/src/aom/av1/encoder/intra_mode_search.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2020, Alliance for Open Media. All rights reserved. |
3 | | * |
4 | | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | | * was not distributed with this source code in the LICENSE file, you can |
7 | | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | | * Media Patent License 1.0 was not distributed with this source code in the |
9 | | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | | */ |
11 | | |
12 | | #include "av1/common/av1_common_int.h" |
13 | | #include "av1/common/cfl.h" |
14 | | #include "av1/common/reconintra.h" |
15 | | |
16 | | #include "av1/encoder/intra_mode_search.h" |
17 | | #include "av1/encoder/intra_mode_search_utils.h" |
18 | | #include "av1/encoder/palette.h" |
19 | | #include "av1/encoder/speed_features.h" |
20 | | #include "av1/encoder/tx_search.h" |
21 | | |
22 | | // Even though there are 7 delta angles, this macro is set to 9 to facilitate |
23 | | // the rd threshold check to prune -3 and 3 delta angles. |
24 | 0 | #define SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY (2 * MAX_ANGLE_DELTA + 3) |
25 | | |
26 | | // The order for evaluating delta angles while processing the luma directional |
27 | | // intra modes. Currently, this order of evaluation is applicable only when |
28 | | // speed feature prune_luma_odd_delta_angles_in_intra is enabled. In this case, |
29 | | // even angles are evaluated first in order to facilitate the pruning of odd |
30 | | // delta angles based on the rd costs of the neighboring delta angles. |
31 | | static const int8_t luma_delta_angles_order[2 * MAX_ANGLE_DELTA] = { |
32 | | -2, 2, -3, -1, 1, 3, |
33 | | }; |
34 | | |
35 | | /*!\cond */ |
36 | | static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = { |
37 | | DC_PRED, H_PRED, V_PRED, SMOOTH_PRED, PAETH_PRED, |
38 | | SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED, D157_PRED, |
39 | | D67_PRED, D113_PRED, D45_PRED, |
40 | | }; |
41 | | |
42 | | static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = { |
43 | | UV_DC_PRED, UV_CFL_PRED, UV_H_PRED, UV_V_PRED, |
44 | | UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED, |
45 | | UV_D135_PRED, UV_D203_PRED, UV_D157_PRED, UV_D67_PRED, |
46 | | UV_D113_PRED, UV_D45_PRED, |
47 | | }; |
48 | | |
49 | | // The bitmask corresponds to the filter intra modes as defined in enums.h |
50 | | // FILTER_INTRA_MODE enumeration type. Setting a bit to 0 in the mask means to |
51 | | // disable the evaluation of corresponding filter intra mode. The table |
52 | | // av1_derived_filter_intra_mode_used_flag is used when speed feature |
53 | | // prune_filter_intra_level is 1. The evaluated filter intra modes are union |
54 | | // of the following: |
55 | | // 1) FILTER_DC_PRED |
56 | | // 2) mode that corresponds to best mode so far of DC_PRED, V_PRED, H_PRED, |
57 | | // D157_PRED and PAETH_PRED. (Eg: FILTER_V_PRED if best mode so far is V_PRED). |
58 | | static const uint8_t av1_derived_filter_intra_mode_used_flag[INTRA_MODES] = { |
59 | | 0x01, // DC_PRED: 0000 0001 |
60 | | 0x03, // V_PRED: 0000 0011 |
61 | | 0x05, // H_PRED: 0000 0101 |
62 | | 0x01, // D45_PRED: 0000 0001 |
63 | | 0x01, // D135_PRED: 0000 0001 |
64 | | 0x01, // D113_PRED: 0000 0001 |
65 | | 0x09, // D157_PRED: 0000 1001 |
66 | | 0x01, // D203_PRED: 0000 0001 |
67 | | 0x01, // D67_PRED: 0000 0001 |
68 | | 0x01, // SMOOTH_PRED: 0000 0001 |
69 | | 0x01, // SMOOTH_V_PRED: 0000 0001 |
70 | | 0x01, // SMOOTH_H_PRED: 0000 0001 |
71 | | 0x11 // PAETH_PRED: 0001 0001 |
72 | | }; |
73 | | |
74 | | // The bitmask corresponds to the chroma intra modes as defined in enums.h |
75 | | // UV_PREDICTION_MODE enumeration type. Setting a bit to 0 in the mask means to |
76 | | // disable the evaluation of corresponding chroma intra mode. The table |
77 | | // av1_derived_chroma_intra_mode_used_flag is used when speed feature |
78 | | // prune_chroma_modes_using_luma_winner is enabled. The evaluated chroma |
79 | | // intra modes are union of the following: |
80 | | // 1) UV_DC_PRED |
81 | | // 2) UV_SMOOTH_PRED |
82 | | // 3) UV_CFL_PRED |
83 | | // 4) mode that corresponds to luma intra mode winner (Eg : UV_V_PRED if luma |
84 | | // intra mode winner is V_PRED). |
85 | | static const uint16_t av1_derived_chroma_intra_mode_used_flag[INTRA_MODES] = { |
86 | | 0x2201, // DC_PRED: 0010 0010 0000 0001 |
87 | | 0x2203, // V_PRED: 0010 0010 0000 0011 |
88 | | 0x2205, // H_PRED: 0010 0010 0000 0101 |
89 | | 0x2209, // D45_PRED: 0010 0010 0000 1001 |
90 | | 0x2211, // D135_PRED: 0010 0010 0001 0001 |
91 | | 0x2221, // D113_PRED: 0010 0010 0010 0001 |
92 | | 0x2241, // D157_PRED: 0010 0010 0100 0001 |
93 | | 0x2281, // D203_PRED: 0010 0010 1000 0001 |
94 | | 0x2301, // D67_PRED: 0010 0011 0000 0001 |
95 | | 0x2201, // SMOOTH_PRED: 0010 0010 0000 0001 |
96 | | 0x2601, // SMOOTH_V_PRED: 0010 0110 0000 0001 |
97 | | 0x2a01, // SMOOTH_H_PRED: 0010 1010 0000 0001 |
98 | | 0x3201 // PAETH_PRED: 0011 0010 0000 0001 |
99 | | }; |
100 | | |
101 | | DECLARE_ALIGNED(16, static const uint8_t, all_zeros[MAX_SB_SIZE]) = { 0 }; |
102 | | DECLARE_ALIGNED(16, static const uint16_t, |
103 | | highbd_all_zeros[MAX_SB_SIZE]) = { 0 }; |
104 | | |
105 | | int av1_calc_normalized_variance(aom_variance_fn_t vf, const uint8_t *const buf, |
106 | 0 | const int stride, const int is_hbd) { |
107 | 0 | unsigned int sse; |
108 | |
|
109 | 0 | if (is_hbd) |
110 | 0 | return vf(buf, stride, CONVERT_TO_BYTEPTR(highbd_all_zeros), 0, &sse); |
111 | 0 | else |
112 | 0 | return vf(buf, stride, all_zeros, 0, &sse); |
113 | 0 | } |
114 | | |
115 | | // Computes average of log(1 + variance) across 4x4 sub-blocks for source and |
116 | | // reconstructed blocks. |
117 | | static void compute_avg_log_variance(const AV1_COMP *const cpi, MACROBLOCK *x, |
118 | | const BLOCK_SIZE bs, |
119 | | double *avg_log_src_variance, |
120 | 0 | double *avg_log_recon_variance) { |
121 | 0 | const MACROBLOCKD *const xd = &x->e_mbd; |
122 | 0 | const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size; |
123 | 0 | const int mi_row_in_sb = x->e_mbd.mi_row & (mi_size_high[sb_size] - 1); |
124 | 0 | const int mi_col_in_sb = x->e_mbd.mi_col & (mi_size_wide[sb_size] - 1); |
125 | 0 | const int right_overflow = |
126 | 0 | (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; |
127 | 0 | const int bottom_overflow = |
128 | 0 | (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; |
129 | 0 | const int bw = (MI_SIZE * mi_size_wide[bs] - right_overflow); |
130 | 0 | const int bh = (MI_SIZE * mi_size_high[bs] - bottom_overflow); |
131 | 0 | const int is_hbd = is_cur_buf_hbd(xd); |
132 | |
|
133 | 0 | aom_variance_fn_t vf = cpi->ppi->fn_ptr[BLOCK_4X4].vf; |
134 | 0 | for (int i = 0; i < bh; i += MI_SIZE) { |
135 | 0 | const int r = mi_row_in_sb + (i >> MI_SIZE_LOG2); |
136 | 0 | for (int j = 0; j < bw; j += MI_SIZE) { |
137 | 0 | const int c = mi_col_in_sb + (j >> MI_SIZE_LOG2); |
138 | 0 | const int mi_offset = r * mi_size_wide[sb_size] + c; |
139 | 0 | Block4x4VarInfo *block_4x4_var_info = |
140 | 0 | &x->src_var_info_of_4x4_sub_blocks[mi_offset]; |
141 | 0 | int src_var = block_4x4_var_info->var; |
142 | 0 | double log_src_var = block_4x4_var_info->log_var; |
143 | | // Compute average of log(1 + variance) for the source block from 4x4 |
144 | | // sub-block variance values. Calculate and store 4x4 sub-block variance |
145 | | // and log(1 + variance), if the values present in |
146 | | // src_var_of_4x4_sub_blocks are invalid. Reuse the same if it is readily |
147 | | // available with valid values. |
148 | 0 | if (src_var < 0) { |
149 | 0 | src_var = av1_calc_normalized_variance( |
150 | 0 | vf, x->plane[0].src.buf + i * x->plane[0].src.stride + j, |
151 | 0 | x->plane[0].src.stride, is_hbd); |
152 | 0 | block_4x4_var_info->var = src_var; |
153 | 0 | log_src_var = log1p(src_var / 16.0); |
154 | 0 | block_4x4_var_info->log_var = log_src_var; |
155 | 0 | } else { |
156 | | // When source variance is already calculated and available for |
157 | | // retrieval, check if log(1 + variance) is also available. If it is |
158 | | // available, then retrieve from buffer. Else, calculate the same and |
159 | | // store to the buffer. |
160 | 0 | if (log_src_var < 0) { |
161 | 0 | log_src_var = log1p(src_var / 16.0); |
162 | 0 | block_4x4_var_info->log_var = log_src_var; |
163 | 0 | } |
164 | 0 | } |
165 | 0 | *avg_log_src_variance += log_src_var; |
166 | |
|
167 | 0 | const int recon_var = av1_calc_normalized_variance( |
168 | 0 | vf, xd->plane[0].dst.buf + i * xd->plane[0].dst.stride + j, |
169 | 0 | xd->plane[0].dst.stride, is_hbd); |
170 | 0 | *avg_log_recon_variance += log1p(recon_var / 16.0); |
171 | 0 | } |
172 | 0 | } |
173 | |
|
174 | 0 | const int blocks = (bw * bh) / 16; |
175 | 0 | *avg_log_src_variance /= (double)blocks; |
176 | 0 | *avg_log_recon_variance /= (double)blocks; |
177 | 0 | } |
178 | | |
179 | | // Returns a factor to be applied to the RD value based on how well the |
180 | | // reconstructed block variance matches the source variance. |
181 | | static double intra_rd_variance_factor(const AV1_COMP *cpi, MACROBLOCK *x, |
182 | 0 | BLOCK_SIZE bs) { |
183 | 0 | double threshold = INTRA_RD_VAR_THRESH(cpi->oxcf.speed); |
184 | | // For non-positive threshold values, the comparison of source and |
185 | | // reconstructed variances with threshold evaluates to false |
186 | | // (src_var < threshold/rec_var < threshold) as these metrics are greater than |
187 | | // than 0. Hence further calculations are skipped. |
188 | 0 | if (threshold <= 0) return 1.0; |
189 | | |
190 | 0 | double variance_rd_factor = 1.0; |
191 | 0 | double avg_log_src_variance = 0.0; |
192 | 0 | double avg_log_recon_variance = 0.0; |
193 | 0 | double var_diff = 0.0; |
194 | |
|
195 | 0 | compute_avg_log_variance(cpi, x, bs, &avg_log_src_variance, |
196 | 0 | &avg_log_recon_variance); |
197 | | |
198 | | // Dont allow 0 to prevent / 0 below. |
199 | 0 | avg_log_src_variance += 0.000001; |
200 | 0 | avg_log_recon_variance += 0.000001; |
201 | |
|
202 | 0 | if (avg_log_src_variance >= avg_log_recon_variance) { |
203 | 0 | var_diff = (avg_log_src_variance - avg_log_recon_variance); |
204 | 0 | if ((var_diff > 0.5) && (avg_log_recon_variance < threshold)) { |
205 | 0 | variance_rd_factor = 1.0 + ((var_diff * 2) / avg_log_src_variance); |
206 | 0 | } |
207 | 0 | } else { |
208 | 0 | var_diff = (avg_log_recon_variance - avg_log_src_variance); |
209 | 0 | if ((var_diff > 0.5) && (avg_log_src_variance < threshold)) { |
210 | 0 | variance_rd_factor = 1.0 + (var_diff / (2 * avg_log_src_variance)); |
211 | 0 | } |
212 | 0 | } |
213 | | |
214 | | // Limit adjustment; |
215 | 0 | variance_rd_factor = AOMMIN(3.0, variance_rd_factor); |
216 | |
|
217 | 0 | return variance_rd_factor; |
218 | 0 | } |
219 | | /*!\endcond */ |
220 | | |
221 | | /*!\brief Search for the best filter_intra mode when coding intra frame. |
222 | | * |
223 | | * \ingroup intra_mode_search |
224 | | * \callergraph |
225 | | * This function loops through all filter_intra modes to find the best one. |
226 | | * |
227 | | * \return Returns 1 if a new filter_intra mode is selected; 0 otherwise. |
228 | | */ |
229 | | static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x, |
230 | | int *rate, int *rate_tokenonly, |
231 | | int64_t *distortion, uint8_t *skippable, |
232 | | BLOCK_SIZE bsize, int mode_cost, |
233 | | PREDICTION_MODE best_mode_so_far, |
234 | | int64_t *best_rd, int64_t *best_model_rd, |
235 | 0 | PICK_MODE_CONTEXT *ctx) { |
236 | | // Skip the evaluation of filter intra modes. |
237 | 0 | if (cpi->sf.intra_sf.prune_filter_intra_level == 2) return 0; |
238 | | |
239 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
240 | 0 | MB_MODE_INFO *mbmi = xd->mi[0]; |
241 | 0 | int filter_intra_selected_flag = 0; |
242 | 0 | FILTER_INTRA_MODE mode; |
243 | 0 | TX_SIZE best_tx_size = TX_8X8; |
244 | 0 | FILTER_INTRA_MODE_INFO filter_intra_mode_info; |
245 | 0 | uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
246 | 0 | av1_zero(filter_intra_mode_info); |
247 | 0 | mbmi->filter_intra_mode_info.use_filter_intra = 1; |
248 | 0 | mbmi->mode = DC_PRED; |
249 | 0 | mbmi->palette_mode_info.palette_size[0] = 0; |
250 | | |
251 | | // Skip the evaluation of filter-intra if cached MB_MODE_INFO does not have |
252 | | // filter-intra as winner. |
253 | 0 | if (x->use_mb_mode_cache && |
254 | 0 | !x->mb_mode_cache->filter_intra_mode_info.use_filter_intra) |
255 | 0 | return 0; |
256 | | |
257 | 0 | for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { |
258 | 0 | int64_t this_rd; |
259 | 0 | RD_STATS tokenonly_rd_stats; |
260 | 0 | mbmi->filter_intra_mode_info.filter_intra_mode = mode; |
261 | |
|
262 | 0 | if ((cpi->sf.intra_sf.prune_filter_intra_level == 1) && |
263 | 0 | !(av1_derived_filter_intra_mode_used_flag[best_mode_so_far] & |
264 | 0 | (1 << mode))) |
265 | 0 | continue; |
266 | | |
267 | | // Skip the evaluation of modes that do not match with the winner mode in |
268 | | // x->mb_mode_cache. |
269 | 0 | if (x->use_mb_mode_cache && |
270 | 0 | mode != x->mb_mode_cache->filter_intra_mode_info.filter_intra_mode) |
271 | 0 | continue; |
272 | | |
273 | 0 | if (model_intra_yrd_and_prune(cpi, x, bsize, best_model_rd)) { |
274 | 0 | continue; |
275 | 0 | } |
276 | 0 | av1_pick_uniform_tx_size_type_yrd(cpi, x, &tokenonly_rd_stats, bsize, |
277 | 0 | *best_rd); |
278 | 0 | if (tokenonly_rd_stats.rate == INT_MAX) continue; |
279 | 0 | const int this_rate = |
280 | 0 | tokenonly_rd_stats.rate + |
281 | 0 | intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); |
282 | 0 | this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
283 | | |
284 | | // Visual quality adjustment based on recon vs source variance. |
285 | 0 | if ((cpi->oxcf.mode == ALLINTRA) && (this_rd != INT64_MAX)) { |
286 | 0 | this_rd = (int64_t)(this_rd * intra_rd_variance_factor(cpi, x, bsize)); |
287 | 0 | } |
288 | | |
289 | | // Collect mode stats for multiwinner mode processing |
290 | 0 | const int txfm_search_done = 1; |
291 | 0 | store_winner_mode_stats( |
292 | 0 | &cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd, |
293 | 0 | cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done); |
294 | 0 | if (this_rd < *best_rd) { |
295 | 0 | *best_rd = this_rd; |
296 | 0 | best_tx_size = mbmi->tx_size; |
297 | 0 | filter_intra_mode_info = mbmi->filter_intra_mode_info; |
298 | 0 | av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
299 | 0 | memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, |
300 | 0 | sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
301 | 0 | *rate = this_rate; |
302 | 0 | *rate_tokenonly = tokenonly_rd_stats.rate; |
303 | 0 | *distortion = tokenonly_rd_stats.dist; |
304 | 0 | *skippable = tokenonly_rd_stats.skip_txfm; |
305 | 0 | filter_intra_selected_flag = 1; |
306 | 0 | } |
307 | 0 | } |
308 | |
|
309 | 0 | if (filter_intra_selected_flag) { |
310 | 0 | mbmi->mode = DC_PRED; |
311 | 0 | mbmi->tx_size = best_tx_size; |
312 | 0 | mbmi->filter_intra_mode_info = filter_intra_mode_info; |
313 | 0 | av1_copy_array(ctx->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); |
314 | 0 | return 1; |
315 | 0 | } else { |
316 | 0 | return 0; |
317 | 0 | } |
318 | 0 | } |
319 | | |
320 | | void av1_count_colors(const uint8_t *src, int stride, int rows, int cols, |
321 | 0 | int *val_count, int *num_colors) { |
322 | 0 | const int max_pix_val = 1 << 8; |
323 | 0 | memset(val_count, 0, max_pix_val * sizeof(val_count[0])); |
324 | 0 | for (int r = 0; r < rows; ++r) { |
325 | 0 | for (int c = 0; c < cols; ++c) { |
326 | 0 | const int this_val = src[r * stride + c]; |
327 | 0 | assert(this_val < max_pix_val); |
328 | 0 | ++val_count[this_val]; |
329 | 0 | } |
330 | 0 | } |
331 | 0 | int n = 0; |
332 | 0 | for (int i = 0; i < max_pix_val; ++i) { |
333 | 0 | if (val_count[i]) ++n; |
334 | 0 | } |
335 | 0 | *num_colors = n; |
336 | 0 | } |
337 | | |
338 | | void av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, |
339 | | int cols, int bit_depth, int *val_count, |
340 | | int *bin_val_count, int *num_color_bins, |
341 | 0 | int *num_colors) { |
342 | 0 | assert(bit_depth <= 12); |
343 | 0 | const int max_bin_val = 1 << 8; |
344 | 0 | const int max_pix_val = 1 << bit_depth; |
345 | 0 | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
346 | 0 | memset(bin_val_count, 0, max_bin_val * sizeof(val_count[0])); |
347 | 0 | if (val_count != NULL) |
348 | 0 | memset(val_count, 0, max_pix_val * sizeof(val_count[0])); |
349 | 0 | for (int r = 0; r < rows; ++r) { |
350 | 0 | for (int c = 0; c < cols; ++c) { |
351 | | /* |
352 | | * Down-convert the pixels to 8-bit domain before counting. |
353 | | * This provides consistency of behavior for palette search |
354 | | * between lbd and hbd encodes. This down-converted pixels |
355 | | * are only used for calculating the threshold (n). |
356 | | */ |
357 | 0 | const int this_val = ((src[r * stride + c]) >> (bit_depth - 8)); |
358 | 0 | assert(this_val < max_bin_val); |
359 | 0 | if (this_val >= max_bin_val) continue; |
360 | 0 | ++bin_val_count[this_val]; |
361 | 0 | if (val_count != NULL) ++val_count[(src[r * stride + c])]; |
362 | 0 | } |
363 | 0 | } |
364 | 0 | int n = 0; |
365 | | // Count the colors based on 8-bit domain used to gate the palette path |
366 | 0 | for (int i = 0; i < max_bin_val; ++i) { |
367 | 0 | if (bin_val_count[i]) ++n; |
368 | 0 | } |
369 | 0 | *num_color_bins = n; |
370 | | |
371 | | // Count the actual hbd colors used to create top_colors |
372 | 0 | n = 0; |
373 | 0 | if (val_count != NULL) { |
374 | 0 | for (int i = 0; i < max_pix_val; ++i) { |
375 | 0 | if (val_count[i]) ++n; |
376 | 0 | } |
377 | 0 | *num_colors = n; |
378 | 0 | } |
379 | 0 | } |
380 | | |
381 | | void set_y_mode_and_delta_angle(const int mode_idx, MB_MODE_INFO *const mbmi, |
382 | 0 | int reorder_delta_angle_eval) { |
383 | 0 | if (mode_idx < INTRA_MODE_END) { |
384 | 0 | mbmi->mode = intra_rd_search_mode_order[mode_idx]; |
385 | 0 | mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
386 | 0 | } else { |
387 | 0 | mbmi->mode = (mode_idx - INTRA_MODE_END) / (MAX_ANGLE_DELTA * 2) + V_PRED; |
388 | 0 | int delta_angle_eval_idx = |
389 | 0 | (mode_idx - INTRA_MODE_END) % (MAX_ANGLE_DELTA * 2); |
390 | 0 | if (reorder_delta_angle_eval) { |
391 | 0 | mbmi->angle_delta[PLANE_TYPE_Y] = |
392 | 0 | luma_delta_angles_order[delta_angle_eval_idx]; |
393 | 0 | } else { |
394 | 0 | mbmi->angle_delta[PLANE_TYPE_Y] = |
395 | 0 | (delta_angle_eval_idx < 3 ? (delta_angle_eval_idx - 3) |
396 | 0 | : (delta_angle_eval_idx - 2)); |
397 | 0 | } |
398 | 0 | } |
399 | 0 | } |
400 | | |
401 | | static inline int get_model_rd_index_for_pruning( |
402 | | const MACROBLOCK *const x, |
403 | 0 | const INTRA_MODE_SPEED_FEATURES *const intra_sf) { |
404 | 0 | const int top_intra_model_count_allowed = |
405 | 0 | intra_sf->top_intra_model_count_allowed; |
406 | 0 | if (!intra_sf->adapt_top_model_rd_count_using_neighbors) |
407 | 0 | return top_intra_model_count_allowed - 1; |
408 | | |
409 | 0 | const MACROBLOCKD *const xd = &x->e_mbd; |
410 | 0 | const PREDICTION_MODE mode = xd->mi[0]->mode; |
411 | 0 | int model_rd_index_for_pruning = top_intra_model_count_allowed - 1; |
412 | 0 | int is_left_mode_neq_cur_mode = 0, is_above_mode_neq_cur_mode = 0; |
413 | 0 | if (xd->left_available) |
414 | 0 | is_left_mode_neq_cur_mode = xd->left_mbmi->mode != mode; |
415 | 0 | if (xd->up_available) |
416 | 0 | is_above_mode_neq_cur_mode = xd->above_mbmi->mode != mode; |
417 | | // The pruning of luma intra modes is made more aggressive at lower quantizers |
418 | | // and vice versa. The value for model_rd_index_for_pruning is derived as |
419 | | // follows. |
420 | | // qidx 0 to 127: Reduce the index of a candidate used for comparison only if |
421 | | // the current mode does not match either of the available neighboring modes. |
422 | | // qidx 128 to 255: Reduce the index of a candidate used for comparison only |
423 | | // if the current mode does not match both the available neighboring modes. |
424 | 0 | if (x->qindex <= 127) { |
425 | 0 | if (is_left_mode_neq_cur_mode || is_above_mode_neq_cur_mode) |
426 | 0 | model_rd_index_for_pruning = AOMMAX(model_rd_index_for_pruning - 1, 0); |
427 | 0 | } else { |
428 | 0 | if (is_left_mode_neq_cur_mode && is_above_mode_neq_cur_mode) |
429 | 0 | model_rd_index_for_pruning = AOMMAX(model_rd_index_for_pruning - 1, 0); |
430 | 0 | } |
431 | 0 | return model_rd_index_for_pruning; |
432 | 0 | } |
433 | | |
434 | | /*! \brief prune luma intra mode based on the model rd. |
435 | | * \param[in] this_model_rd model rd for current mode. |
436 | | * \param[in] best_model_rd Best model RD seen for this block so |
437 | | * far. |
438 | | * \param[in] top_intra_model_rd Top intra model RD seen for this |
439 | | * block so far. |
440 | | * \param[in] max_model_cnt_allowed The maximum number of top intra |
441 | | * model RD allowed. |
442 | | * \param[in] model_rd_index_for_pruning Index of the candidate used for |
443 | | * pruning based on model rd. |
444 | | */ |
445 | | static int prune_intra_y_mode(int64_t this_model_rd, int64_t *best_model_rd, |
446 | | int64_t top_intra_model_rd[], |
447 | | int max_model_cnt_allowed, |
448 | 0 | int model_rd_index_for_pruning) { |
449 | 0 | const double thresh_best = 1.50; |
450 | 0 | const double thresh_top = 1.00; |
451 | 0 | for (int i = 0; i < max_model_cnt_allowed; i++) { |
452 | 0 | if (this_model_rd < top_intra_model_rd[i]) { |
453 | 0 | for (int j = max_model_cnt_allowed - 1; j > i; j--) { |
454 | 0 | top_intra_model_rd[j] = top_intra_model_rd[j - 1]; |
455 | 0 | } |
456 | 0 | top_intra_model_rd[i] = this_model_rd; |
457 | 0 | break; |
458 | 0 | } |
459 | 0 | } |
460 | 0 | if (top_intra_model_rd[model_rd_index_for_pruning] != INT64_MAX && |
461 | 0 | this_model_rd > |
462 | 0 | thresh_top * top_intra_model_rd[model_rd_index_for_pruning]) |
463 | 0 | return 1; |
464 | | |
465 | 0 | if (this_model_rd != INT64_MAX && |
466 | 0 | this_model_rd > thresh_best * (*best_model_rd)) |
467 | 0 | return 1; |
468 | 0 | if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; |
469 | 0 | return 0; |
470 | 0 | } |
471 | | |
472 | | // Run RD calculation with given chroma intra prediction angle., and return |
473 | | // the RD cost. Update the best mode info. if the RD cost is the best so far. |
474 | | static int64_t pick_intra_angle_routine_sbuv( |
475 | | const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
476 | | int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats, |
477 | 0 | int *best_angle_delta, int64_t *best_rd) { |
478 | 0 | MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; |
479 | 0 | assert(!is_inter_block(mbmi)); |
480 | 0 | int this_rate; |
481 | 0 | int64_t this_rd; |
482 | 0 | RD_STATS tokenonly_rd_stats; |
483 | |
|
484 | 0 | if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in)) |
485 | 0 | return INT64_MAX; |
486 | 0 | this_rate = tokenonly_rd_stats.rate + |
487 | 0 | intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead); |
488 | 0 | this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
489 | 0 | if (this_rd < *best_rd) { |
490 | 0 | *best_rd = this_rd; |
491 | 0 | *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; |
492 | 0 | *rate = this_rate; |
493 | 0 | rd_stats->rate = tokenonly_rd_stats.rate; |
494 | 0 | rd_stats->dist = tokenonly_rd_stats.dist; |
495 | 0 | rd_stats->skip_txfm = tokenonly_rd_stats.skip_txfm; |
496 | 0 | } |
497 | 0 | return this_rd; |
498 | 0 | } |
499 | | |
500 | | /*!\brief Search for the best angle delta for chroma prediction |
501 | | * |
502 | | * \ingroup intra_mode_search |
503 | | * \callergraph |
504 | | * Given a chroma directional intra prediction mode, this function will try to |
505 | | * estimate the best delta_angle. |
506 | | * |
507 | | * \returns Return if there is a new mode with smaller rdcost than best_rd. |
508 | | */ |
509 | | static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, |
510 | | BLOCK_SIZE bsize, int rate_overhead, |
511 | | int64_t best_rd, int *rate, |
512 | 0 | RD_STATS *rd_stats) { |
513 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
514 | 0 | MB_MODE_INFO *mbmi = xd->mi[0]; |
515 | 0 | assert(!is_inter_block(mbmi)); |
516 | 0 | int i, angle_delta, best_angle_delta = 0; |
517 | 0 | int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; |
518 | |
|
519 | 0 | rd_stats->rate = INT_MAX; |
520 | 0 | rd_stats->skip_txfm = 0; |
521 | 0 | rd_stats->dist = INT64_MAX; |
522 | 0 | for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; |
523 | |
|
524 | 0 | for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
525 | 0 | for (i = 0; i < 2; ++i) { |
526 | 0 | best_rd_in = (best_rd == INT64_MAX) |
527 | 0 | ? INT64_MAX |
528 | 0 | : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5))); |
529 | 0 | mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; |
530 | 0 | this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, |
531 | 0 | best_rd_in, rate, rd_stats, |
532 | 0 | &best_angle_delta, &best_rd); |
533 | 0 | rd_cost[2 * angle_delta + i] = this_rd; |
534 | 0 | if (angle_delta == 0) { |
535 | 0 | if (this_rd == INT64_MAX) return 0; |
536 | 0 | rd_cost[1] = this_rd; |
537 | 0 | break; |
538 | 0 | } |
539 | 0 | } |
540 | 0 | } |
541 | | |
542 | 0 | assert(best_rd != INT64_MAX); |
543 | 0 | for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
544 | 0 | int64_t rd_thresh; |
545 | 0 | for (i = 0; i < 2; ++i) { |
546 | 0 | int skip_search = 0; |
547 | 0 | rd_thresh = best_rd + (best_rd >> 5); |
548 | 0 | if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && |
549 | 0 | rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) |
550 | 0 | skip_search = 1; |
551 | 0 | if (!skip_search) { |
552 | 0 | mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; |
553 | 0 | pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd, |
554 | 0 | rate, rd_stats, &best_angle_delta, |
555 | 0 | &best_rd); |
556 | 0 | } |
557 | 0 | } |
558 | 0 | } |
559 | |
|
560 | 0 | mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta; |
561 | 0 | return rd_stats->rate != INT_MAX; |
562 | 0 | } |
563 | | |
564 | | #define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \ |
565 | 0 | (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1) |
566 | | |
567 | | static void cfl_idx_to_sign_and_alpha(int cfl_idx, CFL_SIGN_TYPE *cfl_sign, |
568 | 0 | int *cfl_alpha) { |
569 | 0 | int cfl_linear_idx = cfl_idx - CFL_INDEX_ZERO; |
570 | 0 | if (cfl_linear_idx == 0) { |
571 | 0 | *cfl_sign = CFL_SIGN_ZERO; |
572 | 0 | *cfl_alpha = 0; |
573 | 0 | } else { |
574 | 0 | *cfl_sign = cfl_linear_idx > 0 ? CFL_SIGN_POS : CFL_SIGN_NEG; |
575 | 0 | *cfl_alpha = abs(cfl_linear_idx) - 1; |
576 | 0 | } |
577 | 0 | } |
578 | | |
579 | | static int64_t cfl_compute_rd(const AV1_COMP *const cpi, MACROBLOCK *x, |
580 | | int plane, TX_SIZE tx_size, |
581 | | BLOCK_SIZE plane_bsize, int cfl_idx, |
582 | 0 | int fast_mode, RD_STATS *rd_stats) { |
583 | 0 | assert(IMPLIES(fast_mode, rd_stats == NULL)); |
584 | 0 | const AV1_COMMON *const cm = &cpi->common; |
585 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
586 | 0 | MB_MODE_INFO *const mbmi = xd->mi[0]; |
587 | 0 | int cfl_plane = get_cfl_pred_type(plane); |
588 | 0 | CFL_SIGN_TYPE cfl_sign; |
589 | 0 | int cfl_alpha; |
590 | 0 | cfl_idx_to_sign_and_alpha(cfl_idx, &cfl_sign, &cfl_alpha); |
591 | | // We conly build CFL for a given plane, the other plane's sign is dummy |
592 | 0 | int dummy_sign = CFL_SIGN_NEG; |
593 | 0 | const int8_t orig_cfl_alpha_signs = mbmi->cfl_alpha_signs; |
594 | 0 | const uint8_t orig_cfl_alpha_idx = mbmi->cfl_alpha_idx; |
595 | 0 | mbmi->cfl_alpha_signs = |
596 | 0 | PLANE_SIGN_TO_JOINT_SIGN(cfl_plane, cfl_sign, dummy_sign); |
597 | 0 | mbmi->cfl_alpha_idx = (cfl_alpha << CFL_ALPHABET_SIZE_LOG2) + cfl_alpha; |
598 | 0 | int64_t cfl_cost; |
599 | 0 | if (fast_mode) { |
600 | 0 | cfl_cost = |
601 | 0 | intra_model_rd(cm, x, plane, plane_bsize, tx_size, /*use_hadamard=*/0); |
602 | 0 | } else { |
603 | 0 | av1_init_rd_stats(rd_stats); |
604 | 0 | av1_txfm_rd_in_plane(x, cpi, rd_stats, INT64_MAX, 0, plane, plane_bsize, |
605 | 0 | tx_size, FTXS_NONE, 0); |
606 | 0 | av1_rd_cost_update(x->rdmult, rd_stats); |
607 | 0 | cfl_cost = rd_stats->rdcost; |
608 | 0 | } |
609 | 0 | mbmi->cfl_alpha_signs = orig_cfl_alpha_signs; |
610 | 0 | mbmi->cfl_alpha_idx = orig_cfl_alpha_idx; |
611 | 0 | return cfl_cost; |
612 | 0 | } |
613 | | |
614 | | static const int cfl_dir_ls[2] = { 1, -1 }; |
615 | | |
616 | | // If cfl_search_range is CFL_MAGS_SIZE, return zero. Otherwise return the index |
617 | | // of the best alpha found using intra_model_rd(). |
618 | | static int cfl_pick_plane_parameter(const AV1_COMP *const cpi, MACROBLOCK *x, |
619 | | int plane, TX_SIZE tx_size, |
620 | 0 | int cfl_search_range) { |
621 | 0 | assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); |
622 | |
|
623 | 0 | if (cfl_search_range == CFL_MAGS_SIZE) return CFL_INDEX_ZERO; |
624 | | |
625 | 0 | const MACROBLOCKD *const xd = &x->e_mbd; |
626 | 0 | const MB_MODE_INFO *const mbmi = xd->mi[0]; |
627 | 0 | assert(mbmi->uv_mode == UV_CFL_PRED); |
628 | 0 | const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; |
629 | 0 | const BLOCK_SIZE plane_bsize = |
630 | 0 | get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); |
631 | |
|
632 | 0 | int est_best_cfl_idx = CFL_INDEX_ZERO; |
633 | 0 | int fast_mode = 1; |
634 | 0 | int start_cfl_idx = CFL_INDEX_ZERO; |
635 | 0 | int64_t best_cfl_cost = cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, |
636 | 0 | start_cfl_idx, fast_mode, NULL); |
637 | 0 | for (int si = 0; si < 2; ++si) { |
638 | 0 | const int dir = cfl_dir_ls[si]; |
639 | 0 | for (int i = 1; i < CFL_MAGS_SIZE; ++i) { |
640 | 0 | int cfl_idx = start_cfl_idx + dir * i; |
641 | 0 | if (cfl_idx < 0 || cfl_idx >= CFL_MAGS_SIZE) break; |
642 | 0 | int64_t cfl_cost = cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, |
643 | 0 | cfl_idx, fast_mode, NULL); |
644 | 0 | if (cfl_cost < best_cfl_cost) { |
645 | 0 | best_cfl_cost = cfl_cost; |
646 | 0 | est_best_cfl_idx = cfl_idx; |
647 | 0 | } else { |
648 | 0 | break; |
649 | 0 | } |
650 | 0 | } |
651 | 0 | } |
652 | 0 | return est_best_cfl_idx; |
653 | 0 | } |
654 | | |
655 | | static inline void set_invalid_cfl_parameters(uint8_t *best_cfl_alpha_idx, |
656 | 0 | int8_t *best_cfl_alpha_signs) { |
657 | 0 | *best_cfl_alpha_idx = 0; |
658 | 0 | *best_cfl_alpha_signs = 0; |
659 | 0 | } |
660 | | |
661 | | static void cfl_pick_plane_rd(const AV1_COMP *const cpi, MACROBLOCK *x, |
662 | | int plane, TX_SIZE tx_size, int cfl_search_range, |
663 | | RD_STATS cfl_rd_arr[CFL_MAGS_SIZE], |
664 | 0 | int est_best_cfl_idx) { |
665 | 0 | assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); |
666 | 0 | const MACROBLOCKD *const xd = &x->e_mbd; |
667 | 0 | const MB_MODE_INFO *const mbmi = xd->mi[0]; |
668 | 0 | assert(mbmi->uv_mode == UV_CFL_PRED); |
669 | 0 | const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; |
670 | 0 | const BLOCK_SIZE plane_bsize = |
671 | 0 | get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); |
672 | |
|
673 | 0 | for (int cfl_idx = 0; cfl_idx < CFL_MAGS_SIZE; ++cfl_idx) { |
674 | 0 | av1_invalid_rd_stats(&cfl_rd_arr[cfl_idx]); |
675 | 0 | } |
676 | |
|
677 | 0 | int fast_mode = 0; |
678 | 0 | int start_cfl_idx = est_best_cfl_idx; |
679 | 0 | cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, start_cfl_idx, fast_mode, |
680 | 0 | &cfl_rd_arr[start_cfl_idx]); |
681 | |
|
682 | 0 | if (cfl_search_range == 1) return; |
683 | | |
684 | 0 | for (int si = 0; si < 2; ++si) { |
685 | 0 | const int dir = cfl_dir_ls[si]; |
686 | 0 | for (int i = 1; i < cfl_search_range; ++i) { |
687 | 0 | int cfl_idx = start_cfl_idx + dir * i; |
688 | 0 | if (cfl_idx < 0 || cfl_idx >= CFL_MAGS_SIZE) break; |
689 | 0 | cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, cfl_idx, fast_mode, |
690 | 0 | &cfl_rd_arr[cfl_idx]); |
691 | 0 | } |
692 | 0 | } |
693 | 0 | } |
694 | | |
695 | | /*!\brief Pick the optimal parameters for Chroma to Luma (CFL) component |
696 | | * |
697 | | * \ingroup intra_mode_search |
698 | | * \callergraph |
699 | | * |
700 | | * This function will use DCT_DCT followed by computing SATD (sum of absolute |
701 | | * transformed differences) to estimate the RD score and find the best possible |
702 | | * CFL parameter. |
703 | | * |
704 | | * Then the function will apply a full RD search near the best possible CFL |
705 | | * parameter to find the best actual CFL parameter. |
706 | | * |
707 | | * Side effect: |
708 | | * We use ths buffers in x->plane[] and xd->plane[] as throw-away buffers for RD |
709 | | * search. |
710 | | * |
711 | | * \param[in] x Encoder prediction block structure. |
712 | | * \param[in] cpi Top-level encoder instance structure. |
713 | | * \param[in] tx_size Transform size. |
714 | | * \param[in] ref_best_rd Reference best RD. |
715 | | * \param[in] cfl_search_range The search range of full RD search near the |
716 | | * estimated best CFL parameter. |
717 | | * |
718 | | * \param[out] best_rd_stats RD stats of the best CFL parameter |
719 | | * \param[out] best_cfl_alpha_idx Best CFL alpha index |
720 | | * \param[out] best_cfl_alpha_signs Best CFL joint signs |
721 | | * |
722 | | */ |
723 | | static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi, |
724 | | TX_SIZE tx_size, int64_t ref_best_rd, |
725 | | int cfl_search_range, RD_STATS *best_rd_stats, |
726 | | uint8_t *best_cfl_alpha_idx, |
727 | 0 | int8_t *best_cfl_alpha_signs) { |
728 | 0 | assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); |
729 | 0 | const ModeCosts *mode_costs = &x->mode_costs; |
730 | 0 | RD_STATS cfl_rd_arr_u[CFL_MAGS_SIZE]; |
731 | 0 | RD_STATS cfl_rd_arr_v[CFL_MAGS_SIZE]; |
732 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
733 | 0 | int est_best_cfl_idx_u, est_best_cfl_idx_v; |
734 | |
|
735 | 0 | av1_invalid_rd_stats(best_rd_stats); |
736 | | |
737 | | // As the dc pred data is same for different values of alpha, enable the |
738 | | // caching of dc pred data. Call clear_cfl_dc_pred_cache_flags() before |
739 | | // returning to avoid the unintentional usage of cached dc pred data. |
740 | 0 | xd->cfl.use_dc_pred_cache = true; |
741 | | // Evaluate alpha parameter of each chroma plane. |
742 | 0 | est_best_cfl_idx_u = |
743 | 0 | cfl_pick_plane_parameter(cpi, x, 1, tx_size, cfl_search_range); |
744 | 0 | est_best_cfl_idx_v = |
745 | 0 | cfl_pick_plane_parameter(cpi, x, 2, tx_size, cfl_search_range); |
746 | |
|
747 | 0 | if (cfl_search_range == 1) { |
748 | | // For cfl_search_range=1, further refinement of alpha is not enabled. Hence |
749 | | // CfL index=0 for both the chroma planes implies invalid CfL mode. |
750 | 0 | if (est_best_cfl_idx_u == CFL_INDEX_ZERO && |
751 | 0 | est_best_cfl_idx_v == CFL_INDEX_ZERO) { |
752 | 0 | set_invalid_cfl_parameters(best_cfl_alpha_idx, best_cfl_alpha_signs); |
753 | 0 | clear_cfl_dc_pred_cache_flags(&xd->cfl); |
754 | 0 | return 0; |
755 | 0 | } |
756 | | |
757 | 0 | int cfl_alpha_u, cfl_alpha_v; |
758 | 0 | CFL_SIGN_TYPE cfl_sign_u, cfl_sign_v; |
759 | 0 | const MB_MODE_INFO *mbmi = xd->mi[0]; |
760 | 0 | cfl_idx_to_sign_and_alpha(est_best_cfl_idx_u, &cfl_sign_u, &cfl_alpha_u); |
761 | 0 | cfl_idx_to_sign_and_alpha(est_best_cfl_idx_v, &cfl_sign_v, &cfl_alpha_v); |
762 | 0 | const int joint_sign = cfl_sign_u * CFL_SIGNS + cfl_sign_v - 1; |
763 | | // Compute alpha and mode signaling rate. |
764 | 0 | const int rate_overhead = |
765 | 0 | mode_costs->cfl_cost[joint_sign][CFL_PRED_U][cfl_alpha_u] + |
766 | 0 | mode_costs->cfl_cost[joint_sign][CFL_PRED_V][cfl_alpha_v] + |
767 | 0 | mode_costs |
768 | 0 | ->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_CFL_PRED]; |
769 | | // Skip the CfL mode evaluation if the RD cost derived using the rate needed |
770 | | // to signal the CfL mode and alpha parameter exceeds the ref_best_rd. |
771 | 0 | if (RDCOST(x->rdmult, rate_overhead, 0) > ref_best_rd) { |
772 | 0 | set_invalid_cfl_parameters(best_cfl_alpha_idx, best_cfl_alpha_signs); |
773 | 0 | clear_cfl_dc_pred_cache_flags(&xd->cfl); |
774 | 0 | return 0; |
775 | 0 | } |
776 | 0 | } |
777 | | |
778 | | // Compute the rd cost of each chroma plane using the alpha parameters which |
779 | | // were already evaluated. |
780 | 0 | cfl_pick_plane_rd(cpi, x, 1, tx_size, cfl_search_range, cfl_rd_arr_u, |
781 | 0 | est_best_cfl_idx_u); |
782 | 0 | cfl_pick_plane_rd(cpi, x, 2, tx_size, cfl_search_range, cfl_rd_arr_v, |
783 | 0 | est_best_cfl_idx_v); |
784 | |
|
785 | 0 | clear_cfl_dc_pred_cache_flags(&xd->cfl); |
786 | |
|
787 | 0 | for (int ui = 0; ui < CFL_MAGS_SIZE; ++ui) { |
788 | 0 | if (cfl_rd_arr_u[ui].rate == INT_MAX) continue; |
789 | 0 | int cfl_alpha_u; |
790 | 0 | CFL_SIGN_TYPE cfl_sign_u; |
791 | 0 | cfl_idx_to_sign_and_alpha(ui, &cfl_sign_u, &cfl_alpha_u); |
792 | 0 | for (int vi = 0; vi < CFL_MAGS_SIZE; ++vi) { |
793 | 0 | if (cfl_rd_arr_v[vi].rate == INT_MAX) continue; |
794 | 0 | int cfl_alpha_v; |
795 | 0 | CFL_SIGN_TYPE cfl_sign_v; |
796 | 0 | cfl_idx_to_sign_and_alpha(vi, &cfl_sign_v, &cfl_alpha_v); |
797 | | // cfl_sign_u == CFL_SIGN_ZERO && cfl_sign_v == CFL_SIGN_ZERO is not a |
798 | | // valid parameter for CFL |
799 | 0 | if (cfl_sign_u == CFL_SIGN_ZERO && cfl_sign_v == CFL_SIGN_ZERO) continue; |
800 | 0 | int joint_sign = cfl_sign_u * CFL_SIGNS + cfl_sign_v - 1; |
801 | 0 | RD_STATS rd_stats = cfl_rd_arr_u[ui]; |
802 | 0 | av1_merge_rd_stats(&rd_stats, &cfl_rd_arr_v[vi]); |
803 | 0 | if (rd_stats.rate != INT_MAX) { |
804 | 0 | rd_stats.rate += |
805 | 0 | mode_costs->cfl_cost[joint_sign][CFL_PRED_U][cfl_alpha_u]; |
806 | 0 | rd_stats.rate += |
807 | 0 | mode_costs->cfl_cost[joint_sign][CFL_PRED_V][cfl_alpha_v]; |
808 | 0 | } |
809 | 0 | av1_rd_cost_update(x->rdmult, &rd_stats); |
810 | 0 | if (rd_stats.rdcost < best_rd_stats->rdcost) { |
811 | 0 | *best_rd_stats = rd_stats; |
812 | 0 | *best_cfl_alpha_idx = |
813 | 0 | (cfl_alpha_u << CFL_ALPHABET_SIZE_LOG2) + cfl_alpha_v; |
814 | 0 | *best_cfl_alpha_signs = joint_sign; |
815 | 0 | } |
816 | 0 | } |
817 | 0 | } |
818 | 0 | if (best_rd_stats->rdcost >= ref_best_rd) { |
819 | 0 | av1_invalid_rd_stats(best_rd_stats); |
820 | | // Set invalid CFL parameters here since the rdcost is not better than |
821 | | // ref_best_rd. |
822 | 0 | set_invalid_cfl_parameters(best_cfl_alpha_idx, best_cfl_alpha_signs); |
823 | 0 | return 0; |
824 | 0 | } |
825 | 0 | return 1; |
826 | 0 | } |
827 | | |
828 | | static bool should_prune_chroma_smooth_pred_based_on_source_variance( |
829 | 0 | const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bsize) { |
830 | 0 | if (!cpi->sf.intra_sf.prune_smooth_intra_mode_for_chroma) return false; |
831 | | |
832 | | // If the source variance of both chroma planes is less than 20 (empirically |
833 | | // derived), prune UV_SMOOTH_PRED. |
834 | 0 | for (int i = AOM_PLANE_U; i < av1_num_planes(&cpi->common); i++) { |
835 | 0 | const unsigned int variance = av1_get_perpixel_variance_facade( |
836 | 0 | cpi, &x->e_mbd, &x->plane[i].src, bsize, i); |
837 | 0 | if (variance >= 20) return false; |
838 | 0 | } |
839 | 0 | return true; |
840 | 0 | } |
841 | | |
842 | | int64_t av1_rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x, |
843 | | int *rate, int *rate_tokenonly, |
844 | | int64_t *distortion, uint8_t *skippable, |
845 | 0 | BLOCK_SIZE bsize, TX_SIZE max_tx_size) { |
846 | 0 | const AV1_COMMON *const cm = &cpi->common; |
847 | 0 | MACROBLOCKD *xd = &x->e_mbd; |
848 | 0 | MB_MODE_INFO *mbmi = xd->mi[0]; |
849 | 0 | assert(!is_inter_block(mbmi)); |
850 | 0 | MB_MODE_INFO best_mbmi = *mbmi; |
851 | 0 | int64_t best_rd = INT64_MAX, this_rd; |
852 | 0 | const ModeCosts *mode_costs = &x->mode_costs; |
853 | 0 | const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg; |
854 | |
|
855 | 0 | init_sbuv_mode(mbmi); |
856 | | |
857 | | // Return if the current block does not correspond to a chroma block. |
858 | 0 | if (!xd->is_chroma_ref) { |
859 | 0 | *rate = 0; |
860 | 0 | *rate_tokenonly = 0; |
861 | 0 | *distortion = 0; |
862 | 0 | *skippable = 1; |
863 | 0 | return INT64_MAX; |
864 | 0 | } |
865 | | |
866 | | // Only store reconstructed luma when there's chroma RDO. When there's no |
867 | | // chroma RDO, the reconstructed luma will be stored in encode_superblock(). |
868 | 0 | xd->cfl.store_y = store_cfl_required_rdo(cm, x); |
869 | 0 | if (xd->cfl.store_y) { |
870 | | // Restore reconstructed luma values. |
871 | | // TODO(chiyotsai@google.com): right now we are re-computing the txfm in |
872 | | // this function everytime we search through uv modes. There is some |
873 | | // potential speed up here if we cache the result to avoid redundant |
874 | | // computation. |
875 | 0 | av1_encode_intra_block_plane(cpi, x, mbmi->bsize, AOM_PLANE_Y, |
876 | 0 | DRY_RUN_NORMAL, |
877 | 0 | cpi->optimize_seg_arr[mbmi->segment_id]); |
878 | 0 | xd->cfl.store_y = 0; |
879 | 0 | } |
880 | 0 | IntraModeSearchState intra_search_state; |
881 | 0 | init_intra_mode_search_state(&intra_search_state); |
882 | 0 | const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); |
883 | | |
884 | | // Search through all non-palette modes. |
885 | 0 | for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) { |
886 | 0 | int this_rate; |
887 | 0 | RD_STATS tokenonly_rd_stats; |
888 | 0 | UV_PREDICTION_MODE uv_mode = uv_rd_search_mode_order[mode_idx]; |
889 | | |
890 | | // Skip the current mode evaluation if the RD cost derived using the mode |
891 | | // signaling rate exceeds the best_rd so far. |
892 | 0 | const int mode_rate = |
893 | 0 | mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][uv_mode]; |
894 | 0 | if (RDCOST(x->rdmult, mode_rate, 0) > best_rd) continue; |
895 | | |
896 | 0 | PREDICTION_MODE intra_mode = get_uv_mode(uv_mode); |
897 | 0 | const int is_diagonal_mode = av1_is_diagonal_mode(intra_mode); |
898 | 0 | const int is_directional_mode = av1_is_directional_mode(intra_mode); |
899 | |
|
900 | 0 | if (is_diagonal_mode && !cpi->oxcf.intra_mode_cfg.enable_diagonal_intra) |
901 | 0 | continue; |
902 | 0 | if (is_directional_mode && |
903 | 0 | !cpi->oxcf.intra_mode_cfg.enable_directional_intra) |
904 | 0 | continue; |
905 | | |
906 | 0 | if (!(cpi->sf.intra_sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] & |
907 | 0 | (1 << uv_mode))) |
908 | 0 | continue; |
909 | 0 | if (!intra_mode_cfg->enable_smooth_intra && uv_mode >= UV_SMOOTH_PRED && |
910 | 0 | uv_mode <= UV_SMOOTH_H_PRED) |
911 | 0 | continue; |
912 | | |
913 | 0 | if (!intra_mode_cfg->enable_paeth_intra && uv_mode == UV_PAETH_PRED) |
914 | 0 | continue; |
915 | | |
916 | 0 | assert(mbmi->mode < INTRA_MODES); |
917 | 0 | if (cpi->sf.intra_sf.prune_chroma_modes_using_luma_winner && |
918 | 0 | !(av1_derived_chroma_intra_mode_used_flag[mbmi->mode] & (1 << uv_mode))) |
919 | 0 | continue; |
920 | | |
921 | 0 | mbmi->uv_mode = uv_mode; |
922 | | |
923 | | // Init variables for cfl and angle delta |
924 | 0 | const SPEED_FEATURES *sf = &cpi->sf; |
925 | 0 | mbmi->angle_delta[PLANE_TYPE_UV] = 0; |
926 | 0 | if (uv_mode == UV_CFL_PRED) { |
927 | 0 | if (!cfl_allowed || !intra_mode_cfg->enable_cfl_intra) continue; |
928 | 0 | assert(!is_directional_mode); |
929 | 0 | const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); |
930 | 0 | if (!cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd, |
931 | 0 | sf->intra_sf.cfl_search_range, &tokenonly_rd_stats, |
932 | 0 | &mbmi->cfl_alpha_idx, &mbmi->cfl_alpha_signs)) { |
933 | 0 | continue; |
934 | 0 | } |
935 | 0 | } else if (is_directional_mode && av1_use_angle_delta(mbmi->bsize) && |
936 | 0 | intra_mode_cfg->enable_angle_delta) { |
937 | 0 | if (sf->intra_sf.chroma_intra_pruning_with_hog && |
938 | 0 | !intra_search_state.dir_mode_skip_mask_ready) { |
939 | 0 | static const float thresh[2][4] = { |
940 | 0 | { -1.2f, 0.0f, 0.0f, 1.2f }, // Interframe |
941 | 0 | { -1.2f, -1.2f, -0.6f, 0.4f }, // Intraframe |
942 | 0 | }; |
943 | 0 | const int is_chroma = 1; |
944 | 0 | const int is_intra_frame = frame_is_intra_only(cm); |
945 | 0 | prune_intra_mode_with_hog( |
946 | 0 | x, bsize, cm->seq_params->sb_size, |
947 | 0 | thresh[is_intra_frame] |
948 | 0 | [sf->intra_sf.chroma_intra_pruning_with_hog - 1], |
949 | 0 | intra_search_state.directional_mode_skip_mask, is_chroma); |
950 | 0 | intra_search_state.dir_mode_skip_mask_ready = 1; |
951 | 0 | } |
952 | 0 | if (intra_search_state.directional_mode_skip_mask[uv_mode]) { |
953 | 0 | continue; |
954 | 0 | } |
955 | | |
956 | | // Search through angle delta |
957 | 0 | const int rate_overhead = |
958 | 0 | mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][uv_mode]; |
959 | 0 | if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd, |
960 | 0 | &this_rate, &tokenonly_rd_stats)) |
961 | 0 | continue; |
962 | 0 | } else { |
963 | 0 | if (uv_mode == UV_SMOOTH_PRED && |
964 | 0 | should_prune_chroma_smooth_pred_based_on_source_variance(cpi, x, |
965 | 0 | bsize)) |
966 | 0 | continue; |
967 | | |
968 | | // Predict directly if we don't need to search for angle delta. |
969 | 0 | if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) { |
970 | 0 | continue; |
971 | 0 | } |
972 | 0 | } |
973 | 0 | const int mode_cost = |
974 | 0 | mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][uv_mode]; |
975 | 0 | this_rate = tokenonly_rd_stats.rate + |
976 | 0 | intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost); |
977 | 0 | this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
978 | |
|
979 | 0 | if (this_rd < best_rd) { |
980 | 0 | best_mbmi = *mbmi; |
981 | 0 | best_rd = this_rd; |
982 | 0 | *rate = this_rate; |
983 | 0 | *rate_tokenonly = tokenonly_rd_stats.rate; |
984 | 0 | *distortion = tokenonly_rd_stats.dist; |
985 | 0 | *skippable = tokenonly_rd_stats.skip_txfm; |
986 | 0 | } |
987 | 0 | } |
988 | | |
989 | | // Search palette mode |
990 | 0 | const int try_palette = |
991 | 0 | cpi->oxcf.tool_cfg.enable_palette && |
992 | 0 | av1_allow_palette(cpi->common.features.allow_screen_content_tools, |
993 | 0 | mbmi->bsize); |
994 | 0 | if (try_palette) { |
995 | 0 | uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map; |
996 | 0 | av1_rd_pick_palette_intra_sbuv( |
997 | 0 | cpi, x, |
998 | 0 | mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][UV_DC_PRED], |
999 | 0 | best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly, |
1000 | 0 | distortion, skippable); |
1001 | 0 | } |
1002 | |
|
1003 | 0 | *mbmi = best_mbmi; |
1004 | | // Make sure we actually chose a mode |
1005 | 0 | assert(best_rd < INT64_MAX); |
1006 | 0 | return best_rd; |
1007 | 0 | } |
1008 | | |
1009 | | // Searches palette mode for luma channel in inter frame. |
1010 | | int av1_search_palette_mode(IntraModeSearchState *intra_search_state, |
1011 | | const AV1_COMP *cpi, MACROBLOCK *x, |
1012 | | BLOCK_SIZE bsize, unsigned int ref_frame_cost, |
1013 | | PICK_MODE_CONTEXT *ctx, RD_STATS *this_rd_cost, |
1014 | 0 | int64_t best_rd) { |
1015 | 0 | const AV1_COMMON *const cm = &cpi->common; |
1016 | 0 | MB_MODE_INFO *const mbmi = x->e_mbd.mi[0]; |
1017 | 0 | PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
1018 | 0 | const int num_planes = av1_num_planes(cm); |
1019 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
1020 | 0 | int rate2 = 0; |
1021 | 0 | int64_t distortion2 = 0, best_rd_palette = best_rd, this_rd; |
1022 | 0 | int skippable = 0; |
1023 | 0 | uint8_t *const best_palette_color_map = |
1024 | 0 | x->palette_buffer->best_palette_color_map; |
1025 | 0 | uint8_t *const color_map = xd->plane[0].color_index_map; |
1026 | 0 | MB_MODE_INFO best_mbmi_palette = *mbmi; |
1027 | 0 | uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
1028 | 0 | uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
1029 | 0 | const ModeCosts *mode_costs = &x->mode_costs; |
1030 | 0 | const int *const intra_mode_cost = |
1031 | 0 | mode_costs->mbmode_cost[size_group_lookup[bsize]]; |
1032 | 0 | const int rows = block_size_high[bsize]; |
1033 | 0 | const int cols = block_size_wide[bsize]; |
1034 | |
|
1035 | 0 | mbmi->mode = DC_PRED; |
1036 | 0 | mbmi->uv_mode = UV_DC_PRED; |
1037 | 0 | mbmi->ref_frame[0] = INTRA_FRAME; |
1038 | 0 | mbmi->ref_frame[1] = NONE_FRAME; |
1039 | 0 | av1_zero(pmi->palette_size); |
1040 | |
|
1041 | 0 | RD_STATS rd_stats_y; |
1042 | 0 | av1_invalid_rd_stats(&rd_stats_y); |
1043 | 0 | av1_rd_pick_palette_intra_sby(cpi, x, bsize, intra_mode_cost[DC_PRED], |
1044 | 0 | &best_mbmi_palette, best_palette_color_map, |
1045 | 0 | &best_rd_palette, &rd_stats_y.rate, NULL, |
1046 | 0 | &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL, |
1047 | 0 | ctx, best_blk_skip, best_tx_type_map); |
1048 | 0 | if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) { |
1049 | 0 | this_rd_cost->rdcost = INT64_MAX; |
1050 | 0 | return skippable; |
1051 | 0 | } |
1052 | | |
1053 | 0 | memcpy(x->txfm_search_info.blk_skip, best_blk_skip, |
1054 | 0 | sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); |
1055 | 0 | av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); |
1056 | 0 | memcpy(color_map, best_palette_color_map, |
1057 | 0 | rows * cols * sizeof(best_palette_color_map[0])); |
1058 | |
|
1059 | 0 | skippable = rd_stats_y.skip_txfm; |
1060 | 0 | distortion2 = rd_stats_y.dist; |
1061 | 0 | rate2 = rd_stats_y.rate + ref_frame_cost; |
1062 | 0 | if (num_planes > 1) { |
1063 | 0 | if (intra_search_state->rate_uv_intra == INT_MAX) { |
1064 | | // We have not found any good uv mode yet, so we need to search for it. |
1065 | 0 | TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); |
1066 | 0 | av1_rd_pick_intra_sbuv_mode(cpi, x, &intra_search_state->rate_uv_intra, |
1067 | 0 | &intra_search_state->rate_uv_tokenonly, |
1068 | 0 | &intra_search_state->dist_uvs, |
1069 | 0 | &intra_search_state->skip_uvs, bsize, uv_tx); |
1070 | 0 | intra_search_state->mode_uv = mbmi->uv_mode; |
1071 | 0 | intra_search_state->pmi_uv = *pmi; |
1072 | 0 | intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; |
1073 | 0 | } |
1074 | | |
1075 | | // We have found at least one good uv mode before, so copy and paste it |
1076 | | // over. |
1077 | 0 | mbmi->uv_mode = intra_search_state->mode_uv; |
1078 | 0 | pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1]; |
1079 | 0 | if (pmi->palette_size[1] > 0) { |
1080 | 0 | memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, |
1081 | 0 | intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE, |
1082 | 0 | 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); |
1083 | 0 | } |
1084 | 0 | mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta; |
1085 | 0 | skippable = skippable && intra_search_state->skip_uvs; |
1086 | 0 | distortion2 += intra_search_state->dist_uvs; |
1087 | 0 | rate2 += intra_search_state->rate_uv_intra; |
1088 | 0 | } |
1089 | |
|
1090 | 0 | if (skippable) { |
1091 | 0 | rate2 -= rd_stats_y.rate; |
1092 | 0 | if (num_planes > 1) rate2 -= intra_search_state->rate_uv_tokenonly; |
1093 | 0 | rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1]; |
1094 | 0 | } else { |
1095 | 0 | rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0]; |
1096 | 0 | } |
1097 | 0 | this_rd = RDCOST(x->rdmult, rate2, distortion2); |
1098 | 0 | this_rd_cost->rate = rate2; |
1099 | 0 | this_rd_cost->dist = distortion2; |
1100 | 0 | this_rd_cost->rdcost = this_rd; |
1101 | 0 | return skippable; |
1102 | 0 | } |
1103 | | |
1104 | | void av1_search_palette_mode_luma(const AV1_COMP *cpi, MACROBLOCK *x, |
1105 | | BLOCK_SIZE bsize, unsigned int ref_frame_cost, |
1106 | | PICK_MODE_CONTEXT *ctx, |
1107 | 0 | RD_STATS *this_rd_cost, int64_t best_rd) { |
1108 | 0 | MB_MODE_INFO *const mbmi = x->e_mbd.mi[0]; |
1109 | 0 | PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
1110 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
1111 | 0 | int64_t best_rd_palette = best_rd, this_rd; |
1112 | 0 | uint8_t *const best_palette_color_map = |
1113 | 0 | x->palette_buffer->best_palette_color_map; |
1114 | 0 | uint8_t *const color_map = xd->plane[0].color_index_map; |
1115 | 0 | MB_MODE_INFO best_mbmi_palette = *mbmi; |
1116 | 0 | uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
1117 | 0 | uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
1118 | 0 | const ModeCosts *mode_costs = &x->mode_costs; |
1119 | 0 | const int *const intra_mode_cost = |
1120 | 0 | mode_costs->mbmode_cost[size_group_lookup[bsize]]; |
1121 | 0 | const int rows = block_size_high[bsize]; |
1122 | 0 | const int cols = block_size_wide[bsize]; |
1123 | |
|
1124 | 0 | mbmi->mode = DC_PRED; |
1125 | 0 | mbmi->uv_mode = UV_DC_PRED; |
1126 | 0 | mbmi->ref_frame[0] = INTRA_FRAME; |
1127 | 0 | mbmi->ref_frame[1] = NONE_FRAME; |
1128 | 0 | av1_zero(pmi->palette_size); |
1129 | |
|
1130 | 0 | RD_STATS rd_stats_y; |
1131 | 0 | av1_invalid_rd_stats(&rd_stats_y); |
1132 | 0 | av1_rd_pick_palette_intra_sby(cpi, x, bsize, intra_mode_cost[DC_PRED], |
1133 | 0 | &best_mbmi_palette, best_palette_color_map, |
1134 | 0 | &best_rd_palette, &rd_stats_y.rate, NULL, |
1135 | 0 | &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL, |
1136 | 0 | ctx, best_blk_skip, best_tx_type_map); |
1137 | 0 | if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) { |
1138 | 0 | this_rd_cost->rdcost = INT64_MAX; |
1139 | 0 | return; |
1140 | 0 | } |
1141 | | |
1142 | 0 | memcpy(x->txfm_search_info.blk_skip, best_blk_skip, |
1143 | 0 | sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); |
1144 | 0 | av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); |
1145 | 0 | memcpy(color_map, best_palette_color_map, |
1146 | 0 | rows * cols * sizeof(best_palette_color_map[0])); |
1147 | |
|
1148 | 0 | rd_stats_y.rate += ref_frame_cost; |
1149 | |
|
1150 | 0 | if (rd_stats_y.skip_txfm) { |
1151 | 0 | rd_stats_y.rate = |
1152 | 0 | ref_frame_cost + |
1153 | 0 | mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1]; |
1154 | 0 | } else { |
1155 | 0 | rd_stats_y.rate += |
1156 | 0 | mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0]; |
1157 | 0 | } |
1158 | 0 | this_rd = RDCOST(x->rdmult, rd_stats_y.rate, rd_stats_y.dist); |
1159 | 0 | this_rd_cost->rate = rd_stats_y.rate; |
1160 | 0 | this_rd_cost->dist = rd_stats_y.dist; |
1161 | 0 | this_rd_cost->rdcost = this_rd; |
1162 | 0 | this_rd_cost->skip_txfm = rd_stats_y.skip_txfm; |
1163 | 0 | } |
1164 | | |
1165 | | /*!\brief Get the intra prediction by searching through tx_type and tx_size. |
1166 | | * |
1167 | | * \ingroup intra_mode_search |
1168 | | * \callergraph |
1169 | | * Currently this function is only used in the intra frame code path for |
1170 | | * winner-mode processing. |
1171 | | * |
1172 | | * \return Returns whether the current mode is an improvement over best_rd. |
1173 | | */ |
1174 | | static inline int intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
1175 | | BLOCK_SIZE bsize, const int *bmode_costs, |
1176 | | int64_t *best_rd, int *rate, |
1177 | | int *rate_tokenonly, int64_t *distortion, |
1178 | | uint8_t *skippable, MB_MODE_INFO *best_mbmi, |
1179 | 0 | PICK_MODE_CONTEXT *ctx) { |
1180 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
1181 | 0 | MB_MODE_INFO *const mbmi = xd->mi[0]; |
1182 | 0 | RD_STATS rd_stats; |
1183 | | // In order to improve txfm search, avoid rd based breakouts during winner |
1184 | | // mode evaluation. Hence passing ref_best_rd as INT64_MAX by default when the |
1185 | | // speed feature use_rd_based_breakout_for_intra_tx_search is disabled. |
1186 | 0 | int64_t ref_best_rd = cpi->sf.tx_sf.use_rd_based_breakout_for_intra_tx_search |
1187 | 0 | ? *best_rd |
1188 | 0 | : INT64_MAX; |
1189 | 0 | av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats, bsize, ref_best_rd); |
1190 | 0 | if (rd_stats.rate == INT_MAX) return 0; |
1191 | 0 | int this_rate_tokenonly = rd_stats.rate; |
1192 | 0 | if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) { |
1193 | | // av1_pick_uniform_tx_size_type_yrd above includes the cost of the tx_size |
1194 | | // in the tokenonly rate, but for intra blocks, tx_size is always coded |
1195 | | // (prediction granularity), so we account for it in the full rate, |
1196 | | // not the tokenonly rate. |
1197 | 0 | this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size); |
1198 | 0 | } |
1199 | 0 | const int this_rate = |
1200 | 0 | rd_stats.rate + |
1201 | 0 | intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode], 0); |
1202 | 0 | const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist); |
1203 | 0 | if (this_rd < *best_rd) { |
1204 | 0 | *best_mbmi = *mbmi; |
1205 | 0 | *best_rd = this_rd; |
1206 | 0 | *rate = this_rate; |
1207 | 0 | *rate_tokenonly = this_rate_tokenonly; |
1208 | 0 | *distortion = rd_stats.dist; |
1209 | 0 | *skippable = rd_stats.skip_txfm; |
1210 | 0 | av1_copy_array(ctx->blk_skip, x->txfm_search_info.blk_skip, |
1211 | 0 | ctx->num_4x4_blk); |
1212 | 0 | av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
1213 | 0 | return 1; |
1214 | 0 | } |
1215 | 0 | return 0; |
1216 | 0 | } |
1217 | | |
1218 | | /*!\brief Search for the best filter_intra mode when coding inter frame. |
1219 | | * |
1220 | | * \ingroup intra_mode_search |
1221 | | * \callergraph |
1222 | | * This function loops through all filter_intra modes to find the best one. |
1223 | | * |
1224 | | * \remark Returns nothing, but updates the mbmi and rd_stats. |
1225 | | */ |
1226 | | static inline void handle_filter_intra_mode(const AV1_COMP *cpi, MACROBLOCK *x, |
1227 | | BLOCK_SIZE bsize, |
1228 | | const PICK_MODE_CONTEXT *ctx, |
1229 | | RD_STATS *rd_stats_y, int mode_cost, |
1230 | | int64_t best_rd, |
1231 | 0 | int64_t best_rd_so_far) { |
1232 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
1233 | 0 | MB_MODE_INFO *const mbmi = xd->mi[0]; |
1234 | 0 | assert(mbmi->mode == DC_PRED && |
1235 | 0 | av1_filter_intra_allowed_bsize(&cpi->common, bsize)); |
1236 | |
|
1237 | 0 | RD_STATS rd_stats_y_fi; |
1238 | 0 | int filter_intra_selected_flag = 0; |
1239 | 0 | TX_SIZE best_tx_size = mbmi->tx_size; |
1240 | 0 | FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED; |
1241 | 0 | uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
1242 | 0 | memcpy(best_blk_skip, x->txfm_search_info.blk_skip, |
1243 | 0 | sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); |
1244 | 0 | uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
1245 | 0 | av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
1246 | 0 | mbmi->filter_intra_mode_info.use_filter_intra = 1; |
1247 | 0 | for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED; fi_mode < FILTER_INTRA_MODES; |
1248 | 0 | ++fi_mode) { |
1249 | 0 | mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode; |
1250 | 0 | av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y_fi, bsize, best_rd); |
1251 | 0 | if (rd_stats_y_fi.rate == INT_MAX) continue; |
1252 | 0 | const int this_rate_tmp = |
1253 | 0 | rd_stats_y_fi.rate + |
1254 | 0 | intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); |
1255 | 0 | const int64_t this_rd_tmp = |
1256 | 0 | RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist); |
1257 | |
|
1258 | 0 | if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > best_rd) { |
1259 | 0 | break; |
1260 | 0 | } |
1261 | 0 | if (this_rd_tmp < best_rd_so_far) { |
1262 | 0 | best_tx_size = mbmi->tx_size; |
1263 | 0 | av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
1264 | 0 | memcpy(best_blk_skip, x->txfm_search_info.blk_skip, |
1265 | 0 | sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); |
1266 | 0 | best_fi_mode = fi_mode; |
1267 | 0 | *rd_stats_y = rd_stats_y_fi; |
1268 | 0 | filter_intra_selected_flag = 1; |
1269 | 0 | best_rd_so_far = this_rd_tmp; |
1270 | 0 | } |
1271 | 0 | } |
1272 | |
|
1273 | 0 | mbmi->tx_size = best_tx_size; |
1274 | 0 | av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); |
1275 | 0 | memcpy(x->txfm_search_info.blk_skip, best_blk_skip, |
1276 | 0 | sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
1277 | |
|
1278 | 0 | if (filter_intra_selected_flag) { |
1279 | 0 | mbmi->filter_intra_mode_info.use_filter_intra = 1; |
1280 | 0 | mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode; |
1281 | 0 | } else { |
1282 | 0 | mbmi->filter_intra_mode_info.use_filter_intra = 0; |
1283 | 0 | } |
1284 | 0 | } |
1285 | | |
1286 | | // Evaluate a given luma intra-mode in inter frames. |
1287 | | int av1_handle_intra_y_mode(IntraModeSearchState *intra_search_state, |
1288 | | const AV1_COMP *cpi, MACROBLOCK *x, |
1289 | | BLOCK_SIZE bsize, unsigned int ref_frame_cost, |
1290 | | const PICK_MODE_CONTEXT *ctx, RD_STATS *rd_stats_y, |
1291 | | int64_t best_rd, int *mode_cost_y, int64_t *rd_y, |
1292 | | int64_t *best_model_rd, |
1293 | 0 | int64_t top_intra_model_rd[]) { |
1294 | 0 | const AV1_COMMON *cm = &cpi->common; |
1295 | 0 | const INTRA_MODE_SPEED_FEATURES *const intra_sf = &cpi->sf.intra_sf; |
1296 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
1297 | 0 | MB_MODE_INFO *const mbmi = xd->mi[0]; |
1298 | 0 | assert(mbmi->ref_frame[0] == INTRA_FRAME); |
1299 | 0 | const PREDICTION_MODE mode = mbmi->mode; |
1300 | 0 | const ModeCosts *mode_costs = &x->mode_costs; |
1301 | 0 | const int mode_cost = |
1302 | 0 | mode_costs->mbmode_cost[size_group_lookup[bsize]][mode] + ref_frame_cost; |
1303 | 0 | const int skip_ctx = av1_get_skip_txfm_context(xd); |
1304 | |
|
1305 | 0 | int known_rate = mode_cost; |
1306 | 0 | const int intra_cost_penalty = av1_get_intra_cost_penalty( |
1307 | 0 | cm->quant_params.base_qindex, cm->quant_params.y_dc_delta_q, |
1308 | 0 | cm->seq_params->bit_depth); |
1309 | |
|
1310 | 0 | if (mode != DC_PRED && mode != PAETH_PRED) known_rate += intra_cost_penalty; |
1311 | 0 | known_rate += AOMMIN(mode_costs->skip_txfm_cost[skip_ctx][0], |
1312 | 0 | mode_costs->skip_txfm_cost[skip_ctx][1]); |
1313 | 0 | const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0); |
1314 | 0 | if (known_rd > best_rd) { |
1315 | 0 | intra_search_state->skip_intra_modes = 1; |
1316 | 0 | return 0; |
1317 | 0 | } |
1318 | | |
1319 | 0 | const int is_directional_mode = av1_is_directional_mode(mode); |
1320 | 0 | if (is_directional_mode && av1_use_angle_delta(bsize) && |
1321 | 0 | cpi->oxcf.intra_mode_cfg.enable_angle_delta) { |
1322 | 0 | if (intra_sf->intra_pruning_with_hog && |
1323 | 0 | !intra_search_state->dir_mode_skip_mask_ready) { |
1324 | 0 | const float thresh[4] = { -1.2f, 0.0f, 0.0f, 1.2f }; |
1325 | 0 | const int is_chroma = 0; |
1326 | 0 | prune_intra_mode_with_hog(x, bsize, cm->seq_params->sb_size, |
1327 | 0 | thresh[intra_sf->intra_pruning_with_hog - 1], |
1328 | 0 | intra_search_state->directional_mode_skip_mask, |
1329 | 0 | is_chroma); |
1330 | 0 | intra_search_state->dir_mode_skip_mask_ready = 1; |
1331 | 0 | } |
1332 | 0 | if (intra_search_state->directional_mode_skip_mask[mode]) return 0; |
1333 | 0 | } |
1334 | 0 | const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]); |
1335 | 0 | const int64_t this_model_rd = |
1336 | 0 | intra_model_rd(&cpi->common, x, 0, bsize, tx_size, /*use_hadamard=*/1); |
1337 | |
|
1338 | 0 | const int model_rd_index_for_pruning = |
1339 | 0 | get_model_rd_index_for_pruning(x, intra_sf); |
1340 | |
|
1341 | 0 | if (prune_intra_y_mode(this_model_rd, best_model_rd, top_intra_model_rd, |
1342 | 0 | intra_sf->top_intra_model_count_allowed, |
1343 | 0 | model_rd_index_for_pruning)) |
1344 | 0 | return 0; |
1345 | 0 | av1_init_rd_stats(rd_stats_y); |
1346 | 0 | av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, best_rd); |
1347 | | |
1348 | | // Pick filter intra modes. |
1349 | 0 | if (mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { |
1350 | 0 | int try_filter_intra = 1; |
1351 | 0 | int64_t best_rd_so_far = INT64_MAX; |
1352 | 0 | if (rd_stats_y->rate != INT_MAX) { |
1353 | | // best_rd_so_far is the rdcost of DC_PRED without using filter_intra. |
1354 | | // Later, in filter intra search, best_rd_so_far is used for comparison. |
1355 | 0 | mbmi->filter_intra_mode_info.use_filter_intra = 0; |
1356 | 0 | const int tmp_rate = |
1357 | 0 | rd_stats_y->rate + |
1358 | 0 | intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); |
1359 | 0 | best_rd_so_far = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist); |
1360 | 0 | try_filter_intra = (best_rd_so_far / 2) <= best_rd; |
1361 | 0 | } else if (intra_sf->skip_filter_intra_in_inter_frames >= 1) { |
1362 | | // As rd cost of luma intra dc mode is more than best_rd (i.e., |
1363 | | // rd_stats_y->rate = INT_MAX), skip the evaluation of filter intra modes. |
1364 | 0 | try_filter_intra = 0; |
1365 | 0 | } |
1366 | |
|
1367 | 0 | if (try_filter_intra) { |
1368 | 0 | handle_filter_intra_mode(cpi, x, bsize, ctx, rd_stats_y, mode_cost, |
1369 | 0 | best_rd, best_rd_so_far); |
1370 | 0 | } |
1371 | 0 | } |
1372 | |
|
1373 | 0 | if (rd_stats_y->rate == INT_MAX) return 0; |
1374 | | |
1375 | 0 | *mode_cost_y = intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); |
1376 | 0 | const int rate_y = rd_stats_y->skip_txfm |
1377 | 0 | ? mode_costs->skip_txfm_cost[skip_ctx][1] |
1378 | 0 | : rd_stats_y->rate; |
1379 | 0 | *rd_y = RDCOST(x->rdmult, rate_y + *mode_cost_y, rd_stats_y->dist); |
1380 | 0 | if (best_rd < (INT64_MAX / 2) && *rd_y > (best_rd + (best_rd >> 2))) { |
1381 | 0 | intra_search_state->skip_intra_modes = 1; |
1382 | 0 | return 0; |
1383 | 0 | } |
1384 | | |
1385 | 0 | return 1; |
1386 | 0 | } |
1387 | | |
1388 | | int av1_search_intra_uv_modes_in_interframe( |
1389 | | IntraModeSearchState *intra_search_state, const AV1_COMP *cpi, |
1390 | | MACROBLOCK *x, BLOCK_SIZE bsize, RD_STATS *rd_stats, |
1391 | 0 | const RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, int64_t best_rd) { |
1392 | 0 | const AV1_COMMON *cm = &cpi->common; |
1393 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
1394 | 0 | MB_MODE_INFO *const mbmi = xd->mi[0]; |
1395 | 0 | assert(mbmi->ref_frame[0] == INTRA_FRAME); |
1396 | | |
1397 | | // TODO(chiyotsai@google.com): Consolidate the chroma search code here with |
1398 | | // the one in av1_search_palette_mode. |
1399 | 0 | PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
1400 | 0 | const int try_palette = |
1401 | 0 | cpi->oxcf.tool_cfg.enable_palette && |
1402 | 0 | av1_allow_palette(cm->features.allow_screen_content_tools, mbmi->bsize); |
1403 | |
|
1404 | 0 | assert(intra_search_state->rate_uv_intra == INT_MAX); |
1405 | 0 | if (intra_search_state->rate_uv_intra == INT_MAX) { |
1406 | | // If no good uv-predictor had been found, search for it. |
1407 | 0 | const TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); |
1408 | 0 | av1_rd_pick_intra_sbuv_mode(cpi, x, &intra_search_state->rate_uv_intra, |
1409 | 0 | &intra_search_state->rate_uv_tokenonly, |
1410 | 0 | &intra_search_state->dist_uvs, |
1411 | 0 | &intra_search_state->skip_uvs, bsize, uv_tx); |
1412 | 0 | intra_search_state->mode_uv = mbmi->uv_mode; |
1413 | 0 | if (try_palette) intra_search_state->pmi_uv = *pmi; |
1414 | 0 | intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; |
1415 | |
|
1416 | 0 | const int uv_rate = intra_search_state->rate_uv_tokenonly; |
1417 | 0 | const int64_t uv_dist = intra_search_state->dist_uvs; |
1418 | 0 | const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist); |
1419 | 0 | if (uv_rd > best_rd) { |
1420 | | // If there is no good intra uv-mode available, we can skip all intra |
1421 | | // modes. |
1422 | 0 | intra_search_state->skip_intra_modes = 1; |
1423 | 0 | return 0; |
1424 | 0 | } |
1425 | 0 | } |
1426 | | |
1427 | | // If we are here, then the encoder has found at least one good intra uv |
1428 | | // predictor, so we can directly copy its statistics over. |
1429 | | // TODO(any): the stats here is not right if the best uv mode is CFL but the |
1430 | | // best y mode is palette. |
1431 | 0 | rd_stats_uv->rate = intra_search_state->rate_uv_tokenonly; |
1432 | 0 | rd_stats_uv->dist = intra_search_state->dist_uvs; |
1433 | 0 | rd_stats_uv->skip_txfm = intra_search_state->skip_uvs; |
1434 | 0 | rd_stats->skip_txfm = rd_stats_y->skip_txfm && rd_stats_uv->skip_txfm; |
1435 | 0 | mbmi->uv_mode = intra_search_state->mode_uv; |
1436 | 0 | if (try_palette) { |
1437 | 0 | pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1]; |
1438 | 0 | memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, |
1439 | 0 | intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE, |
1440 | 0 | 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); |
1441 | 0 | } |
1442 | 0 | mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta; |
1443 | |
|
1444 | 0 | return 1; |
1445 | 0 | } |
1446 | | |
1447 | | // Checks if odd delta angles can be pruned based on rdcosts of even delta |
1448 | | // angles of the corresponding directional mode. |
1449 | | static inline int prune_luma_odd_delta_angles_using_rd_cost( |
1450 | | const MB_MODE_INFO *const mbmi, const int64_t *const intra_modes_rd_cost, |
1451 | 0 | int64_t best_rd, int prune_luma_odd_delta_angles_in_intra) { |
1452 | 0 | const int luma_delta_angle = mbmi->angle_delta[PLANE_TYPE_Y]; |
1453 | 0 | if (!prune_luma_odd_delta_angles_in_intra || |
1454 | 0 | !av1_is_directional_mode(mbmi->mode) || !(abs(luma_delta_angle) & 1) || |
1455 | 0 | best_rd == INT64_MAX) |
1456 | 0 | return 0; |
1457 | | |
1458 | 0 | const int64_t rd_thresh = best_rd + (best_rd >> 3); |
1459 | | |
1460 | | // Neighbour rdcosts are considered for pruning of odd delta angles as |
1461 | | // mentioned below: |
1462 | | // Delta angle Delta angle rdcost |
1463 | | // to be pruned to be considered |
1464 | | // -3 -2 |
1465 | | // -1 -2, 0 |
1466 | | // 1 0, 2 |
1467 | | // 3 2 |
1468 | 0 | return intra_modes_rd_cost[luma_delta_angle + MAX_ANGLE_DELTA] > rd_thresh && |
1469 | 0 | intra_modes_rd_cost[luma_delta_angle + MAX_ANGLE_DELTA + 2] > |
1470 | 0 | rd_thresh; |
1471 | 0 | } |
1472 | | |
1473 | | // Finds the best non-intrabc mode on an intra frame. |
1474 | | int64_t av1_rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x, |
1475 | | int *rate, int *rate_tokenonly, |
1476 | | int64_t *distortion, uint8_t *skippable, |
1477 | | BLOCK_SIZE bsize, int64_t best_rd, |
1478 | 0 | PICK_MODE_CONTEXT *ctx) { |
1479 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
1480 | 0 | MB_MODE_INFO *const mbmi = xd->mi[0]; |
1481 | 0 | assert(!is_inter_block(mbmi)); |
1482 | 0 | int64_t best_model_rd = INT64_MAX; |
1483 | 0 | int is_directional_mode; |
1484 | 0 | uint8_t directional_mode_skip_mask[INTRA_MODES] = { 0 }; |
1485 | | // Flag to check rd of any intra mode is better than best_rd passed to this |
1486 | | // function |
1487 | 0 | int beat_best_rd = 0; |
1488 | 0 | const int *bmode_costs; |
1489 | 0 | const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg; |
1490 | 0 | PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
1491 | 0 | const int try_palette = |
1492 | 0 | cpi->oxcf.tool_cfg.enable_palette && |
1493 | 0 | av1_allow_palette(cpi->common.features.allow_screen_content_tools, |
1494 | 0 | mbmi->bsize); |
1495 | 0 | uint8_t *best_palette_color_map = |
1496 | 0 | try_palette ? x->palette_buffer->best_palette_color_map : NULL; |
1497 | 0 | const MB_MODE_INFO *above_mi = xd->above_mbmi; |
1498 | 0 | const MB_MODE_INFO *left_mi = xd->left_mbmi; |
1499 | 0 | const PREDICTION_MODE A = av1_above_block_mode(above_mi); |
1500 | 0 | const PREDICTION_MODE L = av1_left_block_mode(left_mi); |
1501 | 0 | const int above_ctx = intra_mode_context[A]; |
1502 | 0 | const int left_ctx = intra_mode_context[L]; |
1503 | 0 | bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx]; |
1504 | |
|
1505 | 0 | mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
1506 | 0 | const INTRA_MODE_SPEED_FEATURES *const intra_sf = &cpi->sf.intra_sf; |
1507 | 0 | if (intra_sf->intra_pruning_with_hog) { |
1508 | | // Less aggressive thresholds are used here than those used in inter frame |
1509 | | // encoding in av1_handle_intra_y_mode() because we want key frames/intra |
1510 | | // frames to have higher quality. |
1511 | 0 | const float thresh[4] = { -1.2f, -1.2f, -0.6f, 0.4f }; |
1512 | 0 | const int is_chroma = 0; |
1513 | 0 | prune_intra_mode_with_hog(x, bsize, cpi->common.seq_params->sb_size, |
1514 | 0 | thresh[intra_sf->intra_pruning_with_hog - 1], |
1515 | 0 | directional_mode_skip_mask, is_chroma); |
1516 | 0 | } |
1517 | 0 | mbmi->filter_intra_mode_info.use_filter_intra = 0; |
1518 | 0 | pmi->palette_size[0] = 0; |
1519 | | |
1520 | | // Set params for mode evaluation |
1521 | 0 | set_mode_eval_params(cpi, x, MODE_EVAL); |
1522 | |
|
1523 | 0 | MB_MODE_INFO best_mbmi = *mbmi; |
1524 | 0 | const int max_winner_mode_count = |
1525 | 0 | winner_mode_count_allowed[cpi->sf.winner_mode_sf.multi_winner_mode_type]; |
1526 | 0 | zero_winner_mode_stats(bsize, max_winner_mode_count, x->winner_mode_stats); |
1527 | 0 | x->winner_mode_count = 0; |
1528 | | |
1529 | | // Searches the intra-modes except for intrabc, palette, and filter_intra. |
1530 | 0 | int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT]; |
1531 | 0 | for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) { |
1532 | 0 | top_intra_model_rd[i] = INT64_MAX; |
1533 | 0 | } |
1534 | | |
1535 | | // Initialize the rdcost corresponding to all the directional and |
1536 | | // non-directional intra modes. |
1537 | | // 1. For directional modes, it stores the rdcost values for delta angles -4, |
1538 | | // -3, ..., 3, 4. |
1539 | | // 2. The rdcost value for luma_delta_angle is stored at index |
1540 | | // luma_delta_angle + MAX_ANGLE_DELTA + 1. |
1541 | | // 3. The rdcost values for fictitious/nonexistent luma_delta_angle -4 and 4 |
1542 | | // (array indices 0 and 8) are always set to INT64_MAX (the initial value). |
1543 | 0 | int64_t intra_modes_rd_cost[INTRA_MODE_END] |
1544 | 0 | [SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY]; |
1545 | 0 | for (int i = 0; i < INTRA_MODE_END; i++) { |
1546 | 0 | for (int j = 0; j < SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY; j++) { |
1547 | 0 | intra_modes_rd_cost[i][j] = INT64_MAX; |
1548 | 0 | } |
1549 | 0 | } |
1550 | |
|
1551 | 0 | for (int mode_idx = INTRA_MODE_START; mode_idx < LUMA_MODE_COUNT; |
1552 | 0 | ++mode_idx) { |
1553 | 0 | set_y_mode_and_delta_angle(mode_idx, mbmi, |
1554 | 0 | intra_sf->prune_luma_odd_delta_angles_in_intra); |
1555 | 0 | RD_STATS this_rd_stats; |
1556 | 0 | int this_rate, this_rate_tokenonly, s; |
1557 | 0 | int is_diagonal_mode; |
1558 | 0 | int64_t this_distortion, this_rd; |
1559 | 0 | const int luma_delta_angle = mbmi->angle_delta[PLANE_TYPE_Y]; |
1560 | |
|
1561 | 0 | is_diagonal_mode = av1_is_diagonal_mode(mbmi->mode); |
1562 | 0 | if (is_diagonal_mode && !intra_mode_cfg->enable_diagonal_intra) continue; |
1563 | 0 | if (av1_is_directional_mode(mbmi->mode) && |
1564 | 0 | !intra_mode_cfg->enable_directional_intra) |
1565 | 0 | continue; |
1566 | | |
1567 | | // The smooth prediction mode appears to be more frequently picked |
1568 | | // than horizontal / vertical smooth prediction modes. Hence treat |
1569 | | // them differently in speed features. |
1570 | 0 | if ((!intra_mode_cfg->enable_smooth_intra || |
1571 | 0 | intra_sf->disable_smooth_intra) && |
1572 | 0 | (mbmi->mode == SMOOTH_H_PRED || mbmi->mode == SMOOTH_V_PRED)) |
1573 | 0 | continue; |
1574 | 0 | if (!intra_mode_cfg->enable_smooth_intra && mbmi->mode == SMOOTH_PRED) |
1575 | 0 | continue; |
1576 | | |
1577 | | // The functionality of filter intra modes and smooth prediction |
1578 | | // overlap. Hence smooth prediction is pruned only if all the |
1579 | | // filter intra modes are enabled. |
1580 | 0 | if (intra_sf->disable_smooth_intra && |
1581 | 0 | intra_sf->prune_filter_intra_level == 0 && mbmi->mode == SMOOTH_PRED) |
1582 | 0 | continue; |
1583 | 0 | if (!intra_mode_cfg->enable_paeth_intra && mbmi->mode == PAETH_PRED) |
1584 | 0 | continue; |
1585 | | |
1586 | | // Skip the evaluation of modes that do not match with the winner mode in |
1587 | | // x->mb_mode_cache. |
1588 | 0 | if (x->use_mb_mode_cache && mbmi->mode != x->mb_mode_cache->mode) continue; |
1589 | | |
1590 | 0 | is_directional_mode = av1_is_directional_mode(mbmi->mode); |
1591 | 0 | if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue; |
1592 | 0 | if (is_directional_mode && |
1593 | 0 | !(av1_use_angle_delta(bsize) && intra_mode_cfg->enable_angle_delta) && |
1594 | 0 | luma_delta_angle != 0) |
1595 | 0 | continue; |
1596 | | |
1597 | | // Use intra_y_mode_mask speed feature to skip intra mode evaluation. |
1598 | 0 | if (!(intra_sf->intra_y_mode_mask[max_txsize_lookup[bsize]] & |
1599 | 0 | (1 << mbmi->mode))) |
1600 | 0 | continue; |
1601 | | |
1602 | 0 | if (prune_luma_odd_delta_angles_using_rd_cost( |
1603 | 0 | mbmi, intra_modes_rd_cost[mbmi->mode], best_rd, |
1604 | 0 | intra_sf->prune_luma_odd_delta_angles_in_intra)) |
1605 | 0 | continue; |
1606 | | |
1607 | 0 | const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]); |
1608 | 0 | const int64_t this_model_rd = |
1609 | 0 | intra_model_rd(&cpi->common, x, 0, bsize, tx_size, /*use_hadamard=*/1); |
1610 | |
|
1611 | 0 | const int model_rd_index_for_pruning = |
1612 | 0 | get_model_rd_index_for_pruning(x, intra_sf); |
1613 | |
|
1614 | 0 | if (prune_intra_y_mode(this_model_rd, &best_model_rd, top_intra_model_rd, |
1615 | 0 | intra_sf->top_intra_model_count_allowed, |
1616 | 0 | model_rd_index_for_pruning)) |
1617 | 0 | continue; |
1618 | | |
1619 | | // Builds the actual prediction. The prediction from |
1620 | | // model_intra_yrd_and_prune was just an estimation that did not take into |
1621 | | // account the effect of txfm pipeline, so we need to redo it for real |
1622 | | // here. |
1623 | 0 | av1_pick_uniform_tx_size_type_yrd(cpi, x, &this_rd_stats, bsize, best_rd); |
1624 | 0 | this_rate_tokenonly = this_rd_stats.rate; |
1625 | 0 | this_distortion = this_rd_stats.dist; |
1626 | 0 | s = this_rd_stats.skip_txfm; |
1627 | |
|
1628 | 0 | if (this_rate_tokenonly == INT_MAX) continue; |
1629 | | |
1630 | 0 | if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) { |
1631 | | // av1_pick_uniform_tx_size_type_yrd above includes the cost of the |
1632 | | // tx_size in the tokenonly rate, but for intra blocks, tx_size is always |
1633 | | // coded (prediction granularity), so we account for it in the full rate, |
1634 | | // not the tokenonly rate. |
1635 | 0 | this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size); |
1636 | 0 | } |
1637 | 0 | this_rate = |
1638 | 0 | this_rd_stats.rate + |
1639 | 0 | intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode], 0); |
1640 | 0 | this_rd = RDCOST(x->rdmult, this_rate, this_distortion); |
1641 | | |
1642 | | // Visual quality adjustment based on recon vs source variance. |
1643 | 0 | if ((cpi->oxcf.mode == ALLINTRA) && (this_rd != INT64_MAX)) { |
1644 | 0 | this_rd = (int64_t)(this_rd * intra_rd_variance_factor(cpi, x, bsize)); |
1645 | 0 | } |
1646 | |
|
1647 | 0 | intra_modes_rd_cost[mbmi->mode][luma_delta_angle + MAX_ANGLE_DELTA + 1] = |
1648 | 0 | this_rd; |
1649 | | |
1650 | | // Collect mode stats for multiwinner mode processing |
1651 | 0 | const int txfm_search_done = 1; |
1652 | 0 | store_winner_mode_stats( |
1653 | 0 | &cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd, |
1654 | 0 | cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done); |
1655 | 0 | if (this_rd < best_rd) { |
1656 | 0 | best_mbmi = *mbmi; |
1657 | 0 | best_rd = this_rd; |
1658 | | // Setting beat_best_rd flag because current mode rd is better than |
1659 | | // best_rd passed to this function |
1660 | 0 | beat_best_rd = 1; |
1661 | 0 | *rate = this_rate; |
1662 | 0 | *rate_tokenonly = this_rate_tokenonly; |
1663 | 0 | *distortion = this_distortion; |
1664 | 0 | *skippable = s; |
1665 | 0 | memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, |
1666 | 0 | sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
1667 | 0 | av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
1668 | 0 | } |
1669 | 0 | } |
1670 | | |
1671 | | // Searches palette |
1672 | 0 | if (try_palette) { |
1673 | 0 | av1_rd_pick_palette_intra_sby( |
1674 | 0 | cpi, x, bsize, bmode_costs[DC_PRED], &best_mbmi, best_palette_color_map, |
1675 | 0 | &best_rd, rate, rate_tokenonly, distortion, skippable, &beat_best_rd, |
1676 | 0 | ctx, ctx->blk_skip, ctx->tx_type_map); |
1677 | 0 | } |
1678 | | |
1679 | | // Searches filter_intra |
1680 | 0 | if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) { |
1681 | 0 | if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion, |
1682 | 0 | skippable, bsize, bmode_costs[DC_PRED], |
1683 | 0 | best_mbmi.mode, &best_rd, &best_model_rd, |
1684 | 0 | ctx)) { |
1685 | 0 | best_mbmi = *mbmi; |
1686 | 0 | } |
1687 | 0 | } |
1688 | | |
1689 | | // No mode is identified with less rd value than best_rd passed to this |
1690 | | // function. In such cases winner mode processing is not necessary and return |
1691 | | // best_rd as INT64_MAX to indicate best mode is not identified |
1692 | 0 | if (!beat_best_rd) return INT64_MAX; |
1693 | | |
1694 | | // In multi-winner mode processing, perform tx search for few best modes |
1695 | | // identified during mode evaluation. Winner mode processing uses best tx |
1696 | | // configuration for tx search. |
1697 | 0 | if (cpi->sf.winner_mode_sf.multi_winner_mode_type) { |
1698 | 0 | int best_mode_idx = 0; |
1699 | 0 | int block_width, block_height; |
1700 | 0 | uint8_t *color_map_dst = xd->plane[PLANE_TYPE_Y].color_index_map; |
1701 | 0 | av1_get_block_dimensions(bsize, AOM_PLANE_Y, xd, &block_width, |
1702 | 0 | &block_height, NULL, NULL); |
1703 | |
|
1704 | 0 | for (int mode_idx = 0; mode_idx < x->winner_mode_count; mode_idx++) { |
1705 | 0 | *mbmi = x->winner_mode_stats[mode_idx].mbmi; |
1706 | 0 | if (is_winner_mode_processing_enabled(cpi, x, mbmi, 0)) { |
1707 | | // Restore color_map of palette mode before winner mode processing |
1708 | 0 | if (mbmi->palette_mode_info.palette_size[0] > 0) { |
1709 | 0 | uint8_t *color_map_src = |
1710 | 0 | x->winner_mode_stats[mode_idx].color_index_map; |
1711 | 0 | memcpy(color_map_dst, color_map_src, |
1712 | 0 | block_width * block_height * sizeof(*color_map_src)); |
1713 | 0 | } |
1714 | | // Set params for winner mode evaluation |
1715 | 0 | set_mode_eval_params(cpi, x, WINNER_MODE_EVAL); |
1716 | | |
1717 | | // Winner mode processing |
1718 | | // If previous searches use only the default tx type/no R-D optimization |
1719 | | // of quantized coeffs, do an extra search for the best tx type/better |
1720 | | // R-D optimization of quantized coeffs |
1721 | 0 | if (intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, |
1722 | 0 | rate_tokenonly, distortion, skippable, &best_mbmi, |
1723 | 0 | ctx)) |
1724 | 0 | best_mode_idx = mode_idx; |
1725 | 0 | } |
1726 | 0 | } |
1727 | | // Copy color_map of palette mode for final winner mode |
1728 | 0 | if (best_mbmi.palette_mode_info.palette_size[0] > 0) { |
1729 | 0 | uint8_t *color_map_src = |
1730 | 0 | x->winner_mode_stats[best_mode_idx].color_index_map; |
1731 | 0 | memcpy(color_map_dst, color_map_src, |
1732 | 0 | block_width * block_height * sizeof(*color_map_src)); |
1733 | 0 | } |
1734 | 0 | } else { |
1735 | | // If previous searches use only the default tx type/no R-D optimization of |
1736 | | // quantized coeffs, do an extra search for the best tx type/better R-D |
1737 | | // optimization of quantized coeffs |
1738 | 0 | if (is_winner_mode_processing_enabled(cpi, x, mbmi, 0)) { |
1739 | | // Set params for winner mode evaluation |
1740 | 0 | set_mode_eval_params(cpi, x, WINNER_MODE_EVAL); |
1741 | 0 | *mbmi = best_mbmi; |
1742 | 0 | intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, |
1743 | 0 | rate_tokenonly, distortion, skippable, &best_mbmi, ctx); |
1744 | 0 | } |
1745 | 0 | } |
1746 | 0 | *mbmi = best_mbmi; |
1747 | 0 | av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk); |
1748 | 0 | return best_rd; |
1749 | 0 | } |