Coverage Report

Created: 2025-06-22 08:04

/src/aom/av1/encoder/ml.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <assert.h>
13
#include <math.h>
14
15
#include "aom_dsp/aom_dsp_common.h"
16
#include "aom_dsp/mathutils.h"
17
#include "av1/encoder/ml.h"
18
19
0
void av1_nn_output_prec_reduce(float *const output, int num_output) {
20
0
  const int prec_bits = 9;
21
0
  const int prec = 1 << prec_bits;
22
0
  const float inv_prec = (float)(1.0 / prec);
23
0
  for (int i = 0; i < num_output; i++) {
24
0
    output[i] = ((int)(output[i] * prec + 0.5)) * inv_prec;
25
0
  }
26
0
}
27
28
// Calculate prediction based on the given input features and neural net config.
29
// Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
30
// layer.
31
void av1_nn_predict_c(const float *input_nodes,
32
                      const NN_CONFIG *const nn_config, int reduce_prec,
33
0
                      float *const output) {
34
0
  int num_input_nodes = nn_config->num_inputs;
35
0
  int buf_index = 0;
36
0
  float buf[2][NN_MAX_NODES_PER_LAYER];
37
38
  // Propagate hidden layers.
39
0
  const int num_layers = nn_config->num_hidden_layers;
40
0
  assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
41
0
  for (int layer = 0; layer < num_layers; ++layer) {
42
0
    const float *layer_weights = nn_config->weights[layer];
43
0
    const float *layer_bias = nn_config->bias[layer];
44
0
    float *output_nodes = buf[buf_index];
45
0
    const int num_output_nodes = nn_config->num_hidden_nodes[layer];
46
0
    assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
47
0
    for (int node = 0; node < num_output_nodes; ++node) {
48
0
      float val = layer_bias[node];
49
0
      for (int i = 0; i < num_input_nodes; ++i)
50
0
        val += layer_weights[node * num_input_nodes + i] * input_nodes[i];
51
      // ReLU as activation function.
52
0
      val = val > 0.0f ? val : 0.0f;  // Could use AOMMAX().
53
0
      output_nodes[node] = val;
54
0
    }
55
0
    num_input_nodes = num_output_nodes;
56
0
    input_nodes = output_nodes;
57
0
    buf_index = 1 - buf_index;
58
0
  }
59
60
  // Final output layer.
61
0
  const float *layer_weights = nn_config->weights[num_layers];
62
0
  const float *layer_bias = nn_config->bias[num_layers];
63
0
  for (int node = 0; node < nn_config->num_outputs; ++node) {
64
0
    float val = layer_bias[node];
65
0
    for (int i = 0; i < num_input_nodes; ++i)
66
0
      val += layer_weights[node * num_input_nodes + i] * input_nodes[i];
67
0
    output[node] = val;
68
0
  }
69
0
  if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs);
70
0
}
71
72
#if CONFIG_NN_V2
73
// Applies the ReLu activation to one fc layer
74
// output[i] = Max(input[i],0.0f)
75
static float *nn_relu(const float *input, FC_LAYER *layer) {
76
  for (int i = 0; i < layer->num_outputs; ++i) {
77
    layer->output[i] = AOMMAX(input[i], 0.0f);
78
  }
79
80
  return layer->output;
81
}
82
83
// Applies the Sigmoid activation to one fc layer
84
// output[i] = 1/(1+exp(input[i]))
85
static float *nn_sigmoid(const float *input, FC_LAYER *layer) {
86
  for (int i = 0; i < layer->num_outputs; ++i) {
87
    const float tmp = AOMMIN(AOMMAX(input[i], -10.0f), 10.0f);
88
    layer->output[i] = 1.0f / (1.0f + expf(-tmp));
89
  }
90
91
  return layer->output;
92
}
93
94
// Forward prediction in one fc layer, used in function av1_nn_predict_V2
95
static float *nn_fc_forward(const float *input, FC_LAYER *layer) {
96
  const float *weights = layer->weights;
97
  const float *bias = layer->bias;
98
  assert(layer->num_outputs < NN_MAX_NODES_PER_LAYER);
99
  // fc
100
  for (int node = 0; node < layer->num_outputs; ++node) {
101
    float val = bias[node];
102
    for (int i = 0; i < layer->num_inputs; ++i) val += weights[i] * input[i];
103
    layer->output[node] = val;
104
    weights += layer->num_inputs;
105
  }
106
107
  // activation
108
  switch (layer->activation) {
109
    case NONE: return layer->output;
110
    case RELU: return nn_relu(layer->output, layer);
111
    case SIGMOID: return nn_sigmoid(layer->output, layer);
112
    case SOFTSIGN:
113
      assert(0 && "Softsign has not been supported in NN.");  // TO DO
114
      return NULL;
115
    default:
116
      assert(0 && "Unknown activation");  // Unknown activation
117
      return NULL;
118
  }
119
}
120
121
void av1_nn_predict_v2(const float *feature, NN_CONFIG_V2 *nn_config,
122
                       int reduce_prec, float *output) {
123
  const float *input_nodes = feature;
124
125
  // Propagate the layers.
126
  const int num_layers = nn_config->num_hidden_layers;
127
  assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
128
  for (int i = 0; i < num_layers; ++i) {
129
    input_nodes = nn_fc_forward(input_nodes, nn_config->layer + i);
130
    assert(nn_config->layer[i + 1].num_inputs ==
131
           nn_config->layer[i].num_outputs);
132
  }
133
134
  // Final layer
135
  input_nodes = nn_fc_forward(input_nodes, nn_config->layer + num_layers);
136
  assert(nn_config->layer[num_layers].num_outputs == nn_config->num_logits);
137
  // Copy the final layer output
138
  memcpy(output, input_nodes, sizeof(*input_nodes) * nn_config->num_logits);
139
  if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_logits);
140
}
141
#endif  // CONFIG_NN_V2
142
143
0
void av1_nn_softmax(const float *input, float *output, int n) {
144
  // Softmax function is invariant to adding the same constant
145
  // to all input values, so we subtract the maximum input to avoid
146
  // possible overflow.
147
0
  float max_input = input[0];
148
0
  for (int i = 1; i < n; i++) max_input = AOMMAX(max_input, input[i]);
149
0
  float sum_out = 0.0f;
150
0
  for (int i = 0; i < n; i++) {
151
    // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors.
152
0
    const float normalized_input = AOMMAX(input[i] - max_input, -10.0f);
153
0
    output[i] = expf(normalized_input);
154
0
    sum_out += output[i];
155
0
  }
156
0
  for (int i = 0; i < n; i++) output[i] /= sum_out;
157
0
}
158
159
0
void av1_nn_fast_softmax_16_c(const float *input, float *output) {
160
0
  const int kNumClasses = 16;
161
0
  float max_input = input[0];
162
0
  for (int i = 1; i < kNumClasses; i++) max_input = AOMMAX(max_input, input[i]);
163
0
  float sum_out = 0.0f;
164
0
  for (int i = 0; i < kNumClasses; i++) {
165
    // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors.
166
0
    const float normalized_input = AOMMAX(input[i] - max_input, -10.0f);
167
0
    output[i] = approx_exp(normalized_input);
168
0
    sum_out += output[i];
169
0
  }
170
0
  for (int i = 0; i < kNumClasses; i++) output[i] /= sum_out;
171
0
}