_threads_working = num_threads_working;
380
0
            max_mis_to_encode = 0;
381
0
          }
382
0
          if (num_threads_working == min_num_threads_working &&
383
0
              num_mis_to_encode > max_mis_to_encode) {
384
0
            tile_id = tile_index;
385
0
            max_mis_to_encode = num_mis_to_encode;
386
0
          }
387
0
        }
388
0
      }
389
0
    }
390
0
  }
391
0
  if (tile_id == -1) {
392
0
    *end_of_frame = 1;
393
0
  } else {
394
    // Update the current tile id to the tile id that will be processed next,
395
    // which will be the least processed tile.
396
0
    *cur_tile_id = tile_id;
397
0
    const int unit_height = mi_size_high[fp_block_size];
398
0
    get_next_job(&tile_data[tile_id], current_mi_row,
399
0
                 is_firstpass ? unit_height : cm->seq_params->mib_size);
400
0
  }
401
0
}
402
403
#if !CONFIG_REALTIME_ONLY
404
0
static void set_firstpass_encode_done(AV1_COMP *cpi) {
405
0
  AV1_COMMON *const cm = &cpi->common;
406
0
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
407
0
  const int tile_cols = cm->tiles.cols;
408
0
  const int tile_rows = cm->tiles.rows;
409
0
  const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
410
0
  const int unit_height = mi_size_high[fp_block_size];
411
412
  // In case of multithreading of firstpass encode, due to top-right
413
  // dependency, the worker on a firstpass row waits for the completion of the
414
  // firstpass processing of the top and top-right fp_blocks. Hence, in case a
415
  // thread (main/worker) encounters an error, update the firstpass processing
416
  // of every row in the frame to indicate that it is complete in order to avoid
417
  // dependent workers waiting indefinitely.
418
0
  for (int tile_row = 0; tile_row < tile_rows; ++tile_row) {
419
0
    for (int tile_col = 0; tile_col < tile_cols; ++tile_col) {
420
0
      TileDataEnc *const tile_data =
421
0
          &cpi->tile_data[tile_row * tile_cols + tile_col];
422
0
      TileInfo *tile = &tile_data->tile_info;
423
0
      AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
424
0
      const int unit_cols_in_tile =
425
0
          av1_get_unit_cols_in_tile(tile, fp_block_size);
426
0
      for (int mi_row = tile->mi_row_start, unit_row_in_tile = 0;
427
0
           mi_row < tile->mi_row_end;
428
0
           mi_row += unit_height, unit_row_in_tile++) {
429
0
        enc_row_mt->sync_write_ptr(row_mt_sync, unit_row_in_tile,
430
0
                                   unit_cols_in_tile - 1, unit_cols_in_tile);
431
0
      }
432
0
    }
433
0
  }
434
0
}
435
436
0
static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) {
437
0
  EncWorkerData *const thread_data = (EncWorkerData *)arg1;
438
0
  AV1_COMP *const cpi = thread_data->cpi;
439
0
  int thread_id = thread_data->thread_id;
440
0
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
441
0
#if CONFIG_MULTITHREAD
442
0
  pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
443
0
#endif
444
0
  (void)unused;
445
0
  struct aom_internal_error_info *const error_info = &thread_data->error_info;
446
0
  MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
447
0
  xd->error_info = error_info;
448
449
  // The jmp_buf is valid only for the duration of the function that calls
450
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
451
  // before it returns.
452
0
  if (setjmp(error_info->jmp)) {
453
0
    error_info->setjmp = 0;
454
0
#if CONFIG_MULTITHREAD
455
0
    pthread_mutex_lock(enc_row_mt_mutex_);
456
0
    enc_row_mt->firstpass_mt_exit = true;
457
0
    pthread_mutex_unlock(enc_row_mt_mutex_);
458
0
#endif
459
0
    set_firstpass_encode_done(cpi);
460
0
    return 0;
461
0
  }
462
0
  error_info->setjmp = 1;
463
464
0
  AV1_COMMON *const cm = &cpi->common;
465
0
  int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
466
0
  assert(cur_tile_id != -1);
467
468
0
  const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
469
0
  const int unit_height = mi_size_high[fp_block_size];
470
0
  int end_of_frame = 0;
471
0
  while (1) {
472
0
    int current_mi_row = -1;
473
0
#if CONFIG_MULTITHREAD
474
0
    pthread_mutex_lock(enc_row_mt_mutex_);
475
0
#endif
476
0
    bool firstpass_mt_exit = enc_row_mt->firstpass_mt_exit;
477
0
    if (!firstpass_mt_exit && !get_next_job(&cpi->tile_data[cur_tile_id],
478
0
                                            &current_mi_row, unit_height)) {
479
      // No jobs are available for the current tile. Query for the status of
480
      // other tiles and get the next job if available
481
0
      switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
482
0
                                   &current_mi_row, &end_of_frame, 1,
483
0
                                   fp_block_size);
484
0
    }
485
0
#if CONFIG_MULTITHREAD
486
0
    pthread_mutex_unlock(enc_row_mt_mutex_);
487
0
#endif
488
    // When firstpass_mt_exit is set to true, other workers need not pursue any
489
    // further jobs.
490
0
    if (firstpass_mt_exit || end_of_frame) break;
491
492
0
    TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
493
0
    AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
494
0
    ThreadData *td = thread_data->td;
495
496
0
    assert(current_mi_row != -1 &&
497
0
           current_mi_row < this_tile->tile_info.mi_row_end);
498
499
0
    const int unit_height_log2 = mi_size_high_log2[fp_block_size];
500
0
    av1_first_pass_row(cpi, td, this_tile, current_mi_row >> unit_height_log2,
501
0
                       fp_block_size);
502
0
#if CONFIG_MULTITHREAD
503
0
    pthread_mutex_lock(enc_row_mt_mutex_);
504
0
#endif
505
0
    row_mt_sync->num_threads_working--;
506
0
#if CONFIG_MULTITHREAD
507
0
    pthread_mutex_unlock(enc_row_mt_mutex_);
508
0
#endif
509
0
  }
510
0
  error_info->setjmp = 0;
511
0
  return 1;
512
0
}
513
#endif
514
515
static void launch_loop_filter_rows(AV1_COMMON *cm, EncWorkerData *thread_data,
516
                                    AV1EncRowMultiThreadInfo *enc_row_mt,
517
0
                                    int mib_size_log2) {
518
0
  AV1LfSync *const lf_sync = (AV1LfSync *)thread_data->lf_sync;
519
0
  const int sb_rows = get_sb_rows_in_frame(cm);
520
0
  AV1LfMTInfo *cur_job_info;
521
0
  bool row_mt_exit = false;
522
0
  (void)enc_row_mt;
523
0
#if CONFIG_MULTITHREAD
524
0
  pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
525
0
#endif
526
527
0
  while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
528
0
    LFWorkerData *const lf_data = (LFWorkerData *)thread_data->lf_data;
529
0
    const int lpf_opt_level = cur_job_info->lpf_opt_level;
530
0
    (void)sb_rows;
531
0
#if CONFIG_MULTITHREAD
532
0
    const int cur_sb_row = cur_job_info->mi_row >> mib_size_log2;
533
0
    const int next_sb_row = AOMMIN(sb_rows - 1, cur_sb_row + 1);
534
    // Wait for current and next superblock row to finish encoding.
535
0
    pthread_mutex_lock(enc_row_mt_mutex_);
536
0
    while (!enc_row_mt->row_mt_exit &&
537
0
           (enc_row_mt->num_tile_cols_done[cur_sb_row] < cm->tiles.cols ||
538
0
            enc_row_mt->num_tile_cols_done[next_sb_row] < cm->tiles.cols)) {
539
0
      pthread_cond_wait(enc_row_mt->cond_, enc_row_mt_mutex_);
540
0
    }
541
0
    row_mt_exit = enc_row_mt->row_mt_exit;
542
0
    pthread_mutex_unlock(enc_row_mt_mutex_);
543
0
#endif
544
0
    if (row_mt_exit) return;
545
546
0
    av1_thread_loop_filter_rows(
547
0
        lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
548
0
        cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
549
0
        lpf_opt_level, lf_sync, &thread_data->error_info, lf_data->params_buf,
550
0
        lf_data->tx_buf, mib_size_log2);
551
0
  }
552
0
}
553
554
0
static void set_encoding_done(AV1_COMP *cpi) {
555
0
  AV1_COMMON *const cm = &cpi->common;
556
0
  const int tile_cols = cm->tiles.cols;
557
0
  const int tile_rows = cm->tiles.rows;
558
0
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
559
0
  const int mib_size = cm->seq_params->mib_size;
560
561
  // In case of row-multithreading, due to top-right dependency, the worker on
562
  // an SB row waits for the completion of the encode of the top and top-right
563
  // SBs. Hence, in case a thread (main/worker) encounters an error, update that
564
  // encoding of every SB row in the frame is complete in order to avoid the
565
  // dependent workers of every tile from waiting indefinitely.
566
0
  for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
567
0
    for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
568
0
      TileDataEnc *const this_tile =
569
0
          &cpi->tile_data[tile_row * tile_cols + tile_col];
570
0
      const TileInfo *const tile_info = &this_tile->tile_info;
571
0
      AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
572
0
      const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
573
0
      for (int mi_row = tile_info->mi_row_start, sb_row_in_tile = 0;
574
0
           mi_row < tile_info->mi_row_end;
575
0
           mi_row += mib_size, sb_row_in_tile++) {
576
0
        enc_row_mt->sync_write_ptr(row_mt_sync, sb_row_in_tile,
577
0
                                   sb_cols_in_tile - 1, sb_cols_in_tile);
578
0
      }
579
0
    }
580
0
  }
581
0
}
582
583
static bool lpf_mt_with_enc_enabled(int pipeline_lpf_mt_with_enc,
584
0
                                    const int filter_level[2]) {
585
0
  return pipeline_lpf_mt_with_enc && (filter_level[0] || filter_level[1]);
586
0
}
587
588
0
static int enc_row_mt_worker_hook(void *arg1, void *unused) {
589
0
  EncWorkerData *const thread_data = (EncWorkerData *)arg1;
590
0
  AV1_COMP *const cpi = thread_data->cpi;
591
0
  int thread_id = thread_data->thread_id;
592
0
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
593
0
#if CONFIG_MULTITHREAD
594
0
  pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
595
0
#endif
596
0
  (void)unused;
597
598
0
  struct aom_internal_error_info *const error_info = &thread_data->error_info;
599
0
  AV1LfSync *const lf_sync = thread_data->lf_sync;
600
0
  MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
601
0
  xd->error_info = error_info;
602
0
  AV1_COMMON *volatile const cm = &cpi->common;
603
0
  volatile const bool do_pipelined_lpf_mt_with_enc = lpf_mt_with_enc_enabled(
604
0
      cpi->mt_info.pipeline_lpf_mt_with_enc, cm->lf.filter_level);
605
606
  // The jmp_buf is valid only for the duration of the function that calls
607
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
608
  // before it returns.
609
0
  if (setjmp(error_info->jmp)) {
610
0
    error_info->setjmp = 0;
611
0
#if CONFIG_MULTITHREAD
612
0
    pthread_mutex_lock(enc_row_mt_mutex_);
613
0
    enc_row_mt->row_mt_exit = true;
614
    // Wake up all the workers waiting in launch_loop_filter_rows() to exit in
615
    // case of an error.
616
0
    pthread_cond_broadcast(enc_row_mt->cond_);
617
0
    pthread_mutex_unlock(enc_row_mt_mutex_);
618
0
#endif
619
0
    set_encoding_done(cpi);
620
621
0
    if (do_pipelined_lpf_mt_with_enc) {
622
0
#if CONFIG_MULTITHREAD
623
0
      pthread_mutex_lock(lf_sync->job_mutex);
624
0
      lf_sync->lf_mt_exit = true;
625
0
      pthread_mutex_unlock(lf_sync->job_mutex);
626
0
#endif
627
0
      av1_set_vert_loop_filter_done(&cpi->common, lf_sync,
628
0
                                    cpi->common.seq_params->mib_size_log2);
629
0
    }
630
0
    return 0;
631
0
  }
632
0
  error_info->setjmp = 1;
633
634
0
  const int mib_size_log2 = cm->seq_params->mib_size_log2;
635
0
  int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
636
637
  // Preallocate the pc_tree for realtime coding to reduce the cost of memory
638
  // allocation.
639
0
  if (cpi->sf.rt_sf.use_nonrd_pick_mode) {
640
0
    thread_data->td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size);
641
0
    if (!thread_data->td->pc_root)
642
0
      aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
643
0
                         "Failed to allocate PC_TREE");
644
0
  } else {
645
0
    thread_data->td->pc_root = NULL;
646
0
  }
647
648
0
  assert(cur_tile_id != -1);
649
650
0
  const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
651
0
  int end_of_frame = 0;
652
0
  bool row_mt_exit = false;
653
654
  // When master thread does not have a valid job to process, xd->tile_ctx
655
  // is not set and it contains NULL pointer. This can result in NULL pointer
656
  // access violation if accessed beyond the encode stage. Hence, updating
657
  // thread_data->td->mb.e_mbd.tile_ctx is initialized with common frame
658
  // context to avoid NULL pointer access in subsequent stages.
659
0
  thread_data->td->mb.e_mbd.tile_ctx = cm->fc;
660
0
  while (1) {
661
0
    int current_mi_row = -1;
662
0
#if CONFIG_MULTITHREAD
663
0
    pthread_mutex_lock(enc_row_mt_mutex_);
664
0
#endif
665
0
    row_mt_exit = enc_row_mt->row_mt_exit;
666
    // row_mt_exit check here can be avoided as it is checked after
667
    // sync_read_ptr() in encode_sb_row(). However, checking row_mt_exit here,
668
    // tries to return before calling the function get_next_job().
669
0
    if (!row_mt_exit &&
670
0
        !get_next_job(&cpi->tile_data[cur_tile_id], &current_mi_row,
671
0
                      cm->seq_params->mib_size)) {
672
      // No jobs are available for the current tile. Query for the status of
673
      // other tiles and get the next job if available
674
0
      switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
675
0
                                   &current_mi_row, &end_of_frame, 0,
676
0
                                   fp_block_size);
677
0
    }
678
0
#if CONFIG_MULTITHREAD
679
0
    pthread_mutex_unlock(enc_row_mt_mutex_);
680
0
#endif
681
    // When row_mt_exit is set to true, other workers need not pursue any
682
    // further jobs.
683
0
    if (row_mt_exit) {
684
0
      error_info->setjmp = 0;
685
0
      return 1;
686
0
    }
687
688
0
    if (end_of_frame) break;
689
690
0
    TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
691
0
    AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
692
0
    const TileInfo *const tile_info = &this_tile->tile_info;
693
0
    const int tile_row = tile_info->tile_row;
694
0
    const int tile_col = tile_info->tile_col;
695
0
    ThreadData *td = thread_data->td;
696
0
    const int sb_row = current_mi_row >> mib_size_log2;
697
698
0
    assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end);
699
700
0
    td->mb.e_mbd.tile_ctx = td->tctx;
701
0
    td->mb.tile_pb_ctx = &this_tile->tctx;
702
0
    td->abs_sum_level = 0;
703
704
0
    if (this_tile->allow_update_cdf) {
705
0
      td->mb.row_ctx = this_tile->row_ctx;
706
0
      if (current_mi_row == tile_info->mi_row_start)
707
0
        memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
708
0
    } else {
709
0
      memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
710
0
    }
711
712
0
    av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
713
0
                           &td->mb.e_mbd);
714
0
#if !CONFIG_REALTIME_ONLY
715
0
    cfl_init(&td->mb.e_mbd.cfl, cm->seq_params);
716
0
#endif
717
0
    if (td->mb.txfm_search_info.mb_rd_record != NULL) {
718
0
      av1_crc32c_calculator_init(
719
0
          &td->mb.txfm_search_info.mb_rd_record->crc_calculator);
720
0
    }
721
722
0
    av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row);
723
0
#if CONFIG_MULTITHREAD
724
0
    pthread_mutex_lock(enc_row_mt_mutex_);
725
0
#endif
726
0
    this_tile->abs_sum_level += td->abs_sum_level;
727
0
    row_mt_sync->num_threads_working--;
728
0
    enc_row_mt->num_tile_cols_done[sb_row]++;
729
0
#if CONFIG_MULTITHREAD
730
0
    pthread_cond_broadcast(enc_row_mt->cond_);
731
0
    pthread_mutex_unlock(enc_row_mt_mutex_);
732
0
#endif
733
0
  }
734
0
  if (do_pipelined_lpf_mt_with_enc) {
735
    // Loop-filter a superblock row if encoding of the current and next
736
    // superblock row is complete.
737
    // TODO(deepa.kg @ittiam.com) Evaluate encoder speed by interleaving
738
    // encoding and loop filter stage.
739
0
    launch_loop_filter_rows(cm, thread_data, enc_row_mt, mib_size_log2);
740
0
  }
741
0
  av1_free_pc_tree_recursive(thread_data->td->pc_root, av1_num_planes(cm), 0, 0,
742
0
                             cpi->sf.part_sf.partition_search_type);
743
0
  thread_data->td->pc_root = NULL;
744
0
  error_info->setjmp = 0;
745
0
  return 1;
746
0
}
747
748
0
static int enc_worker_hook(void *arg1, void *unused) {
749
0
  EncWorkerData *const thread_data = (EncWorkerData *)arg1;
750
0
  AV1_COMP *const cpi = thread_data->cpi;
751
0
  MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
752
0
  struct aom_internal_error_info *const error_info = &thread_data->error_info;
753
0
  const AV1_COMMON *const cm = &cpi->common;
754
0
  const int tile_cols = cm->tiles.cols;
755
0
  const int tile_rows = cm->tiles.rows;
756
0
  int t;
757
758
0
  (void)unused;
759
760
0
  xd->error_info = error_info;
761
762
  // The jmp_buf is valid only for the duration of the function that calls
763
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
764
  // before it returns.
765
0
  if (setjmp(error_info->jmp)) {
766
0
    error_info->setjmp = 0;
767
0
    return 0;
768
0
  }
769
0
  error_info->setjmp = 1;
770
771
  // Preallocate the pc_tree for realtime coding to reduce the cost of memory
772
  // allocation.
773
0
  if (cpi->sf.rt_sf.use_nonrd_pick_mode) {
774
0
    thread_data->td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size);
775
0
    if (!thread_data->td->pc_root)
776
0
      aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
777
0
                         "Failed to allocate PC_TREE");
778
0
  } else {
779
0
    thread_data->td->pc_root = NULL;
780
0
  }
781
782
0
  for (t = thread_data->start; t < tile_rows * tile_cols;
783
0
       t += cpi->mt_info.num_workers) {
784
0
    int tile_row = t / tile_cols;
785
0
    int tile_col = t % tile_cols;
786
787
0
    TileDataEnc *const this_tile =
788
0
        &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
789
0
    thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
790
0
    thread_data->td->mb.tile_pb_ctx = &this_tile->tctx;
791
0
    av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
792
0
  }
793
794
0
  av1_free_pc_tree_recursive(thread_data->td->pc_root, av1_num_planes(cm), 0, 0,
795
0
                             cpi->sf.part_sf.partition_search_type);
796
0
  thread_data->td->pc_root = NULL;
797
0
  error_info->setjmp = 0;
798
0
  return 1;
799
0
}
800
801
0
void av1_init_frame_mt(AV1_PRIMARY *ppi, AV1_COMP *cpi) {
802
0
  cpi->mt_info.workers = ppi->p_mt_info.workers;
803
0
  cpi->mt_info.num_workers = ppi->p_mt_info.num_workers;
804
0
  cpi->mt_info.tile_thr_data = ppi->p_mt_info.tile_thr_data;
805
0
  int i;
806
0
  for (i = MOD_FP; i < NUM_MT_MODULES; i++) {
807
0
    cpi->mt_info.num_mod_workers[i] =
808
0
        AOMMIN(cpi->mt_info.num_workers, ppi->p_mt_info.num_mod_workers[i]);
809
0
  }
810
0
}
811
812
0
void av1_init_cdef_worker(AV1_COMP *cpi) {
813
  // The allocation is done only for level 0 parallel frames. No change
814
  // in config is supported in the middle of a parallel encode set, since the
815
  // rest of the MT modules also do not support dynamic change of config.
816
0
  if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) return;
817
0
  PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
818
0
  int num_cdef_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_CDEF);
819
820
0
  av1_alloc_cdef_buffers(&cpi->common, &p_mt_info->cdef_worker,
821
0
                         &cpi->mt_info.cdef_sync, num_cdef_workers, 1);
822
0
  cpi->mt_info.cdef_worker = p_mt_info->cdef_worker;
823
0
}
824
825
#if !CONFIG_REALTIME_ONLY
826
0
void av1_init_lr_mt_buffers(AV1_COMP *cpi) {
827
0
  AV1_COMMON *const cm = &cpi->common;
828
0
  AV1LrSync *lr_sync = &cpi->mt_info.lr_row_sync;
829
0
  if (lr_sync->sync_range) {
830
0
    if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
831
0
      return;
832
0
    int num_lr_workers =
833
0
        av1_get_num_mod_workers_for_alloc(&cpi->ppi->p_mt_info, MOD_LR);
834
0
    assert(num_lr_workers <= lr_sync->num_workers);
835
0
    lr_sync->lrworkerdata[num_lr_workers - 1].rst_tmpbuf = cm->rst_tmpbuf;
836
0
    lr_sync->lrworkerdata[num_lr_workers - 1].rlbs = cm->rlbs;
837
0
  }
838
0
}
839
#endif
840
841
#if CONFIG_MULTITHREAD
842
0
void av1_init_mt_sync(AV1_COMP *cpi, int is_first_pass) {
843
0
  AV1_COMMON *const cm = &cpi->common;
844
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
845
846
0
  if (setjmp(cm->error->jmp)) {
847
0
    cm->error->setjmp = 0;
848
0
    aom_internal_error_copy(&cpi->ppi->error, cm->error);
849
0
  }
850
0
  cm->error->setjmp = 1;
851
  // Initialize enc row MT object.
852
0
  if (is_first_pass || cpi->oxcf.row_mt == 1) {
853
0
    AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
854
0
    if (enc_row_mt->mutex_ == NULL) {
855
0
      CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
856
0
                      aom_malloc(sizeof(*(enc_row_mt->mutex_))));
857
0
      if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
858
0
    }
859
0
    if (enc_row_mt->cond_ == NULL) {
860
0
      CHECK_MEM_ERROR(cm, enc_row_mt->cond_,
861
0
                      aom_malloc(sizeof(*(enc_row_mt->cond_))));
862
0
      if (enc_row_mt->cond_) pthread_cond_init(enc_row_mt->cond_, NULL);
863
0
    }
864
0
  }
865
866
0
  if (!is_first_pass) {
867
    // Initialize global motion MT object.
868
0
    AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync;
869
0
    if (gm_sync->mutex_ == NULL) {
870
0
      CHECK_MEM_ERROR(cm, gm_sync->mutex_,
871
0
                      aom_malloc(sizeof(*(gm_sync->mutex_))));
872
0
      if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL);
873
0
    }
874
0
#if !CONFIG_REALTIME_ONLY
875
    // Initialize temporal filtering MT object.
876
0
    AV1TemporalFilterSync *tf_sync = &mt_info->tf_sync;
877
0
    if (tf_sync->mutex_ == NULL) {
878
0
      CHECK_MEM_ERROR(cm, tf_sync->mutex_,
879
0
                      aom_malloc(sizeof(*tf_sync->mutex_)));
880
0
      if (tf_sync->mutex_) pthread_mutex_init(tf_sync->mutex_, NULL);
881
0
    }
882
0
#endif  // !CONFIG_REALTIME_ONLY
883
        // Initialize CDEF MT object.
884
0
    AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
885
0
    if (cdef_sync->mutex_ == NULL) {
886
0
      CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
887
0
                      aom_malloc(sizeof(*(cdef_sync->mutex_))));
888
0
      if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
889
0
    }
890
891
    // Initialize loop filter MT object.
892
0
    AV1LfSync *lf_sync = &mt_info->lf_row_sync;
893
    // Number of superblock rows
894
0
    const int sb_rows =
895
0
        CEIL_POWER_OF_TWO(cm->height >> MI_SIZE_LOG2, MAX_MIB_SIZE_LOG2);
896
0
    PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
897
0
    int num_lf_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LPF);
898
899
0
    if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
900
0
        num_lf_workers > lf_sync->num_workers) {
901
0
      av1_loop_filter_dealloc(lf_sync);
902
0
      av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_lf_workers);
903
0
    }
904
905
    // Initialize tpl MT object.
906
0
    AV1TplRowMultiThreadInfo *tpl_row_mt = &mt_info->tpl_row_mt;
907
0
    if (tpl_row_mt->mutex_ == NULL) {
908
0
      CHECK_MEM_ERROR(cm, tpl_row_mt->mutex_,
909
0
                      aom_malloc(sizeof(*(tpl_row_mt->mutex_))));
910
0
      if (tpl_row_mt->mutex_) pthread_mutex_init(tpl_row_mt->mutex_, NULL);
911
0
    }
912
913
0
#if !CONFIG_REALTIME_ONLY
914
0
    if (is_restoration_used(cm)) {
915
      // Initialize loop restoration MT object.
916
0
      AV1LrSync *lr_sync = &mt_info->lr_row_sync;
917
0
      int rst_unit_size = cpi->sf.lpf_sf.min_lr_unit_size;
918
0
      int num_rows_lr = av1_lr_count_units(rst_unit_size, cm->height);
919
0
      int num_lr_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LR);
920
0
      if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
921
0
          num_lr_workers > lr_sync->num_workers ||
922
0
          MAX_MB_PLANE > lr_sync->num_planes) {
923
0
        av1_loop_restoration_dealloc(lr_sync);
924
0
        av1_loop_restoration_alloc(lr_sync, cm, num_lr_workers, num_rows_lr,
925
0
                                   MAX_MB_PLANE, cm->width);
926
0
      }
927
0
    }
928
0
#endif
929
930
    // Initialization of pack bitstream MT object.
931
0
    AV1EncPackBSSync *pack_bs_sync = &mt_info->pack_bs_sync;
932
0
    if (pack_bs_sync->mutex_ == NULL) {
933
0
      CHECK_MEM_ERROR(cm, pack_bs_sync->mutex_,
934
0
                      aom_malloc(sizeof(*pack_bs_sync->mutex_)));
935
0
      if (pack_bs_sync->mutex_) pthread_mutex_init(pack_bs_sync->mutex_, NULL);
936
0
    }
937
0
  }
938
0
  cm->error->setjmp = 0;
939
0
}
940
#endif  // CONFIG_MULTITHREAD
941
942
// Computes the number of workers to be considered while allocating memory for a
943
// multi-threaded module under FPMT.
944
int av1_get_num_mod_workers_for_alloc(const PrimaryMultiThreadInfo *p_mt_info,
945
0
                                      MULTI_THREADED_MODULES mod_name) {
946
0
  int num_mod_workers = p_mt_info->num_mod_workers[mod_name];
947
0
  if (p_mt_info->num_mod_workers[MOD_FRAME_ENC] > 1) {
948
    // TODO(anyone): Change num_mod_workers to num_mod_workers[MOD_FRAME_ENC].
949
    // As frame parallel jobs will only perform multi-threading for the encode
950
    // stage, we can limit the allocations according to num_enc_workers per
951
    // frame parallel encode(a.k.a num_mod_workers[MOD_FRAME_ENC]).
952
0
    num_mod_workers = p_mt_info->num_workers;
953
0
  }
954
0
  return num_mod_workers;
955
0
}
956
957
0
void av1_init_tile_thread_data(AV1_PRIMARY *ppi, int is_first_pass) {
958
0
  PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
959
960
0
  assert(p_mt_info->workers != NULL);
961
0
  assert(p_mt_info->tile_thr_data != NULL);
962
963
0
  int num_workers = p_mt_info->num_workers;
964
0
  int num_enc_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_ENC);
965
0
  assert(num_enc_workers <= num_workers);
966
0
  for (int i = num_workers - 1; i >= 0; i--) {
967
0
    EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];
968
969
0
    if (i > 0) {
970
      // Allocate thread data.
971
0
      ThreadData *td;
972
0
      AOM_CHECK_MEM_ERROR(&ppi->error, td, aom_memalign(32, sizeof(*td)));
973
0
      av1_zero(*td);
974
0
      thread_data->original_td = thread_data->td = td;
975
976
      // Set up shared coeff buffers.
977
0
      av1_setup_shared_coeff_buffer(&ppi->seq_params, &td->shared_coeff_buf,
978
0
                                    &ppi->error);
979
0
      AOM_CHECK_MEM_ERROR(&ppi->error, td->tmp_conv_dst,
980
0
                          aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
981
0
                                               sizeof(*td->tmp_conv_dst)));
982
983
0
      if (i < p_mt_info->num_mod_workers[MOD_FP]) {
984
        // Set up firstpass PICK_MODE_CONTEXT.
985
0
        td->firstpass_ctx =
986
0
            av1_alloc_pmc(ppi->cpi, BLOCK_16X16, &td->shared_coeff_buf);
987
0
        if (!td->firstpass_ctx)
988
0
          aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
989
0
                             "Failed to allocate PICK_MODE_CONTEXT");
990
0
      }
991
992
0
      if (!is_first_pass && i < num_enc_workers) {
993
        // Set up sms_tree.
994
0
        if (av1_setup_sms_tree(ppi->cpi, td)) {
995
0
          aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
996
0
                             "Failed to allocate SMS tree");
997
0
        }
998
999
0
        for (int x = 0; x < 2; x++)
1000
0
          for (int y = 0; y < 2; y++)
1001
0
            AOM_CHECK_MEM_ERROR(
1002
0
                &ppi->error, td->hash_value_buffer[x][y],
1003
0
                (uint32_t *)aom_malloc(AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
1004
0
                                       sizeof(*td->hash_value_buffer[0][0])));
1005
1006
        // Allocate frame counters in thread data.
1007
0
        AOM_CHECK_MEM_ERROR(&ppi->error, td->counts,
1008
0
                            aom_calloc(1, sizeof(*td->counts)));
1009
1010
        // Allocate buffers used by palette coding mode.
1011
0
        AOM_CHECK_MEM_ERROR(&ppi->error, td->palette_buffer,
1012
0
                            aom_memalign(16, sizeof(*td->palette_buffer)));
1013
1014
        // The buffers 'tmp_pred_bufs[]', 'comp_rd_buffer' and 'obmc_buffer' are
1015
        // used in inter frames to store intermediate inter mode prediction
1016
        // results and are not required for allintra encoding mode. Hence, the
1017
        // memory allocations for these buffers are avoided for allintra
1018
        // encoding mode.
1019
0
        if (ppi->cpi->oxcf.kf_cfg.key_freq_max != 0) {
1020
0
          alloc_obmc_buffers(&td->obmc_buffer, &ppi->error);
1021
1022
0
          alloc_compound_type_rd_buffers(&ppi->error, &td->comp_rd_buffer);
1023
1024
0
          for (int j = 0; j < 2; ++j) {
1025
0
            AOM_CHECK_MEM_ERROR(
1026
0
                &ppi->error, td->tmp_pred_bufs[j],
1027
0
                aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
1028
0
                                     sizeof(*td->tmp_pred_bufs[j])));
1029
0
          }
1030
0
        }
1031
1032
0
        if (is_gradient_caching_for_hog_enabled(ppi->cpi)) {
1033
0
          const int plane_types = PLANE_TYPES >> ppi->seq_params.monochrome;
1034
0
          AOM_CHECK_MEM_ERROR(&ppi->error, td->pixel_gradient_info,
1035
0
                              aom_malloc(sizeof(*td->pixel_gradient_info) *
1036
0
                                         plane_types * MAX_SB_SQUARE));
1037
0
        }
1038
1039
0
        if (is_src_var_for_4x4_sub_blocks_caching_enabled(ppi->cpi)) {
1040
0
          const BLOCK_SIZE sb_size = ppi->cpi->common.seq_params->sb_size;
1041
0
          const int mi_count_in_sb =
1042
0
              mi_size_wide[sb_size] * mi_size_high[sb_size];
1043
1044
0
          AOM_CHECK_MEM_ERROR(
1045
0
              &ppi->error, td->src_var_info_of_4x4_sub_blocks,
1046
0
              aom_malloc(sizeof(*td->src_var_info_of_4x4_sub_blocks) *
1047
0
                         mi_count_in_sb));
1048
0
        }
1049
1050
0
        if (ppi->cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) {
1051
0
          const int num_64x64_blocks =
1052
0
              (ppi->seq_params.sb_size == BLOCK_64X64) ? 1 : 4;
1053
0
          AOM_CHECK_MEM_ERROR(
1054
0
              &ppi->error, td->vt64x64,
1055
0
              aom_malloc(sizeof(*td->vt64x64) * num_64x64_blocks));
1056
0
        }
1057
0
      }
1058
0
    }
1059
1060
0
    if (!is_first_pass && ppi->cpi->oxcf.row_mt == 1 && i < num_enc_workers) {
1061
0
      if (i == 0) {
1062
0
        for (int j = 0; j < ppi->num_fp_contexts; j++) {
1063
0
          AOM_CHECK_MEM_ERROR(&ppi->error, ppi->parallel_cpi[j]->td.tctx,
1064
0
                              (FRAME_CONTEXT *)aom_memalign(
1065
0
                                  16, sizeof(*ppi->parallel_cpi[j]->td.tctx)));
1066
0
        }
1067
0
      } else {
1068
0
        AOM_CHECK_MEM_ERROR(
1069
0
            &ppi->error, thread_data->td->tctx,
1070
0
            (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
1071
0
      }
1072
0
    }
1073
0
  }
1074
1075
  // Record the number of workers in encode stage multi-threading for which
1076
  // allocation is done.
1077
0
  p_mt_info->prev_num_enc_workers = num_enc_workers;
1078
0
}
1079
1080
0
void av1_create_workers(AV1_PRIMARY *ppi, int num_workers) {
1081
0
  PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1082
0
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1083
0
  assert(p_mt_info->num_workers == 0);
1084
1085
0
  AOM_CHECK_MEM_ERROR(&ppi->error, p_mt_info->workers,
1086
0
                      aom_malloc(num_workers * sizeof(*p_mt_info->workers)));
1087
1088
0
  AOM_CHECK_MEM_ERROR(
1089
0
      &ppi->error, p_mt_info->tile_thr_data,
1090
0
      aom_calloc(num_workers, sizeof(*p_mt_info->tile_thr_data)));
1091
1092
0
  for (int i = 0; i < num_workers; ++i) {
1093
0
    AVxWorker *const worker = &p_mt_info->workers[i];
1094
0
    EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];
1095
1096
0
    winterface->init(worker);
1097
0
    worker->thread_name = "aom enc worker";
1098
1099
0
    thread_data->thread_id = i;
1100
    // Set the starting tile for each thread.
1101
0
    thread_data->start = i;
1102
1103
0
    if (i > 0) {
1104
      // Create threads
1105
0
      if (!winterface->reset(worker))
1106
0
        aom_internal_error(&ppi->error, AOM_CODEC_ERROR,
1107
0
                           "Tile encoder thread creation failed");
1108
0
    }
1109
0
    winterface->sync(worker);
1110
1111
0
    ++p_mt_info->num_workers;
1112
0
  }
1113
0
}
1114
1115
// This function will change the state and free the mutex of corresponding
1116
// workers and terminate the object. The object can not be re-used unless a call
1117
// to reset() is made.
1118
0
void av1_terminate_workers(AV1_PRIMARY *ppi) {
1119
0
  PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1120
0
  for (int t = 0; t < p_mt_info->num_workers; ++t) {
1121
0
    AVxWorker *const worker = &p_mt_info->workers[t];
1122
0
    aom_get_worker_interface()->end(worker);
1123
0
  }
1124
0
}
1125
1126
// This function returns 1 if frame parallel encode is supported for
1127
// the current configuration. Returns 0 otherwise.
1128
static inline int is_fpmt_config(const AV1_PRIMARY *ppi,
1129
0
                                 const AV1EncoderConfig *oxcf) {
1130
  // FPMT is enabled for AOM_Q and AOM_VBR.
1131
  // TODO(Tarun): Test and enable resize config.
1132
0
  if (oxcf->rc_cfg.mode == AOM_CBR || oxcf->rc_cfg.mode == AOM_CQ) {
1133
0
    return 0;
1134
0
  }
1135
0
  if (ppi->use_svc) {
1136
0
    return 0;
1137
0
  }
1138
0
  if (oxcf->tile_cfg.enable_large_scale_tile) {
1139
0
    return 0;
1140
0
  }
1141
0
  if (oxcf->dec_model_cfg.timing_info_present) {
1142
0
    return 0;
1143
0
  }
1144
0
  if (oxcf->mode != GOOD) {
1145
0
    return 0;
1146
0
  }
1147
0
  if (oxcf->tool_cfg.error_resilient_mode) {
1148
0
    return 0;
1149
0
  }
1150
0
  if (oxcf->resize_cfg.resize_mode) {
1151
0
    return 0;
1152
0
  }
1153
0
  if (oxcf->pass != AOM_RC_SECOND_PASS) {
1154
0
    return 0;
1155
0
  }
1156
0
  if (oxcf->max_threads < 2) {
1157
0
    return 0;
1158
0
  }
1159
0
  if (!oxcf->fp_mt) {
1160
0
    return 0;
1161
0
  }
1162
1163
0
  return 1;
1164
0
}
1165
1166
int av1_check_fpmt_config(AV1_PRIMARY *const ppi,
1167
0
                          const AV1EncoderConfig *const oxcf) {
1168
0
  if (is_fpmt_config(ppi, oxcf)) return 1;
1169
  // Reset frame parallel configuration for unsupported config
1170
0
  if (ppi->num_fp_contexts > 1) {
1171
0
    for (int i = 1; i < ppi->num_fp_contexts; i++) {
1172
      // Release the previously-used frame-buffer
1173
0
      if (ppi->parallel_cpi[i]->common.cur_frame != NULL) {
1174
0
        --ppi->parallel_cpi[i]->common.cur_frame->ref_count;
1175
0
        ppi->parallel_cpi[i]->common.cur_frame = NULL;
1176
0
      }
1177
0
    }
1178
1179
0
    int cur_gf_index = ppi->cpi->gf_frame_index;
1180
0
    int reset_size = AOMMAX(0, ppi->gf_group.size - cur_gf_index);
1181
0
    av1_zero_array(&ppi->gf_group.frame_parallel_level[cur_gf_index],
1182
0
                   reset_size);
1183
0
    av1_zero_array(&ppi->gf_group.is_frame_non_ref[cur_gf_index], reset_size);
1184
0
    av1_zero_array(&ppi->gf_group.src_offset[cur_gf_index], reset_size);
1185
0
    memset(&ppi->gf_group.skip_frame_refresh[cur_gf_index][0], INVALID_IDX,
1186
0
           sizeof(ppi->gf_group.skip_frame_refresh[cur_gf_index][0]) *
1187
0
               reset_size * REF_FRAMES);
1188
0
    memset(&ppi->gf_group.skip_frame_as_ref[cur_gf_index], INVALID_IDX,
1189
0
           sizeof(ppi->gf_group.skip_frame_as_ref[cur_gf_index]) * reset_size);
1190
0
    ppi->num_fp_contexts = 1;
1191
0
  }
1192
0
  return 0;
1193
0
}
1194
1195
// A large value for threads used to compute the max num_enc_workers
1196
// possible for each resolution.
1197
#define MAX_THREADS 100
1198
1199
// Computes the max number of enc workers possible for each resolution.
1200
static inline int compute_max_num_enc_workers(
1201
0
    CommonModeInfoParams *const mi_params, int mib_size_log2) {
1202
0
  int num_sb_rows = CEIL_POWER_OF_TWO(mi_params->mi_rows, mib_size_log2);
1203
0
  int num_sb_cols = CEIL_POWER_OF_TWO(mi_params->mi_cols, mib_size_log2);
1204
1205
0
  return AOMMIN((num_sb_cols + 1) >> 1, num_sb_rows);
1206
0
}
1207
1208
// Computes the number of frame parallel(fp) contexts to be created
1209
// based on the number of max_enc_workers.
1210
0
int av1_compute_num_fp_contexts(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) {
1211
0
  ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] = 0;
1212
0
  if (!av1_check_fpmt_config(ppi, oxcf)) {
1213
0
    return 1;
1214
0
  }
1215
0
  int max_num_enc_workers = compute_max_num_enc_workers(
1216
0
      &ppi->cpi->common.mi_params, ppi->cpi->common.seq_params->mib_size_log2);
1217
  // Scaling factors and rounding factors used to tune worker_per_frame
1218
  // computation.
1219
0
  int rounding_factor[2] = { 2, 4 };
1220
0
  int scaling_factor[2] = { 4, 8 };
1221
0
  int is_480p_or_lesser =
1222
0
      AOMMIN(oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height) <= 480;
1223
0
  int is_sb_64 = 0;
1224
0
  if (ppi->cpi != NULL)
1225
0
    is_sb_64 = ppi->cpi->common.seq_params->sb_size == BLOCK_64X64;
1226
  // A parallel frame encode has at least 1/4th the
1227
  // theoretical limit of max enc workers in default case. For resolutions
1228
  // larger than 480p, if SB size is 64x64, optimal performance is obtained with
1229
  // limit of 1/8.
1230
0
  int index = (!is_480p_or_lesser && is_sb_64) ? 1 : 0;
1231
0
  int workers_per_frame =
1232
0
      AOMMAX(1, (max_num_enc_workers + rounding_factor[index]) /
1233
0
                    scaling_factor[index]);
1234
0
  int max_threads = oxcf->max_threads;
1235
0
  int num_fp_contexts = max_threads / workers_per_frame;
1236
  // Based on empirical results, FPMT gains with multi-tile are significant when
1237
  // more parallel frames are available. Use FPMT with multi-tile encode only
1238
  // when sufficient threads are available for parallel encode of
1239
  // MAX_PARALLEL_FRAMES frames.
1240
0
  if (oxcf->tile_cfg.tile_columns > 0 || oxcf->tile_cfg.tile_rows > 0) {
1241
0
    if (num_fp_contexts < MAX_PARALLEL_FRAMES) num_fp_contexts = 1;
1242
0
  }
1243
1244
0
  num_fp_contexts = AOMMAX(1, AOMMIN(num_fp_contexts, MAX_PARALLEL_FRAMES));
1245
  // Limit recalculated num_fp_contexts to ppi->num_fp_contexts.
1246
0
  num_fp_contexts = (ppi->num_fp_contexts == 1)
1247
0
                        ? num_fp_contexts
1248
0
                        : AOMMIN(num_fp_contexts, ppi->num_fp_contexts);
1249
0
  if (num_fp_contexts > 1) {
1250
0
    ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] =
1251
0
        AOMMIN(max_num_enc_workers * num_fp_contexts, oxcf->max_threads);
1252
0
  }
1253
0
  return num_fp_contexts;
1254
0
}
1255
1256
// Computes the number of workers to process each of the parallel frames.
1257
static inline int compute_num_workers_per_frame(
1258
0
    const int num_workers, const int parallel_frame_count) {
1259
  // Number of level 2 workers per frame context (floor division).
1260
0
  int workers_per_frame = (num_workers / parallel_frame_count);
1261
0
  return workers_per_frame;
1262
0
}
1263
1264
static inline void restore_workers_after_fpmt(AV1_PRIMARY *ppi,
1265
                                              int parallel_frame_count,
1266
                                              int num_fpmt_workers_prepared);
1267
1268
// Prepare level 1 workers. This function is only called for
1269
// parallel_frame_count > 1. This function populates the mt_info structure of
1270
// frame level contexts appropriately by dividing the total number of available
1271
// workers amongst the frames as level 2 workers. It also populates the hook and
1272
// data members of level 1 workers.
1273
static inline void prepare_fpmt_workers(AV1_PRIMARY *ppi,
1274
                                        AV1_COMP_DATA *first_cpi_data,
1275
                                        AVxWorkerHook hook,
1276
0
                                        int parallel_frame_count) {
1277
0
  assert(parallel_frame_count <= ppi->num_fp_contexts &&
1278
0
         parallel_frame_count > 1);
1279
1280
0
  PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1281
0
  int num_workers = p_mt_info->num_workers;
1282
1283
0
  volatile int frame_idx = 0;
1284
0
  volatile int i = 0;
1285
0
  while (i < num_workers) {
1286
    // Assign level 1 worker
1287
0
    AVxWorker *frame_worker = p_mt_info->p_workers[frame_idx] =
1288
0
        &p_mt_info->workers[i];
1289
0
    AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
1290
0
    MultiThreadInfo *mt_info = &cur_cpi->mt_info;
1291
    // This 'aom_internal_error_info' pointer is not derived from the local
1292
    // pointer ('AV1_COMMON *const cm') to silence the compiler warning
1293
    // "variable 'cm' might be clobbered by 'longjmp' or 'vfork' [-Wclobbered]".
1294
0
    struct aom_internal_error_info *const error = cur_cpi->common.error;
1295
1296
    // The jmp_buf is valid only within the scope of the function that calls
1297
    // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
1298
    // before it returns.
1299
0
    if (setjmp(error->jmp)) {
1300
0
      error->setjmp = 0;
1301
0
      restore_workers_after_fpmt(ppi, parallel_frame_count, i);
1302
0
      aom_internal_error_copy(&ppi->error, error);
1303
0
    }
1304
0
    error->setjmp = 1;
1305
1306
0
    AV1_COMMON *const cm = &cur_cpi->common;
1307
    // Assign start of level 2 worker pool
1308
0
    mt_info->workers = &p_mt_info->workers[i];
1309
0
    mt_info->tile_thr_data = &p_mt_info->tile_thr_data[i];
1310
    // Assign number of workers for each frame in the parallel encode set.
1311
0
    mt_info->num_workers = compute_num_workers_per_frame(
1312
0
        num_workers - i, parallel_frame_count - frame_idx);
1313
0
    for (int j = MOD_FP; j < NUM_MT_MODULES; j++) {
1314
0
      mt_info->num_mod_workers[j] =
1315
0
          AOMMIN(mt_info->num_workers, p_mt_info->num_mod_workers[j]);
1316
0
    }
1317
0
    if (p_mt_info->cdef_worker != NULL) {
1318
0
      mt_info->cdef_worker = &p_mt_info->cdef_worker[i];
1319
1320
      // Back up the original cdef_worker pointers.
1321
0
      mt_info->restore_state_buf.cdef_srcbuf = mt_info->cdef_worker->srcbuf;
1322
0
      const int num_planes = av1_num_planes(cm);
1323
0
      for (int plane = 0; plane < num_planes; plane++)
1324
0
        mt_info->restore_state_buf.cdef_colbuf[plane] =
1325
0
            mt_info->cdef_worker->colbuf[plane];
1326
0
    }
1327
0
#if !CONFIG_REALTIME_ONLY
1328
0
    if (is_restoration_used(cm)) {
1329
      // Back up the original LR buffers before update.
1330
0
      int idx = i + mt_info->num_workers - 1;
1331
0
      assert(idx < mt_info->lr_row_sync.num_workers);
1332
0
      mt_info->restore_state_buf.rst_tmpbuf =
1333
0
          mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf;
1334
0
      mt_info->restore_state_buf.rlbs =
1335
0
          mt_info->lr_row_sync.lrworkerdata[idx].rlbs;
1336
1337
      // Update LR buffers.
1338
0
      mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf = cm->rst_tmpbuf;
1339
0
      mt_info->lr_row_sync.lrworkerdata[idx].rlbs = cm->rlbs;
1340
0
    }
1341
0
#endif
1342
1343
0
    i += mt_info->num_workers;
1344
1345
    // At this stage, the thread specific CDEF buffers for the current frame's
1346
    // 'common' and 'cdef_sync' only need to be allocated. 'cdef_worker' has
1347
    // already been allocated across parallel frames.
1348
0
    av1_alloc_cdef_buffers(cm, &p_mt_info->cdef_worker, &mt_info->cdef_sync,
1349
0
                           p_mt_info->num_workers, 0);
1350
1351
0
    frame_worker->hook = hook;
1352
0
    frame_worker->data1 = cur_cpi;
1353
0
    frame_worker->data2 = (frame_idx == 0)
1354
0
                              ? first_cpi_data
1355
0
                              : &ppi->parallel_frames_data[frame_idx - 1];
1356
0
    frame_idx++;
1357
0
    error->setjmp = 0;
1358
0
  }
1359
0
  p_mt_info->p_num_workers = parallel_frame_count;
1360
0
}
1361
1362
// Launch level 1 workers to perform frame parallel encode.
1363
0
static inline void launch_fpmt_workers(AV1_PRIMARY *ppi) {
1364
0
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1365
0
  int num_workers = ppi->p_mt_info.p_num_workers;
1366
1367
0
  for (int i = num_workers - 1; i >= 0; i--) {
1368
0
    AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
1369
0
    if (i == 0)
1370
0
      winterface->execute(worker);
1371
0
    else
1372
0
      winterface->launch(worker);
1373
0
  }
1374
0
}
1375
1376
// Restore worker states after parallel encode.
1377
static inline void restore_workers_after_fpmt(AV1_PRIMARY *ppi,
1378
                                              int parallel_frame_count,
1379
0
                                              int num_fpmt_workers_prepared) {
1380
0
  assert(parallel_frame_count <= ppi->num_fp_contexts &&
1381
0
         parallel_frame_count > 1);
1382
0
  (void)parallel_frame_count;
1383
1384
0
  PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1385
1386
0
  int frame_idx = 0;
1387
0
  int i = 0;
1388
0
  while (i < num_fpmt_workers_prepared) {
1389
0
    AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
1390
0
    MultiThreadInfo *mt_info = &cur_cpi->mt_info;
1391
0
    const AV1_COMMON *const cm = &cur_cpi->common;
1392
0
    const int num_planes = av1_num_planes(cm);
1393
1394
    // Restore the original cdef_worker pointers.
1395
0
    if (p_mt_info->cdef_worker != NULL) {
1396
0
      mt_info->cdef_worker->srcbuf = mt_info->restore_state_buf.cdef_srcbuf;
1397
0
      for (int plane = 0; plane < num_planes; plane++)
1398
0
        mt_info->cdef_worker->colbuf[plane] =
1399
0
            mt_info->restore_state_buf.cdef_colbuf[plane];
1400
0
    }
1401
0
#if !CONFIG_REALTIME_ONLY
1402
0
    if (is_restoration_used(cm)) {
1403
      // Restore the original LR buffers.
1404
0
      int idx = i + mt_info->num_workers - 1;
1405
0
      assert(idx < mt_info->lr_row_sync.num_workers);
1406
0
      mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf =
1407
0
          mt_info->restore_state_buf.rst_tmpbuf;
1408
0
      mt_info->lr_row_sync.lrworkerdata[idx].rlbs =
1409
0
          mt_info->restore_state_buf.rlbs;
1410
0
    }
1411
0
#endif
1412
1413
0
    frame_idx++;
1414
0
    i += mt_info->num_workers;
1415
0
  }
1416
0
}
1417
1418
// Synchronize level 1 workers.
1419
static inline void sync_fpmt_workers(AV1_PRIMARY *ppi,
1420
0
                                     int frames_in_parallel_set) {
1421
0
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1422
0
  int num_workers = ppi->p_mt_info.p_num_workers;
1423
0
  int had_error = 0;
1424
  // Points to error in the earliest display order frame in the parallel set.
1425
0
  const struct aom_internal_error_info *error = NULL;
1426
1427
  // Encoding ends.
1428
0
  for (int i = num_workers - 1; i >= 0; --i) {
1429
0
    AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
1430
0
    if (!winterface->sync(worker)) {
1431
0
      had_error = 1;
1432
0
      error = ppi->parallel_cpi[i]->common.error;
1433
0
    }
1434
0
  }
1435
1436
0
  restore_workers_after_fpmt(ppi, frames_in_parallel_set,
1437
0
                             ppi->p_mt_info.num_workers);
1438
1439
0
  if (had_error) aom_internal_error_copy(&ppi->error, error);
1440
0
}
1441
1442
0
static int get_compressed_data_hook(void *arg1, void *arg2) {
1443
0
  AV1_COMP *cpi = (AV1_COMP *)arg1;
1444
0
  AV1_COMP_DATA *cpi_data = (AV1_COMP_DATA *)arg2;
1445
0
  int status = av1_get_compressed_data(cpi, cpi_data);
1446
1447
  // AOM_CODEC_OK(0) means no error.
1448
0
  return !status;
1449
0
}
1450
1451
// This function encodes the raw frame data for each frame in parallel encode
1452
// set, and outputs the frame bit stream to the designated buffers.
1453
void av1_compress_parallel_frames(AV1_PRIMARY *const ppi,
1454
0
                                  AV1_COMP_DATA *const first_cpi_data) {
1455
  // Bitmask for the frame buffers referenced by cpi->scaled_ref_buf
1456
  // corresponding to frames in the current parallel encode set.
1457
0
  int ref_buffers_used_map = 0;
1458
0
  int frames_in_parallel_set = av1_init_parallel_frame_context(
1459
0
      first_cpi_data, ppi, &ref_buffers_used_map);
1460
0
  prepare_fpmt_workers(ppi, first_cpi_data, get_compressed_data_hook,
1461
0
                       frames_in_parallel_set);
1462
0
  launch_fpmt_workers(ppi);
1463
0
  sync_fpmt_workers(ppi, frames_in_parallel_set);
1464
1465
  // Release cpi->scaled_ref_buf corresponding to frames in the current parallel
1466
  // encode set.
1467
0
  for (int i = 0; i < frames_in_parallel_set; ++i) {
1468
0
    av1_release_scaled_references_fpmt(ppi->parallel_cpi[i]);
1469
0
  }
1470
0
  av1_decrement_ref_counts_fpmt(ppi->cpi->common.buffer_pool,
1471
0
                                ref_buffers_used_map);
1472
0
}
1473
1474
static inline void launch_workers(MultiThreadInfo *const mt_info,
1475
0
                                  int num_workers) {
1476
0
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1477
0
  for (int i = num_workers - 1; i >= 0; i--) {
1478
0
    AVxWorker *const worker = &mt_info->workers[i];
1479
0
    worker->had_error = 0;
1480
0
    if (i == 0)
1481
0
      winterface->execute(worker);
1482
0
    else
1483
0
      winterface->launch(worker);
1484
0
  }
1485
0
}
1486
1487
static inline void sync_enc_workers(MultiThreadInfo *const mt_info,
1488
0
                                    AV1_COMMON *const cm, int num_workers) {
1489
0
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1490
0
  const AVxWorker *const worker_main = &mt_info->workers[0];
1491
0
  int had_error = worker_main->had_error;
1492
0
  struct aom_internal_error_info error_info;
1493
1494
  // Read the error_info of main thread.
1495
0
  if (had_error) {
1496
0
    error_info = ((EncWorkerData *)worker_main->data1)->error_info;
1497
0
  }
1498
1499
  // Encoding ends.
1500
0
  for (int i = num_workers - 1; i > 0; i--) {
1501
0
    AVxWorker *const worker = &mt_info->workers[i];
1502
0
    if (!winterface->sync(worker)) {
1503
0
      had_error = 1;
1504
0
      error_info = ((EncWorkerData *)worker->data1)->error_info;
1505
0
    }
1506
0
  }
1507
1508
0
  if (had_error) aom_internal_error_copy(cm->error, &error_info);
1509
1510
  // Restore xd->error_info of the main thread back to cm->error so that the
1511
  // multithreaded code, when executed using a single thread, has a valid
1512
  // xd->error_info.
1513
0
  MACROBLOCKD *const xd = &((EncWorkerData *)worker_main->data1)->td->mb.e_mbd;
1514
0
  xd->error_info = cm->error;
1515
0
}
1516
1517
static inline void accumulate_counters_enc_workers(AV1_COMP *cpi,
1518
0
                                                   int num_workers) {
1519
0
  for (int i = num_workers - 1; i >= 0; i--) {
1520
0
    AVxWorker *const worker = &cpi->mt_info.workers[i];
1521
0
    EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
1522
0
    cpi->intrabc_used |= thread_data->td->intrabc_used;
1523
0
    cpi->deltaq_used |= thread_data->td->deltaq_used;
1524
    // Accumulate rtc counters.
1525
0
    if (!frame_is_intra_only(&cpi->common))
1526
0
      av1_accumulate_rtc_counters(cpi, &thread_data->td->mb);
1527
0
    cpi->palette_pixel_num += thread_data->td->mb.palette_pixels;
1528
0
    if (thread_data->td != &cpi->td) {
1529
      // Keep these conditional expressions in sync with the corresponding ones
1530
      // in prepare_enc_workers().
1531
0
      if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1532
0
        aom_free(thread_data->td->mv_costs_alloc);
1533
0
        thread_data->td->mv_costs_alloc = NULL;
1534
0
      }
1535
0
      if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1536
0
        aom_free(thread_data->td->dv_costs_alloc);
1537
0
        thread_data->td->dv_costs_alloc = NULL;
1538
0
      }
1539
0
    }
1540
0
    av1_dealloc_mb_data(&thread_data->td->mb, av1_num_planes(&cpi->common));
1541
1542
    // Accumulate counters.
1543
0
    if (i > 0) {
1544
0
      av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
1545
0
      accumulate_rd_opt(&cpi->td, thread_data->td);
1546
0
      cpi->td.mb.txfm_search_info.txb_split_count +=
1547
0
          thread_data->td->mb.txfm_search_info.txb_split_count;
1548
#if CONFIG_SPEED_STATS
1549
      cpi->td.mb.txfm_search_info.tx_search_count +=
1550
          thread_data->td->mb.txfm_search_info.tx_search_count;
1551
#endif  // CONFIG_SPEED_STATS
1552
0
    }
1553
0
  }
1554
0
}
1555
1556
static inline void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1557
0
                                       int num_workers) {
1558
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
1559
0
  AV1_COMMON *const cm = &cpi->common;
1560
0
  for (int i = num_workers - 1; i >= 0; i--) {
1561
0
    AVxWorker *const worker = &mt_info->workers[i];
1562
0
    EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1563
1564
0
    worker->hook = hook;
1565
0
    worker->data1 = thread_data;
1566
0
    worker->data2 = NULL;
1567
1568
0
    thread_data->thread_id = i;
1569
    // Set the starting tile for each thread.
1570
0
    thread_data->start = i;
1571
1572
0
    thread_data->cpi = cpi;
1573
0
    if (i == 0) {
1574
0
      thread_data->td = &cpi->td;
1575
0
    } else {
1576
0
      thread_data->td = thread_data->original_td;
1577
0
    }
1578
1579
0
    thread_data->td->intrabc_used = 0;
1580
0
    thread_data->td->deltaq_used = 0;
1581
0
    thread_data->td->abs_sum_level = 0;
1582
0
    thread_data->td->rd_counts.seg_tmp_pred_cost[0] = 0;
1583
0
    thread_data->td->rd_counts.seg_tmp_pred_cost[1] = 0;
1584
1585
    // Before encoding a frame, copy the thread data from cpi.
1586
0
    if (thread_data->td != &cpi->td) {
1587
0
      thread_data->td->mb = cpi->td.mb;
1588
0
      thread_data->td->rd_counts = cpi->td.rd_counts;
1589
0
      thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer;
1590
1591
0
      for (int x = 0; x < 2; x++) {
1592
0
        for (int y = 0; y < 2; y++) {
1593
0
          memcpy(thread_data->td->hash_value_buffer[x][y],
1594
0
                 cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y],
1595
0
                 AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
1596
0
                     sizeof(*thread_data->td->hash_value_buffer[0][0]));
1597
0
          thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] =
1598
0
              thread_data->td->hash_value_buffer[x][y];
1599
0
        }
1600
0
      }
1601
      // Keep these conditional expressions in sync with the corresponding ones
1602
      // in accumulate_counters_enc_workers().
1603
0
      if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1604
0
        CHECK_MEM_ERROR(
1605
0
            cm, thread_data->td->mv_costs_alloc,
1606
0
            (MvCosts *)aom_malloc(sizeof(*thread_data->td->mv_costs_alloc)));
1607
0
        thread_data->td->mb.mv_costs = thread_data->td->mv_costs_alloc;
1608
0
        memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs,
1609
0
               sizeof(MvCosts));
1610
0
      }
1611
0
      if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1612
        // Reset dv_costs to NULL for worker threads when dv cost update is
1613
        // enabled so that only dv_cost_upd_level needs to be checked before the
1614
        // aom_free() call for the same.
1615
0
        thread_data->td->mb.dv_costs = NULL;
1616
0
        if (av1_need_dv_costs(cpi)) {
1617
0
          CHECK_MEM_ERROR(cm, thread_data->td->dv_costs_alloc,
1618
0
                          (IntraBCMVCosts *)aom_malloc(
1619
0
                              sizeof(*thread_data->td->dv_costs_alloc)));
1620
0
          thread_data->td->mb.dv_costs = thread_data->td->dv_costs_alloc;
1621
0
          memcpy(thread_data->td->mb.dv_costs, cpi->td.mb.dv_costs,
1622
0
                 sizeof(IntraBCMVCosts));
1623
0
        }
1624
0
      }
1625
0
    }
1626
0
    av1_alloc_mb_data(cpi, &thread_data->td->mb);
1627
1628
    // Reset rtc counters.
1629
0
    av1_init_rtc_counters(&thread_data->td->mb);
1630
1631
0
    thread_data->td->mb.palette_pixels = 0;
1632
1633
0
    if (thread_data->td->counts != &cpi->counts) {
1634
0
      memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
1635
0
    }
1636
1637
0
    if (i > 0) {
1638
0
      thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
1639
0
      thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer;
1640
0
      thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
1641
0
      for (int j = 0; j < 2; ++j) {
1642
0
        thread_data->td->mb.tmp_pred_bufs[j] =
1643
0
            thread_data->td->tmp_pred_bufs[j];
1644
0
      }
1645
0
      thread_data->td->mb.pixel_gradient_info =
1646
0
          thread_data->td->pixel_gradient_info;
1647
1648
0
      thread_data->td->mb.src_var_info_of_4x4_sub_blocks =
1649
0
          thread_data->td->src_var_info_of_4x4_sub_blocks;
1650
1651
0
      thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
1652
0
      for (int j = 0; j < 2; ++j) {
1653
0
        thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
1654
0
            thread_data->td->mb.tmp_pred_bufs[j];
1655
0
      }
1656
0
    }
1657
0
  }
1658
0
}
1659
1660
#if !CONFIG_REALTIME_ONLY
1661
static inline void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1662
0
                                          int num_workers) {
1663
0
  AV1_COMMON *const cm = &cpi->common;
1664
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
1665
0
  for (int i = num_workers - 1; i >= 0; i--) {
1666
0
    AVxWorker *const worker = &mt_info->workers[i];
1667
0
    EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1668
1669
0
    worker->hook = hook;
1670
0
    worker->data1 = thread_data;
1671
0
    worker->data2 = NULL;
1672
1673
0
    thread_data->thread_id = i;
1674
    // Set the starting tile for each thread.
1675
0
    thread_data->start = i;
1676
1677
0
    thread_data->cpi = cpi;
1678
0
    if (i == 0) {
1679
0
      thread_data->td = &cpi->td;
1680
0
    } else {
1681
0
      thread_data->td = thread_data->original_td;
1682
      // Before encoding a frame, copy the thread data from cpi.
1683
0
      thread_data->td->mb = cpi->td.mb;
1684
0
    }
1685
0
    av1_alloc_src_diff_buf(cm, &thread_data->td->mb);
1686
0
  }
1687
0
}
1688
#endif
1689
1690
// Computes the number of workers for row multi-threading of encoding stage
1691
static inline int compute_num_enc_row_mt_workers(const AV1_COMMON *cm,
1692
0
                                                 int max_threads) {
1693
0
  TileInfo tile_info;
1694
0
  const int tile_cols = cm->tiles.cols;
1695
0
  const int tile_rows = cm->tiles.rows;
1696
0
  int total_num_threads_row_mt = 0;
1697
0
  for (int row = 0; row < tile_rows; row++) {
1698
0
    for (int col = 0; col < tile_cols; col++) {
1699
0
      av1_tile_init(&tile_info, cm, row, col);
1700
0
      const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, &tile_info);
1701
0
      const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, &tile_info);
1702
0
      total_num_threads_row_mt +=
1703
0
          AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
1704
0
    }
1705
0
  }
1706
0
  return AOMMIN(max_threads, total_num_threads_row_mt);
1707
0
}
1708
1709
// Computes the number of workers for tile multi-threading of encoding stage
1710
static inline int compute_num_enc_tile_mt_workers(const AV1_COMMON *cm,
1711
0
                                                  int max_threads) {
1712
0
  const int tile_cols = cm->tiles.cols;
1713
0
  const int tile_rows = cm->tiles.rows;
1714
0
  return AOMMIN(max_threads, tile_cols * tile_rows);
1715
0
}
1716
1717
// Find max worker of all MT stages
1718
0
int av1_get_max_num_workers(const AV1_COMP *cpi) {
1719
0
  int max_num_workers = 0;
1720
0
  for (int i = MOD_FP; i < NUM_MT_MODULES; i++)
1721
0
    max_num_workers =
1722
0
        AOMMAX(cpi->ppi->p_mt_info.num_mod_workers[i], max_num_workers);
1723
0
  assert(max_num_workers >= 1);
1724
0
  return AOMMIN(max_num_workers, cpi->oxcf.max_threads);
1725
0
}
1726
1727
// Computes the number of workers for encoding stage (row/tile multi-threading)
1728
0
static int compute_num_enc_workers(const AV1_COMP *cpi, int max_workers) {
1729
0
  if (max_workers <= 1) return 1;
1730
0
  if (cpi->oxcf.row_mt)
1731
0
    return compute_num_enc_row_mt_workers(&cpi->common, max_workers);
1732
0
  else
1733
0
    return compute_num_enc_tile_mt_workers(&cpi->common, max_workers);
1734
0
}
1735
1736
0
void av1_encode_tiles_mt(AV1_COMP *cpi) {
1737
0
  AV1_COMMON *const cm = &cpi->common;
1738
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
1739
0
  const int tile_cols = cm->tiles.cols;
1740
0
  const int tile_rows = cm->tiles.rows;
1741
0
  int num_workers = mt_info->num_mod_workers[MOD_ENC];
1742
1743
0
  assert(IMPLIES(cpi->tile_data == NULL,
1744
0
                 cpi->allocated_tiles < tile_cols * tile_rows));
1745
0
  if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);
1746
1747
0
  av1_init_tile_data(cpi);
1748
0
  num_workers = AOMMIN(num_workers, mt_info->num_workers);
1749
1750
0
  prepare_enc_workers(cpi, enc_worker_hook, num_workers);
1751
0
  launch_workers(&cpi->mt_info, num_workers);
1752
0
  sync_enc_workers(&cpi->mt_info, cm, num_workers);
1753
0
  accumulate_counters_enc_workers(cpi, num_workers);
1754
0
}
1755
1756
// Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
1757
// members, so we treat it as an array, and sum over the whole length.
1758
void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
1759
0
                                 const FRAME_COUNTS *counts) {
1760
0
  unsigned int *const acc = (unsigned int *)acc_counts;
1761
0
  const unsigned int *const cnt = (const unsigned int *)counts;
1762
1763
0
  const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
1764
1765
0
  for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
1766
0
}
1767
1768
// Computes the maximum number of sb rows and sb_cols across tiles which are
1769
// used to allocate memory for multi-threaded encoding with row-mt=1.
1770
static inline void compute_max_sb_rows_cols(const AV1_COMMON *cm,
1771
                                            int *max_sb_rows_in_tile,
1772
0
                                            int *max_sb_cols_in_tile) {
1773
0
  const int tile_rows = cm->tiles.rows;
1774
0
  const int mib_size_log2 = cm->seq_params->mib_size_log2;
1775
0
  const int num_mi_rows = cm->mi_params.mi_rows;
1776
0
  const int *const row_start_sb = cm->tiles.row_start_sb;
1777
0
  for (int row = 0; row < tile_rows; row++) {
1778
0
    const int mi_row_start = row_start_sb[row] << mib_size_log2;
1779
0
    const int mi_row_end =
1780
0
        AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
1781
0
    const int num_sb_rows_in_tile =
1782
0
        CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, mib_size_log2);
1783
0
    *max_sb_rows_in_tile = AOMMAX(*max_sb_rows_in_tile, num_sb_rows_in_tile);
1784
0
  }
1785
1786
0
  const int tile_cols = cm->tiles.cols;
1787
0
  const int num_mi_cols = cm->mi_params.mi_cols;
1788
0
  const int *const col_start_sb = cm->tiles.col_start_sb;
1789
0
  for (int col = 0; col < tile_cols; col++) {
1790
0
    const int mi_col_start = col_start_sb[col] << mib_size_log2;
1791
0
    const int mi_col_end =
1792
0
        AOMMIN(col_start_sb[col + 1] << mib_size_log2, num_mi_cols);
1793
0
    const int num_sb_cols_in_tile =
1794
0
        CEIL_POWER_OF_TWO(mi_col_end - mi_col_start, mib_size_log2);
1795
0
    *max_sb_cols_in_tile = AOMMAX(*max_sb_cols_in_tile, num_sb_cols_in_tile);
1796
0
  }
1797
0
}
1798
1799
#if !CONFIG_REALTIME_ONLY
1800
// Computes the number of workers for firstpass stage (row/tile multi-threading)
1801
0
int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) {
1802
0
  AV1_COMMON *cm = &cpi->common;
1803
0
  const int tile_cols = cm->tiles.cols;
1804
0
  const int tile_rows = cm->tiles.rows;
1805
0
  int total_num_threads_row_mt = 0;
1806
0
  TileInfo tile_info;
1807
1808
0
  if (cpi->oxcf.max_threads <= 1) return 1;
1809
1810
0
  for (int row = 0; row < tile_rows; row++) {
1811
0
    for (int col = 0; col < tile_cols; col++) {
1812
0
      av1_tile_init(&tile_info, cm, row, col);
1813
0
      const int num_mb_rows_in_tile =
1814
0
          av1_get_unit_rows_in_tile(&tile_info, cpi->fp_block_size);
1815
0
      const int num_mb_cols_in_tile =
1816
0
          av1_get_unit_cols_in_tile(&tile_info, cpi->fp_block_size);
1817
0
      total_num_threads_row_mt +=
1818
0
          AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile);
1819
0
    }
1820
0
  }
1821
0
  return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt);
1822
0
}
1823
1824
// Computes the maximum number of mb_rows for row multi-threading of firstpass
1825
// stage
1826
static inline int fp_compute_max_mb_rows(const AV1_COMMON *cm,
1827
0
                                         BLOCK_SIZE fp_block_size) {
1828
0
  const int tile_rows = cm->tiles.rows;
1829
0
  const int unit_height_log2 = mi_size_high_log2[fp_block_size];
1830
0
  const int mib_size_log2 = cm->seq_params->mib_size_log2;
1831
0
  const int num_mi_rows = cm->mi_params.mi_rows;
1832
0
  const int *const row_start_sb = cm->tiles.row_start_sb;
1833
0
  int max_mb_rows = 0;
1834
1835
0
  for (int row = 0; row < tile_rows; row++) {
1836
0
    const int mi_row_start = row_start_sb[row] << mib_size_log2;
1837
0
    const int mi_row_end =
1838
0
        AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
1839
0
    const int num_mb_rows_in_tile =
1840
0
        CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, unit_height_log2);
1841
0
    max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile);
1842
0
  }
1843
0
  return max_mb_rows;
1844
0
}
1845
#endif
1846
1847
0
static void lpf_pipeline_mt_init(AV1_COMP *cpi, int num_workers) {
1848
  // Pipelining of loop-filtering after encoding is enabled when loop-filter
1849
  // level is chosen based on quantizer and frame type. It is disabled in case
1850
  // of 'LOOPFILTER_SELECTIVELY' as the stats collected during encoding stage
1851
  // decides the filter level. Loop-filtering is disabled in case
1852
  // of non-reference frames and for frames with intra block copy tool enabled.
1853
0
  AV1_COMMON *cm = &cpi->common;
1854
0
  const int use_loopfilter = is_loopfilter_used(cm);
1855
0
  const int use_superres = av1_superres_scaled(cm);
1856
0
  const int use_cdef = is_cdef_used(cm);
1857
0
  const int use_restoration = is_restoration_used(cm);
1858
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
1859
0
  MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
1860
1861
0
  const unsigned int skip_apply_postproc_filters =
1862
0
      derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef,
1863
0
                                         use_superres, use_restoration);
1864
0
  mt_info->pipeline_lpf_mt_with_enc =
1865
0
      (cpi->oxcf.mode == REALTIME) && (cpi->oxcf.speed >= 5) &&
1866
0
      (cpi->sf.lpf_sf.lpf_pick == LPF_PICK_FROM_Q) &&
1867
0
      (cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY) &&
1868
0
      !cpi->ppi->rtc_ref.non_reference_frame && !cm->features.allow_intrabc &&
1869
0
      ((skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0);
1870
1871
0
  if (!mt_info->pipeline_lpf_mt_with_enc) return;
1872
1873
0
  set_postproc_filter_default_params(cm);
1874
1875
0
  if (!use_loopfilter) return;
1876
1877
0
  const LPF_PICK_METHOD method = cpi->sf.lpf_sf.lpf_pick;
1878
0
  assert(method == LPF_PICK_FROM_Q);
1879
0
  assert(cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY);
1880
1881
0
  av1_pick_filter_level(cpi->source, cpi, method);
1882
1883
0
  struct loopfilter *lf = &cm->lf;
1884
0
  const int plane_start = 0;
1885
0
  const int plane_end = av1_num_planes(cm);
1886
0
  int planes_to_lf[MAX_MB_PLANE];
1887
0
  if (lpf_mt_with_enc_enabled(cpi->mt_info.pipeline_lpf_mt_with_enc,
1888
0
                              lf->filter_level)) {
1889
0
    set_planes_to_loop_filter(lf, planes_to_lf, plane_start, plane_end);
1890
0
    int lpf_opt_level = get_lpf_opt_level(&cpi->sf);
1891
0
    assert(lpf_opt_level == 2);
1892
1893
0
    const int start_mi_row = 0;
1894
0
    const int end_mi_row = start_mi_row + cm->mi_params.mi_rows;
1895
1896
0
    av1_loop_filter_frame_init(cm, plane_start, plane_end);
1897
1898
0
    assert(mt_info->num_mod_workers[MOD_ENC] ==
1899
0
           mt_info->num_mod_workers[MOD_LPF]);
1900
0
    loop_filter_frame_mt_init(cm, start_mi_row, end_mi_row, planes_to_lf,
1901
0
                              mt_info->num_mod_workers[MOD_LPF],
1902
0
                              &mt_info->lf_row_sync, lpf_opt_level,
1903
0
                              cm->seq_params->mib_size_log2);
1904
1905
0
    for (int i = num_workers - 1; i >= 0; i--) {
1906
0
      EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1907
      // Initialize loopfilter data
1908
0
      thread_data->lf_sync = &mt_info->lf_row_sync;
1909
0
      thread_data->lf_data = &thread_data->lf_sync->lfdata[i];
1910
0
      loop_filter_data_reset(thread_data->lf_data, &cm->cur_frame->buf, cm, xd);
1911
0
    }
1912
0
  }
1913
0
}
1914
1915
0
void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
1916
0
  AV1_COMMON *const cm = &cpi->common;
1917
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
1918
0
  AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1919
0
  const int tile_cols = cm->tiles.cols;
1920
0
  const int tile_rows = cm->tiles.rows;
1921
0
  const int sb_rows_in_frame = get_sb_rows_in_frame(cm);
1922
0
  int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
1923
0
  int max_sb_rows_in_tile = 0, max_sb_cols_in_tile = 0;
1924
0
  int num_workers = mt_info->num_mod_workers[MOD_ENC];
1925
1926
0
  compute_max_sb_rows_cols(cm, &max_sb_rows_in_tile, &max_sb_cols_in_tile);
1927
0
  const bool alloc_row_mt_mem =
1928
0
      (enc_row_mt->allocated_tile_cols != tile_cols ||
1929
0
       enc_row_mt->allocated_tile_rows != tile_rows ||
1930
0
       enc_row_mt->allocated_rows != max_sb_rows_in_tile ||
1931
0
       enc_row_mt->allocated_cols != (max_sb_cols_in_tile - 1) ||
1932
0
       enc_row_mt->allocated_sb_rows != sb_rows_in_frame);
1933
0
  const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;
1934
1935
0
  assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
1936
0
  if (alloc_tile_data) {
1937
0
    av1_alloc_tile_data(cpi);
1938
0
  }
1939
1940
0
  assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
1941
0
  if (alloc_row_mt_mem) {
1942
0
    row_mt_mem_alloc(cpi, max_sb_rows_in_tile, max_sb_cols_in_tile,
1943
0
                     cpi->oxcf.algo_cfg.cdf_update_mode);
1944
0
  }
1945
1946
0
  num_workers = AOMMIN(num_workers, mt_info->num_workers);
1947
0
  lpf_pipeline_mt_init(cpi, num_workers);
1948
1949
0
  av1_init_tile_data(cpi);
1950
1951
0
  memset(thread_id_to_tile_id, -1,
1952
0
         sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
1953
0
  memset(enc_row_mt->num_tile_cols_done, 0,
1954
0
         sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows_in_frame);
1955
0
  enc_row_mt->row_mt_exit = false;
1956
1957
0
  for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
1958
0
    for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
1959
0
      int tile_index = tile_row * tile_cols + tile_col;
1960
0
      TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
1961
0
      AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
1962
1963
      // Initialize num_finished_cols to -1 for all rows.
1964
0
      memset(row_mt_sync->num_finished_cols, -1,
1965
0
             sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows_in_tile);
1966
0
      row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
1967
0
      row_mt_sync->num_threads_working = 0;
1968
0
      row_mt_sync->intrabc_extra_top_right_sb_delay =
1969
0
          av1_get_intrabc_extra_top_right_sb_delay(cm);
1970
1971
0
      av1_inter_mode_data_init(this_tile);
1972
0
      av1_zero_above_context(cm, &cpi->td.mb.e_mbd,
1973
0
                             this_tile->tile_info.mi_col_start,
1974
0
                             this_tile->tile_info.mi_col_end, tile_row);
1975
0
    }
1976
0
  }
1977
1978
0
  assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
1979
0
                        num_workers);
1980
0
  prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
1981
0
  launch_workers(&cpi->mt_info, num_workers);
1982
0
  sync_enc_workers(&cpi->mt_info, cm, num_workers);
1983
0
  if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi);
1984
0
  accumulate_counters_enc_workers(cpi, num_workers);
1985
0
}
1986
1987
#if !CONFIG_REALTIME_ONLY
1988
0
static void dealloc_thread_data_src_diff_buf(AV1_COMP *cpi, int num_workers) {
1989
0
  for (int i = num_workers - 1; i >= 0; --i) {
1990
0
    EncWorkerData *const thread_data = &cpi->mt_info.tile_thr_data[i];
1991
0
    if (thread_data->td != &cpi->td)
1992
0
      av1_dealloc_src_diff_buf(&thread_data->td->mb,
1993
0
                               av1_num_planes(&cpi->common));
1994
0
  }
1995
0
}
1996
1997
0
void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) {
1998
0
  AV1_COMMON *const cm = &cpi->common;
1999
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
2000
0
  AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
2001
0
  const int tile_cols = cm->tiles.cols;
2002
0
  const int tile_rows = cm->tiles.rows;
2003
0
  int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
2004
0
  int num_workers = 0;
2005
0
  int max_mb_rows = 0;
2006
2007
0
  max_mb_rows = fp_compute_max_mb_rows(cm, cpi->fp_block_size);
2008
0
  const bool alloc_row_mt_mem = enc_row_mt->allocated_tile_cols != tile_cols ||
2009
0
                                enc_row_mt->allocated_tile_rows != tile_rows ||
2010
0
                                enc_row_mt->allocated_rows != max_mb_rows;
2011
0
  const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;
2012
2013
0
  assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
2014
0
  if (alloc_tile_data) {
2015
0
    av1_alloc_tile_data(cpi);
2016
0
  }
2017
2018
0
  assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
2019
0
  if (alloc_row_mt_mem) {
2020
0
    row_mt_mem_alloc(cpi, max_mb_rows, -1, 0);
2021
0
  }
2022
2023
0
  av1_init_tile_data(cpi);
2024
2025
  // For pass = 1, compute the no. of workers needed. For single-pass encode
2026
  // (pass = 0), no. of workers are already computed.
2027
0
  if (mt_info->num_mod_workers[MOD_FP] == 0)
2028
0
    num_workers = av1_fp_compute_num_enc_workers(cpi);
2029
0
  else
2030
0
    num_workers = mt_info->num_mod_workers[MOD_FP];
2031
2032
0
  memset(thread_id_to_tile_id, -1,
2033
0
         sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
2034
0
  enc_row_mt->firstpass_mt_exit = false;
2035
2036
0
  for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
2037
0
    for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
2038
0
      int tile_index = tile_row * tile_cols + tile_col;
2039
0
      TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
2040
0
      AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
2041
2042
      // Initialize num_finished_cols to -1 for all rows.
2043
0
      memset(row_mt_sync->num_finished_cols, -1,
2044
0
             sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows);
2045
0
      row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
2046
0
      row_mt_sync->num_threads_working = 0;
2047
2048
      // intraBC mode is not evaluated during first-pass encoding. Hence, no
2049
      // additional top-right delay is required.
2050
0
      row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
2051
0
    }
2052
0
  }
2053
2054
0
  num_workers = AOMMIN(num_workers, mt_info->num_workers);
2055
0
  assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
2056
0
                        num_workers);
2057
0
  fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers);
2058
0
  launch_workers(&cpi->mt_info, num_workers);
2059
0
  sync_enc_workers(&cpi->mt_info, cm, num_workers);
2060
0
  dealloc_thread_data_src_diff_buf(cpi, num_workers);
2061
0
}
2062
2063
void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
2064
0
                                    int r, int c) {
2065
0
  (void)tpl_mt_sync;
2066
0
  (void)r;
2067
0
  (void)c;
2068
0
}
2069
2070
void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
2071
0
                                     int r, int c, int cols) {
2072
0
  (void)tpl_mt_sync;
2073
0
  (void)r;
2074
0
  (void)c;
2075
0
  (void)cols;
2076
0
}
2077
2078
void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
2079
0
                              int c) {
2080
0
#if CONFIG_MULTITHREAD
2081
0
  int nsync = tpl_row_mt_sync->sync_range;
2082
2083
0
  if (r) {
2084
0
    pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1];
2085
0
    pthread_mutex_lock(mutex);
2086
2087
0
    while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync)
2088
0
      pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex);
2089
0
    pthread_mutex_unlock(mutex);
2090
0
  }
2091
#else
2092
  (void)tpl_row_mt_sync;
2093
  (void)r;
2094
  (void)c;
2095
#endif  // CONFIG_MULTITHREAD
2096
0
}
2097
2098
void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
2099
0
                               int c, int cols) {
2100
0
#if CONFIG_MULTITHREAD
2101
0
  int nsync = tpl_row_mt_sync->sync_range;
2102
0
  int cur;
2103
  // Only signal when there are enough encoded blocks for next row to run.
2104
0
  int sig = 1;
2105
2106
0
  if (c < cols - 1) {
2107
0
    cur = c;
2108
0
    if (c % nsync) sig = 0;
2109
0
  } else {
2110
0
    cur = cols + nsync;
2111
0
  }
2112
2113
0
  if (sig) {
2114
0
    pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]);
2115
2116
    // When a thread encounters an error, num_finished_cols[r] is set to maximum
2117
    // column number. In this case, the AOMMAX operation here ensures that
2118
    // num_finished_cols[r] is not overwritten with a smaller value thus
2119
    // preventing the infinite waiting of threads in the relevant sync_read()
2120
    // function.
2121
0
    tpl_row_mt_sync->num_finished_cols[r] =
2122
0
        AOMMAX(tpl_row_mt_sync->num_finished_cols[r], cur);
2123
2124
0
    pthread_cond_signal(&tpl_row_mt_sync->cond_[r]);
2125
0
    pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]);
2126
0
  }
2127
#else
2128
  (void)tpl_row_mt_sync;
2129
  (void)r;
2130
  (void)c;
2131
  (void)cols;
2132
#endif  // CONFIG_MULTITHREAD
2133
0
}
2134
2135
0
static inline void set_mode_estimation_done(AV1_COMP *cpi) {
2136
0
  const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
2137
0
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
2138
0
  const BLOCK_SIZE bsize =
2139
0
      convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
2140
0
  const int mi_height = mi_size_high[bsize];
2141
0
  AV1TplRowMultiThreadInfo *const tpl_row_mt = &cpi->mt_info.tpl_row_mt;
2142
0
  const int tplb_cols_in_tile =
2143
0
      ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
2144
  // In case of tpl row-multithreading, due to top-right dependency, the worker
2145
  // on an mb_row waits for the completion of the tpl processing of the top and
2146
  // top-right blocks. Hence, in case a thread (main/worker) encounters an
2147
  // error, update that the tpl processing of every mb_row in the frame is
2148
  // complete in order to avoid dependent workers waiting indefinitely.
2149
0
  for (int mi_row = 0, tplb_row = 0; mi_row < mi_params->mi_rows;
2150
0
       mi_row += mi_height, tplb_row++) {
2151
0
    (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
2152
0
                                  tplb_cols_in_tile - 1, tplb_cols_in_tile);
2153
0
  }
2154
0
}
2155
2156
// Each worker calls tpl_worker_hook() and computes the tpl data.
2157
0
static int tpl_worker_hook(void *arg1, void *unused) {
2158
0
  (void)unused;
2159
0
  EncWorkerData *thread_data = (EncWorkerData *)arg1;
2160
0
  AV1_COMP *cpi = thread_data->cpi;
2161
0
  AV1_COMMON *cm = &cpi->common;
2162
0
  MACROBLOCK *x = &thread_data->td->mb;
2163
0
  MACROBLOCKD *xd = &x->e_mbd;
2164
0
  TplTxfmStats *tpl_txfm_stats = &thread_data->td->tpl_txfm_stats;
2165
0
  TplBuffers *tpl_tmp_buffers = &thread_data->td->tpl_tmp_buffers;
2166
0
  CommonModeInfoParams *mi_params = &cm->mi_params;
2167
0
  int num_active_workers = cpi->ppi->tpl_data.tpl_mt_sync.num_threads_working;
2168
2169
0
  struct aom_internal_error_info *const error_info = &thread_data->error_info;
2170
0
  xd->error_info = error_info;
2171
0
  AV1TplRowMultiThreadInfo *const tpl_row_mt = &cpi->mt_info.tpl_row_mt;
2172
0
  (void)tpl_row_mt;
2173
0
#if CONFIG_MULTITHREAD
2174
0
  pthread_mutex_t *tpl_error_mutex_ = tpl_row_mt->mutex_;
2175
0
#endif
2176
2177
  // The jmp_buf is valid only for the duration of the function that calls
2178
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2179
  // before it returns.
2180
0
  if (setjmp(error_info->jmp)) {
2181
0
    error_info->setjmp = 0;
2182
0
#if CONFIG_MULTITHREAD
2183
0
    pthread_mutex_lock(tpl_error_mutex_);
2184
0
    tpl_row_mt->tpl_mt_exit = true;
2185
0
    pthread_mutex_unlock(tpl_error_mutex_);
2186
0
#endif
2187
0
    set_mode_estimation_done(cpi);
2188
0
    return 0;
2189
0
  }
2190
0
  error_info->setjmp = 1;
2191
2192
0
  BLOCK_SIZE bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
2193
0
  TX_SIZE tx_size = max_txsize_lookup[bsize];
2194
0
  int mi_height = mi_size_high[bsize];
2195
2196
0
  av1_init_tpl_txfm_stats(tpl_txfm_stats);
2197
2198
0
  for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows;
2199
0
       mi_row += num_active_workers * mi_height) {
2200
    // Motion estimation row boundary
2201
0
    av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
2202
0
                          cpi->oxcf.border_in_pixels);
2203
0
    xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
2204
0
    xd->mb_to_bottom_edge =
2205
0
        GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
2206
0
    av1_mc_flow_dispenser_row(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row,
2207
0
                              bsize, tx_size);
2208
0
  }
2209
0
  error_info->setjmp = 0;
2210
0
  return 1;
2211
0
}
2212
2213
// Deallocate tpl synchronization related mutex and data.
2214
0
void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) {
2215
0
  assert(tpl_sync != NULL);
2216
2217
0
#if CONFIG_MULTITHREAD
2218
0
  if (tpl_sync->mutex_ != NULL) {
2219
0
    for (int i = 0; i < tpl_sync->rows; ++i)
2220
0
      pthread_mutex_destroy(&tpl_sync->mutex_[i]);
2221
0
    aom_free(tpl_sync->mutex_);
2222
0
  }
2223
0
  if (tpl_sync->cond_ != NULL) {
2224
0
    for (int i = 0; i < tpl_sync->rows; ++i)
2225
0
      pthread_cond_destroy(&tpl_sync->cond_[i]);
2226
0
    aom_free(tpl_sync->cond_);
2227
0
  }
2228
0
#endif  // CONFIG_MULTITHREAD
2229
2230
0
  aom_free(tpl_sync->num_finished_cols);
2231
  // clear the structure as the source of this call may be a resize in which
2232
  // case this call will be followed by an _alloc() which may fail.
2233
0
  av1_zero(*tpl_sync);
2234
0
}
2235
2236
// Allocate memory for tpl row synchronization.
2237
static void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm,
2238
0
                          int mb_rows) {
2239
0
  tpl_sync->rows = mb_rows;
2240
0
#if CONFIG_MULTITHREAD
2241
0
  {
2242
0
    CHECK_MEM_ERROR(cm, tpl_sync->mutex_,
2243
0
                    aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows));
2244
0
    if (tpl_sync->mutex_) {
2245
0
      for (int i = 0; i < mb_rows; ++i)
2246
0
        pthread_mutex_init(&tpl_sync->mutex_[i], NULL);
2247
0
    }
2248
2249
0
    CHECK_MEM_ERROR(cm, tpl_sync->cond_,
2250
0
                    aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows));
2251
0
    if (tpl_sync->cond_) {
2252
0
      for (int i = 0; i < mb_rows; ++i)
2253
0
        pthread_cond_init(&tpl_sync->cond_[i], NULL);
2254
0
    }
2255
0
  }
2256
0
#endif  // CONFIG_MULTITHREAD
2257
0
  CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols,
2258
0
                  aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows));
2259
2260
  // Set up nsync.
2261
0
  tpl_sync->sync_range = 1;
2262
0
}
2263
2264
// Each worker is prepared by assigning the hook function and individual thread
2265
// data.
2266
static inline void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2267
0
                                       int num_workers) {
2268
0
  MultiThreadInfo *mt_info = &cpi->mt_info;
2269
0
  for (int i = num_workers - 1; i >= 0; i--) {
2270
0
    AVxWorker *worker = &mt_info->workers[i];
2271
0
    EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2272
2273
0
    worker->hook = hook;
2274
0
    worker->data1 = thread_data;
2275
0
    worker->data2 = NULL;
2276
2277
0
    thread_data->thread_id = i;
2278
    // Set the starting tile for each thread.
2279
0
    thread_data->start = i;
2280
2281
0
    thread_data->cpi = cpi;
2282
0
    if (i == 0) {
2283
0
      thread_data->td = &cpi->td;
2284
0
    } else {
2285
0
      thread_data->td = thread_data->original_td;
2286
0
    }
2287
2288
    // Before encoding a frame, copy the thread data from cpi.
2289
0
    if (thread_data->td != &cpi->td) {
2290
0
      thread_data->td->mb = cpi->td.mb;
2291
      // OBMC buffers are used only to init MS params and remain unused when
2292
      // called from tpl, hence set the buffers to defaults.
2293
0
      av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
2294
0
      if (!tpl_alloc_temp_buffers(&thread_data->td->tpl_tmp_buffers,
2295
0
                                  cpi->ppi->tpl_data.tpl_bsize_1d)) {
2296
0
        aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
2297
0
                           "Error allocating tpl data");
2298
0
      }
2299
0
      thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
2300
0
      thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
2301
0
    }
2302
0
  }
2303
0
}
2304
2305
#if CONFIG_BITRATE_ACCURACY
2306
// Accumulate transform stats after tpl.
2307
static void tpl_accumulate_txfm_stats(ThreadData *main_td,
2308
                                      const MultiThreadInfo *mt_info,
2309
                                      int num_workers) {
2310
  TplTxfmStats *accumulated_stats = &main_td->tpl_txfm_stats;
2311
  for (int i = num_workers - 1; i >= 0; i--) {
2312
    AVxWorker *const worker = &mt_info->workers[i];
2313
    EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
2314
    ThreadData *td = thread_data->td;
2315
    if (td != main_td) {
2316
      const TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
2317
      av1_accumulate_tpl_txfm_stats(tpl_txfm_stats, accumulated_stats);
2318
    }
2319
  }
2320
}
2321
#endif  // CONFIG_BITRATE_ACCURACY
2322
2323
// Implements multi-threading for tpl.
2324
0
void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) {
2325
0
  AV1_COMMON *cm = &cpi->common;
2326
0
  CommonModeInfoParams *mi_params = &cm->mi_params;
2327
0
  MultiThreadInfo *mt_info = &cpi->mt_info;
2328
0
  TplParams *tpl_data = &cpi->ppi->tpl_data;
2329
0
  AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync;
2330
0
  int mb_rows = mi_params->mb_rows;
2331
0
  int num_workers =
2332
0
      AOMMIN(mt_info->num_mod_workers[MOD_TPL], mt_info->num_workers);
2333
2334
0
  if (mb_rows != tpl_sync->rows) {
2335
0
    av1_tpl_dealloc(tpl_sync);
2336
0
    av1_tpl_alloc(tpl_sync, cm, mb_rows);
2337
0
  }
2338
0
  tpl_sync->num_threads_working = num_workers;
2339
0
  mt_info->tpl_row_mt.tpl_mt_exit = false;
2340
2341
  // Initialize cur_mb_col to -1 for all MB rows.
2342
0
  memset(tpl_sync->num_finished_cols, -1,
2343
0
         sizeof(*tpl_sync->num_finished_cols) * mb_rows);
2344
2345
0
  prepare_tpl_workers(cpi, tpl_worker_hook, num_workers);
2346
0
  launch_workers(&cpi->mt_info, num_workers);
2347
0
  sync_enc_workers(&cpi->mt_info, cm, num_workers);
2348
#if CONFIG_BITRATE_ACCURACY
2349
  tpl_accumulate_txfm_stats(&cpi->td, &cpi->mt_info, num_workers);
2350
#endif  // CONFIG_BITRATE_ACCURACY
2351
0
  for (int i = num_workers - 1; i >= 0; i--) {
2352
0
    EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2353
0
    ThreadData *td = thread_data->td;
2354
0
    if (td != &cpi->td) tpl_dealloc_temp_buffers(&td->tpl_tmp_buffers);
2355
0
  }
2356
0
}
2357
2358
// Deallocate memory for temporal filter multi-thread synchronization.
2359
0
void av1_tf_mt_dealloc(AV1TemporalFilterSync *tf_sync) {
2360
0
  assert(tf_sync != NULL);
2361
0
#if CONFIG_MULTITHREAD
2362
0
  if (tf_sync->mutex_ != NULL) {
2363
0
    pthread_mutex_destroy(tf_sync->mutex_);
2364
0
    aom_free(tf_sync->mutex_);
2365
0
  }
2366
0
#endif  // CONFIG_MULTITHREAD
2367
0
  tf_sync->next_tf_row = 0;
2368
0
}
2369
2370
// Checks if a job is available. If job is available,
2371
// populates next_tf_row and returns 1, else returns 0.
2372
static inline int tf_get_next_job(AV1TemporalFilterSync *tf_mt_sync,
2373
0
                                  int *current_mb_row, int mb_rows) {
2374
0
  int do_next_row = 0;
2375
0
#if CONFIG_MULTITHREAD
2376
0
  pthread_mutex_t *tf_mutex_ = tf_mt_sync->mutex_;
2377
0
  pthread_mutex_lock(tf_mutex_);
2378
0
#endif
2379
0
  if (!tf_mt_sync->tf_mt_exit && tf_mt_sync->next_tf_row < mb_rows) {
2380
0
    *current_mb_row = tf_mt_sync->next_tf_row;
2381
0
    tf_mt_sync->next_tf_row++;
2382
0
    do_next_row = 1;
2383
0
  }
2384
0
#if CONFIG_MULTITHREAD
2385
0
  pthread_mutex_unlock(tf_mutex_);
2386
0
#endif
2387
0
  return do_next_row;
2388
0
}
2389
2390
// Hook function for each thread in temporal filter multi-threading.
2391
0
static int tf_worker_hook(void *arg1, void *unused) {
2392
0
  (void)unused;
2393
0
  EncWorkerData *thread_data = (EncWorkerData *)arg1;
2394
0
  AV1_COMP *cpi = thread_data->cpi;
2395
0
  ThreadData *td = thread_data->td;
2396
0
  TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
2397
0
  AV1TemporalFilterSync *tf_sync = &cpi->mt_info.tf_sync;
2398
0
  const struct scale_factors *scale = &cpi->tf_ctx.sf;
2399
2400
0
#if CONFIG_MULTITHREAD
2401
0
  pthread_mutex_t *tf_mutex_ = tf_sync->mutex_;
2402
0
#endif
2403
0
  MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
2404
0
  struct aom_internal_error_info *const error_info = &thread_data->error_info;
2405
0
  xd->error_info = error_info;
2406
2407
  // The jmp_buf is valid only for the duration of the function that calls
2408
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2409
  // before it returns.
2410
0
  if (setjmp(error_info->jmp)) {
2411
0
    error_info->setjmp = 0;
2412
0
#if CONFIG_MULTITHREAD
2413
0
    pthread_mutex_lock(tf_mutex_);
2414
0
    tf_sync->tf_mt_exit = true;
2415
0
    pthread_mutex_unlock(tf_mutex_);
2416
0
#endif
2417
0
    return 0;
2418
0
  }
2419
0
  error_info->setjmp = 1;
2420
2421
0
  const int num_planes = av1_num_planes(&cpi->common);
2422
0
  assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
2423
2424
0
  MACROBLOCKD *mbd = &td->mb.e_mbd;
2425
0
  uint8_t *input_buffer[MAX_MB_PLANE];
2426
0
  MB_MODE_INFO **input_mb_mode_info;
2427
0
  tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes);
2428
0
  tf_setup_macroblockd(mbd, &td->tf_data, scale);
2429
2430
0
  int current_mb_row = -1;
2431
2432
0
  while (tf_get_next_job(tf_sync, &current_mb_row, tf_ctx->mb_rows))
2433
0
    av1_tf_do_filtering_row(cpi, td, current_mb_row);
2434
2435
0
  tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes);
2436
2437
0
  error_info->setjmp = 0;
2438
0
  return 1;
2439
0
}
2440
2441
// Assigns temporal filter hook function and thread data to each worker.
2442
static void prepare_tf_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2443
0
                               int num_workers, int is_highbitdepth) {
2444
0
  MultiThreadInfo *mt_info = &cpi->mt_info;
2445
0
  mt_info->tf_sync.next_tf_row = 0;
2446
0
  mt_info->tf_sync.tf_mt_exit = false;
2447
0
  for (int i = num_workers - 1; i >= 0; i--) {
2448
0
    AVxWorker *worker = &mt_info->workers[i];
2449
0
    EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2450
2451
0
    worker->hook = hook;
2452
0
    worker->data1 = thread_data;
2453
0
    worker->data2 = NULL;
2454
2455
0
    thread_data->thread_id = i;
2456
    // Set the starting tile for each thread.
2457
0
    thread_data->start = i;
2458
2459
0
    thread_data->cpi = cpi;
2460
0
    if (i == 0) {
2461
0
      thread_data->td = &cpi->td;
2462
0
    } else {
2463
0
      thread_data->td = thread_data->original_td;
2464
0
    }
2465
2466
    // Before encoding a frame, copy the thread data from cpi.
2467
0
    if (thread_data->td != &cpi->td) {
2468
0
      thread_data->td->mb = cpi->td.mb;
2469
      // OBMC buffers are used only to init MS params and remain unused when
2470
      // called from tf, hence set the buffers to defaults.
2471
0
      av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
2472
0
      if (!tf_alloc_and_reset_data(&thread_data->td->tf_data,
2473
0
                                   cpi->tf_ctx.num_pels, is_highbitdepth)) {
2474
0
        aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
2475
0
                           "Error allocating temporal filter data");
2476
0
      }
2477
0
    }
2478
0
  }
2479
0
}
2480
2481
// Deallocate thread specific data for temporal filter.
2482
static void tf_dealloc_thread_data(AV1_COMP *cpi, int num_workers,
2483
0
                                   int is_highbitdepth) {
2484
0
  MultiThreadInfo *mt_info = &cpi->mt_info;
2485
0
  for (int i = num_workers - 1; i >= 0; i--) {
2486
0
    EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2487
0
    ThreadData *td = thread_data->td;
2488
0
    if (td != &cpi->td) tf_dealloc_data(&td->tf_data, is_highbitdepth);
2489
0
  }
2490
0
}
2491
2492
// Accumulate sse and sum after temporal filtering.
2493
0
static void tf_accumulate_frame_diff(AV1_COMP *cpi, int num_workers) {
2494
0
  FRAME_DIFF *total_diff = &cpi->td.tf_data.diff;
2495
0
  for (int i = num_workers - 1; i >= 0; i--) {
2496
0
    AVxWorker *const worker = &cpi->mt_info.workers[i];
2497
0
    EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
2498
0
    ThreadData *td = thread_data->td;
2499
0
    FRAME_DIFF *diff = &td->tf_data.diff;
2500
0
    if (td != &cpi->td) {
2501
0
      total_diff->sse += diff->sse;
2502
0
      total_diff->sum += diff->sum;
2503
0
    }
2504
0
  }
2505
0
}
2506
2507
// Implements multi-threading for temporal filter.
2508
0
void av1_tf_do_filtering_mt(AV1_COMP *cpi) {
2509
0
  AV1_COMMON *cm = &cpi->common;
2510
0
  MultiThreadInfo *mt_info = &cpi->mt_info;
2511
0
  const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth;
2512
2513
0
  int num_workers =
2514
0
      AOMMIN(mt_info->num_mod_workers[MOD_TF], mt_info->num_workers);
2515
2516
0
  prepare_tf_workers(cpi, tf_worker_hook, num_workers, is_highbitdepth);
2517
0
  launch_workers(mt_info, num_workers);
2518
0
  sync_enc_workers(mt_info, cm, num_workers);
2519
0
  tf_accumulate_frame_diff(cpi, num_workers);
2520
0
  tf_dealloc_thread_data(cpi, num_workers, is_highbitdepth);
2521
0
}
2522
2523
// Checks if a job is available in the current direction. If a job is available,
2524
// frame_idx will be populated and returns 1, else returns 0.
2525
0
static inline int get_next_gm_job(AV1_COMP *cpi, int *frame_idx, int cur_dir) {
2526
0
  GlobalMotionInfo *gm_info = &cpi->gm_info;
2527
0
  GlobalMotionJobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
2528
2529
0
  int total_refs = gm_info->num_ref_frames[cur_dir];
2530
0
  int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir];
2531
2532
0
  if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) {
2533
0
    *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame;
2534
0
    job_info->next_frame_to_process[cur_dir] += 1;
2535
0
    return 1;
2536
0
  }
2537
0
  return 0;
2538
0
}
2539
2540
// Switches the current direction and calls the function get_next_gm_job() if
2541
// the speed feature 'prune_ref_frame_for_gm_search' is not set.
2542
static inline void switch_direction(AV1_COMP *cpi, int *frame_idx,
2543
0
                                    int *cur_dir) {
2544
0
  if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return;
2545
  // Switch the direction and get next job
2546
0
  *cur_dir = !(*cur_dir);
2547
0
  get_next_gm_job(cpi, frame_idx, *(cur_dir));
2548
0
}
2549
2550
// Hook function for each thread in global motion multi-threading.
2551
0
static int gm_mt_worker_hook(void *arg1, void *unused) {
2552
0
  (void)unused;
2553
2554
0
  EncWorkerData *thread_data = (EncWorkerData *)arg1;
2555
0
  AV1_COMP *cpi = thread_data->cpi;
2556
0
  GlobalMotionInfo *gm_info = &cpi->gm_info;
2557
0
  AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
2558
0
  GlobalMotionJobInfo *job_info = &gm_sync->job_info;
2559
0
  int thread_id = thread_data->thread_id;
2560
0
  GlobalMotionData *gm_thread_data = &thread_data->td->gm_data;
2561
0
#if CONFIG_MULTITHREAD
2562
0
  pthread_mutex_t *gm_mt_mutex_ = gm_sync->mutex_;
2563
0
#endif
2564
2565
0
  MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
2566
0
  struct aom_internal_error_info *const error_info = &thread_data->error_info;
2567
0
  xd->error_info = error_info;
2568
2569
  // The jmp_buf is valid only for the duration of the function that calls
2570
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2571
  // before it returns.
2572
0
  if (setjmp(error_info->jmp)) {
2573
0
    error_info->setjmp = 0;
2574
0
#if CONFIG_MULTITHREAD
2575
0
    pthread_mutex_lock(gm_mt_mutex_);
2576
0
    gm_sync->gm_mt_exit = true;
2577
0
    pthread_mutex_unlock(gm_mt_mutex_);
2578
0
#endif
2579
0
    return 0;
2580
0
  }
2581
0
  error_info->setjmp = 1;
2582
2583
0
  int cur_dir = job_info->thread_id_to_dir[thread_id];
2584
0
  bool gm_mt_exit = false;
2585
0
  while (1) {
2586
0
    int ref_buf_idx = -1;
2587
2588
0
#if CONFIG_MULTITHREAD
2589
0
    pthread_mutex_lock(gm_mt_mutex_);
2590
0
#endif
2591
2592
0
    gm_mt_exit = gm_sync->gm_mt_exit;
2593
    // Populates ref_buf_idx(the reference frame type) for which global motion
2594
    // estimation will be done.
2595
0
    if (!gm_mt_exit && !get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) {
2596
      // No jobs are available for the current direction. Switch
2597
      // to other direction and get the next job, if available.
2598
0
      switch_direction(cpi, &ref_buf_idx, &cur_dir);
2599
0
    }
2600
2601
0
#if CONFIG_MULTITHREAD
2602
0
    pthread_mutex_unlock(gm_mt_mutex_);
2603
0
#endif
2604
2605
    // When gm_mt_exit is set to true, other workers need not pursue any
2606
    // further jobs.
2607
0
    if (gm_mt_exit || ref_buf_idx == -1) break;
2608
2609
    // Compute global motion for the given ref_buf_idx.
2610
0
    av1_compute_gm_for_valid_ref_frames(
2611
0
        cpi, error_info, gm_info->ref_buf, ref_buf_idx,
2612
0
        gm_thread_data->motion_models, gm_thread_data->segment_map,
2613
0
        gm_info->segment_map_w, gm_info->segment_map_h);
2614
2615
0
#if CONFIG_MULTITHREAD
2616
0
    pthread_mutex_lock(gm_mt_mutex_);
2617
0
#endif
2618
    // If global motion w.r.t. current ref frame is
2619
    // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
2620
    // the remaining ref frames in that direction.
2621
0
    if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search &&
2622
0
        cpi->common.global_motion[ref_buf_idx].wmtype <= TRANSLATION)
2623
0
      job_info->early_exit[cur_dir] = 1;
2624
2625
0
#if CONFIG_MULTITHREAD
2626
0
    pthread_mutex_unlock(gm_mt_mutex_);
2627
0
#endif
2628
0
  }
2629
0
  error_info->setjmp = 0;
2630
0
  return 1;
2631
0
}
2632
2633
// Assigns global motion hook function and thread data to each worker.
2634
static inline void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2635
0
                                      int num_workers) {
2636
0
  MultiThreadInfo *mt_info = &cpi->mt_info;
2637
0
  mt_info->gm_sync.gm_mt_exit = false;
2638
0
  for (int i = num_workers - 1; i >= 0; i--) {
2639
0
    AVxWorker *worker = &mt_info->workers[i];
2640
0
    EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2641
2642
0
    worker->hook = hook;
2643
0
    worker->data1 = thread_data;
2644
0
    worker->data2 = NULL;
2645
2646
0
    thread_data->thread_id = i;
2647
    // Set the starting tile for each thread.
2648
0
    thread_data->start = i;
2649
2650
0
    thread_data->cpi = cpi;
2651
0
    if (i == 0) {
2652
0
      thread_data->td = &cpi->td;
2653
0
    } else {
2654
0
      thread_data->td = thread_data->original_td;
2655
0
    }
2656
2657
0
    if (thread_data->td != &cpi->td)
2658
0
      gm_alloc_data(cpi, &thread_data->td->gm_data);
2659
0
  }
2660
0
}
2661
2662
// Assigns available threads to past/future direction.
2663
static inline void assign_thread_to_dir(int8_t *thread_id_to_dir,
2664
0
                                        int num_workers) {
2665
0
  int8_t frame_dir_idx = 0;
2666
2667
0
  for (int i = 0; i < num_workers; i++) {
2668
0
    thread_id_to_dir[i] = frame_dir_idx++;
2669
0
    if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0;
2670
0
  }
2671
0
}
2672
2673
// Computes number of workers for global motion multi-threading.
2674
0
static inline int compute_gm_workers(const AV1_COMP *cpi) {
2675
0
  int total_refs =
2676
0
      cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1];
2677
0
  int num_gm_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search
2678
0
                           ? AOMMIN(MAX_DIRECTIONS, total_refs)
2679
0
                           : total_refs;
2680
0
  num_gm_workers = AOMMIN(num_gm_workers, cpi->mt_info.num_workers);
2681
0
  return (num_gm_workers);
2682
0
}
2683
2684
// Frees the memory allocated for each worker in global motion multi-threading.
2685
0
static inline void gm_dealloc_thread_data(AV1_COMP *cpi, int num_workers) {
2686
0
  MultiThreadInfo *mt_info = &cpi->mt_info;
2687
0
  for (int j = 0; j < num_workers; j++) {
2688
0
    EncWorkerData *thread_data = &mt_info->tile_thr_data[j];
2689
0
    ThreadData *td = thread_data->td;
2690
0
    if (td != &cpi->td) gm_dealloc_data(&td->gm_data);
2691
0
  }
2692
0
}
2693
2694
// Implements multi-threading for global motion.
2695
0
void av1_global_motion_estimation_mt(AV1_COMP *cpi) {
2696
0
  GlobalMotionJobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
2697
2698
0
  av1_zero(*job_info);
2699
2700
0
  int num_workers = compute_gm_workers(cpi);
2701
2702
0
  assign_thread_to_dir(job_info->thread_id_to_dir, num_workers);
2703
0
  prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers);
2704
0
  launch_workers(&cpi->mt_info, num_workers);
2705
0
  sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers);
2706
0
  gm_dealloc_thread_data(cpi, num_workers);
2707
0
}
2708
#endif  // !CONFIG_REALTIME_ONLY
2709
2710
static inline int get_next_job_allintra(
2711
    AV1EncRowMultiThreadSync *const row_mt_sync, const int mi_row_end,
2712
0
    int *current_mi_row, int mib_size) {
2713
0
  if (row_mt_sync->next_mi_row < mi_row_end) {
2714
0
    *current_mi_row = row_mt_sync->next_mi_row;
2715
0
    row_mt_sync->num_threads_working++;
2716
0
    row_mt_sync->next_mi_row += mib_size;
2717
0
    return 1;
2718
0
  }
2719
0
  return 0;
2720
0
}
2721
2722
static inline void prepare_wiener_var_workers(AV1_COMP *const cpi,
2723
                                              AVxWorkerHook hook,
2724
0
                                              const int num_workers) {
2725
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
2726
0
  for (int i = num_workers - 1; i >= 0; i--) {
2727
0
    AVxWorker *const worker = &mt_info->workers[i];
2728
0
    EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
2729
2730
0
    worker->hook = hook;
2731
0
    worker->data1 = thread_data;
2732
0
    worker->data2 = NULL;
2733
2734
0
    thread_data->thread_id = i;
2735
    // Set the starting tile for each thread, in this case the preprocessing
2736
    // stage does not need tiles. So we set it to 0.
2737
0
    thread_data->start = 0;
2738
2739
0
    thread_data->cpi = cpi;
2740
0
    if (i == 0) {
2741
0
      thread_data->td = &cpi->td;
2742
0
    } else {
2743
0
      thread_data->td = thread_data->original_td;
2744
0
    }
2745
2746
0
    if (thread_data->td != &cpi->td) {
2747
0
      thread_data->td->mb = cpi->td.mb;
2748
0
      av1_alloc_mb_wiener_var_pred_buf(&cpi->common, thread_data->td);
2749
0
    }
2750
0
  }
2751
0
}
2752
2753
0
static void set_mb_wiener_var_calc_done(AV1_COMP *const cpi) {
2754
0
  const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
2755
0
  const BLOCK_SIZE bsize = cpi->weber_bsize;
2756
0
  const int mb_step = mi_size_wide[bsize];
2757
0
  assert(MB_WIENER_MT_UNIT_SIZE < BLOCK_SIZES_ALL);
2758
0
  const int mt_unit_step = mi_size_wide[MB_WIENER_MT_UNIT_SIZE];
2759
0
  const int mt_unit_cols =
2760
0
      (mi_params->mi_cols + (mt_unit_step >> 1)) / mt_unit_step;
2761
0
  const AV1EncAllIntraMultiThreadInfo *const intra_mt = &cpi->mt_info.intra_mt;
2762
0
  AV1EncRowMultiThreadSync *const intra_row_mt_sync =
2763
0
      &cpi->ppi->intra_row_mt_sync;
2764
2765
  // Update the wiener variance computation of every row in the frame to
2766
  // indicate that it is complete in order to avoid dependent workers waiting
2767
  // indefinitely.
2768
0
  for (int mi_row = 0, mt_thread_id = 0; mi_row < mi_params->mi_rows;
2769
0
       mi_row += mb_step, ++mt_thread_id) {
2770
0
    intra_mt->intra_sync_write_ptr(intra_row_mt_sync, mt_thread_id,
2771
0
                                   mt_unit_cols - 1, mt_unit_cols);
2772
0
  }
2773
0
}
2774
2775
0
static int cal_mb_wiener_var_hook(void *arg1, void *unused) {
2776
0
  (void)unused;
2777
0
  EncWorkerData *const thread_data = (EncWorkerData *)arg1;
2778
0
  AV1_COMP *const cpi = thread_data->cpi;
2779
0
  MACROBLOCK *x = &thread_data->td->mb;
2780
0
  MACROBLOCKD *xd = &x->e_mbd;
2781
0
  const BLOCK_SIZE bsize = cpi->weber_bsize;
2782
0
  const int mb_step = mi_size_wide[bsize];
2783
0
  AV1EncRowMultiThreadSync *const intra_row_mt_sync =
2784
0
      &cpi->ppi->intra_row_mt_sync;
2785
0
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
2786
0
  (void)enc_row_mt;
2787
0
#if CONFIG_MULTITHREAD
2788
0
  pthread_mutex_t *enc_row_mt_mutex = enc_row_mt->mutex_;
2789
0
#endif
2790
2791
0
  struct aom_internal_error_info *const error_info = &thread_data->error_info;
2792
0
  xd->error_info = error_info;
2793
2794
  // The jmp_buf is valid only for the duration of the function that calls
2795
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2796
  // before it returns.
2797
0
  if (setjmp(error_info->jmp)) {
2798
0
    error_info->setjmp = 0;
2799
0
#if CONFIG_MULTITHREAD
2800
0
    pthread_mutex_lock(enc_row_mt_mutex);
2801
0
    enc_row_mt->mb_wiener_mt_exit = true;
2802
0
    pthread_mutex_unlock(enc_row_mt_mutex);
2803
0
#endif
2804
0
    set_mb_wiener_var_calc_done(cpi);
2805
0
    return 0;
2806
0
  }
2807
0
  error_info->setjmp = 1;
2808
0
  DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
2809
0
  DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
2810
0
  DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
2811
0
  DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
2812
0
  double sum_rec_distortion = 0;
2813
0
  double sum_est_rate = 0;
2814
0
  while (1) {
2815
0
    int current_mi_row = -1;
2816
0
#if CONFIG_MULTITHREAD
2817
0
    pthread_mutex_lock(enc_row_mt_mutex);
2818
0
#endif
2819
0
    int has_jobs = enc_row_mt->mb_wiener_mt_exit
2820
0
                       ? 0
2821
0
                       : get_next_job_allintra(intra_row_mt_sync,
2822
0
                                               cpi->common.mi_params.mi_rows,
2823
0
                                               &current_mi_row, mb_step);
2824
0
#if CONFIG_MULTITHREAD
2825
0
    pthread_mutex_unlock(enc_row_mt_mutex);
2826
0
#endif
2827
0
    if (!has_jobs) break;
2828
    // TODO(chengchen): properly accumulate the distortion and rate.
2829
0
    av1_calc_mb_wiener_var_row(cpi, x, xd, current_mi_row, src_diff, coeff,
2830
0
                               qcoeff, dqcoeff, &sum_rec_distortion,
2831
0
                               &sum_est_rate,
2832
0
                               thread_data->td->wiener_tmp_pred_buf);
2833
0
#if CONFIG_MULTITHREAD
2834
0
    pthread_mutex_lock(enc_row_mt_mutex);
2835
0
#endif
2836
0
    intra_row_mt_sync->num_threads_working--;
2837
0
#if CONFIG_MULTITHREAD
2838
0
    pthread_mutex_unlock(enc_row_mt_mutex);
2839
0
#endif
2840
0
  }
2841
0
  error_info->setjmp = 0;
2842
0
  return 1;
2843
0
}
2844
2845
0
static void dealloc_mb_wiener_var_mt_data(AV1_COMP *cpi, int num_workers) {
2846
0
  av1_row_mt_sync_mem_dealloc(&cpi->ppi->intra_row_mt_sync);
2847
2848
0
  MultiThreadInfo *mt_info = &cpi->mt_info;
2849
0
  for (int j = 0; j < num_workers; ++j) {
2850
0
    EncWorkerData *thread_data = &mt_info->tile_thr_data[j];
2851
0
    ThreadData *td = thread_data->td;
2852
0
    if (td != &cpi->td) av1_dealloc_mb_wiener_var_pred_buf(td);
2853
0
  }
2854
0
}
2855
2856
// This function is the multi-threading version of computing the wiener
2857
// variance.
2858
// Note that the wiener variance is used for allintra mode (1 pass) and its
2859
// computation is before the frame encoding, so we don't need to consider
2860
// the number of tiles, instead we allocate all available threads to
2861
// the computation.
2862
void av1_calc_mb_wiener_var_mt(AV1_COMP *cpi, int num_workers,
2863
                               double *sum_rec_distortion,
2864
0
                               double *sum_est_rate) {
2865
0
  (void)sum_rec_distortion;
2866
0
  (void)sum_est_rate;
2867
0
  AV1_COMMON *const cm = &cpi->common;
2868
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
2869
0
  AV1EncRowMultiThreadSync *const intra_row_mt_sync =
2870
0
      &cpi->ppi->intra_row_mt_sync;
2871
2872
  // TODO(chengchen): the memory usage could be improved.
2873
0
  const int mi_rows = cm->mi_params.mi_rows;
2874
0
  row_mt_sync_mem_alloc(intra_row_mt_sync, cm, mi_rows);
2875
2876
0
  intra_row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
2877
0
  intra_row_mt_sync->num_threads_working = num_workers;
2878
0
  intra_row_mt_sync->next_mi_row = 0;
2879
0
  memset(intra_row_mt_sync->num_finished_cols, -1,
2880
0
         sizeof(*intra_row_mt_sync->num_finished_cols) * mi_rows);
2881
0
  mt_info->enc_row_mt.mb_wiener_mt_exit = false;
2882
2883
0
  prepare_wiener_var_workers(cpi, cal_mb_wiener_var_hook, num_workers);
2884
0
  launch_workers(mt_info, num_workers);
2885
0
  sync_enc_workers(mt_info, cm, num_workers);
2886
0
  dealloc_mb_wiener_var_mt_data(cpi, num_workers);
2887
0
}
2888
2889
// Compare and order tiles based on absolute sum of tx coeffs.
2890
0
static int compare_tile_order(const void *a, const void *b) {
2891
0
  const PackBSTileOrder *const tile_a = (const PackBSTileOrder *)a;
2892
0
  const PackBSTileOrder *const tile_b = (const PackBSTileOrder *)b;
2893
2894
0
  if (tile_a->abs_sum_level > tile_b->abs_sum_level)
2895
0
    return -1;
2896
0
  else if (tile_a->abs_sum_level == tile_b->abs_sum_level)
2897
0
    return (tile_a->tile_idx > tile_b->tile_idx ? 1 : -1);
2898
0
  else
2899
0
    return 1;
2900
0
}
2901
2902
// Get next tile index to be processed for pack bitstream
2903
static inline int get_next_pack_bs_tile_idx(
2904
0
    AV1EncPackBSSync *const pack_bs_sync, const int num_tiles) {
2905
0
  assert(pack_bs_sync->next_job_idx <= num_tiles);
2906
0
  if (pack_bs_sync->next_job_idx == num_tiles) return -1;
2907
2908
0
  return pack_bs_sync->pack_bs_tile_order[pack_bs_sync->next_job_idx++]
2909
0
      .tile_idx;
2910
0
}
2911
2912
// Calculates bitstream chunk size based on total buffer size and tile or tile
2913
// group size.
2914
static inline size_t get_bs_chunk_size(int tg_or_tile_size,
2915
                                       const int frame_or_tg_size,
2916
                                       size_t *remain_buf_size,
2917
0
                                       size_t max_buf_size, int is_last_chunk) {
2918
0
  size_t this_chunk_size;
2919
0
  assert(*remain_buf_size > 0);
2920
0
  if (is_last_chunk) {
2921
0
    this_chunk_size = *remain_buf_size;
2922
0
    *remain_buf_size = 0;
2923
0
  } else {
2924
0
    const uint64_t size_scale = (uint64_t)max_buf_size * tg_or_tile_size;
2925
0
    this_chunk_size = (size_t)(size_scale / frame_or_tg_size);
2926
0
    *remain_buf_size -= this_chunk_size;
2927
0
    assert(*remain_buf_size > 0);
2928
0
  }
2929
0
  assert(this_chunk_size > 0);
2930
0
  return this_chunk_size;
2931
0
}
2932
2933
// Initializes params required for pack bitstream tile.
2934
static void init_tile_pack_bs_params(AV1_COMP *const cpi, uint8_t *const dst,
2935
                                     struct aom_write_bit_buffer *saved_wb,
2936
                                     PackBSParams *const pack_bs_params_arr,
2937
0
                                     uint8_t obu_extn_header) {
2938
0
  MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
2939
0
  AV1_COMMON *const cm = &cpi->common;
2940
0
  const CommonTileParams *const tiles = &cm->tiles;
2941
0
  const int num_tiles = tiles->cols * tiles->rows;
2942
  // Fixed size tile groups for the moment
2943
0
  const int num_tg_hdrs = cpi->num_tg;
2944
  // Tile group size in terms of number of tiles.
2945
0
  const int tg_size_in_tiles = (num_tiles + num_tg_hdrs - 1) / num_tg_hdrs;
2946
0
  uint8_t *tile_dst = dst;
2947
0
  uint8_t *tile_data_curr = dst;
2948
  // Max tile group count can not be more than MAX_TILES.
2949
0
  int tg_size_mi[MAX_TILES] = { 0 };  // Size of tile group in mi units
2950
0
  int tile_idx;
2951
0
  int tg_idx = 0;
2952
0
  int tile_count_in_tg = 0;
2953
0
  int new_tg = 1;
2954
2955
  // Populate pack bitstream params of all tiles.
2956
0
  for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
2957
0
    const TileInfo *const tile_info = &cpi->tile_data[tile_idx].tile_info;
2958
0
    PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
2959
    // Calculate tile size in mi units.
2960
0
    const int tile_size_mi = (tile_info->mi_col_end - tile_info->mi_col_start) *
2961
0
                             (tile_info->mi_row_end - tile_info->mi_row_start);
2962
0
    int is_last_tile_in_tg = 0;
2963
0
    tile_count_in_tg++;
2964
0
    if (tile_count_in_tg == tg_size_in_tiles || tile_idx == (num_tiles - 1))
2965
0
      is_last_tile_in_tg = 1;
2966
2967
    // Populate pack bitstream params of this tile.
2968
0
    pack_bs_params->curr_tg_hdr_size = 0;
2969
0
    pack_bs_params->obu_extn_header = obu_extn_header;
2970
0
    pack_bs_params->saved_wb = saved_wb;
2971
0
    pack_bs_params->obu_header_size = 0;
2972
0
    pack_bs_params->is_last_tile_in_tg = is_last_tile_in_tg;
2973
0
    pack_bs_params->new_tg = new_tg;
2974
0
    pack_bs_params->tile_col = tile_info->tile_col;
2975
0
    pack_bs_params->tile_row = tile_info->tile_row;
2976
0
    pack_bs_params->tile_size_mi = tile_size_mi;
2977
0
    tg_size_mi[tg_idx] += tile_size_mi;
2978
2979
0
    if (new_tg) new_tg = 0;
2980
0
    if (is_last_tile_in_tg) {
2981
0
      tile_count_in_tg = 0;
2982
0
      new_tg = 1;
2983
0
      tg_idx++;
2984
0
    }
2985
0
  }
2986
2987
0
  assert(cpi->available_bs_size > 0);
2988
0
  size_t tg_buf_size[MAX_TILES] = { 0 };
2989
0
  size_t max_buf_size = cpi->available_bs_size;
2990
0
  size_t remain_buf_size = max_buf_size;
2991
0
  const int frame_size_mi = cm->mi_params.mi_rows * cm->mi_params.mi_cols;
2992
2993
0
  tile_idx = 0;
2994
  // Prepare obu, tile group and frame header of each tile group.
2995
0
  for (tg_idx = 0; tg_idx < cpi->num_tg; tg_idx++) {
2996
0
    PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
2997
0
    int is_last_tg = tg_idx == cpi->num_tg - 1;
2998
    // Prorate bitstream buffer size based on tile group size and available
2999
    // buffer size. This buffer will be used to store headers and tile data.
3000
0
    tg_buf_size[tg_idx] =
3001
0
        get_bs_chunk_size(tg_size_mi[tg_idx], frame_size_mi, &remain_buf_size,
3002
0
                          max_buf_size, is_last_tg);
3003
3004
0
    pack_bs_params->dst = tile_dst;
3005
0
    pack_bs_params->tile_data_curr = tile_dst;
3006
3007
    // Write obu, tile group and frame header at first tile in the tile
3008
    // group.
3009
0
    av1_write_obu_tg_tile_headers(cpi, xd, pack_bs_params, tile_idx);
3010
0
    tile_dst += tg_buf_size[tg_idx];
3011
3012
    // Exclude headers from tile group buffer size.
3013
0
    tg_buf_size[tg_idx] -= pack_bs_params->curr_tg_hdr_size;
3014
0
    tile_idx += tg_size_in_tiles;
3015
0
  }
3016
3017
0
  tg_idx = 0;
3018
  // Calculate bitstream buffer size of each tile in the tile group.
3019
0
  for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
3020
0
    PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
3021
3022
0
    if (pack_bs_params->new_tg) {
3023
0
      max_buf_size = tg_buf_size[tg_idx];
3024
0
      remain_buf_size = max_buf_size;
3025
0
    }
3026
3027
    // Prorate bitstream buffer size of this tile based on tile size and
3028
    // available buffer size. For this proration, header size is not accounted.
3029
0
    const size_t tile_buf_size = get_bs_chunk_size(
3030
0
        pack_bs_params->tile_size_mi, tg_size_mi[tg_idx], &remain_buf_size,
3031
0
        max_buf_size, pack_bs_params->is_last_tile_in_tg);
3032
0
    pack_bs_params->tile_buf_size = tile_buf_size;
3033
3034
    // Update base address of bitstream buffer for tile and tile group.
3035
0
    if (pack_bs_params->new_tg) {
3036
0
      tile_dst = pack_bs_params->dst;
3037
0
      tile_data_curr = pack_bs_params->tile_data_curr;
3038
      // Account header size in first tile of a tile group.
3039
0
      pack_bs_params->tile_buf_size += pack_bs_params->curr_tg_hdr_size;
3040
0
    } else {
3041
0
      pack_bs_params->dst = tile_dst;
3042
0
      pack_bs_params->tile_data_curr = tile_data_curr;
3043
0
    }
3044
3045
0
    if (pack_bs_params->is_last_tile_in_tg) tg_idx++;
3046
0
    tile_dst += pack_bs_params->tile_buf_size;
3047
0
  }
3048
0
}
3049
3050
// Worker hook function of pack bitsteam multithreading.
3051
0
static int pack_bs_worker_hook(void *arg1, void *arg2) {
3052
0
  EncWorkerData *const thread_data = (EncWorkerData *)arg1;
3053
0
  PackBSParams *const pack_bs_params = (PackBSParams *)arg2;
3054
0
  AV1_COMP *const cpi = thread_data->cpi;
3055
0
  AV1_COMMON *const cm = &cpi->common;
3056
0
  AV1EncPackBSSync *const pack_bs_sync = &cpi->mt_info.pack_bs_sync;
3057
0
  const CommonTileParams *const tiles = &cm->tiles;
3058
0
  const int num_tiles = tiles->cols * tiles->rows;
3059
3060
0
#if CONFIG_MULTITHREAD
3061
0
  pthread_mutex_t *const pack_bs_mutex = pack_bs_sync->mutex_;
3062
0
#endif
3063
0
  MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
3064
0
  struct aom_internal_error_info *const error_info = &thread_data->error_info;
3065
0
  xd->error_info = error_info;
3066
3067
  // The jmp_buf is valid only for the duration of the function that calls
3068
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
3069
  // before it returns.
3070
0
  if (setjmp(error_info->jmp)) {
3071
0
    error_info->setjmp = 0;
3072
0
#if CONFIG_MULTITHREAD
3073
0
    pthread_mutex_lock(pack_bs_mutex);
3074
0
    pack_bs_sync->pack_bs_mt_exit = true;
3075
0
    pthread_mutex_unlock(pack_bs_mutex);
3076
0
#endif
3077
0
    return 0;
3078
0
  }
3079
0
  error_info->setjmp = 1;
3080
3081
0
  while (1) {
3082
0
#if CONFIG_MULTITHREAD
3083
0
    pthread_mutex_lock(pack_bs_mutex);
3084
0
#endif
3085
0
    const int tile_idx =
3086
0
        pack_bs_sync->pack_bs_mt_exit
3087
0
            ? -1
3088
0
            : get_next_pack_bs_tile_idx(pack_bs_sync, num_tiles);
3089
0
#if CONFIG_MULTITHREAD
3090
0
    pthread_mutex_unlock(pack_bs_mutex);
3091
0
#endif
3092
    // When pack_bs_mt_exit is set to true, other workers need not pursue any
3093
    // further jobs.
3094
0
    if (tile_idx == -1) break;
3095
0
    TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3096
0
    thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
3097
3098
0
    av1_pack_tile_info(cpi, thread_data->td, &pack_bs_params[tile_idx]);
3099
0
  }
3100
3101
0
  error_info->setjmp = 0;
3102
0
  return 1;
3103
0
}
3104
3105
// Prepares thread data and workers of pack bitsteam multithreading.
3106
static void prepare_pack_bs_workers(AV1_COMP *const cpi,
3107
                                    PackBSParams *const pack_bs_params,
3108
0
                                    AVxWorkerHook hook, const int num_workers) {
3109
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
3110
0
  for (int i = num_workers - 1; i >= 0; i--) {
3111
0
    AVxWorker *worker = &mt_info->workers[i];
3112
0
    EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
3113
0
    if (i == 0) {
3114
0
      thread_data->td = &cpi->td;
3115
0
    } else {
3116
0
      thread_data->td = thread_data->original_td;
3117
0
    }
3118
3119
0
    if (thread_data->td != &cpi->td) thread_data->td->mb = cpi->td.mb;
3120
3121
0
    thread_data->cpi = cpi;
3122
0
    thread_data->start = i;
3123
0
    thread_data->thread_id = i;
3124
0
    av1_reset_pack_bs_thread_data(thread_data->td);
3125
3126
0
    worker->hook = hook;
3127
0
    worker->data1 = thread_data;
3128
0
    worker->data2 = pack_bs_params;
3129
0
  }
3130
3131
0
  AV1_COMMON *const cm = &cpi->common;
3132
0
  AV1EncPackBSSync *const pack_bs_sync = &mt_info->pack_bs_sync;
3133
0
  const uint16_t num_tiles = cm->tiles.rows * cm->tiles.cols;
3134
0
  pack_bs_sync->next_job_idx = 0;
3135
0
  pack_bs_sync->pack_bs_mt_exit = false;
3136
3137
0
  PackBSTileOrder *const pack_bs_tile_order = pack_bs_sync->pack_bs_tile_order;
3138
  // Reset tile order data of pack bitstream
3139
0
  av1_zero_array(pack_bs_tile_order, num_tiles);
3140
3141
  // Populate pack bitstream tile order structure
3142
0
  for (uint16_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
3143
0
    pack_bs_tile_order[tile_idx].abs_sum_level =
3144
0
        cpi->tile_data[tile_idx].abs_sum_level;
3145
0
    pack_bs_tile_order[tile_idx].tile_idx = tile_idx;
3146
0
  }
3147
3148
  // Sort tiles in descending order based on tile area.
3149
0
  qsort(pack_bs_tile_order, num_tiles, sizeof(*pack_bs_tile_order),
3150
0
        compare_tile_order);
3151
0
}
3152
3153
// Accumulates data after pack bitsteam processing.
3154
static void accumulate_pack_bs_data(
3155
    AV1_COMP *const cpi, const PackBSParams *const pack_bs_params_arr,
3156
    uint8_t *const dst, uint32_t *total_size, const FrameHeaderInfo *fh_info,
3157
    int *const largest_tile_id, unsigned int *max_tile_size,
3158
    uint32_t *const obu_header_size, uint8_t **tile_data_start,
3159
0
    const int num_workers) {
3160
0
  const AV1_COMMON *const cm = &cpi->common;
3161
0
  const CommonTileParams *const tiles = &cm->tiles;
3162
0
  const int tile_count = tiles->cols * tiles->rows;
3163
  // Fixed size tile groups for the moment
3164
0
  size_t curr_tg_data_size = 0;
3165
0
  int is_first_tg = 1;
3166
0
  uint8_t *curr_tg_start = dst;
3167
0
  size_t src_offset = 0;
3168
0
  size_t dst_offset = 0;
3169
3170
0
  for (int tile_idx = 0; tile_idx < tile_count; tile_idx++) {
3171
    // PackBSParams stores all parameters required to pack tile and header
3172
    // info.
3173
0
    const PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
3174
0
    uint32_t tile_size = 0;
3175
3176
0
    if (pack_bs_params->new_tg) {
3177
0
      curr_tg_start = dst + *total_size;
3178
0
      curr_tg_data_size = pack_bs_params->curr_tg_hdr_size;
3179
0
      *tile_data_start += pack_bs_params->curr_tg_hdr_size;
3180
0
      *obu_header_size = pack_bs_params->obu_header_size;
3181
0
    }
3182
0
    curr_tg_data_size +=
3183
0
        pack_bs_params->buf.size + (pack_bs_params->is_last_tile_in_tg ? 0 : 4);
3184
3185
0
    if (pack_bs_params->buf.size > *max_tile_size) {
3186
0
      *largest_tile_id = tile_idx;
3187
0
      *max_tile_size = (unsigned int)pack_bs_params->buf.size;
3188
0
    }
3189
0
    tile_size +=
3190
0
        (uint32_t)pack_bs_params->buf.size + *pack_bs_params->total_size;
3191
3192
    // Pack all the chunks of tile bitstreams together
3193
0
    if (tile_idx != 0) memmove(dst + dst_offset, dst + src_offset, tile_size);
3194
3195
0
    if (pack_bs_params->is_last_tile_in_tg)
3196
0
      av1_write_last_tile_info(
3197
0
          cpi, fh_info, pack_bs_params->saved_wb, &curr_tg_data_size,
3198
0
          curr_tg_start, &tile_size, tile_data_start, largest_tile_id,
3199
0
          &is_first_tg, *obu_header_size, pack_bs_params->obu_extn_header);
3200
0
    src_offset += pack_bs_params->tile_buf_size;
3201
0
    dst_offset += tile_size;
3202
0
    *total_size += tile_size;
3203
0
  }
3204
3205
  // Accumulate thread data
3206
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
3207
0
  for (int idx = num_workers - 1; idx >= 0; idx--) {
3208
0
    ThreadData const *td = mt_info->tile_thr_data[idx].td;
3209
0
    av1_accumulate_pack_bs_thread_data(cpi, td);
3210
0
  }
3211
0
}
3212
3213
void av1_write_tile_obu_mt(
3214
    AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
3215
    struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
3216
    const FrameHeaderInfo *fh_info, int *const largest_tile_id,
3217
    unsigned int *max_tile_size, uint32_t *const obu_header_size,
3218
0
    uint8_t **tile_data_start, const int num_workers) {
3219
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
3220
3221
0
  PackBSParams pack_bs_params[MAX_TILES];
3222
0
  uint32_t tile_size[MAX_TILES] = { 0 };
3223
3224
0
  for (int tile_idx = 0; tile_idx < MAX_TILES; tile_idx++)
3225
0
    pack_bs_params[tile_idx].total_size = &tile_size[tile_idx];
3226
3227
0
  init_tile_pack_bs_params(cpi, dst, saved_wb, pack_bs_params, obu_extn_header);
3228
0
  prepare_pack_bs_workers(cpi, pack_bs_params, pack_bs_worker_hook,
3229
0
                          num_workers);
3230
0
  launch_workers(mt_info, num_workers);
3231
0
  sync_enc_workers(mt_info, &cpi->common, num_workers);
3232
0
  accumulate_pack_bs_data(cpi, pack_bs_params, dst, total_size, fh_info,
3233
0
                          largest_tile_id, max_tile_size, obu_header_size,
3234
0
                          tile_data_start, num_workers);
3235
0
}
3236
3237
// Deallocate memory for CDEF search multi-thread synchronization.
3238
0
void av1_cdef_mt_dealloc(AV1CdefSync *cdef_sync) {
3239
0
  (void)cdef_sync;
3240
0
  assert(cdef_sync != NULL);
3241
0
#if CONFIG_MULTITHREAD
3242
0
  if (cdef_sync->mutex_ != NULL) {
3243
0
    pthread_mutex_destroy(cdef_sync->mutex_);
3244
0
    aom_free(cdef_sync->mutex_);
3245
0
  }
3246
0
#endif  // CONFIG_MULTITHREAD
3247
0
}
3248
3249
// Updates the row and column indices of the next job to be processed.
3250
// Also updates end_of_frame flag when the processing of all blocks is complete.
3251
0
static void update_next_job_info(AV1CdefSync *cdef_sync, int nvfb, int nhfb) {
3252
0
  cdef_sync->fbc++;
3253
0
  if (cdef_sync->fbc == nhfb) {
3254
0
    cdef_sync->fbr++;
3255
0
    if (cdef_sync->fbr == nvfb) {
3256
0
      cdef_sync->end_of_frame = 1;
3257
0
    } else {
3258
0
      cdef_sync->fbc = 0;
3259
0
    }
3260
0
  }
3261
0
}
3262
3263
// Initializes cdef_sync parameters.
3264
0
static inline void cdef_reset_job_info(AV1CdefSync *cdef_sync) {
3265
0
#if CONFIG_MULTITHREAD
3266
0
  if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
3267
0
#endif  // CONFIG_MULTITHREAD
3268
0
  cdef_sync->end_of_frame = 0;
3269
0
  cdef_sync->fbr = 0;
3270
0
  cdef_sync->fbc = 0;
3271
0
  cdef_sync->cdef_mt_exit = false;
3272
0
}
3273
3274
// Checks if a job is available. If job is available,
3275
// populates next job information and returns 1, else returns 0.
3276
static inline int cdef_get_next_job(AV1CdefSync *cdef_sync,
3277
                                    CdefSearchCtx *cdef_search_ctx,
3278
                                    volatile int *cur_fbr,
3279
                                    volatile int *cur_fbc,
3280
0
                                    volatile int *sb_count) {
3281
0
#if CONFIG_MULTITHREAD
3282
0
  pthread_mutex_lock(cdef_sync->mutex_);
3283
0
#endif  // CONFIG_MULTITHREAD
3284
0
  int do_next_block = 0;
3285
0
  const int nvfb = cdef_search_ctx->nvfb;
3286
0
  const int nhfb = cdef_search_ctx->nhfb;
3287
3288
  // If a block is skip, do not process the block and
3289
  // check the skip condition for the next block.
3290
0
  while (!cdef_sync->cdef_mt_exit && !cdef_sync->end_of_frame &&
3291
0
         cdef_sb_skip(cdef_search_ctx->mi_params, cdef_sync->fbr,
3292
0
                      cdef_sync->fbc)) {
3293
0
    update_next_job_info(cdef_sync, nvfb, nhfb);
3294
0
  }
3295
3296
  // Populates information needed for current job and update the row,
3297
  // column indices of the next block to be processed.
3298
0
  if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) {
3299
0
    do_next_block = 1;
3300
0
    *cur_fbr = cdef_sync->fbr;
3301
0
    *cur_fbc = cdef_sync->fbc;
3302
0
    *sb_count = cdef_search_ctx->sb_count;
3303
0
    cdef_search_ctx->sb_count++;
3304
0
    update_next_job_info(cdef_sync, nvfb, nhfb);
3305
0
  }
3306
0
#if CONFIG_MULTITHREAD
3307
0
  pthread_mutex_unlock(cdef_sync->mutex_);
3308
0
#endif  // CONFIG_MULTITHREAD
3309
0
  return do_next_block;
3310
0
}
3311
3312
// Hook function for each thread in CDEF search multi-threading.
3313
0
static int cdef_filter_block_worker_hook(void *arg1, void *arg2) {
3314
0
  EncWorkerData *thread_data = (EncWorkerData *)arg1;
3315
0
  AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg2;
3316
3317
0
#if CONFIG_MULTITHREAD
3318
0
  pthread_mutex_t *cdef_mutex_ = cdef_sync->mutex_;
3319
0
#endif
3320
0
  struct aom_internal_error_info *const error_info = &thread_data->error_info;
3321
0
  CdefSearchCtx *cdef_search_ctx = thread_data->cpi->cdef_search_ctx;
3322
3323
  // The jmp_buf is valid only for the duration of the function that calls
3324
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
3325
  // before it returns.
3326
0
  if (setjmp(error_info->jmp)) {
3327
0
    error_info->setjmp = 0;
3328
0
#if CONFIG_MULTITHREAD
3329
0
    pthread_mutex_lock(cdef_mutex_);
3330
0
    cdef_sync->cdef_mt_exit = true;
3331
0
    pthread_mutex_unlock(cdef_mutex_);
3332
0
#endif
3333
0
    return 0;
3334
0
  }
3335
0
  error_info->setjmp = 1;
3336
3337
0
  volatile int cur_fbr, cur_fbc, sb_count;
3338
0
  while (cdef_get_next_job(cdef_sync, cdef_search_ctx, &cur_fbr, &cur_fbc,
3339
0
                           &sb_count)) {
3340
0
    av1_cdef_mse_calc_block(cdef_search_ctx, error_info, cur_fbr, cur_fbc,
3341
0
                            sb_count);
3342
0
  }
3343
0
  error_info->setjmp = 0;
3344
0
  return 1;
3345
0
}
3346
3347
// Assigns CDEF search hook function and thread data to each worker.
3348
static void prepare_cdef_workers(AV1_COMP *cpi, AVxWorkerHook hook,
3349
0
                                 int num_workers) {
3350
0
  MultiThreadInfo *mt_info = &cpi->mt_info;
3351
0
  for (int i = num_workers - 1; i >= 0; i--) {
3352
0
    AVxWorker *worker = &mt_info->workers[i];
3353
0
    EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
3354
3355
0
    thread_data->cpi = cpi;
3356
0
    worker->hook = hook;
3357
0
    worker->data1 = thread_data;
3358
0
    worker->data2 = &mt_info->cdef_sync;
3359
0
  }
3360
0
}
3361
3362
// Implements multi-threading for CDEF search.
3363
0
void av1_cdef_mse_calc_frame_mt(AV1_COMP *cpi) {
3364
0
  MultiThreadInfo *mt_info = &cpi->mt_info;
3365
0
  AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
3366
0
  const int num_workers = mt_info->num_mod_workers[MOD_CDEF_SEARCH];
3367
3368
0
  cdef_reset_job_info(cdef_sync);
3369
0
  prepare_cdef_workers(cpi, cdef_filter_block_worker_hook, num_workers);
3370
0
  launch_workers(mt_info, num_workers);
3371
0
  sync_enc_workers(mt_info, &cpi->common, num_workers);
3372
0
}
3373
3374
// Computes num_workers for temporal filter multi-threading.
3375
0
static inline int compute_num_tf_workers(const AV1_COMP *cpi) {
3376
  // For single-pass encode, using no. of workers as per tf block size was not
3377
  // found to improve speed. Hence the thread assignment for single-pass encode
3378
  // is kept based on compute_num_enc_workers().
3379
0
  if (cpi->oxcf.pass < AOM_RC_SECOND_PASS)
3380
0
    return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3381
3382
0
  if (cpi->oxcf.max_threads <= 1) return 1;
3383
3384
0
  const int frame_height = cpi->common.height;
3385
0
  const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
3386
0
  const int mb_height = block_size_high[block_size];
3387
0
  const int mb_rows = get_num_blocks(frame_height, mb_height);
3388
0
  return AOMMIN(cpi->oxcf.max_threads, mb_rows);
3389
0
}
3390
3391
// Computes num_workers for tpl multi-threading.
3392
0
static inline int compute_num_tpl_workers(AV1_COMP *cpi) {
3393
0
  return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3394
0
}
3395
3396
// Computes num_workers for loop filter multi-threading.
3397
0
static inline int compute_num_lf_workers(AV1_COMP *cpi) {
3398
0
  return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3399
0
}
3400
3401
// Computes num_workers for cdef multi-threading.
3402
0
static inline int compute_num_cdef_workers(AV1_COMP *cpi) {
3403
0
  return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3404
0
}
3405
3406
// Computes num_workers for loop-restoration multi-threading.
3407
0
static inline int compute_num_lr_workers(AV1_COMP *cpi) {
3408
0
  return compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3409
0
}
3410
3411
// Computes num_workers for pack bitstream multi-threading.
3412
0
static inline int compute_num_pack_bs_workers(AV1_COMP *cpi) {
3413
0
  if (cpi->oxcf.max_threads <= 1) return 1;
3414
0
  return compute_num_enc_tile_mt_workers(&cpi->common, cpi->oxcf.max_threads);
3415
0
}
3416
3417
// Computes num_workers for all intra multi-threading.
3418
0
static inline int compute_num_ai_workers(AV1_COMP *cpi) {
3419
0
  if (cpi->oxcf.max_threads <= 1) return 1;
3420
  // The multi-threading implementation of deltaq-mode = 3 in allintra
3421
  // mode is based on row multi threading.
3422
0
  if (!cpi->oxcf.row_mt) return 1;
3423
0
  cpi->weber_bsize = BLOCK_8X8;
3424
0
  const BLOCK_SIZE bsize = cpi->weber_bsize;
3425
0
  const int mb_step = mi_size_wide[bsize];
3426
0
  const int num_mb_rows = cpi->common.mi_params.mi_rows / mb_step;
3427
0
  return AOMMIN(num_mb_rows, cpi->oxcf.max_threads);
3428
0
}
3429
3430
static int compute_num_mod_workers(AV1_COMP *cpi,
3431
0
                                   MULTI_THREADED_MODULES mod_name) {
3432
0
  int num_mod_workers = 0;
3433
0
  switch (mod_name) {
3434
0
    case MOD_FP:
3435
0
      if (cpi->oxcf.pass >= AOM_RC_SECOND_PASS)
3436
0
        num_mod_workers = 0;
3437
0
      else
3438
0
        num_mod_workers = compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3439
0
      break;
3440
0
    case MOD_TF: num_mod_workers = compute_num_tf_workers(cpi); break;
3441
0
    case MOD_TPL: num_mod_workers = compute_num_tpl_workers(cpi); break;
3442
0
    case MOD_GME: num_mod_workers = 1; break;
3443
0
    case MOD_ENC:
3444
0
      num_mod_workers = compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3445
0
      break;
3446
0
    case MOD_LPF: num_mod_workers = compute_num_lf_workers(cpi); break;
3447
0
    case MOD_CDEF_SEARCH:
3448
0
      num_mod_workers = compute_num_cdef_workers(cpi);
3449
0
      break;
3450
0
    case MOD_CDEF: num_mod_workers = compute_num_cdef_workers(cpi); break;
3451
0
    case MOD_LR: num_mod_workers = compute_num_lr_workers(cpi); break;
3452
0
    case MOD_PACK_BS: num_mod_workers = compute_num_pack_bs_workers(cpi); break;
3453
0
    case MOD_FRAME_ENC:
3454
0
      num_mod_workers = cpi->ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC];
3455
0
      break;
3456
0
    case MOD_AI:
3457
0
      if (cpi->oxcf.pass == AOM_RC_ONE_PASS) {
3458
0
        num_mod_workers = compute_num_ai_workers(cpi);
3459
0
      } else {
3460
0
        num_mod_workers = 0;
3461
0
      }
3462
0
      break;
3463
0
    default: assert(0); break;
3464
0
  }
3465
0
  return (num_mod_workers);
3466
0
}
3467
// Computes the number of workers for each MT modules in the encoder
3468
0
void av1_compute_num_workers_for_mt(AV1_COMP *cpi) {
3469
0
  for (int i = MOD_FP; i < NUM_MT_MODULES; i++) {
3470
0
    cpi->ppi->p_mt_info.num_mod_workers[i] =
3471
0
        compute_num_mod_workers(cpi, (MULTI_THREADED_MODULES)i);
3472
0
  }
3473
0
}