/src/aom/av1/encoder/pickrst.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
3 | | * |
4 | | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | | * was not distributed with this source code in the LICENSE file, you can |
7 | | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | | * Media Patent License 1.0 was not distributed with this source code in the |
9 | | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | | */ |
11 | | |
12 | | #include <assert.h> |
13 | | #include <float.h> |
14 | | #include <limits.h> |
15 | | #include <math.h> |
16 | | |
17 | | #include "config/aom_scale_rtcd.h" |
18 | | #include "config/av1_rtcd.h" |
19 | | |
20 | | #include "aom_dsp/aom_dsp_common.h" |
21 | | #include "aom_dsp/binary_codes_writer.h" |
22 | | #include "aom_dsp/mathutils.h" |
23 | | #include "aom_dsp/psnr.h" |
24 | | #include "aom_mem/aom_mem.h" |
25 | | #include "aom_ports/mem.h" |
26 | | #include "av1/common/av1_common_int.h" |
27 | | #include "av1/common/quant_common.h" |
28 | | #include "av1/common/restoration.h" |
29 | | |
30 | | #include "av1/encoder/av1_quantize.h" |
31 | | #include "av1/encoder/encoder.h" |
32 | | #include "av1/encoder/picklpf.h" |
33 | | #include "av1/encoder/pickrst.h" |
34 | | |
35 | | // Number of Wiener iterations |
36 | 0 | #define NUM_WIENER_ITERS 5 |
37 | | |
38 | | // Penalty factor for use of dual sgr |
39 | 0 | #define DUAL_SGR_PENALTY_MULT 0.01 |
40 | | |
41 | | // Working precision for Wiener filter coefficients |
42 | 0 | #define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16) |
43 | | |
44 | 0 | #define SGRPROJ_EP_GRP1_START_IDX 0 |
45 | 0 | #define SGRPROJ_EP_GRP1_END_IDX 9 |
46 | 0 | #define SGRPROJ_EP_GRP1_SEARCH_COUNT 4 |
47 | 0 | #define SGRPROJ_EP_GRP2_3_SEARCH_COUNT 2 |
48 | | static const int sgproj_ep_grp1_seed[SGRPROJ_EP_GRP1_SEARCH_COUNT] = { 0, 3, 6, |
49 | | 9 }; |
50 | | static const int sgproj_ep_grp2_3[SGRPROJ_EP_GRP2_3_SEARCH_COUNT][14] = { |
51 | | { 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, -1, -1, -1, -1 }, |
52 | | { 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15 } |
53 | | }; |
54 | | |
55 | | #if DEBUG_LR_COSTING |
56 | | RestorationUnitInfo lr_ref_params[RESTORE_TYPES][MAX_MB_PLANE] |
57 | | [MAX_LR_UNITS_W * MAX_LR_UNITS_H]; |
58 | | #endif // DEBUG_LR_COSTING |
59 | | |
60 | | typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a, |
61 | | const YV12_BUFFER_CONFIG *b); |
62 | | typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a, |
63 | | const YV12_BUFFER_CONFIG *b, |
64 | | int hstart, int width, int vstart, |
65 | | int height); |
66 | | typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a, |
67 | | int hstart, int width, int vstart, |
68 | | int height); |
69 | | |
70 | | #if CONFIG_AV1_HIGHBITDEPTH |
71 | | #define NUM_EXTRACTORS (3 * (1 + 1)) |
72 | | #else |
73 | | #define NUM_EXTRACTORS 3 |
74 | | #endif |
75 | | static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = { |
76 | | aom_get_y_sse_part, aom_get_u_sse_part, |
77 | | aom_get_v_sse_part, |
78 | | #if CONFIG_AV1_HIGHBITDEPTH |
79 | | aom_highbd_get_y_sse_part, aom_highbd_get_u_sse_part, |
80 | | aom_highbd_get_v_sse_part, |
81 | | #endif |
82 | | }; |
83 | | static const var_part_extractor_type var_part_extractors[NUM_EXTRACTORS] = { |
84 | | aom_get_y_var, aom_get_u_var, aom_get_v_var, |
85 | | #if CONFIG_AV1_HIGHBITDEPTH |
86 | | aom_highbd_get_y_var, aom_highbd_get_u_var, aom_highbd_get_v_var, |
87 | | #endif |
88 | | }; |
89 | | |
90 | | static int64_t sse_restoration_unit(const RestorationTileLimits *limits, |
91 | | const YV12_BUFFER_CONFIG *src, |
92 | | const YV12_BUFFER_CONFIG *dst, int plane, |
93 | 0 | int highbd) { |
94 | 0 | return sse_part_extractors[3 * highbd + plane]( |
95 | 0 | src, dst, limits->h_start, limits->h_end - limits->h_start, |
96 | 0 | limits->v_start, limits->v_end - limits->v_start); |
97 | 0 | } |
98 | | |
99 | | static uint64_t var_restoration_unit(const RestorationTileLimits *limits, |
100 | | const YV12_BUFFER_CONFIG *src, int plane, |
101 | 0 | int highbd) { |
102 | 0 | return var_part_extractors[3 * highbd + plane]( |
103 | 0 | src, limits->h_start, limits->h_end - limits->h_start, limits->v_start, |
104 | 0 | limits->v_end - limits->v_start); |
105 | 0 | } |
106 | | |
107 | | typedef struct { |
108 | | const YV12_BUFFER_CONFIG *src; |
109 | | YV12_BUFFER_CONFIG *dst; |
110 | | |
111 | | const AV1_COMMON *cm; |
112 | | const MACROBLOCK *x; |
113 | | int plane; |
114 | | int plane_w; |
115 | | int plane_h; |
116 | | RestUnitSearchInfo *rusi; |
117 | | |
118 | | // Speed features |
119 | | const LOOP_FILTER_SPEED_FEATURES *lpf_sf; |
120 | | |
121 | | uint8_t *dgd_buffer; |
122 | | int dgd_stride; |
123 | | const uint8_t *src_buffer; |
124 | | int src_stride; |
125 | | |
126 | | // SSE values for each restoration mode for the current RU |
127 | | // These are saved by each search function for use in search_switchable() |
128 | | int64_t sse[RESTORE_SWITCHABLE_TYPES]; |
129 | | |
130 | | // This flag will be set based on the speed feature |
131 | | // 'prune_sgr_based_on_wiener'. 0 implies no pruning and 1 implies pruning. |
132 | | uint8_t skip_sgr_eval; |
133 | | |
134 | | // Total rate and distortion so far for each restoration type |
135 | | // These are initialised by reset_rsc in search_rest_type |
136 | | int64_t total_sse[RESTORE_TYPES]; |
137 | | int64_t total_bits[RESTORE_TYPES]; |
138 | | |
139 | | // Reference parameters for delta-coding |
140 | | // |
141 | | // For each restoration type, we need to store the latest parameter set which |
142 | | // has been used, so that we can properly cost up the next parameter set. |
143 | | // Note that we have two sets of these - one for the single-restoration-mode |
144 | | // search (ie, frame_restoration_type = RESTORE_WIENER or RESTORE_SGRPROJ) |
145 | | // and one for the switchable mode. This is because these two cases can lead |
146 | | // to different sets of parameters being signaled, but we don't know which |
147 | | // we will pick for sure until the end of the search process. |
148 | | WienerInfo ref_wiener; |
149 | | SgrprojInfo ref_sgrproj; |
150 | | WienerInfo switchable_ref_wiener; |
151 | | SgrprojInfo switchable_ref_sgrproj; |
152 | | |
153 | | // Buffers used to hold dgd-avg and src-avg data respectively during SIMD |
154 | | // call of Wiener filter. |
155 | | int16_t *dgd_avg; |
156 | | int16_t *src_avg; |
157 | | } RestSearchCtxt; |
158 | | |
159 | 0 | static inline void rsc_on_tile(void *priv) { |
160 | 0 | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
161 | 0 | set_default_wiener(&rsc->ref_wiener); |
162 | 0 | set_default_sgrproj(&rsc->ref_sgrproj); |
163 | 0 | set_default_wiener(&rsc->switchable_ref_wiener); |
164 | 0 | set_default_sgrproj(&rsc->switchable_ref_sgrproj); |
165 | 0 | } |
166 | | |
167 | 0 | static inline void reset_rsc(RestSearchCtxt *rsc) { |
168 | 0 | memset(rsc->total_sse, 0, sizeof(rsc->total_sse)); |
169 | 0 | memset(rsc->total_bits, 0, sizeof(rsc->total_bits)); |
170 | 0 | } |
171 | | |
172 | | static inline void init_rsc(const YV12_BUFFER_CONFIG *src, const AV1_COMMON *cm, |
173 | | const MACROBLOCK *x, |
174 | | const LOOP_FILTER_SPEED_FEATURES *lpf_sf, int plane, |
175 | | RestUnitSearchInfo *rusi, YV12_BUFFER_CONFIG *dst, |
176 | 0 | RestSearchCtxt *rsc) { |
177 | 0 | rsc->src = src; |
178 | 0 | rsc->dst = dst; |
179 | 0 | rsc->cm = cm; |
180 | 0 | rsc->x = x; |
181 | 0 | rsc->plane = plane; |
182 | 0 | rsc->rusi = rusi; |
183 | 0 | rsc->lpf_sf = lpf_sf; |
184 | |
|
185 | 0 | const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; |
186 | 0 | const int is_uv = plane != AOM_PLANE_Y; |
187 | 0 | int plane_w, plane_h; |
188 | 0 | av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); |
189 | 0 | assert(plane_w == src->crop_widths[is_uv]); |
190 | 0 | assert(plane_h == src->crop_heights[is_uv]); |
191 | 0 | assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]); |
192 | 0 | assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]); |
193 | |
|
194 | 0 | rsc->plane_w = plane_w; |
195 | 0 | rsc->plane_h = plane_h; |
196 | 0 | rsc->src_buffer = src->buffers[plane]; |
197 | 0 | rsc->src_stride = src->strides[is_uv]; |
198 | 0 | rsc->dgd_buffer = dgd->buffers[plane]; |
199 | 0 | rsc->dgd_stride = dgd->strides[is_uv]; |
200 | 0 | } |
201 | | |
202 | | static int64_t try_restoration_unit(const RestSearchCtxt *rsc, |
203 | | const RestorationTileLimits *limits, |
204 | 0 | const RestorationUnitInfo *rui) { |
205 | 0 | const AV1_COMMON *const cm = rsc->cm; |
206 | 0 | const int plane = rsc->plane; |
207 | 0 | const int is_uv = plane > 0; |
208 | 0 | const RestorationInfo *rsi = &cm->rst_info[plane]; |
209 | 0 | RestorationLineBuffers rlbs; |
210 | 0 | const int bit_depth = cm->seq_params->bit_depth; |
211 | 0 | const int highbd = cm->seq_params->use_highbitdepth; |
212 | |
|
213 | 0 | const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf; |
214 | | // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be |
215 | | // also used in encoder. |
216 | 0 | const int optimized_lr = 0; |
217 | |
|
218 | 0 | av1_loop_restoration_filter_unit( |
219 | 0 | limits, rui, &rsi->boundaries, &rlbs, rsc->plane_w, rsc->plane_h, |
220 | 0 | is_uv && cm->seq_params->subsampling_x, |
221 | 0 | is_uv && cm->seq_params->subsampling_y, highbd, bit_depth, |
222 | 0 | fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane], |
223 | 0 | rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr, cm->error); |
224 | |
|
225 | 0 | return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd); |
226 | 0 | } |
227 | | |
228 | | int64_t av1_lowbd_pixel_proj_error_c(const uint8_t *src8, int width, int height, |
229 | | int src_stride, const uint8_t *dat8, |
230 | | int dat_stride, int32_t *flt0, |
231 | | int flt0_stride, int32_t *flt1, |
232 | | int flt1_stride, int xq[2], |
233 | 0 | const sgr_params_type *params) { |
234 | 0 | int i, j; |
235 | 0 | const uint8_t *src = src8; |
236 | 0 | const uint8_t *dat = dat8; |
237 | 0 | int64_t err = 0; |
238 | 0 | if (params->r[0] > 0 && params->r[1] > 0) { |
239 | 0 | for (i = 0; i < height; ++i) { |
240 | 0 | for (j = 0; j < width; ++j) { |
241 | 0 | assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); |
242 | 0 | assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); |
243 | 0 | const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); |
244 | 0 | int32_t v = u << SGRPROJ_PRJ_BITS; |
245 | 0 | v += xq[0] * (flt0[j] - u) + xq[1] * (flt1[j] - u); |
246 | 0 | const int32_t e = |
247 | 0 | ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; |
248 | 0 | err += ((int64_t)e * e); |
249 | 0 | } |
250 | 0 | dat += dat_stride; |
251 | 0 | src += src_stride; |
252 | 0 | flt0 += flt0_stride; |
253 | 0 | flt1 += flt1_stride; |
254 | 0 | } |
255 | 0 | } else if (params->r[0] > 0) { |
256 | 0 | for (i = 0; i < height; ++i) { |
257 | 0 | for (j = 0; j < width; ++j) { |
258 | 0 | assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); |
259 | 0 | const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); |
260 | 0 | int32_t v = u << SGRPROJ_PRJ_BITS; |
261 | 0 | v += xq[0] * (flt0[j] - u); |
262 | 0 | const int32_t e = |
263 | 0 | ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; |
264 | 0 | err += ((int64_t)e * e); |
265 | 0 | } |
266 | 0 | dat += dat_stride; |
267 | 0 | src += src_stride; |
268 | 0 | flt0 += flt0_stride; |
269 | 0 | } |
270 | 0 | } else if (params->r[1] > 0) { |
271 | 0 | for (i = 0; i < height; ++i) { |
272 | 0 | for (j = 0; j < width; ++j) { |
273 | 0 | assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); |
274 | 0 | const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); |
275 | 0 | int32_t v = u << SGRPROJ_PRJ_BITS; |
276 | 0 | v += xq[1] * (flt1[j] - u); |
277 | 0 | const int32_t e = |
278 | 0 | ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; |
279 | 0 | err += ((int64_t)e * e); |
280 | 0 | } |
281 | 0 | dat += dat_stride; |
282 | 0 | src += src_stride; |
283 | 0 | flt1 += flt1_stride; |
284 | 0 | } |
285 | 0 | } else { |
286 | 0 | for (i = 0; i < height; ++i) { |
287 | 0 | for (j = 0; j < width; ++j) { |
288 | 0 | const int32_t e = (int32_t)(dat[j]) - src[j]; |
289 | 0 | err += ((int64_t)e * e); |
290 | 0 | } |
291 | 0 | dat += dat_stride; |
292 | 0 | src += src_stride; |
293 | 0 | } |
294 | 0 | } |
295 | |
|
296 | 0 | return err; |
297 | 0 | } |
298 | | |
299 | | #if CONFIG_AV1_HIGHBITDEPTH |
300 | | int64_t av1_highbd_pixel_proj_error_c(const uint8_t *src8, int width, |
301 | | int height, int src_stride, |
302 | | const uint8_t *dat8, int dat_stride, |
303 | | int32_t *flt0, int flt0_stride, |
304 | | int32_t *flt1, int flt1_stride, int xq[2], |
305 | 0 | const sgr_params_type *params) { |
306 | 0 | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
307 | 0 | const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
308 | 0 | int i, j; |
309 | 0 | int64_t err = 0; |
310 | 0 | const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1); |
311 | 0 | if (params->r[0] > 0 && params->r[1] > 0) { |
312 | 0 | int xq0 = xq[0]; |
313 | 0 | int xq1 = xq[1]; |
314 | 0 | for (i = 0; i < height; ++i) { |
315 | 0 | for (j = 0; j < width; ++j) { |
316 | 0 | const int32_t d = dat[j]; |
317 | 0 | const int32_t s = src[j]; |
318 | 0 | const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); |
319 | 0 | int32_t v0 = flt0[j] - u; |
320 | 0 | int32_t v1 = flt1[j] - u; |
321 | 0 | int32_t v = half; |
322 | 0 | v += xq0 * v0; |
323 | 0 | v += xq1 * v1; |
324 | 0 | const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; |
325 | 0 | err += ((int64_t)e * e); |
326 | 0 | } |
327 | 0 | dat += dat_stride; |
328 | 0 | flt0 += flt0_stride; |
329 | 0 | flt1 += flt1_stride; |
330 | 0 | src += src_stride; |
331 | 0 | } |
332 | 0 | } else if (params->r[0] > 0 || params->r[1] > 0) { |
333 | 0 | int exq; |
334 | 0 | int32_t *flt; |
335 | 0 | int flt_stride; |
336 | 0 | if (params->r[0] > 0) { |
337 | 0 | exq = xq[0]; |
338 | 0 | flt = flt0; |
339 | 0 | flt_stride = flt0_stride; |
340 | 0 | } else { |
341 | 0 | exq = xq[1]; |
342 | 0 | flt = flt1; |
343 | 0 | flt_stride = flt1_stride; |
344 | 0 | } |
345 | 0 | for (i = 0; i < height; ++i) { |
346 | 0 | for (j = 0; j < width; ++j) { |
347 | 0 | const int32_t d = dat[j]; |
348 | 0 | const int32_t s = src[j]; |
349 | 0 | const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); |
350 | 0 | int32_t v = half; |
351 | 0 | v += exq * (flt[j] - u); |
352 | 0 | const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; |
353 | 0 | err += ((int64_t)e * e); |
354 | 0 | } |
355 | 0 | dat += dat_stride; |
356 | 0 | flt += flt_stride; |
357 | 0 | src += src_stride; |
358 | 0 | } |
359 | 0 | } else { |
360 | 0 | for (i = 0; i < height; ++i) { |
361 | 0 | for (j = 0; j < width; ++j) { |
362 | 0 | const int32_t d = dat[j]; |
363 | 0 | const int32_t s = src[j]; |
364 | 0 | const int32_t e = d - s; |
365 | 0 | err += ((int64_t)e * e); |
366 | 0 | } |
367 | 0 | dat += dat_stride; |
368 | 0 | src += src_stride; |
369 | 0 | } |
370 | 0 | } |
371 | 0 | return err; |
372 | 0 | } |
373 | | #endif // CONFIG_AV1_HIGHBITDEPTH |
374 | | |
375 | | static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height, |
376 | | int src_stride, const uint8_t *dat8, |
377 | | int dat_stride, int use_highbitdepth, |
378 | | int32_t *flt0, int flt0_stride, |
379 | | int32_t *flt1, int flt1_stride, int *xqd, |
380 | 0 | const sgr_params_type *params) { |
381 | 0 | int xq[2]; |
382 | 0 | av1_decode_xq(xqd, xq, params); |
383 | |
|
384 | 0 | #if CONFIG_AV1_HIGHBITDEPTH |
385 | 0 | if (use_highbitdepth) { |
386 | 0 | return av1_highbd_pixel_proj_error(src8, width, height, src_stride, dat8, |
387 | 0 | dat_stride, flt0, flt0_stride, flt1, |
388 | 0 | flt1_stride, xq, params); |
389 | |
|
390 | 0 | } else { |
391 | 0 | return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, |
392 | 0 | dat_stride, flt0, flt0_stride, flt1, |
393 | 0 | flt1_stride, xq, params); |
394 | 0 | } |
395 | | #else |
396 | | (void)use_highbitdepth; |
397 | | return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, |
398 | | dat_stride, flt0, flt0_stride, flt1, |
399 | | flt1_stride, xq, params); |
400 | | #endif |
401 | 0 | } |
402 | | |
403 | | #define USE_SGRPROJ_REFINEMENT_SEARCH 1 |
404 | | static int64_t finer_search_pixel_proj_error( |
405 | | const uint8_t *src8, int width, int height, int src_stride, |
406 | | const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0, |
407 | | int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd, |
408 | 0 | const sgr_params_type *params) { |
409 | 0 | int64_t err = get_pixel_proj_error( |
410 | 0 | src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, |
411 | 0 | flt0_stride, flt1, flt1_stride, xqd, params); |
412 | 0 | (void)start_step; |
413 | 0 | #if USE_SGRPROJ_REFINEMENT_SEARCH |
414 | 0 | int64_t err2; |
415 | 0 | int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 }; |
416 | 0 | int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 }; |
417 | 0 | for (int s = start_step; s >= 1; s >>= 1) { |
418 | 0 | for (int p = 0; p < 2; ++p) { |
419 | 0 | if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) { |
420 | 0 | continue; |
421 | 0 | } |
422 | 0 | int skip = 0; |
423 | 0 | do { |
424 | 0 | if (xqd[p] - s >= tap_min[p]) { |
425 | 0 | xqd[p] -= s; |
426 | 0 | err2 = |
427 | 0 | get_pixel_proj_error(src8, width, height, src_stride, dat8, |
428 | 0 | dat_stride, use_highbitdepth, flt0, |
429 | 0 | flt0_stride, flt1, flt1_stride, xqd, params); |
430 | 0 | if (err2 > err) { |
431 | 0 | xqd[p] += s; |
432 | 0 | } else { |
433 | 0 | err = err2; |
434 | 0 | skip = 1; |
435 | | // At the highest step size continue moving in the same direction |
436 | 0 | if (s == start_step) continue; |
437 | 0 | } |
438 | 0 | } |
439 | 0 | break; |
440 | 0 | } while (1); |
441 | 0 | if (skip) break; |
442 | 0 | do { |
443 | 0 | if (xqd[p] + s <= tap_max[p]) { |
444 | 0 | xqd[p] += s; |
445 | 0 | err2 = |
446 | 0 | get_pixel_proj_error(src8, width, height, src_stride, dat8, |
447 | 0 | dat_stride, use_highbitdepth, flt0, |
448 | 0 | flt0_stride, flt1, flt1_stride, xqd, params); |
449 | 0 | if (err2 > err) { |
450 | 0 | xqd[p] -= s; |
451 | 0 | } else { |
452 | 0 | err = err2; |
453 | | // At the highest step size continue moving in the same direction |
454 | 0 | if (s == start_step) continue; |
455 | 0 | } |
456 | 0 | } |
457 | 0 | break; |
458 | 0 | } while (1); |
459 | 0 | } |
460 | 0 | } |
461 | 0 | #endif // USE_SGRPROJ_REFINEMENT_SEARCH |
462 | 0 | return err; |
463 | 0 | } |
464 | | |
465 | 0 | static int64_t signed_rounded_divide(int64_t dividend, int64_t divisor) { |
466 | 0 | if (dividend < 0) |
467 | 0 | return (dividend - divisor / 2) / divisor; |
468 | 0 | else |
469 | 0 | return (dividend + divisor / 2) / divisor; |
470 | 0 | } |
471 | | |
472 | | static inline void calc_proj_params_r0_r1_c(const uint8_t *src8, int width, |
473 | | int height, int src_stride, |
474 | | const uint8_t *dat8, int dat_stride, |
475 | | int32_t *flt0, int flt0_stride, |
476 | | int32_t *flt1, int flt1_stride, |
477 | 0 | int64_t H[2][2], int64_t C[2]) { |
478 | 0 | const int size = width * height; |
479 | 0 | const uint8_t *src = src8; |
480 | 0 | const uint8_t *dat = dat8; |
481 | 0 | for (int i = 0; i < height; ++i) { |
482 | 0 | for (int j = 0; j < width; ++j) { |
483 | 0 | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
484 | 0 | const int32_t s = |
485 | 0 | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
486 | 0 | const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
487 | 0 | const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
488 | 0 | H[0][0] += (int64_t)f1 * f1; |
489 | 0 | H[1][1] += (int64_t)f2 * f2; |
490 | 0 | H[0][1] += (int64_t)f1 * f2; |
491 | 0 | C[0] += (int64_t)f1 * s; |
492 | 0 | C[1] += (int64_t)f2 * s; |
493 | 0 | } |
494 | 0 | } |
495 | 0 | H[0][0] /= size; |
496 | 0 | H[0][1] /= size; |
497 | 0 | H[1][1] /= size; |
498 | 0 | H[1][0] = H[0][1]; |
499 | 0 | C[0] /= size; |
500 | 0 | C[1] /= size; |
501 | 0 | } |
502 | | |
503 | | #if CONFIG_AV1_HIGHBITDEPTH |
504 | | static inline void calc_proj_params_r0_r1_high_bd_c( |
505 | | const uint8_t *src8, int width, int height, int src_stride, |
506 | | const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, |
507 | 0 | int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { |
508 | 0 | const int size = width * height; |
509 | 0 | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
510 | 0 | const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
511 | 0 | for (int i = 0; i < height; ++i) { |
512 | 0 | for (int j = 0; j < width; ++j) { |
513 | 0 | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
514 | 0 | const int32_t s = |
515 | 0 | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
516 | 0 | const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
517 | 0 | const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
518 | 0 | H[0][0] += (int64_t)f1 * f1; |
519 | 0 | H[1][1] += (int64_t)f2 * f2; |
520 | 0 | H[0][1] += (int64_t)f1 * f2; |
521 | 0 | C[0] += (int64_t)f1 * s; |
522 | 0 | C[1] += (int64_t)f2 * s; |
523 | 0 | } |
524 | 0 | } |
525 | 0 | H[0][0] /= size; |
526 | 0 | H[0][1] /= size; |
527 | 0 | H[1][1] /= size; |
528 | 0 | H[1][0] = H[0][1]; |
529 | 0 | C[0] /= size; |
530 | 0 | C[1] /= size; |
531 | 0 | } |
532 | | #endif // CONFIG_AV1_HIGHBITDEPTH |
533 | | |
534 | | static inline void calc_proj_params_r0_c(const uint8_t *src8, int width, |
535 | | int height, int src_stride, |
536 | | const uint8_t *dat8, int dat_stride, |
537 | | int32_t *flt0, int flt0_stride, |
538 | 0 | int64_t H[2][2], int64_t C[2]) { |
539 | 0 | const int size = width * height; |
540 | 0 | const uint8_t *src = src8; |
541 | 0 | const uint8_t *dat = dat8; |
542 | 0 | for (int i = 0; i < height; ++i) { |
543 | 0 | for (int j = 0; j < width; ++j) { |
544 | 0 | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
545 | 0 | const int32_t s = |
546 | 0 | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
547 | 0 | const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
548 | 0 | H[0][0] += (int64_t)f1 * f1; |
549 | 0 | C[0] += (int64_t)f1 * s; |
550 | 0 | } |
551 | 0 | } |
552 | 0 | H[0][0] /= size; |
553 | 0 | C[0] /= size; |
554 | 0 | } |
555 | | |
556 | | #if CONFIG_AV1_HIGHBITDEPTH |
557 | | static inline void calc_proj_params_r0_high_bd_c( |
558 | | const uint8_t *src8, int width, int height, int src_stride, |
559 | | const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, |
560 | 0 | int64_t H[2][2], int64_t C[2]) { |
561 | 0 | const int size = width * height; |
562 | 0 | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
563 | 0 | const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
564 | 0 | for (int i = 0; i < height; ++i) { |
565 | 0 | for (int j = 0; j < width; ++j) { |
566 | 0 | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
567 | 0 | const int32_t s = |
568 | 0 | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
569 | 0 | const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
570 | 0 | H[0][0] += (int64_t)f1 * f1; |
571 | 0 | C[0] += (int64_t)f1 * s; |
572 | 0 | } |
573 | 0 | } |
574 | 0 | H[0][0] /= size; |
575 | 0 | C[0] /= size; |
576 | 0 | } |
577 | | #endif // CONFIG_AV1_HIGHBITDEPTH |
578 | | |
579 | | static inline void calc_proj_params_r1_c(const uint8_t *src8, int width, |
580 | | int height, int src_stride, |
581 | | const uint8_t *dat8, int dat_stride, |
582 | | int32_t *flt1, int flt1_stride, |
583 | 0 | int64_t H[2][2], int64_t C[2]) { |
584 | 0 | const int size = width * height; |
585 | 0 | const uint8_t *src = src8; |
586 | 0 | const uint8_t *dat = dat8; |
587 | 0 | for (int i = 0; i < height; ++i) { |
588 | 0 | for (int j = 0; j < width; ++j) { |
589 | 0 | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
590 | 0 | const int32_t s = |
591 | 0 | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
592 | 0 | const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
593 | 0 | H[1][1] += (int64_t)f2 * f2; |
594 | 0 | C[1] += (int64_t)f2 * s; |
595 | 0 | } |
596 | 0 | } |
597 | 0 | H[1][1] /= size; |
598 | 0 | C[1] /= size; |
599 | 0 | } |
600 | | |
601 | | #if CONFIG_AV1_HIGHBITDEPTH |
602 | | static inline void calc_proj_params_r1_high_bd_c( |
603 | | const uint8_t *src8, int width, int height, int src_stride, |
604 | | const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride, |
605 | 0 | int64_t H[2][2], int64_t C[2]) { |
606 | 0 | const int size = width * height; |
607 | 0 | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
608 | 0 | const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
609 | 0 | for (int i = 0; i < height; ++i) { |
610 | 0 | for (int j = 0; j < width; ++j) { |
611 | 0 | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
612 | 0 | const int32_t s = |
613 | 0 | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
614 | 0 | const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
615 | 0 | H[1][1] += (int64_t)f2 * f2; |
616 | 0 | C[1] += (int64_t)f2 * s; |
617 | 0 | } |
618 | 0 | } |
619 | 0 | H[1][1] /= size; |
620 | 0 | C[1] /= size; |
621 | 0 | } |
622 | | #endif // CONFIG_AV1_HIGHBITDEPTH |
623 | | |
624 | | // The function calls 3 subfunctions for the following cases : |
625 | | // 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements |
626 | | // of C and H need to be computed. |
627 | | // 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are |
628 | | // non-zero and need to be computed. |
629 | | // 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are |
630 | | // non-zero and need to be computed. |
631 | | void av1_calc_proj_params_c(const uint8_t *src8, int width, int height, |
632 | | int src_stride, const uint8_t *dat8, int dat_stride, |
633 | | int32_t *flt0, int flt0_stride, int32_t *flt1, |
634 | | int flt1_stride, int64_t H[2][2], int64_t C[2], |
635 | 0 | const sgr_params_type *params) { |
636 | 0 | if ((params->r[0] > 0) && (params->r[1] > 0)) { |
637 | 0 | calc_proj_params_r0_r1_c(src8, width, height, src_stride, dat8, dat_stride, |
638 | 0 | flt0, flt0_stride, flt1, flt1_stride, H, C); |
639 | 0 | } else if (params->r[0] > 0) { |
640 | 0 | calc_proj_params_r0_c(src8, width, height, src_stride, dat8, dat_stride, |
641 | 0 | flt0, flt0_stride, H, C); |
642 | 0 | } else if (params->r[1] > 0) { |
643 | 0 | calc_proj_params_r1_c(src8, width, height, src_stride, dat8, dat_stride, |
644 | 0 | flt1, flt1_stride, H, C); |
645 | 0 | } |
646 | 0 | } |
647 | | |
648 | | #if CONFIG_AV1_HIGHBITDEPTH |
649 | | void av1_calc_proj_params_high_bd_c(const uint8_t *src8, int width, int height, |
650 | | int src_stride, const uint8_t *dat8, |
651 | | int dat_stride, int32_t *flt0, |
652 | | int flt0_stride, int32_t *flt1, |
653 | | int flt1_stride, int64_t H[2][2], |
654 | | int64_t C[2], |
655 | 0 | const sgr_params_type *params) { |
656 | 0 | if ((params->r[0] > 0) && (params->r[1] > 0)) { |
657 | 0 | calc_proj_params_r0_r1_high_bd_c(src8, width, height, src_stride, dat8, |
658 | 0 | dat_stride, flt0, flt0_stride, flt1, |
659 | 0 | flt1_stride, H, C); |
660 | 0 | } else if (params->r[0] > 0) { |
661 | 0 | calc_proj_params_r0_high_bd_c(src8, width, height, src_stride, dat8, |
662 | 0 | dat_stride, flt0, flt0_stride, H, C); |
663 | 0 | } else if (params->r[1] > 0) { |
664 | 0 | calc_proj_params_r1_high_bd_c(src8, width, height, src_stride, dat8, |
665 | 0 | dat_stride, flt1, flt1_stride, H, C); |
666 | 0 | } |
667 | 0 | } |
668 | | #endif // CONFIG_AV1_HIGHBITDEPTH |
669 | | |
670 | | static inline void get_proj_subspace(const uint8_t *src8, int width, int height, |
671 | | int src_stride, const uint8_t *dat8, |
672 | | int dat_stride, int use_highbitdepth, |
673 | | int32_t *flt0, int flt0_stride, |
674 | | int32_t *flt1, int flt1_stride, int *xq, |
675 | 0 | const sgr_params_type *params) { |
676 | 0 | int64_t H[2][2] = { { 0, 0 }, { 0, 0 } }; |
677 | 0 | int64_t C[2] = { 0, 0 }; |
678 | | |
679 | | // Default values to be returned if the problem becomes ill-posed |
680 | 0 | xq[0] = 0; |
681 | 0 | xq[1] = 0; |
682 | |
|
683 | 0 | if (!use_highbitdepth) { |
684 | 0 | if ((width & 0x7) == 0) { |
685 | 0 | av1_calc_proj_params(src8, width, height, src_stride, dat8, dat_stride, |
686 | 0 | flt0, flt0_stride, flt1, flt1_stride, H, C, params); |
687 | 0 | } else { |
688 | 0 | av1_calc_proj_params_c(src8, width, height, src_stride, dat8, dat_stride, |
689 | 0 | flt0, flt0_stride, flt1, flt1_stride, H, C, |
690 | 0 | params); |
691 | 0 | } |
692 | 0 | } |
693 | 0 | #if CONFIG_AV1_HIGHBITDEPTH |
694 | 0 | else { // NOLINT |
695 | 0 | if ((width & 0x7) == 0) { |
696 | 0 | av1_calc_proj_params_high_bd(src8, width, height, src_stride, dat8, |
697 | 0 | dat_stride, flt0, flt0_stride, flt1, |
698 | 0 | flt1_stride, H, C, params); |
699 | 0 | } else { |
700 | 0 | av1_calc_proj_params_high_bd_c(src8, width, height, src_stride, dat8, |
701 | 0 | dat_stride, flt0, flt0_stride, flt1, |
702 | 0 | flt1_stride, H, C, params); |
703 | 0 | } |
704 | 0 | } |
705 | 0 | #endif |
706 | |
|
707 | 0 | if (params->r[0] == 0) { |
708 | | // H matrix is now only the scalar H[1][1] |
709 | | // C vector is now only the scalar C[1] |
710 | 0 | const int64_t Det = H[1][1]; |
711 | 0 | if (Det == 0) return; // ill-posed, return default values |
712 | 0 | xq[0] = 0; |
713 | 0 | xq[1] = (int)signed_rounded_divide(C[1] * (1 << SGRPROJ_PRJ_BITS), Det); |
714 | 0 | } else if (params->r[1] == 0) { |
715 | | // H matrix is now only the scalar H[0][0] |
716 | | // C vector is now only the scalar C[0] |
717 | 0 | const int64_t Det = H[0][0]; |
718 | 0 | if (Det == 0) return; // ill-posed, return default values |
719 | 0 | xq[0] = (int)signed_rounded_divide(C[0] * (1 << SGRPROJ_PRJ_BITS), Det); |
720 | 0 | xq[1] = 0; |
721 | 0 | } else { |
722 | 0 | const int64_t Det = H[0][0] * H[1][1] - H[0][1] * H[1][0]; |
723 | 0 | if (Det == 0) return; // ill-posed, return default values |
724 | | |
725 | | // If scaling up dividend would overflow, instead scale down the divisor |
726 | 0 | const int64_t div1 = H[1][1] * C[0] - H[0][1] * C[1]; |
727 | 0 | if ((div1 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div1) || |
728 | 0 | (div1 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div1)) |
729 | 0 | xq[0] = (int)signed_rounded_divide(div1, Det / (1 << SGRPROJ_PRJ_BITS)); |
730 | 0 | else |
731 | 0 | xq[0] = (int)signed_rounded_divide(div1 * (1 << SGRPROJ_PRJ_BITS), Det); |
732 | |
|
733 | 0 | const int64_t div2 = H[0][0] * C[1] - H[1][0] * C[0]; |
734 | 0 | if ((div2 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div2) || |
735 | 0 | (div2 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div2)) |
736 | 0 | xq[1] = (int)signed_rounded_divide(div2, Det / (1 << SGRPROJ_PRJ_BITS)); |
737 | 0 | else |
738 | 0 | xq[1] = (int)signed_rounded_divide(div2 * (1 << SGRPROJ_PRJ_BITS), Det); |
739 | 0 | } |
740 | 0 | } |
741 | | |
742 | 0 | static inline void encode_xq(int *xq, int *xqd, const sgr_params_type *params) { |
743 | 0 | if (params->r[0] == 0) { |
744 | 0 | xqd[0] = 0; |
745 | 0 | xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1, |
746 | 0 | SGRPROJ_PRJ_MAX1); |
747 | 0 | } else if (params->r[1] == 0) { |
748 | 0 | xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); |
749 | 0 | xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1, |
750 | 0 | SGRPROJ_PRJ_MAX1); |
751 | 0 | } else { |
752 | 0 | xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); |
753 | 0 | xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1, |
754 | 0 | SGRPROJ_PRJ_MAX1); |
755 | 0 | } |
756 | 0 | } |
757 | | |
758 | | // Apply the self-guided filter across an entire restoration unit. |
759 | | static inline void apply_sgr(int sgr_params_idx, const uint8_t *dat8, int width, |
760 | | int height, int dat_stride, int use_highbd, |
761 | | int bit_depth, int pu_width, int pu_height, |
762 | | int32_t *flt0, int32_t *flt1, int flt_stride, |
763 | 0 | struct aom_internal_error_info *error_info) { |
764 | 0 | for (int i = 0; i < height; i += pu_height) { |
765 | 0 | const int h = AOMMIN(pu_height, height - i); |
766 | 0 | int32_t *flt0_row = flt0 + i * flt_stride; |
767 | 0 | int32_t *flt1_row = flt1 + i * flt_stride; |
768 | 0 | const uint8_t *dat8_row = dat8 + i * dat_stride; |
769 | | |
770 | | // Iterate over the stripe in blocks of width pu_width |
771 | 0 | for (int j = 0; j < width; j += pu_width) { |
772 | 0 | const int w = AOMMIN(pu_width, width - j); |
773 | 0 | if (av1_selfguided_restoration( |
774 | 0 | dat8_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j, |
775 | 0 | flt_stride, sgr_params_idx, bit_depth, use_highbd) != 0) { |
776 | 0 | aom_internal_error( |
777 | 0 | error_info, AOM_CODEC_MEM_ERROR, |
778 | 0 | "Error allocating buffer in av1_selfguided_restoration"); |
779 | 0 | } |
780 | 0 | } |
781 | 0 | } |
782 | 0 | } |
783 | | |
784 | | static inline void compute_sgrproj_err( |
785 | | const uint8_t *dat8, const int width, const int height, |
786 | | const int dat_stride, const uint8_t *src8, const int src_stride, |
787 | | const int use_highbitdepth, const int bit_depth, const int pu_width, |
788 | | const int pu_height, const int ep, int32_t *flt0, int32_t *flt1, |
789 | | const int flt_stride, int *exqd, int64_t *err, |
790 | 0 | struct aom_internal_error_info *error_info) { |
791 | 0 | int exq[2]; |
792 | 0 | apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth, |
793 | 0 | pu_width, pu_height, flt0, flt1, flt_stride, error_info); |
794 | 0 | const sgr_params_type *const params = &av1_sgr_params[ep]; |
795 | 0 | get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride, |
796 | 0 | use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq, |
797 | 0 | params); |
798 | 0 | encode_xq(exq, exqd, params); |
799 | 0 | *err = finer_search_pixel_proj_error( |
800 | 0 | src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, |
801 | 0 | flt_stride, flt1, flt_stride, 2, exqd, params); |
802 | 0 | } |
803 | | |
804 | | static inline void get_best_error(int64_t *besterr, const int64_t err, |
805 | | const int *exqd, int *bestxqd, int *bestep, |
806 | 0 | const int ep) { |
807 | 0 | if (*besterr == -1 || err < *besterr) { |
808 | 0 | *bestep = ep; |
809 | 0 | *besterr = err; |
810 | 0 | bestxqd[0] = exqd[0]; |
811 | 0 | bestxqd[1] = exqd[1]; |
812 | 0 | } |
813 | 0 | } |
814 | | |
815 | | static SgrprojInfo search_selfguided_restoration( |
816 | | const uint8_t *dat8, int width, int height, int dat_stride, |
817 | | const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth, |
818 | | int pu_width, int pu_height, int32_t *rstbuf, int enable_sgr_ep_pruning, |
819 | 0 | struct aom_internal_error_info *error_info) { |
820 | 0 | int32_t *flt0 = rstbuf; |
821 | 0 | int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; |
822 | 0 | int ep, idx, bestep = 0; |
823 | 0 | int64_t besterr = -1; |
824 | 0 | int exqd[2], bestxqd[2] = { 0, 0 }; |
825 | 0 | int flt_stride = ((width + 7) & ~7) + 8; |
826 | 0 | assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) || |
827 | 0 | pu_width == RESTORATION_PROC_UNIT_SIZE); |
828 | 0 | assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) || |
829 | 0 | pu_height == RESTORATION_PROC_UNIT_SIZE); |
830 | 0 | if (!enable_sgr_ep_pruning) { |
831 | 0 | for (ep = 0; ep < SGRPROJ_PARAMS; ep++) { |
832 | 0 | int64_t err; |
833 | 0 | compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
834 | 0 | use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
835 | 0 | flt0, flt1, flt_stride, exqd, &err, error_info); |
836 | 0 | get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
837 | 0 | } |
838 | 0 | } else { |
839 | | // evaluate first four seed ep in first group |
840 | 0 | for (idx = 0; idx < SGRPROJ_EP_GRP1_SEARCH_COUNT; idx++) { |
841 | 0 | ep = sgproj_ep_grp1_seed[idx]; |
842 | 0 | int64_t err; |
843 | 0 | compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
844 | 0 | use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
845 | 0 | flt0, flt1, flt_stride, exqd, &err, error_info); |
846 | 0 | get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
847 | 0 | } |
848 | | // evaluate left and right ep of winner in seed ep |
849 | 0 | int bestep_ref = bestep; |
850 | 0 | for (ep = bestep_ref - 1; ep < bestep_ref + 2; ep += 2) { |
851 | 0 | if (ep < SGRPROJ_EP_GRP1_START_IDX || ep > SGRPROJ_EP_GRP1_END_IDX) |
852 | 0 | continue; |
853 | 0 | int64_t err; |
854 | 0 | compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
855 | 0 | use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
856 | 0 | flt0, flt1, flt_stride, exqd, &err, error_info); |
857 | 0 | get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
858 | 0 | } |
859 | | // evaluate last two group |
860 | 0 | for (idx = 0; idx < SGRPROJ_EP_GRP2_3_SEARCH_COUNT; idx++) { |
861 | 0 | ep = sgproj_ep_grp2_3[idx][bestep]; |
862 | 0 | int64_t err; |
863 | 0 | compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
864 | 0 | use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
865 | 0 | flt0, flt1, flt_stride, exqd, &err, error_info); |
866 | 0 | get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
867 | 0 | } |
868 | 0 | } |
869 | |
|
870 | 0 | SgrprojInfo ret; |
871 | 0 | ret.ep = bestep; |
872 | 0 | ret.xqd[0] = bestxqd[0]; |
873 | 0 | ret.xqd[1] = bestxqd[1]; |
874 | 0 | return ret; |
875 | 0 | } |
876 | | |
877 | | static int count_sgrproj_bits(SgrprojInfo *sgrproj_info, |
878 | 0 | SgrprojInfo *ref_sgrproj_info) { |
879 | 0 | int bits = SGRPROJ_PARAMS_BITS; |
880 | 0 | const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; |
881 | 0 | if (params->r[0] > 0) |
882 | 0 | bits += aom_count_primitive_refsubexpfin( |
883 | 0 | SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
884 | 0 | ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, |
885 | 0 | sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); |
886 | 0 | if (params->r[1] > 0) |
887 | 0 | bits += aom_count_primitive_refsubexpfin( |
888 | 0 | SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
889 | 0 | ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, |
890 | 0 | sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); |
891 | 0 | return bits; |
892 | 0 | } |
893 | | |
894 | | static inline void search_sgrproj(const RestorationTileLimits *limits, |
895 | | int rest_unit_idx, void *priv, |
896 | | int32_t *tmpbuf, RestorationLineBuffers *rlbs, |
897 | 0 | struct aom_internal_error_info *error_info) { |
898 | 0 | (void)rlbs; |
899 | 0 | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
900 | 0 | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; |
901 | |
|
902 | 0 | const MACROBLOCK *const x = rsc->x; |
903 | 0 | const AV1_COMMON *const cm = rsc->cm; |
904 | 0 | const int highbd = cm->seq_params->use_highbitdepth; |
905 | 0 | const int bit_depth = cm->seq_params->bit_depth; |
906 | |
|
907 | 0 | const int64_t bits_none = x->mode_costs.sgrproj_restore_cost[0]; |
908 | | // Prune evaluation of RESTORE_SGRPROJ if 'skip_sgr_eval' is set |
909 | 0 | if (rsc->skip_sgr_eval) { |
910 | 0 | rsc->total_bits[RESTORE_SGRPROJ] += bits_none; |
911 | 0 | rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[RESTORE_NONE]; |
912 | 0 | rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_NONE; |
913 | 0 | rsc->sse[RESTORE_SGRPROJ] = INT64_MAX; |
914 | 0 | return; |
915 | 0 | } |
916 | | |
917 | 0 | uint8_t *dgd_start = |
918 | 0 | rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start; |
919 | 0 | const uint8_t *src_start = |
920 | 0 | rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start; |
921 | |
|
922 | 0 | const int is_uv = rsc->plane > 0; |
923 | 0 | const int ss_x = is_uv && cm->seq_params->subsampling_x; |
924 | 0 | const int ss_y = is_uv && cm->seq_params->subsampling_y; |
925 | 0 | const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x; |
926 | 0 | const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; |
927 | |
|
928 | 0 | rusi->sgrproj = search_selfguided_restoration( |
929 | 0 | dgd_start, limits->h_end - limits->h_start, |
930 | 0 | limits->v_end - limits->v_start, rsc->dgd_stride, src_start, |
931 | 0 | rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height, |
932 | 0 | tmpbuf, rsc->lpf_sf->enable_sgr_ep_pruning, error_info); |
933 | |
|
934 | 0 | RestorationUnitInfo rui; |
935 | 0 | rui.restoration_type = RESTORE_SGRPROJ; |
936 | 0 | rui.sgrproj_info = rusi->sgrproj; |
937 | |
|
938 | 0 | rsc->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, &rui); |
939 | |
|
940 | 0 | const int64_t bits_sgr = |
941 | 0 | x->mode_costs.sgrproj_restore_cost[1] + |
942 | 0 | (count_sgrproj_bits(&rusi->sgrproj, &rsc->ref_sgrproj) |
943 | 0 | << AV1_PROB_COST_SHIFT); |
944 | 0 | double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
945 | 0 | x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE], bit_depth); |
946 | 0 | double cost_sgr = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
947 | 0 | x->rdmult, bits_sgr >> 4, rsc->sse[RESTORE_SGRPROJ], bit_depth); |
948 | 0 | if (rusi->sgrproj.ep < 10) |
949 | 0 | cost_sgr *= |
950 | 0 | (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level); |
951 | |
|
952 | 0 | RestorationType rtype = |
953 | 0 | (cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE; |
954 | 0 | rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype; |
955 | |
|
956 | | #if DEBUG_LR_COSTING |
957 | | // Store ref params for later checking |
958 | | lr_ref_params[RESTORE_SGRPROJ][rsc->plane][rest_unit_idx].sgrproj_info = |
959 | | rsc->ref_sgrproj; |
960 | | #endif // DEBUG_LR_COSTING |
961 | |
|
962 | 0 | rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[rtype]; |
963 | 0 | rsc->total_bits[RESTORE_SGRPROJ] += |
964 | 0 | (cost_sgr < cost_none) ? bits_sgr : bits_none; |
965 | 0 | if (cost_sgr < cost_none) rsc->ref_sgrproj = rusi->sgrproj; |
966 | 0 | } |
967 | | |
968 | | static void acc_stat_one_line(const uint8_t *dgd, const uint8_t *src, |
969 | | int dgd_stride, int h_start, int h_end, |
970 | | uint8_t avg, const int wiener_halfwin, |
971 | | const int wiener_win2, int32_t *M_int32, |
972 | 0 | int32_t *H_int32, int count) { |
973 | 0 | int j, k, l; |
974 | 0 | int16_t Y[WIENER_WIN2]; |
975 | |
|
976 | 0 | for (j = h_start; j < h_end; j++) { |
977 | 0 | const int16_t X = (int16_t)src[j] - (int16_t)avg; |
978 | 0 | int idx = 0; |
979 | 0 | for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { |
980 | 0 | for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { |
981 | 0 | Y[idx] = |
982 | 0 | (int16_t)dgd[(count + l) * dgd_stride + (j + k)] - (int16_t)avg; |
983 | 0 | idx++; |
984 | 0 | } |
985 | 0 | } |
986 | 0 | assert(idx == wiener_win2); |
987 | 0 | for (k = 0; k < wiener_win2; ++k) { |
988 | 0 | M_int32[k] += (int32_t)Y[k] * X; |
989 | 0 | for (l = k; l < wiener_win2; ++l) { |
990 | | // H is a symmetric matrix, so we only need to fill out the upper |
991 | | // triangle here. We can copy it down to the lower triangle outside |
992 | | // the (i, j) loops. |
993 | 0 | H_int32[k * wiener_win2 + l] += (int32_t)Y[k] * Y[l]; |
994 | 0 | } |
995 | 0 | } |
996 | 0 | } |
997 | 0 | } |
998 | | |
999 | | void av1_compute_stats_c(int wiener_win, const uint8_t *dgd, const uint8_t *src, |
1000 | | int16_t *dgd_avg, int16_t *src_avg, int h_start, |
1001 | | int h_end, int v_start, int v_end, int dgd_stride, |
1002 | | int src_stride, int64_t *M, int64_t *H, |
1003 | 0 | int use_downsampled_wiener_stats) { |
1004 | 0 | (void)dgd_avg; |
1005 | 0 | (void)src_avg; |
1006 | 0 | int i, k, l; |
1007 | 0 | const int wiener_win2 = wiener_win * wiener_win; |
1008 | 0 | const int wiener_halfwin = (wiener_win >> 1); |
1009 | 0 | uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); |
1010 | 0 | int32_t M_row[WIENER_WIN2] = { 0 }; |
1011 | 0 | int32_t H_row[WIENER_WIN2 * WIENER_WIN2] = { 0 }; |
1012 | 0 | int downsample_factor = |
1013 | 0 | use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; |
1014 | |
|
1015 | 0 | memset(M, 0, sizeof(*M) * wiener_win2); |
1016 | 0 | memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); |
1017 | |
|
1018 | 0 | for (i = v_start; i < v_end; i = i + downsample_factor) { |
1019 | 0 | if (use_downsampled_wiener_stats && |
1020 | 0 | (v_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) { |
1021 | 0 | downsample_factor = v_end - i; |
1022 | 0 | } |
1023 | |
|
1024 | 0 | memset(M_row, 0, sizeof(int32_t) * WIENER_WIN2); |
1025 | 0 | memset(H_row, 0, sizeof(int32_t) * WIENER_WIN2 * WIENER_WIN2); |
1026 | 0 | acc_stat_one_line(dgd, src + i * src_stride, dgd_stride, h_start, h_end, |
1027 | 0 | avg, wiener_halfwin, wiener_win2, M_row, H_row, i); |
1028 | |
|
1029 | 0 | for (k = 0; k < wiener_win2; ++k) { |
1030 | | // Scale M matrix based on the downsampling factor |
1031 | 0 | M[k] += ((int64_t)M_row[k] * downsample_factor); |
1032 | 0 | for (l = k; l < wiener_win2; ++l) { |
1033 | | // H is a symmetric matrix, so we only need to fill out the upper |
1034 | | // triangle here. We can copy it down to the lower triangle outside |
1035 | | // the (i, j) loops. |
1036 | | // Scale H Matrix based on the downsampling factor |
1037 | 0 | H[k * wiener_win2 + l] += |
1038 | 0 | ((int64_t)H_row[k * wiener_win2 + l] * downsample_factor); |
1039 | 0 | } |
1040 | 0 | } |
1041 | 0 | } |
1042 | |
|
1043 | 0 | for (k = 0; k < wiener_win2; ++k) { |
1044 | 0 | for (l = k + 1; l < wiener_win2; ++l) { |
1045 | 0 | H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; |
1046 | 0 | } |
1047 | 0 | } |
1048 | 0 | } |
1049 | | |
1050 | | #if CONFIG_AV1_HIGHBITDEPTH |
1051 | | void av1_compute_stats_highbd_c(int wiener_win, const uint8_t *dgd8, |
1052 | | const uint8_t *src8, int16_t *dgd_avg, |
1053 | | int16_t *src_avg, int h_start, int h_end, |
1054 | | int v_start, int v_end, int dgd_stride, |
1055 | | int src_stride, int64_t *M, int64_t *H, |
1056 | 0 | aom_bit_depth_t bit_depth) { |
1057 | 0 | (void)dgd_avg; |
1058 | 0 | (void)src_avg; |
1059 | 0 | int i, j, k, l; |
1060 | 0 | int32_t Y[WIENER_WIN2]; |
1061 | 0 | const int wiener_win2 = wiener_win * wiener_win; |
1062 | 0 | const int wiener_halfwin = (wiener_win >> 1); |
1063 | 0 | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
1064 | 0 | const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); |
1065 | 0 | uint16_t avg = |
1066 | 0 | find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); |
1067 | |
|
1068 | 0 | uint8_t bit_depth_divider = 1; |
1069 | 0 | if (bit_depth == AOM_BITS_12) |
1070 | 0 | bit_depth_divider = 16; |
1071 | 0 | else if (bit_depth == AOM_BITS_10) |
1072 | 0 | bit_depth_divider = 4; |
1073 | |
|
1074 | 0 | memset(M, 0, sizeof(*M) * wiener_win2); |
1075 | 0 | memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); |
1076 | 0 | for (i = v_start; i < v_end; i++) { |
1077 | 0 | for (j = h_start; j < h_end; j++) { |
1078 | 0 | const int32_t X = (int32_t)src[i * src_stride + j] - (int32_t)avg; |
1079 | 0 | int idx = 0; |
1080 | 0 | for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { |
1081 | 0 | for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { |
1082 | 0 | Y[idx] = (int32_t)dgd[(i + l) * dgd_stride + (j + k)] - (int32_t)avg; |
1083 | 0 | idx++; |
1084 | 0 | } |
1085 | 0 | } |
1086 | 0 | assert(idx == wiener_win2); |
1087 | 0 | for (k = 0; k < wiener_win2; ++k) { |
1088 | 0 | M[k] += (int64_t)Y[k] * X; |
1089 | 0 | for (l = k; l < wiener_win2; ++l) { |
1090 | | // H is a symmetric matrix, so we only need to fill out the upper |
1091 | | // triangle here. We can copy it down to the lower triangle outside |
1092 | | // the (i, j) loops. |
1093 | 0 | H[k * wiener_win2 + l] += (int64_t)Y[k] * Y[l]; |
1094 | 0 | } |
1095 | 0 | } |
1096 | 0 | } |
1097 | 0 | } |
1098 | 0 | for (k = 0; k < wiener_win2; ++k) { |
1099 | 0 | M[k] /= bit_depth_divider; |
1100 | 0 | H[k * wiener_win2 + k] /= bit_depth_divider; |
1101 | 0 | for (l = k + 1; l < wiener_win2; ++l) { |
1102 | 0 | H[k * wiener_win2 + l] /= bit_depth_divider; |
1103 | 0 | H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; |
1104 | 0 | } |
1105 | 0 | } |
1106 | 0 | } |
1107 | | #endif // CONFIG_AV1_HIGHBITDEPTH |
1108 | | |
1109 | 0 | static inline int wrap_index(int i, int wiener_win) { |
1110 | 0 | const int wiener_halfwin1 = (wiener_win >> 1) + 1; |
1111 | 0 | return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i); |
1112 | 0 | } |
1113 | | |
1114 | | // Splits each w[i] into smaller components w1[i] and w2[i] such that |
1115 | | // w[i] = w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i]. |
1116 | | static inline void split_wiener_filter_coefficients(int wiener_win, |
1117 | | const int32_t *w, |
1118 | 0 | int32_t *w1, int32_t *w2) { |
1119 | 0 | for (int i = 0; i < wiener_win; i++) { |
1120 | 0 | w1[i] = w[i] / WIENER_TAP_SCALE_FACTOR; |
1121 | 0 | w2[i] = w[i] - w1[i] * WIENER_TAP_SCALE_FACTOR; |
1122 | 0 | assert(w[i] == w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i]); |
1123 | 0 | } |
1124 | 0 | } |
1125 | | |
1126 | | // Calculates x * w / WIENER_TAP_SCALE_FACTOR, where |
1127 | | // w = w1 * WIENER_TAP_SCALE_FACTOR + w2. |
1128 | | // |
1129 | | // The multiplication x * w may overflow, so we multiply x by the components of |
1130 | | // w (w1 and w2) and combine the multiplication with the division. |
1131 | 0 | static inline int64_t multiply_and_scale(int64_t x, int32_t w1, int32_t w2) { |
1132 | | // Let y = x * w / WIENER_TAP_SCALE_FACTOR |
1133 | | // = x * (w1 * WIENER_TAP_SCALE_FACTOR + w2) / WIENER_TAP_SCALE_FACTOR |
1134 | 0 | const int64_t y = x * w1 + x * w2 / WIENER_TAP_SCALE_FACTOR; |
1135 | 0 | return y; |
1136 | 0 | } |
1137 | | |
1138 | | // Solve linear equations to find Wiener filter tap values |
1139 | | // Taps are output scaled by WIENER_FILT_STEP |
1140 | | static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b, |
1141 | 0 | int64_t *x) { |
1142 | 0 | for (int k = 0; k < n - 1; k++) { |
1143 | | // Partial pivoting: bring the row with the largest pivot to the top |
1144 | 0 | for (int i = n - 1; i > k; i--) { |
1145 | | // If row i has a better (bigger) pivot than row (i-1), swap them |
1146 | 0 | if (llabs(A[(i - 1) * stride + k]) < llabs(A[i * stride + k])) { |
1147 | 0 | for (int j = 0; j < n; j++) { |
1148 | 0 | const int64_t c = A[i * stride + j]; |
1149 | 0 | A[i * stride + j] = A[(i - 1) * stride + j]; |
1150 | 0 | A[(i - 1) * stride + j] = c; |
1151 | 0 | } |
1152 | 0 | const int64_t c = b[i]; |
1153 | 0 | b[i] = b[i - 1]; |
1154 | 0 | b[i - 1] = c; |
1155 | 0 | } |
1156 | 0 | } |
1157 | | |
1158 | | // b/278065963: The multiplies |
1159 | | // c / 256 * A[k * stride + j] / cd * 256 |
1160 | | // and |
1161 | | // c / 256 * b[k] / cd * 256 |
1162 | | // within Gaussian elimination can cause a signed integer overflow. Rework |
1163 | | // the multiplies so that larger scaling is used without significantly |
1164 | | // impacting the overall precision. |
1165 | | // |
1166 | | // Precision guidance: |
1167 | | // scale_threshold: Pick as high as possible. |
1168 | | // For max_abs_akj >= scale_threshold scenario: |
1169 | | // scaler_A: Pick as low as possible. Needed for A[(i + 1) * stride + j]. |
1170 | | // scaler_c: Pick as low as possible while maintaining scaler_c >= |
1171 | | // (1 << 7). Needed for A[(i + 1) * stride + j] and b[i + 1]. |
1172 | 0 | int64_t max_abs_akj = 0; |
1173 | 0 | for (int j = 0; j < n; j++) { |
1174 | 0 | const int64_t abs_akj = llabs(A[k * stride + j]); |
1175 | 0 | if (abs_akj > max_abs_akj) max_abs_akj = abs_akj; |
1176 | 0 | } |
1177 | 0 | const int scale_threshold = 1 << 22; |
1178 | 0 | const int scaler_A = max_abs_akj < scale_threshold ? 1 : (1 << 6); |
1179 | 0 | const int scaler_c = max_abs_akj < scale_threshold ? 1 : (1 << 7); |
1180 | 0 | const int scaler = scaler_c * scaler_A; |
1181 | | |
1182 | | // Forward elimination (convert A to row-echelon form) |
1183 | 0 | for (int i = k; i < n - 1; i++) { |
1184 | 0 | if (A[k * stride + k] == 0) return 0; |
1185 | 0 | const int64_t c = A[(i + 1) * stride + k] / scaler_c; |
1186 | 0 | const int64_t cd = A[k * stride + k]; |
1187 | 0 | for (int j = 0; j < n; j++) { |
1188 | 0 | A[(i + 1) * stride + j] -= |
1189 | 0 | A[k * stride + j] / scaler_A * c / cd * scaler; |
1190 | 0 | } |
1191 | 0 | b[i + 1] -= c * b[k] / cd * scaler_c; |
1192 | 0 | } |
1193 | 0 | } |
1194 | | // Back-substitution |
1195 | 0 | for (int i = n - 1; i >= 0; i--) { |
1196 | 0 | if (A[i * stride + i] == 0) return 0; |
1197 | 0 | int64_t c = 0; |
1198 | 0 | for (int j = i + 1; j <= n - 1; j++) { |
1199 | 0 | c += A[i * stride + j] * x[j] / WIENER_TAP_SCALE_FACTOR; |
1200 | 0 | } |
1201 | | // Store filter taps x in scaled form. |
1202 | 0 | x[i] = WIENER_TAP_SCALE_FACTOR * (b[i] - c) / A[i * stride + i]; |
1203 | 0 | } |
1204 | | |
1205 | 0 | return 1; |
1206 | 0 | } |
1207 | | |
1208 | | // Fix vector b, update vector a |
1209 | | static inline void update_a_sep_sym(int wiener_win, int64_t **Mc, int64_t **Hc, |
1210 | 0 | int32_t *a, const int32_t *b) { |
1211 | 0 | int i, j; |
1212 | 0 | int64_t S[WIENER_WIN]; |
1213 | 0 | int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; |
1214 | 0 | int32_t b1[WIENER_WIN], b2[WIENER_WIN]; |
1215 | 0 | const int wiener_win2 = wiener_win * wiener_win; |
1216 | 0 | const int wiener_halfwin1 = (wiener_win >> 1) + 1; |
1217 | 0 | memset(A, 0, sizeof(A)); |
1218 | 0 | memset(B, 0, sizeof(B)); |
1219 | 0 | for (i = 0; i < wiener_win; i++) { |
1220 | 0 | for (j = 0; j < wiener_win; ++j) { |
1221 | 0 | const int jj = wrap_index(j, wiener_win); |
1222 | 0 | A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR; |
1223 | 0 | } |
1224 | 0 | } |
1225 | 0 | split_wiener_filter_coefficients(wiener_win, b, b1, b2); |
1226 | |
|
1227 | 0 | for (i = 0; i < wiener_win; i++) { |
1228 | 0 | for (j = 0; j < wiener_win; j++) { |
1229 | 0 | int k, l; |
1230 | 0 | for (k = 0; k < wiener_win; ++k) { |
1231 | 0 | const int kk = wrap_index(k, wiener_win); |
1232 | 0 | for (l = 0; l < wiener_win; ++l) { |
1233 | 0 | const int ll = wrap_index(l, wiener_win); |
1234 | | // Calculate |
1235 | | // B[ll * wiener_halfwin1 + kk] += |
1236 | | // Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] / |
1237 | | // WIENER_TAP_SCALE_FACTOR * b[j] / WIENER_TAP_SCALE_FACTOR; |
1238 | | // |
1239 | | // The last multiplication may overflow, so we combine the last |
1240 | | // multiplication with the last division. |
1241 | 0 | const int64_t x = Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] / |
1242 | 0 | WIENER_TAP_SCALE_FACTOR; |
1243 | | // b[j] = b1[j] * WIENER_TAP_SCALE_FACTOR + b2[j] |
1244 | 0 | B[ll * wiener_halfwin1 + kk] += multiply_and_scale(x, b1[j], b2[j]); |
1245 | 0 | } |
1246 | 0 | } |
1247 | 0 | } |
1248 | 0 | } |
1249 | | // Normalization enforcement in the system of equations itself |
1250 | 0 | for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
1251 | 0 | A[i] -= |
1252 | 0 | A[wiener_halfwin1 - 1] * 2 + |
1253 | 0 | B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - |
1254 | 0 | 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; |
1255 | 0 | } |
1256 | 0 | for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
1257 | 0 | for (j = 0; j < wiener_halfwin1 - 1; ++j) { |
1258 | 0 | B[i * wiener_halfwin1 + j] -= |
1259 | 0 | 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + |
1260 | 0 | B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - |
1261 | 0 | 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + |
1262 | 0 | (wiener_halfwin1 - 1)]); |
1263 | 0 | } |
1264 | 0 | } |
1265 | 0 | if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { |
1266 | 0 | S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR; |
1267 | 0 | for (i = wiener_halfwin1; i < wiener_win; ++i) { |
1268 | 0 | S[i] = S[wiener_win - 1 - i]; |
1269 | 0 | S[wiener_halfwin1 - 1] -= 2 * S[i]; |
1270 | 0 | } |
1271 | 0 | for (i = 0; i < wiener_win; ++i) { |
1272 | 0 | a[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)), |
1273 | 0 | (1 << (WIENER_FILT_BITS - 1)) - 1); |
1274 | 0 | } |
1275 | 0 | } |
1276 | 0 | } |
1277 | | |
1278 | | // Fix vector a, update vector b |
1279 | | static inline void update_b_sep_sym(int wiener_win, int64_t **Mc, int64_t **Hc, |
1280 | 0 | const int32_t *a, int32_t *b) { |
1281 | 0 | int i, j; |
1282 | 0 | int64_t S[WIENER_WIN]; |
1283 | 0 | int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; |
1284 | 0 | int32_t a1[WIENER_WIN], a2[WIENER_WIN]; |
1285 | 0 | const int wiener_win2 = wiener_win * wiener_win; |
1286 | 0 | const int wiener_halfwin1 = (wiener_win >> 1) + 1; |
1287 | 0 | memset(A, 0, sizeof(A)); |
1288 | 0 | memset(B, 0, sizeof(B)); |
1289 | 0 | for (i = 0; i < wiener_win; i++) { |
1290 | 0 | const int ii = wrap_index(i, wiener_win); |
1291 | 0 | for (j = 0; j < wiener_win; j++) { |
1292 | 0 | A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR; |
1293 | 0 | } |
1294 | 0 | } |
1295 | 0 | split_wiener_filter_coefficients(wiener_win, a, a1, a2); |
1296 | |
|
1297 | 0 | for (i = 0; i < wiener_win; i++) { |
1298 | 0 | const int ii = wrap_index(i, wiener_win); |
1299 | 0 | for (j = 0; j < wiener_win; j++) { |
1300 | 0 | const int jj = wrap_index(j, wiener_win); |
1301 | 0 | int k, l; |
1302 | 0 | for (k = 0; k < wiener_win; ++k) { |
1303 | 0 | for (l = 0; l < wiener_win; ++l) { |
1304 | | // Calculate |
1305 | | // B[jj * wiener_halfwin1 + ii] += |
1306 | | // Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] / |
1307 | | // WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR; |
1308 | | // |
1309 | | // The last multiplication may overflow, so we combine the last |
1310 | | // multiplication with the last division. |
1311 | 0 | const int64_t x = Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] / |
1312 | 0 | WIENER_TAP_SCALE_FACTOR; |
1313 | | // a[l] = a1[l] * WIENER_TAP_SCALE_FACTOR + a2[l] |
1314 | 0 | B[jj * wiener_halfwin1 + ii] += multiply_and_scale(x, a1[l], a2[l]); |
1315 | 0 | } |
1316 | 0 | } |
1317 | 0 | } |
1318 | 0 | } |
1319 | | // Normalization enforcement in the system of equations itself |
1320 | 0 | for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
1321 | 0 | A[i] -= |
1322 | 0 | A[wiener_halfwin1 - 1] * 2 + |
1323 | 0 | B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - |
1324 | 0 | 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; |
1325 | 0 | } |
1326 | 0 | for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
1327 | 0 | for (j = 0; j < wiener_halfwin1 - 1; ++j) { |
1328 | 0 | B[i * wiener_halfwin1 + j] -= |
1329 | 0 | 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + |
1330 | 0 | B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - |
1331 | 0 | 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + |
1332 | 0 | (wiener_halfwin1 - 1)]); |
1333 | 0 | } |
1334 | 0 | } |
1335 | 0 | if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { |
1336 | 0 | S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR; |
1337 | 0 | for (i = wiener_halfwin1; i < wiener_win; ++i) { |
1338 | 0 | S[i] = S[wiener_win - 1 - i]; |
1339 | 0 | S[wiener_halfwin1 - 1] -= 2 * S[i]; |
1340 | 0 | } |
1341 | 0 | for (i = 0; i < wiener_win; ++i) { |
1342 | 0 | b[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)), |
1343 | 0 | (1 << (WIENER_FILT_BITS - 1)) - 1); |
1344 | 0 | } |
1345 | 0 | } |
1346 | 0 | } |
1347 | | |
1348 | | static void wiener_decompose_sep_sym(int wiener_win, int64_t *M, int64_t *H, |
1349 | 0 | int32_t *a, int32_t *b) { |
1350 | 0 | static const int32_t init_filt[WIENER_WIN] = { |
1351 | 0 | WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV, |
1352 | 0 | WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV, |
1353 | 0 | WIENER_FILT_TAP0_MIDV, |
1354 | 0 | }; |
1355 | 0 | int64_t *Hc[WIENER_WIN2]; |
1356 | 0 | int64_t *Mc[WIENER_WIN]; |
1357 | 0 | int i, j, iter; |
1358 | 0 | const int plane_off = (WIENER_WIN - wiener_win) >> 1; |
1359 | 0 | const int wiener_win2 = wiener_win * wiener_win; |
1360 | 0 | for (i = 0; i < wiener_win; i++) { |
1361 | 0 | a[i] = b[i] = |
1362 | 0 | WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP * init_filt[i + plane_off]; |
1363 | 0 | } |
1364 | 0 | for (i = 0; i < wiener_win; i++) { |
1365 | 0 | Mc[i] = M + i * wiener_win; |
1366 | 0 | for (j = 0; j < wiener_win; j++) { |
1367 | 0 | Hc[i * wiener_win + j] = |
1368 | 0 | H + i * wiener_win * wiener_win2 + j * wiener_win; |
1369 | 0 | } |
1370 | 0 | } |
1371 | |
|
1372 | 0 | iter = 1; |
1373 | 0 | while (iter < NUM_WIENER_ITERS) { |
1374 | 0 | update_a_sep_sym(wiener_win, Mc, Hc, a, b); |
1375 | 0 | update_b_sep_sym(wiener_win, Mc, Hc, a, b); |
1376 | 0 | iter++; |
1377 | 0 | } |
1378 | 0 | } |
1379 | | |
1380 | | // Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares |
1381 | | // against identity filters; Final score is defined as the difference between |
1382 | | // the function values |
1383 | | static int64_t compute_score(int wiener_win, int64_t *M, int64_t *H, |
1384 | 0 | InterpKernel vfilt, InterpKernel hfilt) { |
1385 | 0 | int32_t ab[WIENER_WIN * WIENER_WIN]; |
1386 | 0 | int16_t a[WIENER_WIN], b[WIENER_WIN]; |
1387 | 0 | int64_t P = 0, Q = 0; |
1388 | 0 | int64_t iP = 0, iQ = 0; |
1389 | 0 | int64_t Score, iScore; |
1390 | 0 | int i, k, l; |
1391 | 0 | const int plane_off = (WIENER_WIN - wiener_win) >> 1; |
1392 | 0 | const int wiener_win2 = wiener_win * wiener_win; |
1393 | |
|
1394 | 0 | a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = WIENER_FILT_STEP; |
1395 | 0 | for (i = 0; i < WIENER_HALFWIN; ++i) { |
1396 | 0 | a[i] = a[WIENER_WIN - i - 1] = vfilt[i]; |
1397 | 0 | b[i] = b[WIENER_WIN - i - 1] = hfilt[i]; |
1398 | 0 | a[WIENER_HALFWIN] -= 2 * a[i]; |
1399 | 0 | b[WIENER_HALFWIN] -= 2 * b[i]; |
1400 | 0 | } |
1401 | 0 | memset(ab, 0, sizeof(ab)); |
1402 | 0 | for (k = 0; k < wiener_win; ++k) { |
1403 | 0 | for (l = 0; l < wiener_win; ++l) |
1404 | 0 | ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off]; |
1405 | 0 | } |
1406 | 0 | for (k = 0; k < wiener_win2; ++k) { |
1407 | 0 | P += ab[k] * M[k] / WIENER_FILT_STEP / WIENER_FILT_STEP; |
1408 | 0 | for (l = 0; l < wiener_win2; ++l) { |
1409 | 0 | Q += ab[k] * H[k * wiener_win2 + l] * ab[l] / WIENER_FILT_STEP / |
1410 | 0 | WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP; |
1411 | 0 | } |
1412 | 0 | } |
1413 | 0 | Score = Q - 2 * P; |
1414 | |
|
1415 | 0 | iP = M[wiener_win2 >> 1]; |
1416 | 0 | iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)]; |
1417 | 0 | iScore = iQ - 2 * iP; |
1418 | |
|
1419 | 0 | return Score - iScore; |
1420 | 0 | } |
1421 | | |
1422 | | static inline void finalize_sym_filter(int wiener_win, int32_t *f, |
1423 | 0 | InterpKernel fi) { |
1424 | 0 | int i; |
1425 | 0 | const int wiener_halfwin = (wiener_win >> 1); |
1426 | |
|
1427 | 0 | for (i = 0; i < wiener_halfwin; ++i) { |
1428 | 0 | const int64_t dividend = (int64_t)f[i] * WIENER_FILT_STEP; |
1429 | 0 | const int64_t divisor = WIENER_TAP_SCALE_FACTOR; |
1430 | | // Perform this division with proper rounding rather than truncation |
1431 | 0 | if (dividend < 0) { |
1432 | 0 | fi[i] = (int16_t)((dividend - (divisor / 2)) / divisor); |
1433 | 0 | } else { |
1434 | 0 | fi[i] = (int16_t)((dividend + (divisor / 2)) / divisor); |
1435 | 0 | } |
1436 | 0 | } |
1437 | | // Specialize for 7-tap filter |
1438 | 0 | if (wiener_win == WIENER_WIN) { |
1439 | 0 | fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV); |
1440 | 0 | fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); |
1441 | 0 | fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); |
1442 | 0 | } else { |
1443 | 0 | fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); |
1444 | 0 | fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); |
1445 | 0 | fi[0] = 0; |
1446 | 0 | } |
1447 | | // Satisfy filter constraints |
1448 | 0 | fi[WIENER_WIN - 1] = fi[0]; |
1449 | 0 | fi[WIENER_WIN - 2] = fi[1]; |
1450 | 0 | fi[WIENER_WIN - 3] = fi[2]; |
1451 | | // The central element has an implicit +WIENER_FILT_STEP |
1452 | 0 | fi[3] = -2 * (fi[0] + fi[1] + fi[2]); |
1453 | 0 | } |
1454 | | |
1455 | | static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info, |
1456 | 0 | WienerInfo *ref_wiener_info) { |
1457 | 0 | int bits = 0; |
1458 | 0 | if (wiener_win == WIENER_WIN) |
1459 | 0 | bits += aom_count_primitive_refsubexpfin( |
1460 | 0 | WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
1461 | 0 | WIENER_FILT_TAP0_SUBEXP_K, |
1462 | 0 | ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, |
1463 | 0 | wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); |
1464 | 0 | bits += aom_count_primitive_refsubexpfin( |
1465 | 0 | WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
1466 | 0 | WIENER_FILT_TAP1_SUBEXP_K, |
1467 | 0 | ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, |
1468 | 0 | wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); |
1469 | 0 | bits += aom_count_primitive_refsubexpfin( |
1470 | 0 | WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
1471 | 0 | WIENER_FILT_TAP2_SUBEXP_K, |
1472 | 0 | ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, |
1473 | 0 | wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); |
1474 | 0 | if (wiener_win == WIENER_WIN) |
1475 | 0 | bits += aom_count_primitive_refsubexpfin( |
1476 | 0 | WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
1477 | 0 | WIENER_FILT_TAP0_SUBEXP_K, |
1478 | 0 | ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, |
1479 | 0 | wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); |
1480 | 0 | bits += aom_count_primitive_refsubexpfin( |
1481 | 0 | WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
1482 | 0 | WIENER_FILT_TAP1_SUBEXP_K, |
1483 | 0 | ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, |
1484 | 0 | wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); |
1485 | 0 | bits += aom_count_primitive_refsubexpfin( |
1486 | 0 | WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
1487 | 0 | WIENER_FILT_TAP2_SUBEXP_K, |
1488 | 0 | ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, |
1489 | 0 | wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); |
1490 | 0 | return bits; |
1491 | 0 | } |
1492 | | |
1493 | | static int64_t finer_search_wiener(const RestSearchCtxt *rsc, |
1494 | | const RestorationTileLimits *limits, |
1495 | 0 | RestorationUnitInfo *rui, int wiener_win) { |
1496 | 0 | const int plane_off = (WIENER_WIN - wiener_win) >> 1; |
1497 | 0 | int64_t err = try_restoration_unit(rsc, limits, rui); |
1498 | |
|
1499 | 0 | if (rsc->lpf_sf->disable_wiener_coeff_refine_search) return err; |
1500 | | |
1501 | | // Refinement search around the wiener filter coefficients. |
1502 | 0 | int64_t err2; |
1503 | 0 | int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV, |
1504 | 0 | WIENER_FILT_TAP2_MINV }; |
1505 | 0 | int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV, |
1506 | 0 | WIENER_FILT_TAP2_MAXV }; |
1507 | |
|
1508 | 0 | WienerInfo *plane_wiener = &rui->wiener_info; |
1509 | | |
1510 | | // printf("err pre = %"PRId64"\n", err); |
1511 | 0 | const int start_step = 4; |
1512 | 0 | for (int s = start_step; s >= 1; s >>= 1) { |
1513 | 0 | for (int p = plane_off; p < WIENER_HALFWIN; ++p) { |
1514 | 0 | int skip = 0; |
1515 | 0 | do { |
1516 | 0 | if (plane_wiener->hfilter[p] - s >= tap_min[p]) { |
1517 | 0 | plane_wiener->hfilter[p] -= s; |
1518 | 0 | plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; |
1519 | 0 | plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; |
1520 | 0 | err2 = try_restoration_unit(rsc, limits, rui); |
1521 | 0 | if (err2 > err) { |
1522 | 0 | plane_wiener->hfilter[p] += s; |
1523 | 0 | plane_wiener->hfilter[WIENER_WIN - p - 1] += s; |
1524 | 0 | plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; |
1525 | 0 | } else { |
1526 | 0 | err = err2; |
1527 | 0 | skip = 1; |
1528 | | // At the highest step size continue moving in the same direction |
1529 | 0 | if (s == start_step) continue; |
1530 | 0 | } |
1531 | 0 | } |
1532 | 0 | break; |
1533 | 0 | } while (1); |
1534 | 0 | if (skip) break; |
1535 | 0 | do { |
1536 | 0 | if (plane_wiener->hfilter[p] + s <= tap_max[p]) { |
1537 | 0 | plane_wiener->hfilter[p] += s; |
1538 | 0 | plane_wiener->hfilter[WIENER_WIN - p - 1] += s; |
1539 | 0 | plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; |
1540 | 0 | err2 = try_restoration_unit(rsc, limits, rui); |
1541 | 0 | if (err2 > err) { |
1542 | 0 | plane_wiener->hfilter[p] -= s; |
1543 | 0 | plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; |
1544 | 0 | plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; |
1545 | 0 | } else { |
1546 | 0 | err = err2; |
1547 | | // At the highest step size continue moving in the same direction |
1548 | 0 | if (s == start_step) continue; |
1549 | 0 | } |
1550 | 0 | } |
1551 | 0 | break; |
1552 | 0 | } while (1); |
1553 | 0 | } |
1554 | 0 | for (int p = plane_off; p < WIENER_HALFWIN; ++p) { |
1555 | 0 | int skip = 0; |
1556 | 0 | do { |
1557 | 0 | if (plane_wiener->vfilter[p] - s >= tap_min[p]) { |
1558 | 0 | plane_wiener->vfilter[p] -= s; |
1559 | 0 | plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; |
1560 | 0 | plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; |
1561 | 0 | err2 = try_restoration_unit(rsc, limits, rui); |
1562 | 0 | if (err2 > err) { |
1563 | 0 | plane_wiener->vfilter[p] += s; |
1564 | 0 | plane_wiener->vfilter[WIENER_WIN - p - 1] += s; |
1565 | 0 | plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; |
1566 | 0 | } else { |
1567 | 0 | err = err2; |
1568 | 0 | skip = 1; |
1569 | | // At the highest step size continue moving in the same direction |
1570 | 0 | if (s == start_step) continue; |
1571 | 0 | } |
1572 | 0 | } |
1573 | 0 | break; |
1574 | 0 | } while (1); |
1575 | 0 | if (skip) break; |
1576 | 0 | do { |
1577 | 0 | if (plane_wiener->vfilter[p] + s <= tap_max[p]) { |
1578 | 0 | plane_wiener->vfilter[p] += s; |
1579 | 0 | plane_wiener->vfilter[WIENER_WIN - p - 1] += s; |
1580 | 0 | plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; |
1581 | 0 | err2 = try_restoration_unit(rsc, limits, rui); |
1582 | 0 | if (err2 > err) { |
1583 | 0 | plane_wiener->vfilter[p] -= s; |
1584 | 0 | plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; |
1585 | 0 | plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; |
1586 | 0 | } else { |
1587 | 0 | err = err2; |
1588 | | // At the highest step size continue moving in the same direction |
1589 | 0 | if (s == start_step) continue; |
1590 | 0 | } |
1591 | 0 | } |
1592 | 0 | break; |
1593 | 0 | } while (1); |
1594 | 0 | } |
1595 | 0 | } |
1596 | | // printf("err post = %"PRId64"\n", err); |
1597 | 0 | return err; |
1598 | 0 | } |
1599 | | |
1600 | | static inline void search_wiener(const RestorationTileLimits *limits, |
1601 | | int rest_unit_idx, void *priv, int32_t *tmpbuf, |
1602 | | RestorationLineBuffers *rlbs, |
1603 | 0 | struct aom_internal_error_info *error_info) { |
1604 | 0 | (void)tmpbuf; |
1605 | 0 | (void)rlbs; |
1606 | 0 | (void)error_info; |
1607 | 0 | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
1608 | 0 | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; |
1609 | |
|
1610 | 0 | const MACROBLOCK *const x = rsc->x; |
1611 | 0 | const int64_t bits_none = x->mode_costs.wiener_restore_cost[0]; |
1612 | | |
1613 | | // Skip Wiener search for low variance contents |
1614 | 0 | if (rsc->lpf_sf->prune_wiener_based_on_src_var) { |
1615 | 0 | const int scale[3] = { 0, 1, 2 }; |
1616 | | // Obtain the normalized Qscale |
1617 | 0 | const int qs = av1_dc_quant_QTX(rsc->cm->quant_params.base_qindex, 0, |
1618 | 0 | rsc->cm->seq_params->bit_depth) >> |
1619 | 0 | 3; |
1620 | | // Derive threshold as sqr(normalized Qscale) * scale / 16, |
1621 | 0 | const uint64_t thresh = |
1622 | 0 | (qs * qs * scale[rsc->lpf_sf->prune_wiener_based_on_src_var]) >> 4; |
1623 | 0 | const int highbd = rsc->cm->seq_params->use_highbitdepth; |
1624 | 0 | const uint64_t src_var = |
1625 | 0 | var_restoration_unit(limits, rsc->src, rsc->plane, highbd); |
1626 | | // Do not perform Wiener search if source variance is lower than threshold |
1627 | | // or if the reconstruction error is zero |
1628 | 0 | int prune_wiener = (src_var < thresh) || (rsc->sse[RESTORE_NONE] == 0); |
1629 | 0 | if (prune_wiener) { |
1630 | 0 | rsc->total_bits[RESTORE_WIENER] += bits_none; |
1631 | 0 | rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE]; |
1632 | 0 | rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; |
1633 | 0 | rsc->sse[RESTORE_WIENER] = INT64_MAX; |
1634 | 0 | if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1; |
1635 | 0 | return; |
1636 | 0 | } |
1637 | 0 | } |
1638 | | |
1639 | 0 | const int wiener_win = |
1640 | 0 | (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; |
1641 | |
|
1642 | 0 | int reduced_wiener_win = wiener_win; |
1643 | 0 | if (rsc->lpf_sf->reduce_wiener_window_size) { |
1644 | 0 | reduced_wiener_win = |
1645 | 0 | (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN_REDUCED : WIENER_WIN_CHROMA; |
1646 | 0 | } |
1647 | |
|
1648 | 0 | int64_t M[WIENER_WIN2]; |
1649 | 0 | int64_t H[WIENER_WIN2 * WIENER_WIN2]; |
1650 | 0 | int32_t vfilter[WIENER_WIN], hfilter[WIENER_WIN]; |
1651 | |
|
1652 | 0 | #if CONFIG_AV1_HIGHBITDEPTH |
1653 | 0 | const AV1_COMMON *const cm = rsc->cm; |
1654 | 0 | if (cm->seq_params->use_highbitdepth) { |
1655 | | // TODO(any) : Add support for use_downsampled_wiener_stats SF in HBD |
1656 | | // functions. Optimize intrinsics of HBD design similar to LBD (i.e., |
1657 | | // pre-calculate d and s buffers and avoid most of the C operations). |
1658 | 0 | av1_compute_stats_highbd(reduced_wiener_win, rsc->dgd_buffer, |
1659 | 0 | rsc->src_buffer, rsc->dgd_avg, rsc->src_avg, |
1660 | 0 | limits->h_start, limits->h_end, limits->v_start, |
1661 | 0 | limits->v_end, rsc->dgd_stride, rsc->src_stride, M, |
1662 | 0 | H, cm->seq_params->bit_depth); |
1663 | 0 | } else { |
1664 | 0 | av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, |
1665 | 0 | rsc->dgd_avg, rsc->src_avg, limits->h_start, |
1666 | 0 | limits->h_end, limits->v_start, limits->v_end, |
1667 | 0 | rsc->dgd_stride, rsc->src_stride, M, H, |
1668 | 0 | rsc->lpf_sf->use_downsampled_wiener_stats); |
1669 | 0 | } |
1670 | | #else |
1671 | | av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, |
1672 | | rsc->dgd_avg, rsc->src_avg, limits->h_start, limits->h_end, |
1673 | | limits->v_start, limits->v_end, rsc->dgd_stride, |
1674 | | rsc->src_stride, M, H, |
1675 | | rsc->lpf_sf->use_downsampled_wiener_stats); |
1676 | | #endif |
1677 | |
|
1678 | 0 | wiener_decompose_sep_sym(reduced_wiener_win, M, H, vfilter, hfilter); |
1679 | |
|
1680 | 0 | RestorationUnitInfo rui; |
1681 | 0 | memset(&rui, 0, sizeof(rui)); |
1682 | 0 | rui.restoration_type = RESTORE_WIENER; |
1683 | 0 | finalize_sym_filter(reduced_wiener_win, vfilter, rui.wiener_info.vfilter); |
1684 | 0 | finalize_sym_filter(reduced_wiener_win, hfilter, rui.wiener_info.hfilter); |
1685 | | |
1686 | | // Filter score computes the value of the function x'*A*x - x'*b for the |
1687 | | // learned filter and compares it against identity filer. If there is no |
1688 | | // reduction in the function, the filter is reverted back to identity |
1689 | 0 | if (compute_score(reduced_wiener_win, M, H, rui.wiener_info.vfilter, |
1690 | 0 | rui.wiener_info.hfilter) > 0) { |
1691 | 0 | rsc->total_bits[RESTORE_WIENER] += bits_none; |
1692 | 0 | rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE]; |
1693 | 0 | rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; |
1694 | 0 | rsc->sse[RESTORE_WIENER] = INT64_MAX; |
1695 | 0 | if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1; |
1696 | 0 | return; |
1697 | 0 | } |
1698 | | |
1699 | 0 | rsc->sse[RESTORE_WIENER] = |
1700 | 0 | finer_search_wiener(rsc, limits, &rui, reduced_wiener_win); |
1701 | 0 | rusi->wiener = rui.wiener_info; |
1702 | |
|
1703 | 0 | if (reduced_wiener_win != WIENER_WIN) { |
1704 | 0 | assert(rui.wiener_info.vfilter[0] == 0 && |
1705 | 0 | rui.wiener_info.vfilter[WIENER_WIN - 1] == 0); |
1706 | 0 | assert(rui.wiener_info.hfilter[0] == 0 && |
1707 | 0 | rui.wiener_info.hfilter[WIENER_WIN - 1] == 0); |
1708 | 0 | } |
1709 | |
|
1710 | 0 | const int64_t bits_wiener = |
1711 | 0 | x->mode_costs.wiener_restore_cost[1] + |
1712 | 0 | (count_wiener_bits(wiener_win, &rusi->wiener, &rsc->ref_wiener) |
1713 | 0 | << AV1_PROB_COST_SHIFT); |
1714 | |
|
1715 | 0 | double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
1716 | 0 | x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE], |
1717 | 0 | rsc->cm->seq_params->bit_depth); |
1718 | 0 | double cost_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
1719 | 0 | x->rdmult, bits_wiener >> 4, rsc->sse[RESTORE_WIENER], |
1720 | 0 | rsc->cm->seq_params->bit_depth); |
1721 | |
|
1722 | 0 | RestorationType rtype = |
1723 | 0 | (cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE; |
1724 | 0 | rusi->best_rtype[RESTORE_WIENER - 1] = rtype; |
1725 | | |
1726 | | // Set 'skip_sgr_eval' based on rdcost ratio of RESTORE_WIENER and |
1727 | | // RESTORE_NONE or based on best_rtype |
1728 | 0 | if (rsc->lpf_sf->prune_sgr_based_on_wiener == 1) { |
1729 | 0 | rsc->skip_sgr_eval = cost_wiener > (1.01 * cost_none); |
1730 | 0 | } else if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) { |
1731 | 0 | rsc->skip_sgr_eval = rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE; |
1732 | 0 | } |
1733 | |
|
1734 | | #if DEBUG_LR_COSTING |
1735 | | // Store ref params for later checking |
1736 | | lr_ref_params[RESTORE_WIENER][rsc->plane][rest_unit_idx].wiener_info = |
1737 | | rsc->ref_wiener; |
1738 | | #endif // DEBUG_LR_COSTING |
1739 | |
|
1740 | 0 | rsc->total_sse[RESTORE_WIENER] += rsc->sse[rtype]; |
1741 | 0 | rsc->total_bits[RESTORE_WIENER] += |
1742 | 0 | (cost_wiener < cost_none) ? bits_wiener : bits_none; |
1743 | 0 | if (cost_wiener < cost_none) rsc->ref_wiener = rusi->wiener; |
1744 | 0 | } |
1745 | | |
1746 | | static inline void search_norestore( |
1747 | | const RestorationTileLimits *limits, int rest_unit_idx, void *priv, |
1748 | | int32_t *tmpbuf, RestorationLineBuffers *rlbs, |
1749 | 0 | struct aom_internal_error_info *error_info) { |
1750 | 0 | (void)rest_unit_idx; |
1751 | 0 | (void)tmpbuf; |
1752 | 0 | (void)rlbs; |
1753 | 0 | (void)error_info; |
1754 | |
|
1755 | 0 | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
1756 | |
|
1757 | 0 | const int highbd = rsc->cm->seq_params->use_highbitdepth; |
1758 | 0 | rsc->sse[RESTORE_NONE] = sse_restoration_unit( |
1759 | 0 | limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane, highbd); |
1760 | |
|
1761 | 0 | rsc->total_sse[RESTORE_NONE] += rsc->sse[RESTORE_NONE]; |
1762 | 0 | } |
1763 | | |
1764 | | static inline void search_switchable( |
1765 | | const RestorationTileLimits *limits, int rest_unit_idx, void *priv, |
1766 | | int32_t *tmpbuf, RestorationLineBuffers *rlbs, |
1767 | 0 | struct aom_internal_error_info *error_info) { |
1768 | 0 | (void)limits; |
1769 | 0 | (void)tmpbuf; |
1770 | 0 | (void)rlbs; |
1771 | 0 | (void)error_info; |
1772 | 0 | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
1773 | 0 | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; |
1774 | |
|
1775 | 0 | const MACROBLOCK *const x = rsc->x; |
1776 | |
|
1777 | 0 | const int wiener_win = |
1778 | 0 | (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; |
1779 | |
|
1780 | 0 | double best_cost = 0; |
1781 | 0 | int64_t best_bits = 0; |
1782 | 0 | RestorationType best_rtype = RESTORE_NONE; |
1783 | |
|
1784 | 0 | for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) { |
1785 | | // If this restoration mode was skipped, or could not find a solution |
1786 | | // that was better than RESTORE_NONE, then we can't select it here either. |
1787 | | // |
1788 | | // Note: It is possible for the restoration search functions to find a |
1789 | | // filter which is better than RESTORE_NONE when looking purely at SSE, but |
1790 | | // for it to be rejected overall due to its rate cost. In this case, there |
1791 | | // is a chance that it may be have a lower rate cost when looking at |
1792 | | // RESTORE_SWITCHABLE, and so it might be acceptable here. |
1793 | | // |
1794 | | // Therefore we prune based on SSE, rather than on whether or not the |
1795 | | // previous search function selected this mode. |
1796 | 0 | if (r > RESTORE_NONE) { |
1797 | 0 | if (rsc->sse[r] > rsc->sse[RESTORE_NONE]) continue; |
1798 | 0 | } |
1799 | | |
1800 | 0 | const int64_t sse = rsc->sse[r]; |
1801 | 0 | int64_t coeff_pcost = 0; |
1802 | 0 | switch (r) { |
1803 | 0 | case RESTORE_NONE: coeff_pcost = 0; break; |
1804 | 0 | case RESTORE_WIENER: |
1805 | 0 | coeff_pcost = count_wiener_bits(wiener_win, &rusi->wiener, |
1806 | 0 | &rsc->switchable_ref_wiener); |
1807 | 0 | break; |
1808 | 0 | case RESTORE_SGRPROJ: |
1809 | 0 | coeff_pcost = |
1810 | 0 | count_sgrproj_bits(&rusi->sgrproj, &rsc->switchable_ref_sgrproj); |
1811 | 0 | break; |
1812 | 0 | default: assert(0); break; |
1813 | 0 | } |
1814 | 0 | const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT; |
1815 | 0 | const int64_t bits = x->mode_costs.switchable_restore_cost[r] + coeff_bits; |
1816 | 0 | double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
1817 | 0 | x->rdmult, bits >> 4, sse, rsc->cm->seq_params->bit_depth); |
1818 | 0 | if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10) |
1819 | 0 | cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level); |
1820 | 0 | if (r == 0 || cost < best_cost) { |
1821 | 0 | best_cost = cost; |
1822 | 0 | best_bits = bits; |
1823 | 0 | best_rtype = r; |
1824 | 0 | } |
1825 | 0 | } |
1826 | | |
1827 | 0 | rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype; |
1828 | |
|
1829 | | #if DEBUG_LR_COSTING |
1830 | | // Store ref params for later checking |
1831 | | lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].wiener_info = |
1832 | | rsc->switchable_ref_wiener; |
1833 | | lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].sgrproj_info = |
1834 | | rsc->switchable_ref_sgrproj; |
1835 | | #endif // DEBUG_LR_COSTING |
1836 | |
|
1837 | 0 | rsc->total_sse[RESTORE_SWITCHABLE] += rsc->sse[best_rtype]; |
1838 | 0 | rsc->total_bits[RESTORE_SWITCHABLE] += best_bits; |
1839 | 0 | if (best_rtype == RESTORE_WIENER) rsc->switchable_ref_wiener = rusi->wiener; |
1840 | 0 | if (best_rtype == RESTORE_SGRPROJ) |
1841 | 0 | rsc->switchable_ref_sgrproj = rusi->sgrproj; |
1842 | 0 | } |
1843 | | |
1844 | | static inline void copy_unit_info(RestorationType frame_rtype, |
1845 | | const RestUnitSearchInfo *rusi, |
1846 | 0 | RestorationUnitInfo *rui) { |
1847 | 0 | assert(frame_rtype > 0); |
1848 | 0 | rui->restoration_type = rusi->best_rtype[frame_rtype - 1]; |
1849 | 0 | if (rui->restoration_type == RESTORE_WIENER) |
1850 | 0 | rui->wiener_info = rusi->wiener; |
1851 | 0 | else |
1852 | 0 | rui->sgrproj_info = rusi->sgrproj; |
1853 | 0 | } |
1854 | | |
1855 | | static void restoration_search(AV1_COMMON *cm, int plane, RestSearchCtxt *rsc, |
1856 | 0 | bool *disable_lr_filter) { |
1857 | 0 | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
1858 | 0 | const int mib_size_log2 = cm->seq_params->mib_size_log2; |
1859 | 0 | const CommonTileParams *tiles = &cm->tiles; |
1860 | 0 | const int is_uv = plane > 0; |
1861 | 0 | const int ss_y = is_uv && cm->seq_params->subsampling_y; |
1862 | 0 | RestorationInfo *rsi = &cm->rst_info[plane]; |
1863 | 0 | const int ru_size = rsi->restoration_unit_size; |
1864 | 0 | const int ext_size = ru_size * 3 / 2; |
1865 | |
|
1866 | 0 | int plane_w, plane_h; |
1867 | 0 | av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); |
1868 | |
|
1869 | 0 | static const rest_unit_visitor_t funs[RESTORE_TYPES] = { |
1870 | 0 | search_norestore, search_wiener, search_sgrproj, search_switchable |
1871 | 0 | }; |
1872 | |
|
1873 | 0 | const int plane_num_units = rsi->num_rest_units; |
1874 | 0 | const RestorationType num_rtypes = |
1875 | 0 | (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES; |
1876 | |
|
1877 | 0 | reset_rsc(rsc); |
1878 | | |
1879 | | // Iterate over restoration units in encoding order, so that each RU gets |
1880 | | // the correct reference parameters when we cost it up. This is effectively |
1881 | | // a nested iteration over: |
1882 | | // * Each tile, order does not matter |
1883 | | // * Each superblock within that tile, in raster order |
1884 | | // * Each LR unit which is coded within that superblock, in raster order |
1885 | 0 | for (int tile_row = 0; tile_row < tiles->rows; tile_row++) { |
1886 | 0 | int sb_row_start = tiles->row_start_sb[tile_row]; |
1887 | 0 | int sb_row_end = tiles->row_start_sb[tile_row + 1]; |
1888 | 0 | for (int tile_col = 0; tile_col < tiles->cols; tile_col++) { |
1889 | 0 | int sb_col_start = tiles->col_start_sb[tile_col]; |
1890 | 0 | int sb_col_end = tiles->col_start_sb[tile_col + 1]; |
1891 | | |
1892 | | // Reset reference parameters for delta-coding at the start of each tile |
1893 | 0 | rsc_on_tile(rsc); |
1894 | |
|
1895 | 0 | for (int sb_row = sb_row_start; sb_row < sb_row_end; sb_row++) { |
1896 | 0 | int mi_row = sb_row << mib_size_log2; |
1897 | 0 | for (int sb_col = sb_col_start; sb_col < sb_col_end; sb_col++) { |
1898 | 0 | int mi_col = sb_col << mib_size_log2; |
1899 | |
|
1900 | 0 | int rcol0, rcol1, rrow0, rrow1; |
1901 | 0 | int has_lr_info = av1_loop_restoration_corners_in_sb( |
1902 | 0 | cm, plane, mi_row, mi_col, sb_size, &rcol0, &rcol1, &rrow0, |
1903 | 0 | &rrow1); |
1904 | |
|
1905 | 0 | if (!has_lr_info) continue; |
1906 | | |
1907 | 0 | RestorationTileLimits limits; |
1908 | 0 | for (int rrow = rrow0; rrow < rrow1; rrow++) { |
1909 | 0 | int y0 = rrow * ru_size; |
1910 | 0 | int remaining_h = plane_h - y0; |
1911 | 0 | int h = (remaining_h < ext_size) ? remaining_h : ru_size; |
1912 | |
|
1913 | 0 | limits.v_start = y0; |
1914 | 0 | limits.v_end = y0 + h; |
1915 | 0 | assert(limits.v_end <= plane_h); |
1916 | | // Offset upwards to align with the restoration processing stripe |
1917 | 0 | const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; |
1918 | 0 | limits.v_start = AOMMAX(0, limits.v_start - voffset); |
1919 | 0 | if (limits.v_end < plane_h) limits.v_end -= voffset; |
1920 | |
|
1921 | 0 | for (int rcol = rcol0; rcol < rcol1; rcol++) { |
1922 | 0 | int x0 = rcol * ru_size; |
1923 | 0 | int remaining_w = plane_w - x0; |
1924 | 0 | int w = (remaining_w < ext_size) ? remaining_w : ru_size; |
1925 | |
|
1926 | 0 | limits.h_start = x0; |
1927 | 0 | limits.h_end = x0 + w; |
1928 | 0 | assert(limits.h_end <= plane_w); |
1929 | |
|
1930 | 0 | const int unit_idx = rrow * rsi->horz_units + rcol; |
1931 | |
|
1932 | 0 | rsc->skip_sgr_eval = 0; |
1933 | 0 | for (RestorationType r = RESTORE_NONE; r < num_rtypes; r++) { |
1934 | 0 | if (disable_lr_filter[r]) continue; |
1935 | | |
1936 | 0 | funs[r](&limits, unit_idx, rsc, rsc->cm->rst_tmpbuf, NULL, |
1937 | 0 | cm->error); |
1938 | 0 | } |
1939 | 0 | } |
1940 | 0 | } |
1941 | 0 | } |
1942 | 0 | } |
1943 | 0 | } |
1944 | 0 | } |
1945 | 0 | } |
1946 | | |
1947 | | static inline void av1_derive_flags_for_lr_processing( |
1948 | 0 | const LOOP_FILTER_SPEED_FEATURES *lpf_sf, bool *disable_lr_filter) { |
1949 | 0 | const bool is_wiener_disabled = lpf_sf->disable_wiener_filter; |
1950 | 0 | const bool is_sgr_disabled = lpf_sf->disable_sgr_filter; |
1951 | | |
1952 | | // Enable None Loop restoration filter if either of Wiener or Self-guided is |
1953 | | // enabled. |
1954 | 0 | disable_lr_filter[RESTORE_NONE] = (is_wiener_disabled && is_sgr_disabled); |
1955 | |
|
1956 | 0 | disable_lr_filter[RESTORE_WIENER] = is_wiener_disabled; |
1957 | 0 | disable_lr_filter[RESTORE_SGRPROJ] = is_sgr_disabled; |
1958 | | |
1959 | | // Enable Swicthable Loop restoration filter if both of the Wiener and |
1960 | | // Self-guided are enabled. |
1961 | 0 | disable_lr_filter[RESTORE_SWITCHABLE] = |
1962 | 0 | (is_wiener_disabled || is_sgr_disabled); |
1963 | 0 | } |
1964 | | |
1965 | | #define COUPLED_CHROMA_FROM_LUMA_RESTORATION 0 |
1966 | | // Allocate both decoder-side and encoder-side info structs for a single plane. |
1967 | | // The unit size passed in should be the minimum size which we are going to |
1968 | | // search; before each search, set_restoration_unit_size() must be called to |
1969 | | // configure the actual size. |
1970 | | static RestUnitSearchInfo *allocate_search_structs(AV1_COMMON *cm, |
1971 | | RestorationInfo *rsi, |
1972 | | int is_uv, |
1973 | 0 | int min_luma_unit_size) { |
1974 | | #if COUPLED_CHROMA_FROM_LUMA_RESTORATION |
1975 | | int sx = cm->seq_params.subsampling_x; |
1976 | | int sy = cm->seq_params.subsampling_y; |
1977 | | int s = (p > 0) ? AOMMIN(sx, sy) : 0; |
1978 | | #else |
1979 | 0 | int s = 0; |
1980 | 0 | #endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION |
1981 | 0 | int min_unit_size = min_luma_unit_size >> s; |
1982 | |
|
1983 | 0 | int plane_w, plane_h; |
1984 | 0 | av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); |
1985 | |
|
1986 | 0 | const int max_horz_units = av1_lr_count_units(min_unit_size, plane_w); |
1987 | 0 | const int max_vert_units = av1_lr_count_units(min_unit_size, plane_h); |
1988 | 0 | const int max_num_units = max_horz_units * max_vert_units; |
1989 | |
|
1990 | 0 | aom_free(rsi->unit_info); |
1991 | 0 | CHECK_MEM_ERROR(cm, rsi->unit_info, |
1992 | 0 | (RestorationUnitInfo *)aom_memalign( |
1993 | 0 | 16, sizeof(*rsi->unit_info) * max_num_units)); |
1994 | |
|
1995 | 0 | RestUnitSearchInfo *rusi; |
1996 | 0 | CHECK_MEM_ERROR( |
1997 | 0 | cm, rusi, |
1998 | 0 | (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * max_num_units)); |
1999 | | |
2000 | | // If the restoration unit dimensions are not multiples of |
2001 | | // rsi->restoration_unit_size then some elements of the rusi array may be |
2002 | | // left uninitialised when we reach copy_unit_info(...). This is not a |
2003 | | // problem, as these elements are ignored later, but in order to quiet |
2004 | | // Valgrind's warnings we initialise the array below. |
2005 | 0 | memset(rusi, 0, sizeof(*rusi) * max_num_units); |
2006 | |
|
2007 | 0 | return rusi; |
2008 | 0 | } |
2009 | | |
2010 | | static void set_restoration_unit_size(AV1_COMMON *cm, RestorationInfo *rsi, |
2011 | 0 | int is_uv, int luma_unit_size) { |
2012 | | #if COUPLED_CHROMA_FROM_LUMA_RESTORATION |
2013 | | int sx = cm->seq_params.subsampling_x; |
2014 | | int sy = cm->seq_params.subsampling_y; |
2015 | | int s = (p > 0) ? AOMMIN(sx, sy) : 0; |
2016 | | #else |
2017 | 0 | int s = 0; |
2018 | 0 | #endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION |
2019 | 0 | int unit_size = luma_unit_size >> s; |
2020 | |
|
2021 | 0 | int plane_w, plane_h; |
2022 | 0 | av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); |
2023 | |
|
2024 | 0 | const int horz_units = av1_lr_count_units(unit_size, plane_w); |
2025 | 0 | const int vert_units = av1_lr_count_units(unit_size, plane_h); |
2026 | |
|
2027 | 0 | rsi->restoration_unit_size = unit_size; |
2028 | 0 | rsi->num_rest_units = horz_units * vert_units; |
2029 | 0 | rsi->horz_units = horz_units; |
2030 | 0 | rsi->vert_units = vert_units; |
2031 | 0 | } |
2032 | | |
2033 | 0 | void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) { |
2034 | 0 | AV1_COMMON *const cm = &cpi->common; |
2035 | 0 | MACROBLOCK *const x = &cpi->td.mb; |
2036 | 0 | const SequenceHeader *const seq_params = cm->seq_params; |
2037 | 0 | const LOOP_FILTER_SPEED_FEATURES *lpf_sf = &cpi->sf.lpf_sf; |
2038 | 0 | const int num_planes = av1_num_planes(cm); |
2039 | 0 | const int highbd = cm->seq_params->use_highbitdepth; |
2040 | 0 | assert(!cm->features.all_lossless); |
2041 | |
|
2042 | 0 | av1_fill_lr_rates(&x->mode_costs, x->e_mbd.tile_ctx); |
2043 | | |
2044 | | // Select unit size based on speed feature settings, and allocate |
2045 | | // rui structs based on this size |
2046 | 0 | int min_lr_unit_size = cpi->sf.lpf_sf.min_lr_unit_size; |
2047 | 0 | int max_lr_unit_size = cpi->sf.lpf_sf.max_lr_unit_size; |
2048 | | |
2049 | | // The minimum allowed unit size at a syntax level is 1 superblock. |
2050 | | // Apply this constraint here so that the speed features code which sets |
2051 | | // cpi->sf.lpf_sf.min_lr_unit_size does not need to know the superblock size |
2052 | 0 | min_lr_unit_size = |
2053 | 0 | AOMMAX(min_lr_unit_size, block_size_wide[cm->seq_params->sb_size]); |
2054 | |
|
2055 | 0 | for (int plane = 0; plane < num_planes; ++plane) { |
2056 | 0 | cpi->pick_lr_ctxt.rusi[plane] = allocate_search_structs( |
2057 | 0 | cm, &cm->rst_info[plane], plane > 0, min_lr_unit_size); |
2058 | 0 | } |
2059 | |
|
2060 | 0 | x->rdmult = cpi->rd.RDMULT; |
2061 | | |
2062 | | // Allocate the frame buffer trial_frame_rst, which is used to temporarily |
2063 | | // store the loop restored frame. |
2064 | 0 | if (aom_realloc_frame_buffer( |
2065 | 0 | &cpi->trial_frame_rst, cm->superres_upscaled_width, |
2066 | 0 | cm->superres_upscaled_height, seq_params->subsampling_x, |
2067 | 0 | seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER, |
2068 | 0 | cm->features.byte_alignment, NULL, NULL, NULL, false, 0)) |
2069 | 0 | aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
2070 | 0 | "Failed to allocate trial restored frame buffer"); |
2071 | |
|
2072 | 0 | RestSearchCtxt rsc; |
2073 | | |
2074 | | // The buffers 'src_avg' and 'dgd_avg' are used to compute H and M buffers. |
2075 | | // These buffers are only required for the AVX2 and NEON implementations of |
2076 | | // av1_compute_stats. The buffer size required is calculated based on maximum |
2077 | | // width and height of the LRU (i.e., from foreach_rest_unit_in_plane() 1.5 |
2078 | | // times the RESTORATION_UNITSIZE_MAX) allowed for Wiener filtering. The width |
2079 | | // and height aligned to multiple of 16 is considered for intrinsic purpose. |
2080 | 0 | rsc.dgd_avg = NULL; |
2081 | 0 | rsc.src_avg = NULL; |
2082 | | #if HAVE_AVX2 || HAVE_NEON || HAVE_SVE |
2083 | | // The buffers allocated below are used during Wiener filter processing. |
2084 | | // Hence, allocate the same when Wiener filter is enabled. Make sure to |
2085 | | // allocate these buffers only for the SIMD extensions that make use of them |
2086 | | // (i.e. AVX2 for low bitdepth and NEON and SVE for low and high bitdepth). |
2087 | | #if HAVE_AVX2 |
2088 | | bool allocate_buffers = !cpi->sf.lpf_sf.disable_wiener_filter && !highbd; |
2089 | | #elif HAVE_NEON || HAVE_SVE |
2090 | | bool allocate_buffers = !cpi->sf.lpf_sf.disable_wiener_filter; |
2091 | | #endif |
2092 | | if (allocate_buffers) { |
2093 | | const int buf_size = sizeof(*cpi->pick_lr_ctxt.dgd_avg) * 6 * |
2094 | | RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX; |
2095 | | CHECK_MEM_ERROR(cm, cpi->pick_lr_ctxt.dgd_avg, |
2096 | | (int16_t *)aom_memalign(32, buf_size)); |
2097 | | |
2098 | | rsc.dgd_avg = cpi->pick_lr_ctxt.dgd_avg; |
2099 | | // When LRU width isn't multiple of 16, the 256 bits load instruction used |
2100 | | // in AVX2 intrinsic can read data beyond valid LRU. Hence, in order to |
2101 | | // silence Valgrind warning this buffer is initialized with zero. Overhead |
2102 | | // due to this initialization is negligible since it is done at frame level. |
2103 | | memset(rsc.dgd_avg, 0, buf_size); |
2104 | | rsc.src_avg = |
2105 | | rsc.dgd_avg + 3 * RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX; |
2106 | | // Asserts the starting address of src_avg is always 32-bytes aligned. |
2107 | | assert(!((intptr_t)rsc.src_avg % 32)); |
2108 | | } |
2109 | | #endif |
2110 | | |
2111 | | // Initialize all planes, so that any planes we skip searching will still have |
2112 | | // valid data |
2113 | 0 | for (int plane = 0; plane < num_planes; plane++) { |
2114 | 0 | cm->rst_info[plane].frame_restoration_type = RESTORE_NONE; |
2115 | 0 | } |
2116 | | |
2117 | | // Decide which planes to search |
2118 | 0 | int plane_start, plane_end; |
2119 | |
|
2120 | 0 | if (lpf_sf->disable_loop_restoration_luma) { |
2121 | 0 | plane_start = AOM_PLANE_U; |
2122 | 0 | } else { |
2123 | 0 | plane_start = AOM_PLANE_Y; |
2124 | 0 | } |
2125 | |
|
2126 | 0 | if (num_planes == 1 || lpf_sf->disable_loop_restoration_chroma) { |
2127 | 0 | plane_end = AOM_PLANE_Y; |
2128 | 0 | } else { |
2129 | 0 | plane_end = AOM_PLANE_V; |
2130 | 0 | } |
2131 | | |
2132 | | // Derive the flags to enable/disable Loop restoration filters based on the |
2133 | | // speed features 'disable_wiener_filter' and 'disable_sgr_filter'. |
2134 | 0 | bool disable_lr_filter[RESTORE_TYPES] = { false }; |
2135 | 0 | av1_derive_flags_for_lr_processing(lpf_sf, disable_lr_filter); |
2136 | |
|
2137 | 0 | for (int plane = plane_start; plane <= plane_end; plane++) { |
2138 | 0 | const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; |
2139 | 0 | const int is_uv = plane != AOM_PLANE_Y; |
2140 | 0 | int plane_w, plane_h; |
2141 | 0 | av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); |
2142 | 0 | av1_extend_frame(dgd->buffers[plane], plane_w, plane_h, dgd->strides[is_uv], |
2143 | 0 | RESTORATION_BORDER, RESTORATION_BORDER, highbd); |
2144 | 0 | } |
2145 | |
|
2146 | 0 | double best_cost = DBL_MAX; |
2147 | 0 | int best_luma_unit_size = max_lr_unit_size; |
2148 | 0 | for (int luma_unit_size = max_lr_unit_size; |
2149 | 0 | luma_unit_size >= min_lr_unit_size; luma_unit_size >>= 1) { |
2150 | 0 | int64_t bits_this_size = 0; |
2151 | 0 | int64_t sse_this_size = 0; |
2152 | 0 | RestorationType best_rtype[MAX_MB_PLANE] = { RESTORE_NONE, RESTORE_NONE, |
2153 | 0 | RESTORE_NONE }; |
2154 | 0 | for (int plane = plane_start; plane <= plane_end; ++plane) { |
2155 | 0 | set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0, |
2156 | 0 | luma_unit_size); |
2157 | 0 | init_rsc(src, &cpi->common, x, lpf_sf, plane, |
2158 | 0 | cpi->pick_lr_ctxt.rusi[plane], &cpi->trial_frame_rst, &rsc); |
2159 | |
|
2160 | 0 | restoration_search(cm, plane, &rsc, disable_lr_filter); |
2161 | |
|
2162 | 0 | const int plane_num_units = cm->rst_info[plane].num_rest_units; |
2163 | 0 | const RestorationType num_rtypes = |
2164 | 0 | (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES; |
2165 | 0 | double best_cost_this_plane = DBL_MAX; |
2166 | 0 | for (RestorationType r = 0; r < num_rtypes; ++r) { |
2167 | | // Disable Loop restoration filter based on the flags set using speed |
2168 | | // feature 'disable_wiener_filter' and 'disable_sgr_filter'. |
2169 | 0 | if (disable_lr_filter[r]) continue; |
2170 | | |
2171 | 0 | double cost_this_plane = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
2172 | 0 | x->rdmult, rsc.total_bits[r] >> 4, rsc.total_sse[r], |
2173 | 0 | cm->seq_params->bit_depth); |
2174 | |
|
2175 | 0 | if (cost_this_plane < best_cost_this_plane) { |
2176 | 0 | best_cost_this_plane = cost_this_plane; |
2177 | 0 | best_rtype[plane] = r; |
2178 | 0 | } |
2179 | 0 | } |
2180 | |
|
2181 | 0 | bits_this_size += rsc.total_bits[best_rtype[plane]]; |
2182 | 0 | sse_this_size += rsc.total_sse[best_rtype[plane]]; |
2183 | 0 | } |
2184 | |
|
2185 | 0 | double cost_this_size = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
2186 | 0 | x->rdmult, bits_this_size >> 4, sse_this_size, |
2187 | 0 | cm->seq_params->bit_depth); |
2188 | |
|
2189 | 0 | if (cost_this_size < best_cost) { |
2190 | 0 | best_cost = cost_this_size; |
2191 | 0 | best_luma_unit_size = luma_unit_size; |
2192 | | // Copy parameters out of rusi struct, before we overwrite it at |
2193 | | // the start of the next iteration |
2194 | 0 | bool all_none = true; |
2195 | 0 | for (int plane = plane_start; plane <= plane_end; ++plane) { |
2196 | 0 | cm->rst_info[plane].frame_restoration_type = best_rtype[plane]; |
2197 | 0 | if (best_rtype[plane] != RESTORE_NONE) { |
2198 | 0 | all_none = false; |
2199 | 0 | const int plane_num_units = cm->rst_info[plane].num_rest_units; |
2200 | 0 | for (int u = 0; u < plane_num_units; ++u) { |
2201 | 0 | copy_unit_info(best_rtype[plane], &cpi->pick_lr_ctxt.rusi[plane][u], |
2202 | 0 | &cm->rst_info[plane].unit_info[u]); |
2203 | 0 | } |
2204 | 0 | } |
2205 | 0 | } |
2206 | | // Heuristic: If all best_rtype entries are RESTORE_NONE, this means we |
2207 | | // couldn't find any good filters at this size. So we likely won't find |
2208 | | // any good filters at a smaller size either, so skip |
2209 | 0 | if (all_none) { |
2210 | 0 | break; |
2211 | 0 | } |
2212 | 0 | } else { |
2213 | | // Heuristic: If this size is worse than the previous (larger) size, then |
2214 | | // the next size down will likely be even worse, so skip |
2215 | 0 | break; |
2216 | 0 | } |
2217 | 0 | } |
2218 | | |
2219 | | // Final fixup to set the correct unit size |
2220 | | // We set this for all planes, even ones we have skipped searching, |
2221 | | // so that other code does not need to care which planes were and weren't |
2222 | | // searched |
2223 | 0 | for (int plane = 0; plane < num_planes; ++plane) { |
2224 | 0 | set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0, |
2225 | 0 | best_luma_unit_size); |
2226 | 0 | } |
2227 | |
|
2228 | | #if HAVE_AVX2 || HAVE_NEON || HAVE_SVE |
2229 | | #if HAVE_AVX2 |
2230 | | bool free_buffers = !cpi->sf.lpf_sf.disable_wiener_filter && !highbd; |
2231 | | #elif HAVE_NEON || HAVE_SVE |
2232 | | bool free_buffers = !cpi->sf.lpf_sf.disable_wiener_filter; |
2233 | | #endif |
2234 | | if (free_buffers) { |
2235 | | aom_free(cpi->pick_lr_ctxt.dgd_avg); |
2236 | | cpi->pick_lr_ctxt.dgd_avg = NULL; |
2237 | | } |
2238 | | #endif |
2239 | 0 | for (int plane = 0; plane < num_planes; plane++) { |
2240 | 0 | aom_free(cpi->pick_lr_ctxt.rusi[plane]); |
2241 | 0 | cpi->pick_lr_ctxt.rusi[plane] = NULL; |
2242 | 0 | } |
2243 | 0 | } |