/src/aom/av1/encoder/ratectrl.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
3 | | * |
4 | | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | | * was not distributed with this source code in the LICENSE file, you can |
7 | | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | | * Media Patent License 1.0 was not distributed with this source code in the |
9 | | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | | */ |
11 | | |
12 | | #include <assert.h> |
13 | | #include <limits.h> |
14 | | #include <math.h> |
15 | | #include <stdint.h> |
16 | | #include <stdio.h> |
17 | | #include <stdlib.h> |
18 | | #include <string.h> |
19 | | |
20 | | #include "aom_dsp/aom_dsp_common.h" |
21 | | #include "aom_mem/aom_mem.h" |
22 | | #include "aom_ports/mem.h" |
23 | | #include "aom_ports/aom_once.h" |
24 | | |
25 | | #include "av1/common/alloccommon.h" |
26 | | #include "av1/encoder/aq_cyclicrefresh.h" |
27 | | #include "av1/common/common.h" |
28 | | #include "av1/common/entropymode.h" |
29 | | #include "av1/common/quant_common.h" |
30 | | #include "av1/common/seg_common.h" |
31 | | |
32 | | #include "av1/encoder/encodemv.h" |
33 | | #include "av1/encoder/encoder_utils.h" |
34 | | #include "av1/encoder/encode_strategy.h" |
35 | | #include "av1/encoder/gop_structure.h" |
36 | | #include "av1/encoder/mcomp.h" |
37 | | #include "av1/encoder/random.h" |
38 | | #include "av1/encoder/ratectrl.h" |
39 | | |
40 | | #include "config/aom_dsp_rtcd.h" |
41 | | |
42 | | #define USE_UNRESTRICTED_Q_IN_CQ_MODE 0 |
43 | | |
44 | | // Max rate target for 1080P and below encodes under normal circumstances |
45 | | // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB |
46 | | #define MAX_MB_RATE 250 |
47 | | #define MAXRATE_1080P 2025000 |
48 | | |
49 | 0 | #define MIN_BPB_FACTOR 0.005 |
50 | 0 | #define MAX_BPB_FACTOR 50 |
51 | | |
52 | 0 | #define SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO 0 |
53 | 0 | #define SUPERRES_QADJ_PER_DENOM_KEYFRAME 2 |
54 | 0 | #define SUPERRES_QADJ_PER_DENOM_ARFFRAME 0 |
55 | | |
56 | 0 | #define FRAME_OVERHEAD_BITS 200 |
57 | | #define ASSIGN_MINQ_TABLE(bit_depth, name) \ |
58 | 0 | do { \ |
59 | 0 | switch (bit_depth) { \ |
60 | 0 | case AOM_BITS_8: name = name##_8; break; \ |
61 | 0 | case AOM_BITS_10: name = name##_10; break; \ |
62 | 0 | case AOM_BITS_12: name = name##_12; break; \ |
63 | 0 | default: \ |
64 | 0 | assert(0 && \ |
65 | 0 | "bit_depth should be AOM_BITS_8, AOM_BITS_10" \ |
66 | 0 | " or AOM_BITS_12"); \ |
67 | 0 | name = NULL; \ |
68 | 0 | } \ |
69 | 0 | } while (0) |
70 | | |
71 | | // Tables relating active max Q to active min Q |
72 | | static int kf_low_motion_minq_8[QINDEX_RANGE]; |
73 | | static int kf_high_motion_minq_8[QINDEX_RANGE]; |
74 | | static int arfgf_low_motion_minq_8[QINDEX_RANGE]; |
75 | | static int arfgf_high_motion_minq_8[QINDEX_RANGE]; |
76 | | static int inter_minq_8[QINDEX_RANGE]; |
77 | | static int rtc_minq_8[QINDEX_RANGE]; |
78 | | |
79 | | static int kf_low_motion_minq_10[QINDEX_RANGE]; |
80 | | static int kf_high_motion_minq_10[QINDEX_RANGE]; |
81 | | static int arfgf_low_motion_minq_10[QINDEX_RANGE]; |
82 | | static int arfgf_high_motion_minq_10[QINDEX_RANGE]; |
83 | | static int inter_minq_10[QINDEX_RANGE]; |
84 | | static int rtc_minq_10[QINDEX_RANGE]; |
85 | | static int kf_low_motion_minq_12[QINDEX_RANGE]; |
86 | | static int kf_high_motion_minq_12[QINDEX_RANGE]; |
87 | | static int arfgf_low_motion_minq_12[QINDEX_RANGE]; |
88 | | static int arfgf_high_motion_minq_12[QINDEX_RANGE]; |
89 | | static int inter_minq_12[QINDEX_RANGE]; |
90 | | static int rtc_minq_12[QINDEX_RANGE]; |
91 | | |
92 | | static int gf_high = 2400; |
93 | | static int gf_low = 300; |
94 | | #ifdef STRICT_RC |
95 | | static int kf_high = 3200; |
96 | | #else |
97 | | static int kf_high = 5000; |
98 | | #endif |
99 | | static int kf_low = 400; |
100 | | |
101 | | // How many times less pixels there are to encode given the current scaling. |
102 | | // Temporary replacement for rcf_mult and rate_thresh_mult. |
103 | | static double resize_rate_factor(const FrameDimensionCfg *const frm_dim_cfg, |
104 | 0 | int width, int height) { |
105 | 0 | return (double)(frm_dim_cfg->width * frm_dim_cfg->height) / (width * height); |
106 | 0 | } |
107 | | |
108 | | // Functions to compute the active minq lookup table entries based on a |
109 | | // formulaic approach to facilitate easier adjustment of the Q tables. |
110 | | // The formulae were derived from computing a 3rd order polynomial best |
111 | | // fit to the original data (after plotting real maxq vs minq (not q index)) |
112 | | static int get_minq_index(double maxq, double x3, double x2, double x1, |
113 | 0 | aom_bit_depth_t bit_depth) { |
114 | 0 | const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq); |
115 | | |
116 | | // Special case handling to deal with the step from q2.0 |
117 | | // down to lossless mode represented by q 1.0. |
118 | 0 | if (minqtarget <= 2.0) return 0; |
119 | | |
120 | 0 | return av1_find_qindex(minqtarget, bit_depth, 0, QINDEX_RANGE - 1); |
121 | 0 | } |
122 | | |
123 | | static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low, |
124 | | int *arfgf_high, int *inter, int *rtc, |
125 | 0 | aom_bit_depth_t bit_depth) { |
126 | 0 | int i; |
127 | 0 | for (i = 0; i < QINDEX_RANGE; i++) { |
128 | 0 | const double maxq = av1_convert_qindex_to_q(i, bit_depth); |
129 | 0 | kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); |
130 | 0 | kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth); |
131 | 0 | arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); |
132 | 0 | arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); |
133 | 0 | inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth); |
134 | 0 | rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); |
135 | 0 | } |
136 | 0 | } |
137 | | |
138 | 0 | static void rc_init_minq_luts(void) { |
139 | 0 | init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, |
140 | 0 | arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, |
141 | 0 | inter_minq_8, rtc_minq_8, AOM_BITS_8); |
142 | 0 | init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, |
143 | 0 | arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, |
144 | 0 | inter_minq_10, rtc_minq_10, AOM_BITS_10); |
145 | 0 | init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, |
146 | 0 | arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, |
147 | 0 | inter_minq_12, rtc_minq_12, AOM_BITS_12); |
148 | 0 | } |
149 | | |
150 | 0 | void av1_rc_init_minq_luts(void) { aom_once(rc_init_minq_luts); } |
151 | | |
152 | | // These functions use formulaic calculations to make playing with the |
153 | | // quantizer tables easier. If necessary they can be replaced by lookup |
154 | | // tables if and when things settle down in the experimental bitstream |
155 | 0 | double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) { |
156 | | // Convert the index to a real Q value (scaled down to match old Q values) |
157 | 0 | switch (bit_depth) { |
158 | 0 | case AOM_BITS_8: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 4.0; |
159 | 0 | case AOM_BITS_10: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 16.0; |
160 | 0 | case AOM_BITS_12: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 64.0; |
161 | 0 | default: |
162 | 0 | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
163 | 0 | return -1.0; |
164 | 0 | } |
165 | 0 | } |
166 | | |
167 | 0 | int av1_convert_q_to_qindex(double q, aom_bit_depth_t bit_depth) { |
168 | 0 | int qindex = MINQ; |
169 | | |
170 | | // Find the first qindex that matches or exceeds q. |
171 | | // Note: this operation can also be done with a binary search, as |
172 | | // av1_convert_qindex_to_q() is monotonically increasing with respect to |
173 | | // increasing qindex. |
174 | 0 | while (qindex < MAXQ && av1_convert_qindex_to_q(qindex, bit_depth) < q) { |
175 | 0 | qindex++; |
176 | 0 | } |
177 | |
|
178 | 0 | return qindex; |
179 | 0 | } |
180 | | |
181 | | // Gets the appropriate bpmb enumerator based on the frame and content type |
182 | | static int get_bpmb_enumerator(FRAME_TYPE frame_type, |
183 | 0 | const int is_screen_content_type) { |
184 | 0 | int enumerator; |
185 | |
|
186 | 0 | if (is_screen_content_type) { |
187 | 0 | enumerator = (frame_type == KEY_FRAME) ? 1000000 : 750000; |
188 | 0 | } else { |
189 | 0 | enumerator = (frame_type == KEY_FRAME) ? 2000000 : 1500000; |
190 | 0 | } |
191 | |
|
192 | 0 | return enumerator; |
193 | 0 | } |
194 | | |
195 | 0 | static int get_init_ratio(double sse) { return (int)(300000 / sse); } |
196 | | |
197 | | // Adjustment based on spatial content and last encoded keyframe. |
198 | | // Allow for increase in enumerator to reduce overshoot. |
199 | 0 | static int adjust_rtc_keyframe(const RATE_CONTROL *rc, int enumerator) { |
200 | | // Don't adjust if most of the image is flat. |
201 | 0 | if (rc->perc_spatial_flat_blocks > 70) return enumerator; |
202 | 0 | if (rc->last_encoded_size_keyframe == 0 || |
203 | 0 | rc->frames_since_scene_change < rc->frames_since_key) { |
204 | | // Very first frame, or if scene change happened after last keyframe. |
205 | 0 | if (rc->frame_spatial_variance > 1000 || |
206 | 0 | (rc->frame_spatial_variance > 500 && rc->perc_spatial_flat_blocks == 0)) |
207 | 0 | return enumerator << 3; |
208 | 0 | else if (rc->frame_spatial_variance > 500 && |
209 | 0 | rc->perc_spatial_flat_blocks < 10) |
210 | 0 | return enumerator << 2; |
211 | 0 | else if (rc->frame_spatial_variance > 400) |
212 | 0 | return enumerator << 1; |
213 | 0 | } else if (rc->frames_since_scene_change >= rc->frames_since_key) { |
214 | | // There was no scene change before previous encoded keyframe, so |
215 | | // use the last_encoded/target_size_keyframe. |
216 | 0 | if (rc->last_encoded_size_keyframe > 4 * rc->last_target_size_keyframe && |
217 | 0 | rc->frame_spatial_variance > 500) |
218 | 0 | return enumerator << 3; |
219 | 0 | else if (rc->last_encoded_size_keyframe > |
220 | 0 | 2 * rc->last_target_size_keyframe && |
221 | 0 | rc->frame_spatial_variance > 200) |
222 | 0 | return enumerator << 2; |
223 | 0 | else if (rc->last_encoded_size_keyframe > rc->last_target_size_keyframe) |
224 | 0 | return enumerator << 1; |
225 | 0 | } |
226 | 0 | return enumerator; |
227 | 0 | } |
228 | | |
229 | | int av1_rc_bits_per_mb(const AV1_COMP *cpi, FRAME_TYPE frame_type, int qindex, |
230 | 0 | double correction_factor, int accurate_estimate) { |
231 | 0 | const AV1_COMMON *const cm = &cpi->common; |
232 | 0 | const int is_screen_content_type = cpi->is_screen_content_type; |
233 | 0 | const aom_bit_depth_t bit_depth = cm->seq_params->bit_depth; |
234 | 0 | const double q = av1_convert_qindex_to_q(qindex, bit_depth); |
235 | 0 | int enumerator = get_bpmb_enumerator(frame_type, is_screen_content_type); |
236 | |
|
237 | 0 | assert(correction_factor <= MAX_BPB_FACTOR && |
238 | 0 | correction_factor >= MIN_BPB_FACTOR); |
239 | |
|
240 | 0 | if (cpi->oxcf.rc_cfg.mode == AOM_CBR && frame_type != KEY_FRAME && |
241 | 0 | accurate_estimate && cpi->rec_sse != UINT64_MAX) { |
242 | 0 | const int mbs = cm->mi_params.MBs; |
243 | 0 | const double sse_sqrt = |
244 | 0 | (double)((int)sqrt((double)(cpi->rec_sse)) << BPER_MB_NORMBITS) / |
245 | 0 | (double)mbs; |
246 | 0 | const int ratio = (cpi->rc.bit_est_ratio == 0) ? get_init_ratio(sse_sqrt) |
247 | 0 | : cpi->rc.bit_est_ratio; |
248 | | // Clamp the enumerator to lower the q fluctuations. |
249 | 0 | enumerator = AOMMIN(AOMMAX((int)(ratio * sse_sqrt), 20000), 170000); |
250 | 0 | } else if (cpi->oxcf.rc_cfg.mode == AOM_CBR && frame_type == KEY_FRAME && |
251 | 0 | cpi->sf.rt_sf.rc_adjust_keyframe && bit_depth == 8 && |
252 | 0 | cpi->oxcf.rc_cfg.max_intra_bitrate_pct > 0 && |
253 | 0 | cpi->svc.spatial_layer_id == 0) { |
254 | 0 | enumerator = adjust_rtc_keyframe(&cpi->rc, enumerator); |
255 | 0 | } |
256 | | // q based adjustment to baseline enumerator |
257 | 0 | return (int)(enumerator * correction_factor / q); |
258 | 0 | } |
259 | | |
260 | | int av1_estimate_bits_at_q(const AV1_COMP *cpi, int q, |
261 | 0 | double correction_factor) { |
262 | 0 | const AV1_COMMON *const cm = &cpi->common; |
263 | 0 | const FRAME_TYPE frame_type = cm->current_frame.frame_type; |
264 | 0 | const int mbs = cm->mi_params.MBs; |
265 | 0 | const int bpm = |
266 | 0 | (int)(av1_rc_bits_per_mb(cpi, frame_type, q, correction_factor, |
267 | 0 | cpi->sf.hl_sf.accurate_bit_estimate)); |
268 | 0 | return AOMMAX(FRAME_OVERHEAD_BITS, |
269 | 0 | (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); |
270 | 0 | } |
271 | | |
272 | | static int clamp_pframe_target_size(const AV1_COMP *const cpi, int64_t target, |
273 | 0 | FRAME_UPDATE_TYPE frame_update_type) { |
274 | 0 | const RATE_CONTROL *rc = &cpi->rc; |
275 | 0 | const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; |
276 | 0 | const int min_frame_target = |
277 | 0 | AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5); |
278 | | // Clip the frame target to the minimum setup value. |
279 | 0 | if (frame_update_type == OVERLAY_UPDATE || |
280 | 0 | frame_update_type == INTNL_OVERLAY_UPDATE) { |
281 | | // If there is an active ARF at this location use the minimum |
282 | | // bits on this frame even if it is a constructed arf. |
283 | | // The active maximum quantizer insures that an appropriate |
284 | | // number of bits will be spent if needed for constructed ARFs. |
285 | 0 | target = min_frame_target; |
286 | 0 | } else if (target < min_frame_target) { |
287 | 0 | target = min_frame_target; |
288 | 0 | } |
289 | | |
290 | | // Clip the frame target to the maximum allowed value. |
291 | 0 | if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; |
292 | 0 | if (rc_cfg->max_inter_bitrate_pct) { |
293 | 0 | const int64_t max_rate = |
294 | 0 | (int64_t)rc->avg_frame_bandwidth * rc_cfg->max_inter_bitrate_pct / 100; |
295 | 0 | target = AOMMIN(target, max_rate); |
296 | 0 | } |
297 | |
|
298 | 0 | return (int)target; |
299 | 0 | } |
300 | | |
301 | 0 | static int clamp_iframe_target_size(const AV1_COMP *const cpi, int64_t target) { |
302 | 0 | const RATE_CONTROL *rc = &cpi->rc; |
303 | 0 | const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; |
304 | 0 | if (rc_cfg->max_intra_bitrate_pct) { |
305 | 0 | const int64_t max_rate = |
306 | 0 | (int64_t)rc->avg_frame_bandwidth * rc_cfg->max_intra_bitrate_pct / 100; |
307 | 0 | target = AOMMIN(target, max_rate); |
308 | 0 | } |
309 | 0 | if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; |
310 | 0 | return (int)target; |
311 | 0 | } |
312 | | |
313 | | // Update the buffer level for higher temporal layers, given the encoded current |
314 | | // temporal layer. |
315 | | static void update_layer_buffer_level(SVC *svc, int encoded_frame_size, |
316 | 0 | bool is_screen) { |
317 | 0 | const int current_temporal_layer = svc->temporal_layer_id; |
318 | 0 | for (int i = current_temporal_layer + 1; i < svc->number_temporal_layers; |
319 | 0 | ++i) { |
320 | 0 | const int layer = |
321 | 0 | LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers); |
322 | 0 | LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
323 | 0 | PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc; |
324 | 0 | lp_rc->bits_off_target += |
325 | 0 | (int)round(lc->target_bandwidth / lc->framerate) - encoded_frame_size; |
326 | | // Clip buffer level to maximum buffer size for the layer. |
327 | 0 | lp_rc->bits_off_target = |
328 | 0 | AOMMIN(lp_rc->bits_off_target, lp_rc->maximum_buffer_size); |
329 | 0 | lp_rc->buffer_level = lp_rc->bits_off_target; |
330 | | |
331 | | // For screen-content mode: don't let buffer level go below threshold, |
332 | | // given here as -rc->maximum_ buffer_size, to allow buffer to come back |
333 | | // up sooner after slide change with big overshoot. |
334 | 0 | if (is_screen) { |
335 | 0 | lp_rc->bits_off_target = |
336 | 0 | AOMMAX(lp_rc->bits_off_target, -lp_rc->maximum_buffer_size); |
337 | 0 | lp_rc->buffer_level = lp_rc->bits_off_target; |
338 | 0 | } |
339 | 0 | } |
340 | 0 | } |
341 | | // Update the buffer level: leaky bucket model. |
342 | 0 | static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) { |
343 | 0 | const AV1_COMMON *const cm = &cpi->common; |
344 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
345 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
346 | | |
347 | | // Non-viewable frames are a special case and are treated as pure overhead. |
348 | 0 | if (!cm->show_frame) |
349 | 0 | p_rc->bits_off_target -= encoded_frame_size; |
350 | 0 | else |
351 | 0 | p_rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; |
352 | | |
353 | | // Clip the buffer level to the maximum specified buffer size. |
354 | 0 | p_rc->bits_off_target = |
355 | 0 | AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size); |
356 | | // For screen-content mode: don't let buffer level go below threshold, |
357 | | // given here as -rc->maximum_ buffer_size, to allow buffer to come back |
358 | | // up sooner after slide change with big overshoot. |
359 | 0 | if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) |
360 | 0 | p_rc->bits_off_target = |
361 | 0 | AOMMAX(p_rc->bits_off_target, -p_rc->maximum_buffer_size); |
362 | 0 | p_rc->buffer_level = p_rc->bits_off_target; |
363 | |
|
364 | 0 | if (cpi->ppi->use_svc) |
365 | 0 | update_layer_buffer_level(&cpi->svc, encoded_frame_size, |
366 | 0 | cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN); |
367 | |
|
368 | | #if CONFIG_FPMT_TEST |
369 | | /* The variable temp_buffer_level is introduced for quality |
370 | | * simulation purpose, it retains the value previous to the parallel |
371 | | * encode frames. The variable is updated based on the update flag. |
372 | | * |
373 | | * If there exist show_existing_frames between parallel frames, then to |
374 | | * retain the temp state do not update it. */ |
375 | | int show_existing_between_parallel_frames = |
376 | | (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == |
377 | | INTNL_OVERLAY_UPDATE && |
378 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); |
379 | | |
380 | | if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && |
381 | | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { |
382 | | p_rc->temp_buffer_level = p_rc->buffer_level; |
383 | | } |
384 | | #endif |
385 | 0 | } |
386 | | |
387 | | int av1_rc_get_default_min_gf_interval(int width, int height, |
388 | 0 | double framerate) { |
389 | | // Assume we do not need any constraint lower than 4K 20 fps |
390 | 0 | static const double factor_safe = 3840 * 2160 * 20.0; |
391 | 0 | const double factor = (double)width * height * framerate; |
392 | 0 | const int default_interval = |
393 | 0 | clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); |
394 | |
|
395 | 0 | if (factor <= factor_safe) |
396 | 0 | return default_interval; |
397 | 0 | else |
398 | 0 | return AOMMAX(default_interval, |
399 | 0 | (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); |
400 | | // Note this logic makes: |
401 | | // 4K24: 5 |
402 | | // 4K30: 6 |
403 | | // 4K60: 12 |
404 | 0 | } |
405 | | |
406 | | // Note get_default_max_gf_interval() requires the min_gf_interval to |
407 | | // be passed in to ensure that the max_gf_interval returned is at least as big |
408 | | // as that. |
409 | 0 | static int get_default_max_gf_interval(double framerate, int min_gf_interval) { |
410 | 0 | int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); |
411 | 0 | interval += (interval & 0x01); // Round to even value |
412 | 0 | interval = AOMMAX(MAX_GF_INTERVAL, interval); |
413 | 0 | return AOMMAX(interval, min_gf_interval); |
414 | 0 | } |
415 | | |
416 | | void av1_primary_rc_init(const AV1EncoderConfig *oxcf, |
417 | 0 | PRIMARY_RATE_CONTROL *p_rc) { |
418 | 0 | const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
419 | |
|
420 | 0 | int worst_allowed_q = rc_cfg->worst_allowed_q; |
421 | |
|
422 | 0 | int min_gf_interval = oxcf->gf_cfg.min_gf_interval; |
423 | 0 | int max_gf_interval = oxcf->gf_cfg.max_gf_interval; |
424 | 0 | if (min_gf_interval == 0) |
425 | 0 | min_gf_interval = av1_rc_get_default_min_gf_interval( |
426 | 0 | oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, |
427 | 0 | oxcf->input_cfg.init_framerate); |
428 | 0 | if (max_gf_interval == 0) |
429 | 0 | max_gf_interval = get_default_max_gf_interval( |
430 | 0 | oxcf->input_cfg.init_framerate, min_gf_interval); |
431 | 0 | p_rc->baseline_gf_interval = (min_gf_interval + max_gf_interval) / 2; |
432 | 0 | p_rc->this_key_frame_forced = 0; |
433 | 0 | p_rc->next_key_frame_forced = 0; |
434 | 0 | p_rc->ni_frames = 0; |
435 | |
|
436 | 0 | p_rc->tot_q = 0.0; |
437 | 0 | p_rc->total_actual_bits = 0; |
438 | 0 | p_rc->total_target_bits = 0; |
439 | 0 | p_rc->buffer_level = p_rc->starting_buffer_level; |
440 | |
|
441 | 0 | if (oxcf->target_seq_level_idx[0] < SEQ_LEVELS) { |
442 | 0 | worst_allowed_q = 255; |
443 | 0 | } |
444 | 0 | if (oxcf->pass == AOM_RC_ONE_PASS && rc_cfg->mode == AOM_CBR) { |
445 | 0 | p_rc->avg_frame_qindex[KEY_FRAME] = worst_allowed_q; |
446 | 0 | p_rc->avg_frame_qindex[INTER_FRAME] = worst_allowed_q; |
447 | 0 | } else { |
448 | 0 | p_rc->avg_frame_qindex[KEY_FRAME] = |
449 | 0 | (worst_allowed_q + rc_cfg->best_allowed_q) / 2; |
450 | 0 | p_rc->avg_frame_qindex[INTER_FRAME] = |
451 | 0 | (worst_allowed_q + rc_cfg->best_allowed_q) / 2; |
452 | 0 | } |
453 | 0 | p_rc->avg_q = av1_convert_qindex_to_q(rc_cfg->worst_allowed_q, |
454 | 0 | oxcf->tool_cfg.bit_depth); |
455 | 0 | p_rc->last_q[KEY_FRAME] = rc_cfg->best_allowed_q; |
456 | 0 | p_rc->last_q[INTER_FRAME] = rc_cfg->worst_allowed_q; |
457 | |
|
458 | 0 | for (int i = 0; i < RATE_FACTOR_LEVELS; ++i) { |
459 | 0 | p_rc->rate_correction_factors[i] = 0.7; |
460 | 0 | } |
461 | 0 | p_rc->rate_correction_factors[KF_STD] = 1.0; |
462 | 0 | p_rc->bits_off_target = p_rc->starting_buffer_level; |
463 | |
|
464 | 0 | p_rc->rolling_target_bits = AOMMAX( |
465 | 0 | 1, (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate)); |
466 | 0 | p_rc->rolling_actual_bits = AOMMAX( |
467 | 0 | 1, (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate)); |
468 | 0 | } |
469 | | |
470 | 0 | void av1_rc_init(const AV1EncoderConfig *oxcf, RATE_CONTROL *rc) { |
471 | 0 | const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
472 | |
|
473 | 0 | rc->frames_since_key = 8; // Sensible default for first frame. |
474 | 0 | rc->frames_to_fwd_kf = oxcf->kf_cfg.fwd_kf_dist; |
475 | |
|
476 | 0 | rc->frames_till_gf_update_due = 0; |
477 | 0 | rc->ni_av_qi = rc_cfg->worst_allowed_q; |
478 | 0 | rc->ni_tot_qi = 0; |
479 | |
|
480 | 0 | rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; |
481 | 0 | rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; |
482 | 0 | if (rc->min_gf_interval == 0) |
483 | 0 | rc->min_gf_interval = av1_rc_get_default_min_gf_interval( |
484 | 0 | oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, |
485 | 0 | oxcf->input_cfg.init_framerate); |
486 | 0 | if (rc->max_gf_interval == 0) |
487 | 0 | rc->max_gf_interval = get_default_max_gf_interval( |
488 | 0 | oxcf->input_cfg.init_framerate, rc->min_gf_interval); |
489 | 0 | rc->avg_frame_low_motion = 0; |
490 | |
|
491 | 0 | rc->resize_state = ORIG; |
492 | 0 | rc->resize_avg_qp = 0; |
493 | 0 | rc->resize_buffer_underflow = 0; |
494 | 0 | rc->resize_count = 0; |
495 | 0 | rc->rtc_external_ratectrl = 0; |
496 | 0 | rc->frame_level_fast_extra_bits = 0; |
497 | 0 | rc->use_external_qp_one_pass = 0; |
498 | 0 | rc->percent_blocks_inactive = 0; |
499 | 0 | rc->force_max_q = 0; |
500 | 0 | rc->postencode_drop = 0; |
501 | 0 | rc->frames_since_scene_change = 0; |
502 | 0 | } |
503 | | |
504 | | static bool check_buffer_below_thresh(AV1_COMP *cpi, int64_t buffer_level, |
505 | 0 | int drop_mark) { |
506 | 0 | SVC *svc = &cpi->svc; |
507 | 0 | if (!cpi->ppi->use_svc || cpi->svc.number_spatial_layers == 1 || |
508 | 0 | cpi->svc.framedrop_mode == AOM_LAYER_DROP) { |
509 | 0 | return (buffer_level <= drop_mark); |
510 | 0 | } else { |
511 | | // For SVC in the AOM_FULL_SUPERFRAME_DROP): the condition on |
512 | | // buffer is checked on current and upper spatial layers. |
513 | 0 | for (int i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) { |
514 | 0 | const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id, |
515 | 0 | svc->number_temporal_layers); |
516 | 0 | LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
517 | 0 | PRIMARY_RATE_CONTROL *lrc = &lc->p_rc; |
518 | | // Exclude check for layer whose bitrate is 0. |
519 | 0 | if (lc->target_bandwidth > 0) { |
520 | 0 | const int drop_thresh = cpi->oxcf.rc_cfg.drop_frames_water_mark; |
521 | 0 | const int drop_mark_layer = |
522 | 0 | (int)(drop_thresh * lrc->optimal_buffer_level / 100); |
523 | 0 | if (lrc->buffer_level <= drop_mark_layer) return true; |
524 | 0 | } |
525 | 0 | } |
526 | 0 | return false; |
527 | 0 | } |
528 | 0 | } |
529 | | |
530 | 0 | int av1_rc_drop_frame(AV1_COMP *cpi) { |
531 | 0 | const AV1EncoderConfig *oxcf = &cpi->oxcf; |
532 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
533 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
534 | | #if CONFIG_FPMT_TEST |
535 | | const int simulate_parallel_frame = |
536 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
537 | | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
538 | | int64_t buffer_level = |
539 | | simulate_parallel_frame ? p_rc->temp_buffer_level : p_rc->buffer_level; |
540 | | #else |
541 | 0 | int64_t buffer_level = p_rc->buffer_level; |
542 | 0 | #endif |
543 | | // Never drop on key frame, or for frame whose base layer is key. |
544 | | // If drop_count_consec hits or exceeds max_consec_drop then don't drop. |
545 | 0 | if (cpi->common.current_frame.frame_type == KEY_FRAME || |
546 | 0 | (cpi->ppi->use_svc && |
547 | 0 | cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) || |
548 | 0 | !oxcf->rc_cfg.drop_frames_water_mark || |
549 | 0 | (rc->max_consec_drop > 0 && |
550 | 0 | rc->drop_count_consec >= rc->max_consec_drop)) { |
551 | 0 | return 0; |
552 | 0 | } else { |
553 | 0 | SVC *svc = &cpi->svc; |
554 | | // In the full_superframe framedrop mode for svc, if the previous spatial |
555 | | // layer was dropped, drop the current spatial layer. |
556 | 0 | if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 && |
557 | 0 | svc->drop_spatial_layer[svc->spatial_layer_id - 1] && |
558 | 0 | svc->framedrop_mode == AOM_FULL_SUPERFRAME_DROP) |
559 | 0 | return 1; |
560 | | // -1 is passed here for drop_mark since we are checking if |
561 | | // buffer goes below 0 (<= -1). |
562 | 0 | if (check_buffer_below_thresh(cpi, buffer_level, -1)) { |
563 | | // Always drop if buffer is below 0. |
564 | 0 | rc->drop_count_consec++; |
565 | 0 | return 1; |
566 | 0 | } else { |
567 | | // If buffer is below drop_mark, for now just drop every other frame |
568 | | // (starting with the next frame) until it increases back over drop_mark. |
569 | 0 | const int drop_mark = (int)(oxcf->rc_cfg.drop_frames_water_mark * |
570 | 0 | p_rc->optimal_buffer_level / 100); |
571 | 0 | const bool buffer_below_thresh = |
572 | 0 | check_buffer_below_thresh(cpi, buffer_level, drop_mark); |
573 | 0 | if (!buffer_below_thresh && rc->decimation_factor > 0) { |
574 | 0 | --rc->decimation_factor; |
575 | 0 | } else if (buffer_below_thresh && rc->decimation_factor == 0) { |
576 | 0 | rc->decimation_factor = 1; |
577 | 0 | } |
578 | 0 | if (rc->decimation_factor > 0) { |
579 | 0 | if (rc->decimation_count > 0) { |
580 | 0 | --rc->decimation_count; |
581 | 0 | rc->drop_count_consec++; |
582 | 0 | return 1; |
583 | 0 | } else { |
584 | 0 | rc->decimation_count = rc->decimation_factor; |
585 | 0 | return 0; |
586 | 0 | } |
587 | 0 | } else { |
588 | 0 | rc->decimation_count = 0; |
589 | 0 | return 0; |
590 | 0 | } |
591 | 0 | } |
592 | 0 | } |
593 | 0 | } |
594 | | |
595 | | static int adjust_q_cbr(const AV1_COMP *cpi, int q, int active_worst_quality, |
596 | 0 | int width, int height) { |
597 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
598 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
599 | 0 | const AV1_COMMON *const cm = &cpi->common; |
600 | 0 | const SVC *const svc = &cpi->svc; |
601 | 0 | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
602 | | // Flag to indicate previous frame has overshoot, and buffer level |
603 | | // for current frame is low (less than ~half of optimal). For such |
604 | | // (inter) frames, if the source_sad is non-zero, relax the max_delta_up |
605 | | // and clamp applied below. |
606 | 0 | const bool overshoot_buffer_low = |
607 | 0 | cpi->rc.rc_1_frame == -1 && rc->frame_source_sad > 1000 && |
608 | 0 | p_rc->buffer_level < (p_rc->optimal_buffer_level >> 1) && |
609 | 0 | rc->frames_since_key > 4; |
610 | 0 | int max_delta_down; |
611 | 0 | int max_delta_up = overshoot_buffer_low ? 120 : 20; |
612 | 0 | const int change_avg_frame_bandwidth = |
613 | 0 | abs(rc->avg_frame_bandwidth - rc->prev_avg_frame_bandwidth) > |
614 | 0 | 0.1 * (rc->avg_frame_bandwidth); |
615 | | |
616 | | // Set the maximum adjustment down for Q for this frame. |
617 | 0 | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
618 | 0 | cpi->cyclic_refresh->apply_cyclic_refresh) { |
619 | | // For static screen type content limit the Q drop till the start of the |
620 | | // next refresh cycle. |
621 | 0 | if (cpi->is_screen_content_type && |
622 | 0 | (cpi->cyclic_refresh->sb_index > cpi->cyclic_refresh->last_sb_index)) { |
623 | 0 | max_delta_down = AOMMIN(8, AOMMAX(1, rc->q_1_frame / 32)); |
624 | 0 | } else { |
625 | 0 | max_delta_down = AOMMIN(16, AOMMAX(1, rc->q_1_frame / 8)); |
626 | 0 | } |
627 | 0 | if (!cpi->ppi->use_svc && cpi->is_screen_content_type) { |
628 | | // Link max_delta_up to max_delta_down and buffer status. |
629 | 0 | if (p_rc->buffer_level > p_rc->optimal_buffer_level) { |
630 | 0 | max_delta_up = AOMMAX(4, max_delta_down); |
631 | 0 | } else if (!overshoot_buffer_low) { |
632 | 0 | max_delta_up = AOMMAX(8, max_delta_down); |
633 | 0 | } |
634 | 0 | } |
635 | 0 | } else { |
636 | 0 | max_delta_down = (cpi->is_screen_content_type) |
637 | 0 | ? AOMMIN(8, AOMMAX(1, rc->q_1_frame / 16)) |
638 | 0 | : AOMMIN(16, AOMMAX(1, rc->q_1_frame / 8)); |
639 | 0 | } |
640 | | // For screen static content with stable buffer level: relax the |
641 | | // limit on max_delta_down and apply bias qp, based on buffer fullness. |
642 | | // Only for high speeds levels for now to avoid bdrate regression. |
643 | 0 | if (cpi->sf.rt_sf.rc_faster_convergence_static == 1 && |
644 | 0 | cpi->sf.rt_sf.check_scene_detection && rc->frame_source_sad == 0 && |
645 | 0 | rc->static_since_last_scene_change && |
646 | 0 | p_rc->buffer_level > (p_rc->optimal_buffer_level >> 1) && |
647 | 0 | cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
648 | 0 | cpi->cyclic_refresh->counter_encode_maxq_scene_change > 4) { |
649 | 0 | int qp_delta = 32; |
650 | 0 | int qp_bias = 16; |
651 | 0 | if (p_rc->buffer_level > p_rc->optimal_buffer_level) { |
652 | 0 | qp_delta = 60; |
653 | 0 | qp_bias = 32; |
654 | 0 | } |
655 | 0 | if (cpi->rc.rc_1_frame == 1) q = q - qp_bias; |
656 | 0 | max_delta_down = AOMMAX(max_delta_down, qp_delta); |
657 | 0 | max_delta_up = AOMMIN(max_delta_up, 4); |
658 | 0 | } |
659 | | |
660 | | // If resolution changes or avg_frame_bandwidth significantly changed, |
661 | | // then set this flag to indicate change in target bits per macroblock. |
662 | 0 | const int change_target_bits_mb = |
663 | 0 | cm->prev_frame && |
664 | 0 | (width != cm->prev_frame->width || height != cm->prev_frame->height || |
665 | 0 | change_avg_frame_bandwidth); |
666 | | // Apply some control/clamp to QP under certain conditions. |
667 | | // Delay the use of the clamping for svc until after num_temporal_layers, |
668 | | // to make they have been set for each temporal layer. |
669 | | // Check for rc->q_1/2_frame > 0 in case they have not been set due to |
670 | | // dropped frames. |
671 | 0 | if (!frame_is_intra_only(cm) && rc->frames_since_key > 1 && |
672 | 0 | rc->q_1_frame > 0 && rc->q_2_frame > 0 && |
673 | 0 | (!cpi->ppi->use_svc || |
674 | 0 | svc->current_superframe > (unsigned int)svc->number_temporal_layers) && |
675 | 0 | !change_target_bits_mb && !cpi->rc.rtc_external_ratectrl && |
676 | 0 | (!cpi->oxcf.rc_cfg.gf_cbr_boost_pct || |
677 | 0 | !(refresh_frame->alt_ref_frame || refresh_frame->golden_frame))) { |
678 | | // If in the previous two frames we have seen both overshoot and undershoot |
679 | | // clamp Q between the two. |
680 | 0 | if (rc->rc_1_frame * rc->rc_2_frame == -1 && |
681 | 0 | rc->q_1_frame != rc->q_2_frame && !overshoot_buffer_low) { |
682 | 0 | int qclamp = clamp(q, AOMMIN(rc->q_1_frame, rc->q_2_frame), |
683 | 0 | AOMMAX(rc->q_1_frame, rc->q_2_frame)); |
684 | | // If the previous frame had overshoot and the current q needs to |
685 | | // increase above the clamped value, reduce the clamp for faster reaction |
686 | | // to overshoot. |
687 | 0 | if (cpi->rc.rc_1_frame == -1 && q > qclamp && rc->frames_since_key > 10) |
688 | 0 | q = (q + qclamp) >> 1; |
689 | 0 | else |
690 | 0 | q = qclamp; |
691 | 0 | } |
692 | | // Adjust Q base on source content change from scene detection. |
693 | 0 | if (cpi->sf.rt_sf.check_scene_detection && rc->prev_avg_source_sad > 0 && |
694 | 0 | rc->frames_since_key > 10 && rc->frame_source_sad > 0 && |
695 | 0 | !cpi->rc.rtc_external_ratectrl) { |
696 | 0 | const int bit_depth = cm->seq_params->bit_depth; |
697 | 0 | double delta = |
698 | 0 | (double)rc->avg_source_sad / (double)rc->prev_avg_source_sad - 1.0; |
699 | | // Push Q downwards if content change is decreasing and buffer level |
700 | | // is stable (at least 1/4-optimal level), so not overshooting. Do so |
701 | | // only for high Q to avoid excess overshoot. |
702 | | // Else reduce decrease in Q from previous frame if content change is |
703 | | // increasing and buffer is below max (so not undershooting). |
704 | 0 | if (delta < 0.0 && |
705 | 0 | p_rc->buffer_level > (p_rc->optimal_buffer_level >> 2) && |
706 | 0 | q > (rc->worst_quality >> 1)) { |
707 | 0 | double q_adj_factor = 1.0 + 0.5 * tanh(4.0 * delta); |
708 | 0 | double q_val = av1_convert_qindex_to_q(q, bit_depth); |
709 | 0 | q += av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); |
710 | 0 | } else if (rc->q_1_frame - q > 0 && delta > 0.1 && |
711 | 0 | p_rc->buffer_level < AOMMIN(p_rc->maximum_buffer_size, |
712 | 0 | p_rc->optimal_buffer_level << 1)) { |
713 | 0 | q = (3 * q + rc->q_1_frame) >> 2; |
714 | 0 | } |
715 | 0 | } |
716 | | // Limit the decrease in Q from previous frame. |
717 | 0 | if (rc->q_1_frame - q > max_delta_down) q = rc->q_1_frame - max_delta_down; |
718 | | // Limit the increase in Q from previous frame. |
719 | 0 | else if (q - rc->q_1_frame > max_delta_up) |
720 | 0 | q = rc->q_1_frame + max_delta_up; |
721 | 0 | } |
722 | | // Adjustment for temporal layers. |
723 | 0 | if (svc->number_temporal_layers > 1 && svc->spatial_layer_id == 0 && |
724 | 0 | !change_target_bits_mb && !cpi->rc.rtc_external_ratectrl && |
725 | 0 | cpi->oxcf.resize_cfg.resize_mode != RESIZE_DYNAMIC) { |
726 | 0 | if (svc->temporal_layer_id > 0) { |
727 | | // Constrain enhancement relative to the previous base TL0. |
728 | | // Get base temporal layer TL0. |
729 | 0 | const int layer = LAYER_IDS_TO_IDX(0, 0, svc->number_temporal_layers); |
730 | 0 | LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
731 | | // lc->rc.avg_frame_bandwidth and lc->p_rc.last_q correspond to the |
732 | | // last TL0 frame. |
733 | 0 | const int last_qindex_tl0 = |
734 | 0 | rc->frames_since_key < svc->number_temporal_layers |
735 | 0 | ? lc->p_rc.last_q[KEY_FRAME] |
736 | 0 | : lc->p_rc.last_q[INTER_FRAME]; |
737 | 0 | if (rc->avg_frame_bandwidth < lc->rc.avg_frame_bandwidth && |
738 | 0 | q < last_qindex_tl0 - 4) |
739 | 0 | q = last_qindex_tl0 - 4; |
740 | 0 | } else if (cpi->svc.temporal_layer_id == 0 && !frame_is_intra_only(cm) && |
741 | 0 | p_rc->buffer_level > (p_rc->optimal_buffer_level >> 2) && |
742 | 0 | rc->frame_source_sad < 100000) { |
743 | | // Push base TL0 Q down if buffer is stable and frame_source_sad |
744 | | // is below threshold. |
745 | 0 | int delta = (svc->number_temporal_layers == 2) ? 4 : 10; |
746 | 0 | q = q - delta; |
747 | 0 | } |
748 | 0 | } |
749 | | // For non-svc (single layer): if resolution has increased push q closer |
750 | | // to the active_worst to avoid excess overshoot. |
751 | 0 | if (!cpi->ppi->use_svc && cm->prev_frame && |
752 | 0 | (width * height > 1.5 * cm->prev_frame->width * cm->prev_frame->height)) |
753 | 0 | q = (q + active_worst_quality) >> 1; |
754 | | // For single layer RPS: Bias Q based on distance of closest reference. |
755 | 0 | if (cpi->ppi->rtc_ref.bias_recovery_frame) { |
756 | 0 | const int min_dist = av1_svc_get_min_ref_dist(cpi); |
757 | 0 | q = q - AOMMIN(min_dist, 20); |
758 | 0 | } |
759 | 0 | return AOMMAX(AOMMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality); |
760 | 0 | } |
761 | | |
762 | | static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = { |
763 | | KF_STD, // KF_UPDATE |
764 | | INTER_NORMAL, // LF_UPDATE |
765 | | GF_ARF_STD, // GF_UPDATE |
766 | | GF_ARF_STD, // ARF_UPDATE |
767 | | INTER_NORMAL, // OVERLAY_UPDATE |
768 | | INTER_NORMAL, // INTNL_OVERLAY_UPDATE |
769 | | GF_ARF_LOW, // INTNL_ARF_UPDATE |
770 | | }; |
771 | | |
772 | | static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group, |
773 | 0 | int gf_frame_index) { |
774 | 0 | const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_frame_index]; |
775 | 0 | assert(update_type < FRAME_UPDATE_TYPES); |
776 | 0 | return rate_factor_levels[update_type]; |
777 | 0 | } |
778 | | |
779 | | /*!\brief Gets a rate vs Q correction factor |
780 | | * |
781 | | * This function returns the current value of a correction factor used to |
782 | | * dynamically adjust the relationship between Q and the expected number |
783 | | * of bits for the frame. |
784 | | * |
785 | | * \ingroup rate_control |
786 | | * \param[in] cpi Top level encoder instance structure |
787 | | * \param[in] width Frame width |
788 | | * \param[in] height Frame height |
789 | | * |
790 | | * \return Returns a correction factor for the current frame |
791 | | */ |
792 | | static double get_rate_correction_factor(const AV1_COMP *cpi, int width, |
793 | 0 | int height) { |
794 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
795 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
796 | 0 | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
797 | 0 | double rcf; |
798 | 0 | double rate_correction_factors_kfstd; |
799 | 0 | double rate_correction_factors_gfarfstd; |
800 | 0 | double rate_correction_factors_internormal; |
801 | |
|
802 | 0 | rate_correction_factors_kfstd = |
803 | 0 | (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
804 | 0 | ? rc->frame_level_rate_correction_factors[KF_STD] |
805 | 0 | : p_rc->rate_correction_factors[KF_STD]; |
806 | 0 | rate_correction_factors_gfarfstd = |
807 | 0 | (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
808 | 0 | ? rc->frame_level_rate_correction_factors[GF_ARF_STD] |
809 | 0 | : p_rc->rate_correction_factors[GF_ARF_STD]; |
810 | 0 | rate_correction_factors_internormal = |
811 | 0 | (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
812 | 0 | ? rc->frame_level_rate_correction_factors[INTER_NORMAL] |
813 | 0 | : p_rc->rate_correction_factors[INTER_NORMAL]; |
814 | |
|
815 | 0 | if (cpi->common.current_frame.frame_type == KEY_FRAME) { |
816 | 0 | rcf = rate_correction_factors_kfstd; |
817 | 0 | } else if (is_stat_consumption_stage(cpi)) { |
818 | 0 | const RATE_FACTOR_LEVEL rf_lvl = |
819 | 0 | get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index); |
820 | 0 | double rate_correction_factors_rflvl = |
821 | 0 | (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
822 | 0 | ? rc->frame_level_rate_correction_factors[rf_lvl] |
823 | 0 | : p_rc->rate_correction_factors[rf_lvl]; |
824 | 0 | rcf = rate_correction_factors_rflvl; |
825 | 0 | } else { |
826 | 0 | if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) && |
827 | 0 | !rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && |
828 | 0 | (cpi->oxcf.rc_cfg.mode != AOM_CBR || |
829 | 0 | cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) |
830 | 0 | rcf = rate_correction_factors_gfarfstd; |
831 | 0 | else |
832 | 0 | rcf = rate_correction_factors_internormal; |
833 | 0 | } |
834 | 0 | rcf *= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height); |
835 | 0 | return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); |
836 | 0 | } |
837 | | |
838 | | /*!\brief Sets a rate vs Q correction factor |
839 | | * |
840 | | * This function updates the current value of a correction factor used to |
841 | | * dynamically adjust the relationship between Q and the expected number |
842 | | * of bits for the frame. |
843 | | * |
844 | | * \ingroup rate_control |
845 | | * \param[in] cpi Top level encoder instance structure |
846 | | * \param[in] is_encode_stage Indicates if recode loop or post-encode |
847 | | * \param[in] factor New correction factor |
848 | | * \param[in] width Frame width |
849 | | * \param[in] height Frame height |
850 | | * |
851 | | * \remark Updates the rate correction factor for the |
852 | | * current frame type in cpi->rc. |
853 | | */ |
854 | | static void set_rate_correction_factor(AV1_COMP *cpi, int is_encode_stage, |
855 | 0 | double factor, int width, int height) { |
856 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
857 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
858 | 0 | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
859 | 0 | int update_default_rcf = 1; |
860 | | // Normalize RCF to account for the size-dependent scaling factor. |
861 | 0 | factor /= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height); |
862 | |
|
863 | 0 | factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); |
864 | |
|
865 | 0 | if (cpi->common.current_frame.frame_type == KEY_FRAME) { |
866 | 0 | p_rc->rate_correction_factors[KF_STD] = factor; |
867 | 0 | } else if (is_stat_consumption_stage(cpi)) { |
868 | 0 | const RATE_FACTOR_LEVEL rf_lvl = |
869 | 0 | get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index); |
870 | 0 | if (is_encode_stage && |
871 | 0 | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
872 | 0 | rc->frame_level_rate_correction_factors[rf_lvl] = factor; |
873 | 0 | update_default_rcf = 0; |
874 | 0 | } |
875 | 0 | if (update_default_rcf) p_rc->rate_correction_factors[rf_lvl] = factor; |
876 | 0 | } else { |
877 | 0 | if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) && |
878 | 0 | !rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && |
879 | 0 | (cpi->oxcf.rc_cfg.mode != AOM_CBR || |
880 | 0 | cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) { |
881 | 0 | p_rc->rate_correction_factors[GF_ARF_STD] = factor; |
882 | 0 | } else { |
883 | 0 | if (is_encode_stage && |
884 | 0 | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
885 | 0 | rc->frame_level_rate_correction_factors[INTER_NORMAL] = factor; |
886 | 0 | update_default_rcf = 0; |
887 | 0 | } |
888 | 0 | if (update_default_rcf) |
889 | 0 | p_rc->rate_correction_factors[INTER_NORMAL] = factor; |
890 | 0 | } |
891 | 0 | } |
892 | 0 | } |
893 | | |
894 | | void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int is_encode_stage, |
895 | 0 | int width, int height) { |
896 | 0 | const AV1_COMMON *const cm = &cpi->common; |
897 | 0 | double correction_factor = 1.0; |
898 | 0 | double rate_correction_factor = |
899 | 0 | get_rate_correction_factor(cpi, width, height); |
900 | 0 | double adjustment_limit; |
901 | 0 | int projected_size_based_on_q = 0; |
902 | 0 | int cyclic_refresh_active = |
903 | 0 | cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled; |
904 | | |
905 | | // Do not update the rate factors for arf overlay frames. |
906 | 0 | if (cpi->rc.is_src_frame_alt_ref) return; |
907 | | |
908 | | // Don't update rate correction factors here on scene changes as |
909 | | // it is already reset in av1_encodedframe_overshoot_cbr(), |
910 | | // but reset variables related to previous frame q and size. |
911 | | // Note that the counter of frames since the last scene change |
912 | | // is only valid when cyclic refresh mode is enabled and that |
913 | | // this break out only applies to scene changes that are not |
914 | | // recorded as INTRA only key frames. |
915 | | // Note that av1_encodedframe_overshoot_cbr() is only entered |
916 | | // if cpi->sf.rt_sf.overshoot_detection_cbr == FAST_DETECTION_MAXQ |
917 | | // and cpi->rc.high_source_sad = 1. |
918 | 0 | if ((cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) && |
919 | 0 | (cpi->sf.rt_sf.overshoot_detection_cbr == FAST_DETECTION_MAXQ) && |
920 | 0 | cpi->rc.high_source_sad && |
921 | 0 | (cpi->cyclic_refresh->counter_encode_maxq_scene_change == 0) && |
922 | 0 | !frame_is_intra_only(cm) && !cpi->ppi->use_svc) { |
923 | 0 | cpi->rc.q_2_frame = cm->quant_params.base_qindex; |
924 | 0 | cpi->rc.q_1_frame = cm->quant_params.base_qindex; |
925 | 0 | cpi->rc.rc_2_frame = 0; |
926 | 0 | cpi->rc.rc_1_frame = 0; |
927 | 0 | return; |
928 | 0 | } |
929 | | |
930 | | // Clear down mmx registers to allow floating point in what follows |
931 | | |
932 | | // Work out how big we would have expected the frame to be at this Q given |
933 | | // the current correction factor. |
934 | | // Stay in double to avoid int overflow when values are large |
935 | 0 | if (cyclic_refresh_active) { |
936 | 0 | projected_size_based_on_q = |
937 | 0 | av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); |
938 | 0 | } else { |
939 | 0 | projected_size_based_on_q = av1_estimate_bits_at_q( |
940 | 0 | cpi, cm->quant_params.base_qindex, rate_correction_factor); |
941 | 0 | } |
942 | | // Work out a size correction factor. |
943 | 0 | if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) |
944 | 0 | correction_factor = (double)cpi->rc.projected_frame_size / |
945 | 0 | (double)projected_size_based_on_q; |
946 | | |
947 | | // Clamp correction factor to prevent anything too extreme |
948 | 0 | correction_factor = AOMMAX(correction_factor, 0.25); |
949 | |
|
950 | 0 | cpi->rc.q_2_frame = cpi->rc.q_1_frame; |
951 | 0 | cpi->rc.q_1_frame = cm->quant_params.base_qindex; |
952 | 0 | cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; |
953 | 0 | if (correction_factor > 1.1) |
954 | 0 | cpi->rc.rc_1_frame = -1; |
955 | 0 | else if (correction_factor < 0.9) |
956 | 0 | cpi->rc.rc_1_frame = 1; |
957 | 0 | else |
958 | 0 | cpi->rc.rc_1_frame = 0; |
959 | | |
960 | | // Decide how heavily to dampen the adjustment |
961 | 0 | if (correction_factor > 0.0) { |
962 | 0 | if (cpi->is_screen_content_type) { |
963 | 0 | adjustment_limit = |
964 | 0 | 0.25 + 0.5 * AOMMIN(0.5, fabs(log10(correction_factor))); |
965 | 0 | } else { |
966 | 0 | adjustment_limit = |
967 | 0 | 0.25 + 0.75 * AOMMIN(0.5, fabs(log10(correction_factor))); |
968 | 0 | } |
969 | 0 | } else { |
970 | 0 | adjustment_limit = 0.75; |
971 | 0 | } |
972 | | |
973 | | // Adjustment to delta Q and number of blocks updated in cyclic refresh |
974 | | // based on over or under shoot of target in current frame. |
975 | 0 | if (cyclic_refresh_active && cpi->rc.this_frame_target > 0) { |
976 | 0 | CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; |
977 | 0 | if (correction_factor > 1.25) { |
978 | 0 | cr->percent_refresh_adjustment = |
979 | 0 | AOMMAX(cr->percent_refresh_adjustment - 1, -5); |
980 | 0 | cr->rate_ratio_qdelta_adjustment = |
981 | 0 | AOMMAX(cr->rate_ratio_qdelta_adjustment - 0.05, -0.0); |
982 | 0 | } else if (correction_factor < 0.5) { |
983 | 0 | cr->percent_refresh_adjustment = |
984 | 0 | AOMMIN(cr->percent_refresh_adjustment + 1, 5); |
985 | 0 | cr->rate_ratio_qdelta_adjustment = |
986 | 0 | AOMMIN(cr->rate_ratio_qdelta_adjustment + 0.05, 0.25); |
987 | 0 | } |
988 | 0 | } |
989 | |
|
990 | 0 | if (correction_factor > 1.01) { |
991 | | // We are not already at the worst allowable quality |
992 | 0 | correction_factor = (1.0 + ((correction_factor - 1.0) * adjustment_limit)); |
993 | 0 | rate_correction_factor = rate_correction_factor * correction_factor; |
994 | | // Keep rate_correction_factor within limits |
995 | 0 | if (rate_correction_factor > MAX_BPB_FACTOR) |
996 | 0 | rate_correction_factor = MAX_BPB_FACTOR; |
997 | 0 | } else if (correction_factor < 0.99) { |
998 | | // We are not already at the best allowable quality |
999 | 0 | correction_factor = 1.0 / correction_factor; |
1000 | 0 | correction_factor = (1.0 + ((correction_factor - 1.0) * adjustment_limit)); |
1001 | 0 | correction_factor = 1.0 / correction_factor; |
1002 | |
|
1003 | 0 | rate_correction_factor = rate_correction_factor * correction_factor; |
1004 | | |
1005 | | // Keep rate_correction_factor within limits |
1006 | 0 | if (rate_correction_factor < MIN_BPB_FACTOR) |
1007 | 0 | rate_correction_factor = MIN_BPB_FACTOR; |
1008 | 0 | } |
1009 | |
|
1010 | 0 | set_rate_correction_factor(cpi, is_encode_stage, rate_correction_factor, |
1011 | 0 | width, height); |
1012 | 0 | } |
1013 | | |
1014 | | // Calculate rate for the given 'q'. |
1015 | | static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh, |
1016 | 0 | double correction_factor, int q) { |
1017 | 0 | const AV1_COMMON *const cm = &cpi->common; |
1018 | 0 | return use_cyclic_refresh |
1019 | 0 | ? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor) |
1020 | 0 | : av1_rc_bits_per_mb(cpi, cm->current_frame.frame_type, q, |
1021 | 0 | correction_factor, |
1022 | 0 | cpi->sf.hl_sf.accurate_bit_estimate); |
1023 | 0 | } |
1024 | | |
1025 | | /*!\brief Searches for a Q index value predicted to give an average macro |
1026 | | * block rate closest to the target value. |
1027 | | * |
1028 | | * Similar to find_qindex_by_rate() function, but returns a q index with a |
1029 | | * rate just above or below the desired rate, depending on which of the two |
1030 | | * rates is closer to the desired rate. |
1031 | | * Also, respects the selected aq_mode when computing the rate. |
1032 | | * |
1033 | | * \ingroup rate_control |
1034 | | * \param[in] desired_bits_per_mb Target bits per mb |
1035 | | * \param[in] cpi Top level encoder instance structure |
1036 | | * \param[in] correction_factor Current Q to rate correction factor |
1037 | | * \param[in] best_qindex Min allowed Q value. |
1038 | | * \param[in] worst_qindex Max allowed Q value. |
1039 | | * |
1040 | | * \return Returns a correction factor for the current frame |
1041 | | */ |
1042 | | static int find_closest_qindex_by_rate(int desired_bits_per_mb, |
1043 | | const AV1_COMP *cpi, |
1044 | | double correction_factor, |
1045 | 0 | int best_qindex, int worst_qindex) { |
1046 | 0 | const int use_cyclic_refresh = cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
1047 | 0 | cpi->cyclic_refresh->apply_cyclic_refresh; |
1048 | | |
1049 | | // Find 'qindex' based on 'desired_bits_per_mb'. |
1050 | 0 | assert(best_qindex <= worst_qindex); |
1051 | 0 | int low = best_qindex; |
1052 | 0 | int high = worst_qindex; |
1053 | 0 | while (low < high) { |
1054 | 0 | const int mid = (low + high) >> 1; |
1055 | 0 | const int mid_bits_per_mb = |
1056 | 0 | get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid); |
1057 | 0 | if (mid_bits_per_mb > desired_bits_per_mb) { |
1058 | 0 | low = mid + 1; |
1059 | 0 | } else { |
1060 | 0 | high = mid; |
1061 | 0 | } |
1062 | 0 | } |
1063 | 0 | assert(low == high); |
1064 | | |
1065 | | // Calculate rate difference of this q index from the desired rate. |
1066 | 0 | const int curr_q = low; |
1067 | 0 | const int curr_bits_per_mb = |
1068 | 0 | get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q); |
1069 | 0 | const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb) |
1070 | 0 | ? desired_bits_per_mb - curr_bits_per_mb |
1071 | 0 | : INT_MAX; |
1072 | 0 | assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) || |
1073 | 0 | curr_q == worst_qindex); |
1074 | | |
1075 | | // Calculate rate difference for previous q index too. |
1076 | 0 | const int prev_q = curr_q - 1; |
1077 | 0 | int prev_bit_diff; |
1078 | 0 | if (curr_bit_diff == INT_MAX || curr_q == best_qindex) { |
1079 | 0 | prev_bit_diff = INT_MAX; |
1080 | 0 | } else { |
1081 | 0 | const int prev_bits_per_mb = |
1082 | 0 | get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q); |
1083 | 0 | assert(prev_bits_per_mb > desired_bits_per_mb); |
1084 | 0 | prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb; |
1085 | 0 | } |
1086 | | |
1087 | | // Pick one of the two q indices, depending on which one has rate closer to |
1088 | | // the desired rate. |
1089 | 0 | return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q; |
1090 | 0 | } |
1091 | | |
1092 | | int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame, |
1093 | | int active_best_quality, int active_worst_quality, |
1094 | 0 | int width, int height) { |
1095 | 0 | const int MBs = av1_get_MBs(width, height); |
1096 | 0 | const double correction_factor = |
1097 | 0 | get_rate_correction_factor(cpi, width, height); |
1098 | 0 | const int target_bits_per_mb = |
1099 | 0 | (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / MBs); |
1100 | |
|
1101 | 0 | int q = |
1102 | 0 | find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor, |
1103 | 0 | active_best_quality, active_worst_quality); |
1104 | 0 | if (cpi->oxcf.rc_cfg.mode == AOM_CBR && has_no_stats_stage(cpi)) |
1105 | 0 | return adjust_q_cbr(cpi, q, active_worst_quality, width, height); |
1106 | | |
1107 | 0 | return q; |
1108 | 0 | } |
1109 | | |
1110 | | static int get_active_quality(int q, int gfu_boost, int low, int high, |
1111 | 0 | int *low_motion_minq, int *high_motion_minq) { |
1112 | 0 | if (gfu_boost > high) { |
1113 | 0 | return low_motion_minq[q]; |
1114 | 0 | } else if (gfu_boost < low) { |
1115 | 0 | return high_motion_minq[q]; |
1116 | 0 | } else { |
1117 | 0 | const int gap = high - low; |
1118 | 0 | const int offset = high - gfu_boost; |
1119 | 0 | const int qdiff = high_motion_minq[q] - low_motion_minq[q]; |
1120 | 0 | const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; |
1121 | 0 | return low_motion_minq[q] + adjustment; |
1122 | 0 | } |
1123 | 0 | } |
1124 | | |
1125 | | static int get_kf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q, |
1126 | 0 | aom_bit_depth_t bit_depth) { |
1127 | 0 | int *kf_low_motion_minq; |
1128 | 0 | int *kf_high_motion_minq; |
1129 | 0 | ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); |
1130 | 0 | ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); |
1131 | 0 | return get_active_quality(q, p_rc->kf_boost, kf_low, kf_high, |
1132 | 0 | kf_low_motion_minq, kf_high_motion_minq); |
1133 | 0 | } |
1134 | | |
1135 | | static int get_gf_active_quality_no_rc(int gfu_boost, int q, |
1136 | 0 | aom_bit_depth_t bit_depth) { |
1137 | 0 | int *arfgf_low_motion_minq; |
1138 | 0 | int *arfgf_high_motion_minq; |
1139 | 0 | ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); |
1140 | 0 | ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); |
1141 | 0 | return get_active_quality(q, gfu_boost, gf_low, gf_high, |
1142 | 0 | arfgf_low_motion_minq, arfgf_high_motion_minq); |
1143 | 0 | } |
1144 | | |
1145 | | static int get_gf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q, |
1146 | 0 | aom_bit_depth_t bit_depth) { |
1147 | 0 | return get_gf_active_quality_no_rc(p_rc->gfu_boost, q, bit_depth); |
1148 | 0 | } |
1149 | | |
1150 | 0 | static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) { |
1151 | 0 | int *arfgf_high_motion_minq; |
1152 | 0 | ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); |
1153 | 0 | return arfgf_high_motion_minq[q]; |
1154 | 0 | } |
1155 | | |
1156 | 0 | static int calc_active_worst_quality_no_stats_vbr(const AV1_COMP *cpi) { |
1157 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
1158 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
1159 | 0 | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
1160 | 0 | const unsigned int curr_frame = cpi->common.current_frame.frame_number; |
1161 | 0 | int active_worst_quality; |
1162 | 0 | int last_q_key_frame; |
1163 | 0 | int last_q_inter_frame; |
1164 | | #if CONFIG_FPMT_TEST |
1165 | | const int simulate_parallel_frame = |
1166 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
1167 | | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
1168 | | last_q_key_frame = simulate_parallel_frame ? p_rc->temp_last_q[KEY_FRAME] |
1169 | | : p_rc->last_q[KEY_FRAME]; |
1170 | | last_q_inter_frame = simulate_parallel_frame ? p_rc->temp_last_q[INTER_FRAME] |
1171 | | : p_rc->last_q[INTER_FRAME]; |
1172 | | #else |
1173 | 0 | last_q_key_frame = p_rc->last_q[KEY_FRAME]; |
1174 | 0 | last_q_inter_frame = p_rc->last_q[INTER_FRAME]; |
1175 | 0 | #endif |
1176 | |
|
1177 | 0 | if (cpi->common.current_frame.frame_type == KEY_FRAME) { |
1178 | 0 | active_worst_quality = |
1179 | 0 | curr_frame == 0 ? rc->worst_quality : last_q_key_frame * 2; |
1180 | 0 | } else { |
1181 | 0 | if (!rc->is_src_frame_alt_ref && |
1182 | 0 | (refresh_frame->golden_frame || refresh_frame->bwd_ref_frame || |
1183 | 0 | refresh_frame->alt_ref_frame)) { |
1184 | 0 | active_worst_quality = |
1185 | 0 | curr_frame == 1 ? last_q_key_frame * 5 / 4 : last_q_inter_frame; |
1186 | 0 | } else { |
1187 | 0 | active_worst_quality = |
1188 | 0 | curr_frame == 1 ? last_q_key_frame * 2 : last_q_inter_frame * 2; |
1189 | 0 | } |
1190 | 0 | } |
1191 | 0 | return AOMMIN(active_worst_quality, rc->worst_quality); |
1192 | 0 | } |
1193 | | |
1194 | | // Adjust active_worst_quality level based on buffer level. |
1195 | 0 | static int calc_active_worst_quality_no_stats_cbr(const AV1_COMP *cpi) { |
1196 | | // Adjust active_worst_quality: If buffer is above the optimal/target level, |
1197 | | // bring active_worst_quality down depending on fullness of buffer. |
1198 | | // If buffer is below the optimal level, let the active_worst_quality go from |
1199 | | // ambient Q (at buffer = optimal level) to worst_quality level |
1200 | | // (at buffer = critical level). |
1201 | 0 | const AV1_COMMON *const cm = &cpi->common; |
1202 | 0 | const RATE_CONTROL *rc = &cpi->rc; |
1203 | 0 | const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; |
1204 | 0 | const SVC *const svc = &cpi->svc; |
1205 | 0 | unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers; |
1206 | | // Buffer level below which we push active_worst to worst_quality. |
1207 | 0 | int64_t critical_level = p_rc->optimal_buffer_level >> 3; |
1208 | 0 | int64_t buff_lvl_step = 0; |
1209 | 0 | int adjustment = 0; |
1210 | 0 | int active_worst_quality; |
1211 | 0 | int ambient_qp; |
1212 | 0 | if (frame_is_intra_only(cm)) return rc->worst_quality; |
1213 | | // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] |
1214 | | // for the first few frames following key frame. These are both initialized |
1215 | | // to worst_quality and updated with (3/4, 1/4) average in postencode_update. |
1216 | | // So for first few frames following key, the qp of that key frame is weighted |
1217 | | // into the active_worst_quality setting. For SVC the key frame should |
1218 | | // correspond to layer (0, 0), so use that for layer context. |
1219 | 0 | int avg_qindex_key = p_rc->avg_frame_qindex[KEY_FRAME]; |
1220 | 0 | if (svc->number_temporal_layers > 1) { |
1221 | 0 | int layer = LAYER_IDS_TO_IDX(0, 0, svc->number_temporal_layers); |
1222 | 0 | const LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
1223 | 0 | const PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc; |
1224 | 0 | avg_qindex_key = |
1225 | 0 | AOMMIN(lp_rc->avg_frame_qindex[KEY_FRAME], lp_rc->last_q[KEY_FRAME]); |
1226 | 0 | } |
1227 | 0 | if (svc->temporal_layer_id > 0 && |
1228 | 0 | rc->frames_since_key < 2 * svc->number_temporal_layers) { |
1229 | 0 | ambient_qp = avg_qindex_key; |
1230 | 0 | } else { |
1231 | 0 | ambient_qp = |
1232 | 0 | (cm->current_frame.frame_number < num_frames_weight_key) |
1233 | 0 | ? AOMMIN(p_rc->avg_frame_qindex[INTER_FRAME], avg_qindex_key) |
1234 | 0 | : p_rc->avg_frame_qindex[INTER_FRAME]; |
1235 | 0 | } |
1236 | 0 | ambient_qp = AOMMIN(rc->worst_quality, ambient_qp); |
1237 | |
|
1238 | 0 | if (p_rc->buffer_level > p_rc->optimal_buffer_level) { |
1239 | | // Adjust down. |
1240 | 0 | int max_adjustment_down; // Maximum adjustment down for Q |
1241 | |
|
1242 | 0 | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && !cpi->ppi->use_svc && |
1243 | 0 | (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN)) { |
1244 | 0 | active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp); |
1245 | 0 | max_adjustment_down = AOMMIN(4, active_worst_quality / 16); |
1246 | 0 | } else { |
1247 | 0 | active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4); |
1248 | 0 | max_adjustment_down = active_worst_quality / 3; |
1249 | 0 | } |
1250 | |
|
1251 | 0 | if (max_adjustment_down) { |
1252 | 0 | buff_lvl_step = |
1253 | 0 | ((p_rc->maximum_buffer_size - p_rc->optimal_buffer_level) / |
1254 | 0 | max_adjustment_down); |
1255 | 0 | if (buff_lvl_step) |
1256 | 0 | adjustment = (int)((p_rc->buffer_level - p_rc->optimal_buffer_level) / |
1257 | 0 | buff_lvl_step); |
1258 | 0 | active_worst_quality -= adjustment; |
1259 | 0 | } |
1260 | 0 | } else if (p_rc->buffer_level > critical_level) { |
1261 | | // Adjust up from ambient Q. |
1262 | 0 | active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp); |
1263 | 0 | if (critical_level) { |
1264 | 0 | buff_lvl_step = (p_rc->optimal_buffer_level - critical_level); |
1265 | 0 | if (buff_lvl_step) { |
1266 | 0 | adjustment = (int)((rc->worst_quality - ambient_qp) * |
1267 | 0 | (p_rc->optimal_buffer_level - p_rc->buffer_level) / |
1268 | 0 | buff_lvl_step); |
1269 | 0 | } |
1270 | 0 | active_worst_quality += adjustment; |
1271 | 0 | } |
1272 | 0 | } else { |
1273 | | // Set to worst_quality if buffer is below critical level. |
1274 | 0 | active_worst_quality = rc->worst_quality; |
1275 | 0 | } |
1276 | 0 | return active_worst_quality; |
1277 | 0 | } |
1278 | | |
1279 | | // Calculate the active_best_quality level. |
1280 | | static int calc_active_best_quality_no_stats_cbr(const AV1_COMP *cpi, |
1281 | | int active_worst_quality, |
1282 | 0 | int width, int height) { |
1283 | 0 | const AV1_COMMON *const cm = &cpi->common; |
1284 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
1285 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
1286 | 0 | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
1287 | 0 | const CurrentFrame *const current_frame = &cm->current_frame; |
1288 | 0 | int *rtc_minq; |
1289 | 0 | const int bit_depth = cm->seq_params->bit_depth; |
1290 | 0 | int active_best_quality = rc->best_quality; |
1291 | 0 | ASSIGN_MINQ_TABLE(bit_depth, rtc_minq); |
1292 | | |
1293 | 0 | if (frame_is_intra_only(cm)) { |
1294 | | // Handle the special case for key frames forced when we have reached |
1295 | | // the maximum key frame interval. Here force the Q to a range |
1296 | | // based on the ambient Q to reduce the risk of popping. |
1297 | 0 | if (p_rc->this_key_frame_forced) { |
1298 | 0 | int qindex = p_rc->last_boosted_qindex; |
1299 | 0 | double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); |
1300 | 0 | int delta_qindex = av1_compute_qdelta(rc, last_boosted_q, |
1301 | 0 | (last_boosted_q * 0.75), bit_depth); |
1302 | 0 | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
1303 | 0 | } else if (current_frame->frame_number > 0) { |
1304 | | // not first frame of one pass and kf_boost is set |
1305 | 0 | double q_adj_factor = 1.0; |
1306 | 0 | double q_val; |
1307 | 0 | active_best_quality = get_kf_active_quality( |
1308 | 0 | p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth); |
1309 | | // Allow somewhat lower kf minq with small image formats. |
1310 | 0 | if ((width * height) <= (352 * 288)) { |
1311 | 0 | q_adj_factor -= 0.25; |
1312 | 0 | } |
1313 | | // Convert the adjustment factor to a qindex delta |
1314 | | // on active_best_quality. |
1315 | 0 | q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); |
1316 | 0 | active_best_quality += |
1317 | 0 | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); |
1318 | 0 | } |
1319 | 0 | } else if (!rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && |
1320 | 0 | cpi->oxcf.rc_cfg.gf_cbr_boost_pct && |
1321 | 0 | (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { |
1322 | | // Use the lower of active_worst_quality and recent |
1323 | | // average Q as basis for GF/ARF best Q limit unless last frame was |
1324 | | // a key frame. |
1325 | 0 | int q = active_worst_quality; |
1326 | 0 | if (rc->frames_since_key > 1 && |
1327 | 0 | p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
1328 | 0 | q = p_rc->avg_frame_qindex[INTER_FRAME]; |
1329 | 0 | } |
1330 | 0 | active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); |
1331 | 0 | } else { |
1332 | | // Use the lower of active_worst_quality and recent/average Q. |
1333 | 0 | FRAME_TYPE frame_type = |
1334 | 0 | (current_frame->frame_number > 1) ? INTER_FRAME : KEY_FRAME; |
1335 | 0 | if (p_rc->avg_frame_qindex[frame_type] < active_worst_quality) |
1336 | 0 | active_best_quality = rtc_minq[p_rc->avg_frame_qindex[frame_type]]; |
1337 | 0 | else |
1338 | 0 | active_best_quality = rtc_minq[active_worst_quality]; |
1339 | 0 | } |
1340 | 0 | return active_best_quality; |
1341 | 0 | } |
1342 | | |
1343 | | #if RT_PASSIVE_STRATEGY |
1344 | | static int get_q_passive_strategy(const AV1_COMP *const cpi, |
1345 | | const int q_candidate, const int threshold) { |
1346 | | const AV1_COMMON *const cm = &cpi->common; |
1347 | | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
1348 | | const CurrentFrame *const current_frame = &cm->current_frame; |
1349 | | int sum = 0; |
1350 | | int count = 0; |
1351 | | int i = 1; |
1352 | | while (i < MAX_Q_HISTORY) { |
1353 | | int frame_id = current_frame->frame_number - i; |
1354 | | if (frame_id <= 0) break; |
1355 | | sum += p_rc->q_history[frame_id % MAX_Q_HISTORY]; |
1356 | | ++count; |
1357 | | ++i; |
1358 | | } |
1359 | | if (count > 0) { |
1360 | | const int avg_q = sum / count; |
1361 | | if (abs(avg_q - q_candidate) <= threshold) return avg_q; |
1362 | | } |
1363 | | return q_candidate; |
1364 | | } |
1365 | | #endif // RT_PASSIVE_STRATEGY |
1366 | | |
1367 | | /*!\brief Picks q and q bounds given CBR rate control parameters in \c cpi->rc. |
1368 | | * |
1369 | | * Handles the special case when using: |
1370 | | * - Constant bit-rate mode: \c cpi->oxcf.rc_cfg.mode == \ref AOM_CBR, and |
1371 | | * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are |
1372 | | * NOT available. |
1373 | | * |
1374 | | * \ingroup rate_control |
1375 | | * \param[in] cpi Top level encoder structure |
1376 | | * \param[in] width Coded frame width |
1377 | | * \param[in] height Coded frame height |
1378 | | * \param[out] bottom_index Bottom bound for q index (best quality) |
1379 | | * \param[out] top_index Top bound for q index (worst quality) |
1380 | | * \return Returns selected q index to be used for encoding this frame. |
1381 | | */ |
1382 | | static int rc_pick_q_and_bounds_no_stats_cbr(const AV1_COMP *cpi, int width, |
1383 | | int height, int *bottom_index, |
1384 | 0 | int *top_index) { |
1385 | 0 | const AV1_COMMON *const cm = &cpi->common; |
1386 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
1387 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
1388 | 0 | const CurrentFrame *const current_frame = &cm->current_frame; |
1389 | 0 | int q; |
1390 | 0 | int active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi); |
1391 | 0 | int active_best_quality = calc_active_best_quality_no_stats_cbr( |
1392 | 0 | cpi, active_worst_quality, width, height); |
1393 | 0 | assert(has_no_stats_stage(cpi)); |
1394 | 0 | assert(cpi->oxcf.rc_cfg.mode == AOM_CBR); |
1395 | | |
1396 | | // Clip the active best and worst quality values to limits |
1397 | 0 | active_best_quality = |
1398 | 0 | clamp(active_best_quality, rc->best_quality, rc->worst_quality); |
1399 | 0 | active_worst_quality = |
1400 | 0 | clamp(active_worst_quality, active_best_quality, rc->worst_quality); |
1401 | |
|
1402 | 0 | *top_index = active_worst_quality; |
1403 | 0 | *bottom_index = active_best_quality; |
1404 | | |
1405 | | // Limit Q range for the adaptive loop. |
1406 | 0 | if (current_frame->frame_type == KEY_FRAME && !p_rc->this_key_frame_forced && |
1407 | 0 | current_frame->frame_number != 0) { |
1408 | 0 | int qdelta = 0; |
1409 | 0 | qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type, |
1410 | 0 | active_worst_quality, 2.0); |
1411 | 0 | *top_index = active_worst_quality + qdelta; |
1412 | 0 | *top_index = AOMMAX(*top_index, *bottom_index); |
1413 | 0 | } |
1414 | |
|
1415 | 0 | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, |
1416 | 0 | active_worst_quality, width, height); |
1417 | | #if RT_PASSIVE_STRATEGY |
1418 | | if (current_frame->frame_type != KEY_FRAME && |
1419 | | cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) { |
1420 | | q = get_q_passive_strategy(cpi, q, 50); |
1421 | | } |
1422 | | #endif // RT_PASSIVE_STRATEGY |
1423 | 0 | if (q > *top_index) { |
1424 | | // Special case when we are targeting the max allowed rate |
1425 | 0 | if (rc->this_frame_target >= rc->max_frame_bandwidth) |
1426 | 0 | *top_index = q; |
1427 | 0 | else |
1428 | 0 | q = *top_index; |
1429 | 0 | } |
1430 | |
|
1431 | 0 | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); |
1432 | 0 | assert(*bottom_index <= rc->worst_quality && |
1433 | 0 | *bottom_index >= rc->best_quality); |
1434 | 0 | assert(q <= rc->worst_quality && q >= rc->best_quality); |
1435 | 0 | return q; |
1436 | 0 | } |
1437 | | |
1438 | 0 | static int gf_group_pyramid_level(const GF_GROUP *gf_group, int gf_index) { |
1439 | 0 | return gf_group->layer_depth[gf_index]; |
1440 | 0 | } |
1441 | | |
1442 | | static int get_active_cq_level(const RATE_CONTROL *rc, |
1443 | | const PRIMARY_RATE_CONTROL *p_rc, |
1444 | | const AV1EncoderConfig *const oxcf, |
1445 | | int intra_only, aom_superres_mode superres_mode, |
1446 | 0 | int superres_denom) { |
1447 | 0 | const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
1448 | 0 | static const double cq_adjust_threshold = 0.1; |
1449 | 0 | int active_cq_level = rc_cfg->cq_level; |
1450 | 0 | if (rc_cfg->mode == AOM_CQ || rc_cfg->mode == AOM_Q) { |
1451 | | // printf("Superres %d %d %d = %d\n", superres_denom, intra_only, |
1452 | | // rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1)); |
1453 | 0 | if ((superres_mode == AOM_SUPERRES_QTHRESH || |
1454 | 0 | superres_mode == AOM_SUPERRES_AUTO) && |
1455 | 0 | superres_denom != SCALE_NUMERATOR) { |
1456 | 0 | int mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO; |
1457 | 0 | if (intra_only && rc->frames_to_key <= 1) { |
1458 | 0 | mult = 0; |
1459 | 0 | } else if (intra_only) { |
1460 | 0 | mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME; |
1461 | 0 | } else { |
1462 | 0 | mult = SUPERRES_QADJ_PER_DENOM_ARFFRAME; |
1463 | 0 | } |
1464 | 0 | active_cq_level = AOMMAX( |
1465 | 0 | active_cq_level - ((superres_denom - SCALE_NUMERATOR) * mult), 0); |
1466 | 0 | } |
1467 | 0 | } |
1468 | 0 | if (rc_cfg->mode == AOM_CQ && p_rc->total_target_bits > 0) { |
1469 | 0 | const double x = (double)p_rc->total_actual_bits / p_rc->total_target_bits; |
1470 | 0 | if (x < cq_adjust_threshold) { |
1471 | 0 | active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); |
1472 | 0 | } |
1473 | 0 | } |
1474 | 0 | return active_cq_level; |
1475 | 0 | } |
1476 | | |
1477 | | /*!\brief Picks q and q bounds given non-CBR rate control params in \c cpi->rc. |
1478 | | * |
1479 | | * Handles the special case when using: |
1480 | | * - Any rate control other than constant bit-rate mode: |
1481 | | * \c cpi->oxcf.rc_cfg.mode != \ref AOM_CBR, and |
1482 | | * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are |
1483 | | * NOT available. |
1484 | | * |
1485 | | * \ingroup rate_control |
1486 | | * \param[in] cpi Top level encoder structure |
1487 | | * \param[in] width Coded frame width |
1488 | | * \param[in] height Coded frame height |
1489 | | * \param[out] bottom_index Bottom bound for q index (best quality) |
1490 | | * \param[out] top_index Top bound for q index (worst quality) |
1491 | | * \return Returns selected q index to be used for encoding this frame. |
1492 | | */ |
1493 | | static int rc_pick_q_and_bounds_no_stats(const AV1_COMP *cpi, int width, |
1494 | | int height, int *bottom_index, |
1495 | 0 | int *top_index) { |
1496 | 0 | const AV1_COMMON *const cm = &cpi->common; |
1497 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
1498 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
1499 | 0 | const CurrentFrame *const current_frame = &cm->current_frame; |
1500 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
1501 | 0 | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
1502 | 0 | const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode; |
1503 | |
|
1504 | 0 | assert(has_no_stats_stage(cpi)); |
1505 | 0 | assert(rc_mode == AOM_VBR || |
1506 | 0 | (!USE_UNRESTRICTED_Q_IN_CQ_MODE && rc_mode == AOM_CQ) || |
1507 | 0 | rc_mode == AOM_Q); |
1508 | |
|
1509 | 0 | const int cq_level = |
1510 | 0 | get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), |
1511 | 0 | cpi->superres_mode, cm->superres_scale_denominator); |
1512 | 0 | const int bit_depth = cm->seq_params->bit_depth; |
1513 | |
|
1514 | 0 | int active_best_quality; |
1515 | 0 | int active_worst_quality = calc_active_worst_quality_no_stats_vbr(cpi); |
1516 | 0 | int q; |
1517 | 0 | int *inter_minq; |
1518 | 0 | ASSIGN_MINQ_TABLE(bit_depth, inter_minq); |
1519 | | |
1520 | 0 | if (frame_is_intra_only(cm)) { |
1521 | 0 | if (rc_mode == AOM_Q) { |
1522 | 0 | const int qindex = cq_level; |
1523 | 0 | const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); |
1524 | 0 | const int delta_qindex = |
1525 | 0 | av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth); |
1526 | 0 | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
1527 | 0 | } else if (p_rc->this_key_frame_forced) { |
1528 | | #if CONFIG_FPMT_TEST |
1529 | | const int simulate_parallel_frame = |
1530 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
1531 | | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
1532 | | int qindex = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex |
1533 | | : p_rc->last_boosted_qindex; |
1534 | | #else |
1535 | 0 | int qindex = p_rc->last_boosted_qindex; |
1536 | 0 | #endif |
1537 | 0 | const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); |
1538 | 0 | const int delta_qindex = av1_compute_qdelta( |
1539 | 0 | rc, last_boosted_q, last_boosted_q * 0.75, bit_depth); |
1540 | 0 | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
1541 | 0 | } else { // not first frame of one pass and kf_boost is set |
1542 | 0 | double q_adj_factor = 1.0; |
1543 | |
|
1544 | 0 | active_best_quality = get_kf_active_quality( |
1545 | 0 | p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth); |
1546 | | |
1547 | | // Allow somewhat lower kf minq with small image formats. |
1548 | 0 | if ((width * height) <= (352 * 288)) { |
1549 | 0 | q_adj_factor -= 0.25; |
1550 | 0 | } |
1551 | | |
1552 | | // Convert the adjustment factor to a qindex delta on active_best_quality. |
1553 | 0 | { |
1554 | 0 | const double q_val = |
1555 | 0 | av1_convert_qindex_to_q(active_best_quality, bit_depth); |
1556 | 0 | active_best_quality += |
1557 | 0 | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); |
1558 | 0 | } |
1559 | 0 | } |
1560 | 0 | } else if (!rc->is_src_frame_alt_ref && |
1561 | 0 | (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { |
1562 | | // Use the lower of active_worst_quality and recent |
1563 | | // average Q as basis for GF/ARF best Q limit unless last frame was |
1564 | | // a key frame. |
1565 | 0 | q = (rc->frames_since_key > 1 && |
1566 | 0 | p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) |
1567 | 0 | ? p_rc->avg_frame_qindex[INTER_FRAME] |
1568 | 0 | : p_rc->avg_frame_qindex[KEY_FRAME]; |
1569 | | // For constrained quality don't allow Q less than the cq level |
1570 | 0 | if (rc_mode == AOM_CQ) { |
1571 | 0 | if (q < cq_level) q = cq_level; |
1572 | 0 | active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); |
1573 | | // Constrained quality use slightly lower active best. |
1574 | 0 | active_best_quality = active_best_quality * 15 / 16; |
1575 | 0 | } else if (rc_mode == AOM_Q) { |
1576 | 0 | const int qindex = cq_level; |
1577 | 0 | const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); |
1578 | 0 | const int delta_qindex = |
1579 | 0 | (refresh_frame->alt_ref_frame) |
1580 | 0 | ? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth) |
1581 | 0 | : av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth); |
1582 | 0 | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
1583 | 0 | } else { |
1584 | 0 | active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); |
1585 | 0 | } |
1586 | 0 | } else { |
1587 | 0 | if (rc_mode == AOM_Q) { |
1588 | 0 | const int qindex = cq_level; |
1589 | 0 | const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); |
1590 | 0 | const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0, |
1591 | 0 | 0.70, 1.0, 0.85, 1.0 }; |
1592 | 0 | const int delta_qindex = av1_compute_qdelta( |
1593 | 0 | rc, q_val, |
1594 | 0 | q_val * delta_rate[current_frame->frame_number % FIXED_GF_INTERVAL], |
1595 | 0 | bit_depth); |
1596 | 0 | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
1597 | 0 | } else { |
1598 | | // Use the lower of active_worst_quality and recent/average Q. |
1599 | 0 | active_best_quality = |
1600 | 0 | (current_frame->frame_number > 1) |
1601 | 0 | ? inter_minq[p_rc->avg_frame_qindex[INTER_FRAME]] |
1602 | 0 | : inter_minq[p_rc->avg_frame_qindex[KEY_FRAME]]; |
1603 | | // For the constrained quality mode we don't want |
1604 | | // q to fall below the cq level. |
1605 | 0 | if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { |
1606 | 0 | active_best_quality = cq_level; |
1607 | 0 | } |
1608 | 0 | } |
1609 | 0 | } |
1610 | | |
1611 | | // Clip the active best and worst quality values to limits |
1612 | 0 | active_best_quality = |
1613 | 0 | clamp(active_best_quality, rc->best_quality, rc->worst_quality); |
1614 | 0 | active_worst_quality = |
1615 | 0 | clamp(active_worst_quality, active_best_quality, rc->worst_quality); |
1616 | |
|
1617 | 0 | *top_index = active_worst_quality; |
1618 | 0 | *bottom_index = active_best_quality; |
1619 | | |
1620 | | // Limit Q range for the adaptive loop. |
1621 | 0 | { |
1622 | 0 | int qdelta = 0; |
1623 | 0 | if (current_frame->frame_type == KEY_FRAME && |
1624 | 0 | !p_rc->this_key_frame_forced && current_frame->frame_number != 0) { |
1625 | 0 | qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type, |
1626 | 0 | active_worst_quality, 2.0); |
1627 | 0 | } else if (!rc->is_src_frame_alt_ref && |
1628 | 0 | (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { |
1629 | 0 | qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type, |
1630 | 0 | active_worst_quality, 1.75); |
1631 | 0 | } |
1632 | 0 | *top_index = active_worst_quality + qdelta; |
1633 | 0 | *top_index = AOMMAX(*top_index, *bottom_index); |
1634 | 0 | } |
1635 | |
|
1636 | 0 | if (rc_mode == AOM_Q) { |
1637 | 0 | q = active_best_quality; |
1638 | | // Special case code to try and match quality with forced key frames |
1639 | 0 | } else if ((current_frame->frame_type == KEY_FRAME) && |
1640 | 0 | p_rc->this_key_frame_forced) { |
1641 | | #if CONFIG_FPMT_TEST |
1642 | | const int simulate_parallel_frame = |
1643 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
1644 | | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
1645 | | q = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex |
1646 | | : p_rc->last_boosted_qindex; |
1647 | | #else |
1648 | 0 | q = p_rc->last_boosted_qindex; |
1649 | 0 | #endif |
1650 | 0 | } else { |
1651 | 0 | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, |
1652 | 0 | active_worst_quality, width, height); |
1653 | 0 | if (q > *top_index) { |
1654 | | // Special case when we are targeting the max allowed rate |
1655 | 0 | if (rc->this_frame_target >= rc->max_frame_bandwidth) |
1656 | 0 | *top_index = q; |
1657 | 0 | else |
1658 | 0 | q = *top_index; |
1659 | 0 | } |
1660 | 0 | } |
1661 | |
|
1662 | 0 | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); |
1663 | 0 | assert(*bottom_index <= rc->worst_quality && |
1664 | 0 | *bottom_index >= rc->best_quality); |
1665 | 0 | assert(q <= rc->worst_quality && q >= rc->best_quality); |
1666 | 0 | return q; |
1667 | 0 | } |
1668 | | |
1669 | | static const double arf_layer_deltas[MAX_ARF_LAYERS + 1] = { 2.50, 2.00, 1.75, |
1670 | | 1.50, 1.25, 1.15, |
1671 | | 1.0 }; |
1672 | 0 | static int frame_type_qdelta(const AV1_COMP *cpi, int q) { |
1673 | 0 | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
1674 | 0 | const RATE_FACTOR_LEVEL rf_lvl = |
1675 | 0 | get_rate_factor_level(gf_group, cpi->gf_frame_index); |
1676 | 0 | const FRAME_TYPE frame_type = gf_group->frame_type[cpi->gf_frame_index]; |
1677 | 0 | const int arf_layer = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); |
1678 | 0 | const double rate_factor = |
1679 | 0 | (rf_lvl == INTER_NORMAL) ? 1.0 : arf_layer_deltas[arf_layer]; |
1680 | |
|
1681 | 0 | return av1_compute_qdelta_by_rate(cpi, frame_type, q, rate_factor); |
1682 | 0 | } |
1683 | | |
1684 | | // This unrestricted Q selection on CQ mode is useful when testing new features, |
1685 | | // but may lead to Q being out of range on current RC restrictions |
1686 | | #if USE_UNRESTRICTED_Q_IN_CQ_MODE |
1687 | | static int rc_pick_q_and_bounds_no_stats_cq(const AV1_COMP *cpi, int width, |
1688 | | int height, int *bottom_index, |
1689 | | int *top_index) { |
1690 | | const AV1_COMMON *const cm = &cpi->common; |
1691 | | const RATE_CONTROL *const rc = &cpi->rc; |
1692 | | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
1693 | | const int cq_level = |
1694 | | get_active_cq_level(rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode, |
1695 | | cm->superres_scale_denominator); |
1696 | | const int bit_depth = cm->seq_params->bit_depth; |
1697 | | const int q = (int)av1_convert_qindex_to_q(cq_level, bit_depth); |
1698 | | (void)width; |
1699 | | (void)height; |
1700 | | assert(has_no_stats_stage(cpi)); |
1701 | | assert(cpi->oxcf.rc_cfg.mode == AOM_CQ); |
1702 | | |
1703 | | *top_index = q; |
1704 | | *bottom_index = q; |
1705 | | |
1706 | | return q; |
1707 | | } |
1708 | | #endif // USE_UNRESTRICTED_Q_IN_CQ_MODE |
1709 | | |
1710 | 0 | #define STATIC_MOTION_THRESH 95 |
1711 | | static void get_intra_q_and_bounds(const AV1_COMP *cpi, int width, int height, |
1712 | | int *active_best, int *active_worst, |
1713 | 0 | int cq_level) { |
1714 | 0 | const AV1_COMMON *const cm = &cpi->common; |
1715 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
1716 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
1717 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
1718 | 0 | int active_best_quality; |
1719 | 0 | int active_worst_quality = *active_worst; |
1720 | 0 | const int bit_depth = cm->seq_params->bit_depth; |
1721 | |
|
1722 | 0 | if (rc->frames_to_key <= 1 && oxcf->rc_cfg.mode == AOM_Q) { |
1723 | | // If the next frame is also a key frame or the current frame is the |
1724 | | // only frame in the sequence in AOM_Q mode, just use the cq_level |
1725 | | // as q. |
1726 | 0 | active_best_quality = cq_level; |
1727 | 0 | active_worst_quality = cq_level; |
1728 | 0 | } else if (p_rc->this_key_frame_forced) { |
1729 | | // Handle the special case for key frames forced when we have reached |
1730 | | // the maximum key frame interval. Here force the Q to a range |
1731 | | // based on the ambient Q to reduce the risk of popping. |
1732 | 0 | double last_boosted_q; |
1733 | 0 | int delta_qindex; |
1734 | 0 | int qindex; |
1735 | | #if CONFIG_FPMT_TEST |
1736 | | const int simulate_parallel_frame = |
1737 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
1738 | | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
1739 | | int last_boosted_qindex = simulate_parallel_frame |
1740 | | ? p_rc->temp_last_boosted_qindex |
1741 | | : p_rc->last_boosted_qindex; |
1742 | | #else |
1743 | 0 | int last_boosted_qindex = p_rc->last_boosted_qindex; |
1744 | 0 | #endif |
1745 | 0 | if (is_stat_consumption_stage_twopass(cpi) && |
1746 | 0 | cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { |
1747 | 0 | qindex = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex); |
1748 | 0 | active_best_quality = qindex; |
1749 | 0 | last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); |
1750 | 0 | delta_qindex = av1_compute_qdelta(rc, last_boosted_q, |
1751 | 0 | last_boosted_q * 1.25, bit_depth); |
1752 | 0 | active_worst_quality = |
1753 | 0 | AOMMIN(qindex + delta_qindex, active_worst_quality); |
1754 | 0 | } else { |
1755 | 0 | qindex = last_boosted_qindex; |
1756 | 0 | last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); |
1757 | 0 | delta_qindex = av1_compute_qdelta(rc, last_boosted_q, |
1758 | 0 | last_boosted_q * 0.50, bit_depth); |
1759 | 0 | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
1760 | 0 | } |
1761 | 0 | } else { |
1762 | | // Not forced keyframe. |
1763 | 0 | double q_adj_factor = 1.0; |
1764 | 0 | double q_val; |
1765 | | |
1766 | | // Baseline value derived from active_worst_quality and kf boost. |
1767 | 0 | active_best_quality = |
1768 | 0 | get_kf_active_quality(p_rc, active_worst_quality, bit_depth); |
1769 | 0 | if (cpi->is_screen_content_type) { |
1770 | 0 | active_best_quality /= 2; |
1771 | 0 | } |
1772 | |
|
1773 | 0 | if (is_stat_consumption_stage_twopass(cpi) && |
1774 | 0 | cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) { |
1775 | 0 | active_best_quality /= 3; |
1776 | 0 | } |
1777 | | |
1778 | | // Allow somewhat lower kf minq with small image formats. |
1779 | 0 | if ((width * height) <= (352 * 288)) { |
1780 | 0 | q_adj_factor -= 0.25; |
1781 | 0 | } |
1782 | | |
1783 | | // Make a further adjustment based on the kf zero motion measure. |
1784 | 0 | if (is_stat_consumption_stage_twopass(cpi)) |
1785 | 0 | q_adj_factor += |
1786 | 0 | 0.05 - (0.001 * (double)cpi->ppi->twopass.kf_zeromotion_pct); |
1787 | | |
1788 | | // Convert the adjustment factor to a qindex delta |
1789 | | // on active_best_quality. |
1790 | 0 | q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); |
1791 | 0 | active_best_quality += |
1792 | 0 | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); |
1793 | | |
1794 | | // Tweak active_best_quality for AOM_Q mode when superres is on, as this |
1795 | | // will be used directly as 'q' later. |
1796 | 0 | if (oxcf->rc_cfg.mode == AOM_Q && |
1797 | 0 | (cpi->superres_mode == AOM_SUPERRES_QTHRESH || |
1798 | 0 | cpi->superres_mode == AOM_SUPERRES_AUTO) && |
1799 | 0 | cm->superres_scale_denominator != SCALE_NUMERATOR) { |
1800 | 0 | active_best_quality = |
1801 | 0 | AOMMAX(active_best_quality - |
1802 | 0 | ((cm->superres_scale_denominator - SCALE_NUMERATOR) * |
1803 | 0 | SUPERRES_QADJ_PER_DENOM_KEYFRAME), |
1804 | 0 | 0); |
1805 | 0 | } |
1806 | 0 | } |
1807 | 0 | *active_best = active_best_quality; |
1808 | 0 | *active_worst = active_worst_quality; |
1809 | 0 | } |
1810 | | |
1811 | | static void adjust_active_best_and_worst_quality(const AV1_COMP *cpi, |
1812 | | const int is_intrl_arf_boost, |
1813 | | int *active_worst, |
1814 | 0 | int *active_best) { |
1815 | 0 | const AV1_COMMON *const cm = &cpi->common; |
1816 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
1817 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
1818 | 0 | int active_best_quality = *active_best; |
1819 | 0 | int active_worst_quality = *active_worst; |
1820 | | #if CONFIG_FPMT_TEST |
1821 | | #endif |
1822 | | // Extension to max or min Q if undershoot or overshoot is outside |
1823 | | // the permitted range. |
1824 | 0 | if (cpi->oxcf.rc_cfg.mode != AOM_Q) { |
1825 | | #if CONFIG_FPMT_TEST |
1826 | | const int simulate_parallel_frame = |
1827 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
1828 | | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
1829 | | const int extend_minq = simulate_parallel_frame |
1830 | | ? p_rc->temp_extend_minq |
1831 | | : cpi->ppi->twopass.extend_minq; |
1832 | | const int extend_maxq = simulate_parallel_frame |
1833 | | ? p_rc->temp_extend_maxq |
1834 | | : cpi->ppi->twopass.extend_maxq; |
1835 | | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
1836 | | if (frame_is_intra_only(cm) || |
1837 | | (!rc->is_src_frame_alt_ref && |
1838 | | (refresh_frame->golden_frame || is_intrl_arf_boost || |
1839 | | refresh_frame->alt_ref_frame))) { |
1840 | | active_best_quality -= extend_minq; |
1841 | | active_worst_quality += (extend_maxq / 2); |
1842 | | } else { |
1843 | | active_best_quality -= extend_minq / 2; |
1844 | | active_worst_quality += extend_maxq; |
1845 | | } |
1846 | | #else |
1847 | 0 | (void)is_intrl_arf_boost; |
1848 | 0 | active_best_quality -= cpi->ppi->twopass.extend_minq / 8; |
1849 | 0 | active_worst_quality += cpi->ppi->twopass.extend_maxq / 4; |
1850 | 0 | #endif |
1851 | 0 | } |
1852 | |
|
1853 | 0 | #ifndef STRICT_RC |
1854 | | // Static forced key frames Q restrictions dealt with elsewhere. |
1855 | 0 | if (!(frame_is_intra_only(cm)) || !p_rc->this_key_frame_forced || |
1856 | 0 | (cpi->ppi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { |
1857 | 0 | const int qdelta = frame_type_qdelta(cpi, active_worst_quality); |
1858 | 0 | active_worst_quality = |
1859 | 0 | AOMMAX(active_worst_quality + qdelta, active_best_quality); |
1860 | 0 | } |
1861 | 0 | #endif |
1862 | | |
1863 | | // Modify active_best_quality for downscaled normal frames. |
1864 | 0 | if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) { |
1865 | 0 | int qdelta = av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type, |
1866 | 0 | active_best_quality, 2.0); |
1867 | 0 | active_best_quality = |
1868 | 0 | AOMMAX(active_best_quality + qdelta, rc->best_quality); |
1869 | 0 | } |
1870 | |
|
1871 | 0 | active_best_quality = |
1872 | 0 | clamp(active_best_quality, rc->best_quality, rc->worst_quality); |
1873 | 0 | active_worst_quality = |
1874 | 0 | clamp(active_worst_quality, active_best_quality, rc->worst_quality); |
1875 | |
|
1876 | 0 | *active_best = active_best_quality; |
1877 | 0 | *active_worst = active_worst_quality; |
1878 | 0 | } |
1879 | | |
1880 | | /*!\brief Gets a Q value to use for the current frame |
1881 | | * |
1882 | | * |
1883 | | * Selects a Q value from a permitted range that we estimate |
1884 | | * will result in approximately the target number of bits. |
1885 | | * |
1886 | | * \ingroup rate_control |
1887 | | * \param[in] cpi Top level encoder instance structure |
1888 | | * \param[in] width Width of frame |
1889 | | * \param[in] height Height of frame |
1890 | | * \param[in] active_worst_quality Max Q allowed |
1891 | | * \param[in] active_best_quality Min Q allowed |
1892 | | * |
1893 | | * \return The suggested Q for this frame. |
1894 | | */ |
1895 | | static int get_q(const AV1_COMP *cpi, const int width, const int height, |
1896 | | const int active_worst_quality, |
1897 | 0 | const int active_best_quality) { |
1898 | 0 | const AV1_COMMON *const cm = &cpi->common; |
1899 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
1900 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
1901 | 0 | int q; |
1902 | | #if CONFIG_FPMT_TEST |
1903 | | const int simulate_parallel_frame = |
1904 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
1905 | | cpi->ppi->fpmt_unit_test_cfg; |
1906 | | int last_boosted_qindex = simulate_parallel_frame |
1907 | | ? p_rc->temp_last_boosted_qindex |
1908 | | : p_rc->last_boosted_qindex; |
1909 | | #else |
1910 | 0 | int last_boosted_qindex = p_rc->last_boosted_qindex; |
1911 | 0 | #endif |
1912 | |
|
1913 | 0 | if (cpi->oxcf.rc_cfg.mode == AOM_Q || |
1914 | 0 | (frame_is_intra_only(cm) && !p_rc->this_key_frame_forced && |
1915 | 0 | cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH && |
1916 | 0 | rc->frames_to_key > 1)) { |
1917 | 0 | q = active_best_quality; |
1918 | | // Special case code to try and match quality with forced key frames. |
1919 | 0 | } else if (frame_is_intra_only(cm) && p_rc->this_key_frame_forced) { |
1920 | | // If static since last kf use better of last boosted and last kf q. |
1921 | 0 | if (cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { |
1922 | 0 | q = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex); |
1923 | 0 | } else { |
1924 | 0 | q = AOMMIN(last_boosted_qindex, |
1925 | 0 | (active_best_quality + active_worst_quality) / 2); |
1926 | 0 | } |
1927 | 0 | q = clamp(q, active_best_quality, active_worst_quality); |
1928 | 0 | } else { |
1929 | 0 | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, |
1930 | 0 | active_worst_quality, width, height); |
1931 | 0 | if (q > active_worst_quality) { |
1932 | | // Special case when we are targeting the max allowed rate. |
1933 | 0 | if (rc->this_frame_target < rc->max_frame_bandwidth) { |
1934 | 0 | q = active_worst_quality; |
1935 | 0 | } |
1936 | 0 | } |
1937 | 0 | q = AOMMAX(q, active_best_quality); |
1938 | 0 | } |
1939 | 0 | return q; |
1940 | 0 | } |
1941 | | |
1942 | | // Returns |active_best_quality| for an inter frame. |
1943 | | // The |active_best_quality| depends on different rate control modes: |
1944 | | // VBR, Q, CQ, CBR. |
1945 | | // The returning active_best_quality could further be adjusted in |
1946 | | // adjust_active_best_and_worst_quality(). |
1947 | | static int get_active_best_quality(const AV1_COMP *const cpi, |
1948 | | const int active_worst_quality, |
1949 | 0 | const int cq_level, const int gf_index) { |
1950 | 0 | const AV1_COMMON *const cm = &cpi->common; |
1951 | 0 | const int bit_depth = cm->seq_params->bit_depth; |
1952 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
1953 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
1954 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
1955 | 0 | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
1956 | 0 | const GF_GROUP *gf_group = &cpi->ppi->gf_group; |
1957 | 0 | const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode; |
1958 | 0 | int *inter_minq; |
1959 | 0 | ASSIGN_MINQ_TABLE(bit_depth, inter_minq); |
1960 | 0 | int active_best_quality = 0; |
1961 | 0 | const int is_intrl_arf_boost = |
1962 | 0 | gf_group->update_type[gf_index] == INTNL_ARF_UPDATE; |
1963 | 0 | int is_leaf_frame = |
1964 | 0 | !(gf_group->update_type[gf_index] == ARF_UPDATE || |
1965 | 0 | gf_group->update_type[gf_index] == GF_UPDATE || is_intrl_arf_boost); |
1966 | | |
1967 | | // TODO(jingning): Consider to rework this hack that covers issues incurred |
1968 | | // in lightfield setting. |
1969 | 0 | if (cm->tiles.large_scale) { |
1970 | 0 | is_leaf_frame = !(refresh_frame->golden_frame || |
1971 | 0 | refresh_frame->alt_ref_frame || is_intrl_arf_boost); |
1972 | 0 | } |
1973 | 0 | const int is_overlay_frame = rc->is_src_frame_alt_ref; |
1974 | |
|
1975 | 0 | if (is_leaf_frame || is_overlay_frame) { |
1976 | 0 | if (rc_mode == AOM_Q) return cq_level; |
1977 | | |
1978 | 0 | active_best_quality = inter_minq[active_worst_quality]; |
1979 | | // For the constrained quality mode we don't want |
1980 | | // q to fall below the cq level. |
1981 | 0 | if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { |
1982 | 0 | active_best_quality = cq_level; |
1983 | 0 | } |
1984 | 0 | return active_best_quality; |
1985 | 0 | } |
1986 | | |
1987 | | // Determine active_best_quality for frames that are not leaf or overlay. |
1988 | 0 | int q = active_worst_quality; |
1989 | | // Use the lower of active_worst_quality and recent |
1990 | | // average Q as basis for GF/ARF best Q limit unless last frame was |
1991 | | // a key frame. |
1992 | 0 | if (rc->frames_since_key > 1 && |
1993 | 0 | p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
1994 | 0 | q = p_rc->avg_frame_qindex[INTER_FRAME]; |
1995 | 0 | } |
1996 | 0 | if (rc_mode == AOM_CQ && q < cq_level) q = cq_level; |
1997 | 0 | active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); |
1998 | | // Constrained quality use slightly lower active best. |
1999 | 0 | if (rc_mode == AOM_CQ) active_best_quality = active_best_quality * 15 / 16; |
2000 | 0 | const int min_boost = get_gf_high_motion_quality(q, bit_depth); |
2001 | 0 | const int boost = min_boost - active_best_quality; |
2002 | 0 | active_best_quality = min_boost - (int)(boost * p_rc->arf_boost_factor); |
2003 | 0 | if (!is_intrl_arf_boost) return active_best_quality; |
2004 | | |
2005 | 0 | if (rc_mode == AOM_Q || rc_mode == AOM_CQ) active_best_quality = p_rc->arf_q; |
2006 | 0 | int this_height = gf_group_pyramid_level(gf_group, gf_index); |
2007 | 0 | while (this_height > 1) { |
2008 | 0 | active_best_quality = (active_best_quality + active_worst_quality + 1) / 2; |
2009 | 0 | --this_height; |
2010 | 0 | } |
2011 | 0 | return active_best_quality; |
2012 | 0 | } |
2013 | | |
2014 | | static int rc_pick_q_and_bounds_q_mode(const AV1_COMP *cpi, int width, |
2015 | | int height, int gf_index, |
2016 | 0 | int *bottom_index, int *top_index) { |
2017 | 0 | const AV1_COMMON *const cm = &cpi->common; |
2018 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
2019 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
2020 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
2021 | 0 | const int cq_level = |
2022 | 0 | get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), |
2023 | 0 | cpi->superres_mode, cm->superres_scale_denominator); |
2024 | 0 | int active_best_quality = 0; |
2025 | 0 | int active_worst_quality = rc->active_worst_quality; |
2026 | 0 | int q; |
2027 | |
|
2028 | 0 | if (frame_is_intra_only(cm)) { |
2029 | 0 | get_intra_q_and_bounds(cpi, width, height, &active_best_quality, |
2030 | 0 | &active_worst_quality, cq_level); |
2031 | 0 | } else { |
2032 | | // Active best quality limited by previous layer. |
2033 | 0 | active_best_quality = |
2034 | 0 | get_active_best_quality(cpi, active_worst_quality, cq_level, gf_index); |
2035 | 0 | } |
2036 | |
|
2037 | 0 | if (cq_level > 0) active_best_quality = AOMMAX(1, active_best_quality); |
2038 | |
|
2039 | 0 | *top_index = active_worst_quality; |
2040 | 0 | *bottom_index = active_best_quality; |
2041 | |
|
2042 | 0 | *top_index = AOMMAX(*top_index, rc->best_quality); |
2043 | 0 | *top_index = AOMMIN(*top_index, rc->worst_quality); |
2044 | |
|
2045 | 0 | *bottom_index = AOMMAX(*bottom_index, rc->best_quality); |
2046 | 0 | *bottom_index = AOMMIN(*bottom_index, rc->worst_quality); |
2047 | |
|
2048 | 0 | q = active_best_quality; |
2049 | |
|
2050 | 0 | q = AOMMAX(q, rc->best_quality); |
2051 | 0 | q = AOMMIN(q, rc->worst_quality); |
2052 | |
|
2053 | 0 | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); |
2054 | 0 | assert(*bottom_index <= rc->worst_quality && |
2055 | 0 | *bottom_index >= rc->best_quality); |
2056 | 0 | assert(q <= rc->worst_quality && q >= rc->best_quality); |
2057 | |
|
2058 | 0 | return q; |
2059 | 0 | } |
2060 | | |
2061 | | /*!\brief Picks q and q bounds given rate control parameters in \c cpi->rc. |
2062 | | * |
2063 | | * Handles the general cases not covered by |
2064 | | * \ref rc_pick_q_and_bounds_no_stats_cbr() and |
2065 | | * \ref rc_pick_q_and_bounds_no_stats() |
2066 | | * |
2067 | | * \ingroup rate_control |
2068 | | * \param[in] cpi Top level encoder structure |
2069 | | * \param[in] width Coded frame width |
2070 | | * \param[in] height Coded frame height |
2071 | | * \param[in] gf_index Index of this frame in the golden frame group |
2072 | | * \param[out] bottom_index Bottom bound for q index (best quality) |
2073 | | * \param[out] top_index Top bound for q index (worst quality) |
2074 | | * \return Returns selected q index to be used for encoding this frame. |
2075 | | */ |
2076 | | static int rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height, |
2077 | | int gf_index, int *bottom_index, |
2078 | 0 | int *top_index) { |
2079 | 0 | const AV1_COMMON *const cm = &cpi->common; |
2080 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
2081 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
2082 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
2083 | 0 | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
2084 | 0 | const GF_GROUP *gf_group = &cpi->ppi->gf_group; |
2085 | 0 | assert(IMPLIES(has_no_stats_stage(cpi), |
2086 | 0 | cpi->oxcf.rc_cfg.mode == AOM_Q && |
2087 | 0 | gf_group->update_type[gf_index] != ARF_UPDATE)); |
2088 | 0 | const int cq_level = |
2089 | 0 | get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), |
2090 | 0 | cpi->superres_mode, cm->superres_scale_denominator); |
2091 | |
|
2092 | 0 | if (oxcf->rc_cfg.mode == AOM_Q) { |
2093 | 0 | return rc_pick_q_and_bounds_q_mode(cpi, width, height, gf_index, |
2094 | 0 | bottom_index, top_index); |
2095 | 0 | } |
2096 | | |
2097 | 0 | int active_best_quality = 0; |
2098 | 0 | int active_worst_quality = rc->active_worst_quality; |
2099 | 0 | int q; |
2100 | |
|
2101 | 0 | const int is_intrl_arf_boost = |
2102 | 0 | gf_group->update_type[gf_index] == INTNL_ARF_UPDATE; |
2103 | |
|
2104 | 0 | if (frame_is_intra_only(cm)) { |
2105 | 0 | get_intra_q_and_bounds(cpi, width, height, &active_best_quality, |
2106 | 0 | &active_worst_quality, cq_level); |
2107 | | #ifdef STRICT_RC |
2108 | | active_best_quality = 0; |
2109 | | #endif |
2110 | 0 | } else { |
2111 | | // Active best quality limited by previous layer. |
2112 | 0 | const int pyramid_level = gf_group_pyramid_level(gf_group, gf_index); |
2113 | |
|
2114 | 0 | if ((pyramid_level <= 1) || (pyramid_level > MAX_ARF_LAYERS)) { |
2115 | 0 | active_best_quality = get_active_best_quality(cpi, active_worst_quality, |
2116 | 0 | cq_level, gf_index); |
2117 | 0 | } else { |
2118 | | #if CONFIG_FPMT_TEST |
2119 | | const int simulate_parallel_frame = |
2120 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
2121 | | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
2122 | | int local_active_best_quality = |
2123 | | simulate_parallel_frame |
2124 | | ? p_rc->temp_active_best_quality[pyramid_level - 1] |
2125 | | : p_rc->active_best_quality[pyramid_level - 1]; |
2126 | | active_best_quality = local_active_best_quality + 1; |
2127 | | #else |
2128 | 0 | active_best_quality = p_rc->active_best_quality[pyramid_level - 1] + 1; |
2129 | 0 | #endif |
2130 | |
|
2131 | 0 | active_best_quality = AOMMIN(active_best_quality, active_worst_quality); |
2132 | | #ifdef STRICT_RC |
2133 | | active_best_quality += (active_worst_quality - active_best_quality) / 16; |
2134 | | #else |
2135 | 0 | active_best_quality += (active_worst_quality - active_best_quality) / 2; |
2136 | 0 | #endif |
2137 | 0 | } |
2138 | | |
2139 | | // For alt_ref and GF frames (including internal arf frames) adjust the |
2140 | | // worst allowed quality as well. This insures that even on hard |
2141 | | // sections we don't clamp the Q at the same value for arf frames and |
2142 | | // leaf (non arf) frames. This is important to the TPL model which assumes |
2143 | | // Q drops with each arf level. |
2144 | 0 | if (!(rc->is_src_frame_alt_ref) && |
2145 | 0 | (refresh_frame->golden_frame || refresh_frame->alt_ref_frame || |
2146 | 0 | is_intrl_arf_boost)) { |
2147 | 0 | active_worst_quality = |
2148 | 0 | (active_best_quality + (3 * active_worst_quality) + 2) / 4; |
2149 | 0 | } |
2150 | 0 | } |
2151 | |
|
2152 | 0 | adjust_active_best_and_worst_quality( |
2153 | 0 | cpi, is_intrl_arf_boost, &active_worst_quality, &active_best_quality); |
2154 | 0 | q = get_q(cpi, width, height, active_worst_quality, active_best_quality); |
2155 | | |
2156 | | // Special case when we are targeting the max allowed rate. |
2157 | 0 | if (rc->this_frame_target >= rc->max_frame_bandwidth && |
2158 | 0 | q > active_worst_quality) { |
2159 | 0 | active_worst_quality = q; |
2160 | 0 | } |
2161 | |
|
2162 | 0 | *top_index = active_worst_quality; |
2163 | 0 | *bottom_index = active_best_quality; |
2164 | |
|
2165 | 0 | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); |
2166 | 0 | assert(*bottom_index <= rc->worst_quality && |
2167 | 0 | *bottom_index >= rc->best_quality); |
2168 | 0 | assert(q <= rc->worst_quality && q >= rc->best_quality); |
2169 | |
|
2170 | 0 | return q; |
2171 | 0 | } |
2172 | | |
2173 | 0 | static void rc_compute_variance_onepass_rt(AV1_COMP *cpi) { |
2174 | 0 | AV1_COMMON *const cm = &cpi->common; |
2175 | 0 | YV12_BUFFER_CONFIG const *const unscaled_src = cpi->unscaled_source; |
2176 | 0 | if (unscaled_src == NULL) return; |
2177 | | |
2178 | 0 | const uint8_t *src_y = unscaled_src->y_buffer; |
2179 | 0 | const int src_ystride = unscaled_src->y_stride; |
2180 | 0 | const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); |
2181 | 0 | const uint8_t *pre_y = yv12->buffers[0]; |
2182 | 0 | const int pre_ystride = yv12->strides[0]; |
2183 | | |
2184 | | // TODO(yunqing): support scaled reference frames. |
2185 | 0 | if (cpi->scaled_ref_buf[LAST_FRAME - 1]) return; |
2186 | | |
2187 | 0 | for (int i = 0; i < 2; ++i) { |
2188 | 0 | if (unscaled_src->widths[i] != yv12->widths[i] || |
2189 | 0 | unscaled_src->heights[i] != yv12->heights[i]) { |
2190 | 0 | return; |
2191 | 0 | } |
2192 | 0 | } |
2193 | | |
2194 | 0 | const int num_mi_cols = cm->mi_params.mi_cols; |
2195 | 0 | const int num_mi_rows = cm->mi_params.mi_rows; |
2196 | 0 | const BLOCK_SIZE bsize = BLOCK_64X64; |
2197 | 0 | int num_samples = 0; |
2198 | | // sse is computed on 64x64 blocks |
2199 | 0 | const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128) |
2200 | 0 | ? (cm->seq_params->mib_size >> 1) |
2201 | 0 | : cm->seq_params->mib_size; |
2202 | 0 | const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; |
2203 | 0 | const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb; |
2204 | |
|
2205 | 0 | uint64_t fsse = 0; |
2206 | 0 | cpi->rec_sse = 0; |
2207 | |
|
2208 | 0 | for (int sbi_row = 0; sbi_row < sb_rows; ++sbi_row) { |
2209 | 0 | for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) { |
2210 | 0 | unsigned int sse; |
2211 | 0 | uint8_t src[64 * 64] = { 0 }; |
2212 | | // Apply 4x4 block averaging/denoising on source frame. |
2213 | 0 | for (int i = 0; i < 64; i += 4) { |
2214 | 0 | for (int j = 0; j < 64; j += 4) { |
2215 | 0 | const unsigned int avg = |
2216 | 0 | aom_avg_4x4(src_y + i * src_ystride + j, src_ystride); |
2217 | |
|
2218 | 0 | for (int m = 0; m < 4; ++m) { |
2219 | 0 | for (int n = 0; n < 4; ++n) src[i * 64 + j + m * 64 + n] = avg; |
2220 | 0 | } |
2221 | 0 | } |
2222 | 0 | } |
2223 | |
|
2224 | 0 | cpi->ppi->fn_ptr[bsize].vf(src, 64, pre_y, pre_ystride, &sse); |
2225 | 0 | fsse += sse; |
2226 | 0 | num_samples++; |
2227 | 0 | src_y += 64; |
2228 | 0 | pre_y += 64; |
2229 | 0 | } |
2230 | 0 | src_y += (src_ystride << 6) - (sb_cols << 6); |
2231 | 0 | pre_y += (pre_ystride << 6) - (sb_cols << 6); |
2232 | 0 | } |
2233 | 0 | assert(num_samples > 0); |
2234 | | // Ensure rec_sse > 0 |
2235 | 0 | if (num_samples > 0) cpi->rec_sse = fsse > 0 ? fsse : 1; |
2236 | 0 | } |
2237 | | |
2238 | | int av1_rc_pick_q_and_bounds(AV1_COMP *cpi, int width, int height, int gf_index, |
2239 | 0 | int *bottom_index, int *top_index) { |
2240 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
2241 | 0 | int q; |
2242 | | // TODO(sarahparker) merge no-stats vbr and altref q computation |
2243 | | // with rc_pick_q_and_bounds(). |
2244 | 0 | const GF_GROUP *gf_group = &cpi->ppi->gf_group; |
2245 | 0 | if ((cpi->oxcf.rc_cfg.mode != AOM_Q || |
2246 | 0 | gf_group->update_type[gf_index] == ARF_UPDATE) && |
2247 | 0 | has_no_stats_stage(cpi)) { |
2248 | 0 | if (cpi->oxcf.rc_cfg.mode == AOM_CBR) { |
2249 | | // TODO(yunqing): the results could be used for encoder optimization. |
2250 | 0 | cpi->rec_sse = UINT64_MAX; |
2251 | 0 | if (cpi->sf.hl_sf.accurate_bit_estimate && |
2252 | 0 | cpi->common.current_frame.frame_type != KEY_FRAME) |
2253 | 0 | rc_compute_variance_onepass_rt(cpi); |
2254 | |
|
2255 | 0 | q = rc_pick_q_and_bounds_no_stats_cbr(cpi, width, height, bottom_index, |
2256 | 0 | top_index); |
2257 | | // preserve copy of active worst quality selected. |
2258 | 0 | cpi->rc.active_worst_quality = *top_index; |
2259 | |
|
2260 | | #if USE_UNRESTRICTED_Q_IN_CQ_MODE |
2261 | | } else if (cpi->oxcf.rc_cfg.mode == AOM_CQ) { |
2262 | | q = rc_pick_q_and_bounds_no_stats_cq(cpi, width, height, bottom_index, |
2263 | | top_index); |
2264 | | #endif // USE_UNRESTRICTED_Q_IN_CQ_MODE |
2265 | 0 | } else { |
2266 | 0 | q = rc_pick_q_and_bounds_no_stats(cpi, width, height, bottom_index, |
2267 | 0 | top_index); |
2268 | 0 | } |
2269 | 0 | } else { |
2270 | 0 | q = rc_pick_q_and_bounds(cpi, width, height, gf_index, bottom_index, |
2271 | 0 | top_index); |
2272 | 0 | } |
2273 | 0 | if (gf_group->update_type[gf_index] == ARF_UPDATE) p_rc->arf_q = q; |
2274 | |
|
2275 | 0 | return q; |
2276 | 0 | } |
2277 | | |
2278 | | void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target, |
2279 | | int *frame_under_shoot_limit, |
2280 | 0 | int *frame_over_shoot_limit) { |
2281 | 0 | if (cpi->oxcf.rc_cfg.mode == AOM_Q) { |
2282 | 0 | *frame_under_shoot_limit = 0; |
2283 | 0 | *frame_over_shoot_limit = INT_MAX; |
2284 | 0 | } else { |
2285 | | // For very small rate targets where the fractional adjustment |
2286 | | // may be tiny make sure there is at least a minimum range. |
2287 | 0 | assert(cpi->sf.hl_sf.recode_tolerance <= 100); |
2288 | 0 | const int tolerance = (int)AOMMAX( |
2289 | 0 | 100, ((int64_t)cpi->sf.hl_sf.recode_tolerance * frame_target) / 100); |
2290 | 0 | *frame_under_shoot_limit = AOMMAX(frame_target - tolerance, 0); |
2291 | 0 | *frame_over_shoot_limit = (int)AOMMIN((int64_t)frame_target + tolerance, |
2292 | 0 | cpi->rc.max_frame_bandwidth); |
2293 | 0 | } |
2294 | 0 | } |
2295 | | |
2296 | 0 | void av1_rc_set_frame_target(AV1_COMP *cpi, int target, int width, int height) { |
2297 | 0 | const AV1_COMMON *const cm = &cpi->common; |
2298 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2299 | |
|
2300 | 0 | rc->this_frame_target = target; |
2301 | | |
2302 | | // Modify frame size target when down-scaled. |
2303 | 0 | if (av1_frame_scaled(cm) && cpi->oxcf.rc_cfg.mode != AOM_CBR) { |
2304 | 0 | rc->this_frame_target = saturate_cast_double_to_int( |
2305 | 0 | rc->this_frame_target * |
2306 | 0 | resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height)); |
2307 | 0 | } |
2308 | | |
2309 | | // Target rate per SB64 (including partial SB64s. |
2310 | 0 | const int64_t sb64_target_rate = |
2311 | 0 | ((int64_t)rc->this_frame_target << 12) / (width * height); |
2312 | 0 | rc->sb64_target_rate = (int)AOMMIN(sb64_target_rate, INT_MAX); |
2313 | 0 | } |
2314 | | |
2315 | 0 | static void update_alt_ref_frame_stats(AV1_COMP *cpi) { |
2316 | | // this frame refreshes means next frames don't unless specified by user |
2317 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2318 | 0 | rc->frames_since_golden = 0; |
2319 | 0 | } |
2320 | | |
2321 | 0 | static void update_golden_frame_stats(AV1_COMP *cpi) { |
2322 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2323 | | |
2324 | | // Update the Golden frame usage counts. |
2325 | 0 | if (cpi->refresh_frame.golden_frame || rc->is_src_frame_alt_ref) { |
2326 | 0 | rc->frames_since_golden = 0; |
2327 | 0 | } else if (cpi->common.show_frame) { |
2328 | 0 | rc->frames_since_golden++; |
2329 | 0 | } |
2330 | 0 | } |
2331 | | |
2332 | 0 | void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) { |
2333 | 0 | const AV1_COMMON *const cm = &cpi->common; |
2334 | 0 | const CurrentFrame *const current_frame = &cm->current_frame; |
2335 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2336 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
2337 | 0 | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
2338 | 0 | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
2339 | |
|
2340 | 0 | const int is_intrnl_arf = |
2341 | 0 | gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE; |
2342 | |
|
2343 | 0 | const int qindex = cm->quant_params.base_qindex; |
2344 | |
|
2345 | | #if RT_PASSIVE_STRATEGY |
2346 | | const int frame_number = current_frame->frame_number % MAX_Q_HISTORY; |
2347 | | p_rc->q_history[frame_number] = qindex; |
2348 | | #endif // RT_PASSIVE_STRATEGY |
2349 | | |
2350 | | // Update rate control heuristics |
2351 | 0 | rc->projected_frame_size = (int)(bytes_used << 3); |
2352 | | |
2353 | | // Post encode loop adjustment of Q prediction. |
2354 | 0 | av1_rc_update_rate_correction_factors(cpi, 0, cm->width, cm->height); |
2355 | | |
2356 | | // Update bit estimation ratio. |
2357 | 0 | if (cpi->oxcf.rc_cfg.mode == AOM_CBR && |
2358 | 0 | cm->current_frame.frame_type != KEY_FRAME && |
2359 | 0 | cpi->sf.hl_sf.accurate_bit_estimate) { |
2360 | 0 | const double q = av1_convert_qindex_to_q(cm->quant_params.base_qindex, |
2361 | 0 | cm->seq_params->bit_depth); |
2362 | 0 | const int this_bit_est_ratio = |
2363 | 0 | (int)(rc->projected_frame_size * q / sqrt((double)cpi->rec_sse)); |
2364 | 0 | cpi->rc.bit_est_ratio = |
2365 | 0 | cpi->rc.bit_est_ratio == 0 |
2366 | 0 | ? this_bit_est_ratio |
2367 | 0 | : (7 * cpi->rc.bit_est_ratio + this_bit_est_ratio) / 8; |
2368 | 0 | } |
2369 | | |
2370 | | // Keep a record of last Q and ambient average Q. |
2371 | 0 | if (current_frame->frame_type == KEY_FRAME) { |
2372 | 0 | p_rc->last_q[KEY_FRAME] = qindex; |
2373 | 0 | p_rc->avg_frame_qindex[KEY_FRAME] = |
2374 | 0 | ROUND_POWER_OF_TWO(3 * p_rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); |
2375 | 0 | if (cpi->svc.spatial_layer_id == 0) { |
2376 | 0 | rc->last_encoded_size_keyframe = rc->projected_frame_size; |
2377 | 0 | rc->last_target_size_keyframe = rc->this_frame_target; |
2378 | 0 | } |
2379 | 0 | } else { |
2380 | 0 | if ((cpi->ppi->use_svc && cpi->oxcf.rc_cfg.mode == AOM_CBR) || |
2381 | 0 | cpi->rc.rtc_external_ratectrl || |
2382 | 0 | (!rc->is_src_frame_alt_ref && |
2383 | 0 | !(refresh_frame->golden_frame || is_intrnl_arf || |
2384 | 0 | refresh_frame->alt_ref_frame))) { |
2385 | 0 | p_rc->last_q[INTER_FRAME] = qindex; |
2386 | 0 | p_rc->avg_frame_qindex[INTER_FRAME] = ROUND_POWER_OF_TWO( |
2387 | 0 | 3 * p_rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); |
2388 | 0 | p_rc->ni_frames++; |
2389 | 0 | p_rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params->bit_depth); |
2390 | 0 | p_rc->avg_q = p_rc->tot_q / p_rc->ni_frames; |
2391 | | // Calculate the average Q for normal inter frames (not key or GFU |
2392 | | // frames). |
2393 | 0 | rc->ni_tot_qi += qindex; |
2394 | 0 | rc->ni_av_qi = rc->ni_tot_qi / p_rc->ni_frames; |
2395 | 0 | } |
2396 | 0 | } |
2397 | | // Keep record of last boosted (KF/GF/ARF) Q value. |
2398 | | // If the current frame is coded at a lower Q then we also update it. |
2399 | | // If all mbs in this group are skipped only update if the Q value is |
2400 | | // better than that already stored. |
2401 | | // This is used to help set quality in forced key frames to reduce popping |
2402 | 0 | if ((qindex < p_rc->last_boosted_qindex) || |
2403 | 0 | (current_frame->frame_type == KEY_FRAME) || |
2404 | 0 | (!p_rc->constrained_gf_group && |
2405 | 0 | (refresh_frame->alt_ref_frame || is_intrnl_arf || |
2406 | 0 | (refresh_frame->golden_frame && !rc->is_src_frame_alt_ref)))) { |
2407 | 0 | p_rc->last_boosted_qindex = qindex; |
2408 | 0 | } |
2409 | 0 | if (current_frame->frame_type == KEY_FRAME) p_rc->last_kf_qindex = qindex; |
2410 | |
|
2411 | 0 | update_buffer_level(cpi, rc->projected_frame_size); |
2412 | 0 | rc->prev_avg_frame_bandwidth = rc->avg_frame_bandwidth; |
2413 | | |
2414 | | // Rolling monitors of whether we are over or underspending used to help |
2415 | | // regulate min and Max Q in two pass. |
2416 | 0 | if (av1_frame_scaled(cm)) |
2417 | 0 | rc->this_frame_target = saturate_cast_double_to_int( |
2418 | 0 | rc->this_frame_target / |
2419 | 0 | resize_rate_factor(&cpi->oxcf.frm_dim_cfg, cm->width, cm->height)); |
2420 | 0 | if (current_frame->frame_type != KEY_FRAME) { |
2421 | 0 | p_rc->rolling_target_bits = (int)ROUND_POWER_OF_TWO_64( |
2422 | 0 | (int64_t)p_rc->rolling_target_bits * 3 + rc->this_frame_target, 2); |
2423 | 0 | p_rc->rolling_actual_bits = (int)ROUND_POWER_OF_TWO_64( |
2424 | 0 | (int64_t)p_rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); |
2425 | 0 | } |
2426 | | |
2427 | | // Actual bits spent |
2428 | 0 | p_rc->total_actual_bits += rc->projected_frame_size; |
2429 | 0 | p_rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0; |
2430 | |
|
2431 | 0 | if (is_altref_enabled(cpi->oxcf.gf_cfg.lag_in_frames, |
2432 | 0 | cpi->oxcf.gf_cfg.enable_auto_arf) && |
2433 | 0 | refresh_frame->alt_ref_frame && |
2434 | 0 | (current_frame->frame_type != KEY_FRAME && !frame_is_sframe(cm))) |
2435 | | // Update the alternate reference frame stats as appropriate. |
2436 | 0 | update_alt_ref_frame_stats(cpi); |
2437 | 0 | else |
2438 | | // Update the Golden frame stats as appropriate. |
2439 | 0 | update_golden_frame_stats(cpi); |
2440 | |
|
2441 | | #if CONFIG_FPMT_TEST |
2442 | | /*The variables temp_avg_frame_qindex, temp_last_q, temp_avg_q, |
2443 | | * temp_last_boosted_qindex are introduced only for quality simulation |
2444 | | * purpose, it retains the value previous to the parallel encode frames. The |
2445 | | * variables are updated based on the update flag. |
2446 | | * |
2447 | | * If there exist show_existing_frames between parallel frames, then to |
2448 | | * retain the temp state do not update it. */ |
2449 | | int show_existing_between_parallel_frames = |
2450 | | (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == |
2451 | | INTNL_OVERLAY_UPDATE && |
2452 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); |
2453 | | |
2454 | | if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && |
2455 | | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { |
2456 | | for (int i = 0; i < FRAME_TYPES; i++) { |
2457 | | p_rc->temp_last_q[i] = p_rc->last_q[i]; |
2458 | | } |
2459 | | p_rc->temp_avg_q = p_rc->avg_q; |
2460 | | p_rc->temp_last_boosted_qindex = p_rc->last_boosted_qindex; |
2461 | | p_rc->temp_total_actual_bits = p_rc->total_actual_bits; |
2462 | | p_rc->temp_projected_frame_size = rc->projected_frame_size; |
2463 | | for (int i = 0; i < RATE_FACTOR_LEVELS; i++) |
2464 | | p_rc->temp_rate_correction_factors[i] = p_rc->rate_correction_factors[i]; |
2465 | | } |
2466 | | #endif |
2467 | 0 | if (current_frame->frame_type == KEY_FRAME) { |
2468 | 0 | rc->frames_since_key = 0; |
2469 | 0 | rc->frames_since_scene_change = 0; |
2470 | 0 | } |
2471 | 0 | if (cpi->refresh_frame.golden_frame) |
2472 | 0 | rc->frame_num_last_gf_refresh = current_frame->frame_number; |
2473 | 0 | rc->prev_coded_width = cm->width; |
2474 | 0 | rc->prev_coded_height = cm->height; |
2475 | 0 | rc->frame_number_encoded++; |
2476 | 0 | rc->prev_frame_is_dropped = 0; |
2477 | 0 | rc->drop_count_consec = 0; |
2478 | 0 | } |
2479 | | |
2480 | 0 | void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) { |
2481 | | // Update buffer level with zero size, update frame counters, and return. |
2482 | 0 | update_buffer_level(cpi, 0); |
2483 | 0 | cpi->rc.rc_2_frame = 0; |
2484 | 0 | cpi->rc.rc_1_frame = 0; |
2485 | 0 | cpi->rc.prev_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth; |
2486 | 0 | cpi->rc.prev_coded_width = cpi->common.width; |
2487 | 0 | cpi->rc.prev_coded_height = cpi->common.height; |
2488 | 0 | cpi->rc.prev_frame_is_dropped = 1; |
2489 | | // On a scene/slide change for dropped frame: reset the avg_source_sad to 0, |
2490 | | // otherwise the avg_source_sad can get too large and subsequent frames |
2491 | | // may miss the scene/slide detection. |
2492 | 0 | if (cpi->rc.high_source_sad) cpi->rc.avg_source_sad = 0; |
2493 | 0 | if (cpi->ppi->use_svc && cpi->svc.number_spatial_layers > 1) { |
2494 | 0 | cpi->svc.last_layer_dropped[cpi->svc.spatial_layer_id] = true; |
2495 | 0 | cpi->svc.drop_spatial_layer[cpi->svc.spatial_layer_id] = true; |
2496 | 0 | } |
2497 | 0 | } |
2498 | | |
2499 | | int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth, |
2500 | 0 | int best_qindex, int worst_qindex) { |
2501 | 0 | assert(best_qindex <= worst_qindex); |
2502 | 0 | int low = best_qindex; |
2503 | 0 | int high = worst_qindex; |
2504 | 0 | while (low < high) { |
2505 | 0 | const int mid = (low + high) >> 1; |
2506 | 0 | const double mid_q = av1_convert_qindex_to_q(mid, bit_depth); |
2507 | 0 | if (mid_q < desired_q) { |
2508 | 0 | low = mid + 1; |
2509 | 0 | } else { |
2510 | 0 | high = mid; |
2511 | 0 | } |
2512 | 0 | } |
2513 | 0 | assert(low == high); |
2514 | 0 | assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q || |
2515 | 0 | low == worst_qindex); |
2516 | 0 | return low; |
2517 | 0 | } |
2518 | | |
2519 | | int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, |
2520 | 0 | aom_bit_depth_t bit_depth) { |
2521 | 0 | const int start_index = |
2522 | 0 | av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality); |
2523 | 0 | const int target_index = |
2524 | 0 | av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality); |
2525 | 0 | return target_index - start_index; |
2526 | 0 | } |
2527 | | |
2528 | | // Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex], |
2529 | | // assuming 'correction_factor' is 1.0. |
2530 | | // To be precise, 'q_index' is the smallest integer, for which the corresponding |
2531 | | // bits per mb <= desired_bits_per_mb. |
2532 | | // If no such q index is found, returns 'worst_qindex'. |
2533 | | static int find_qindex_by_rate(const AV1_COMP *const cpi, |
2534 | | int desired_bits_per_mb, FRAME_TYPE frame_type, |
2535 | 0 | int best_qindex, int worst_qindex) { |
2536 | 0 | assert(best_qindex <= worst_qindex); |
2537 | 0 | int low = best_qindex; |
2538 | 0 | int high = worst_qindex; |
2539 | 0 | while (low < high) { |
2540 | 0 | const int mid = (low + high) >> 1; |
2541 | 0 | const int mid_bits_per_mb = |
2542 | 0 | av1_rc_bits_per_mb(cpi, frame_type, mid, 1.0, 0); |
2543 | 0 | if (mid_bits_per_mb > desired_bits_per_mb) { |
2544 | 0 | low = mid + 1; |
2545 | 0 | } else { |
2546 | 0 | high = mid; |
2547 | 0 | } |
2548 | 0 | } |
2549 | 0 | assert(low == high); |
2550 | 0 | assert(av1_rc_bits_per_mb(cpi, frame_type, low, 1.0, 0) <= |
2551 | 0 | desired_bits_per_mb || |
2552 | 0 | low == worst_qindex); |
2553 | 0 | return low; |
2554 | 0 | } |
2555 | | |
2556 | | int av1_compute_qdelta_by_rate(const AV1_COMP *cpi, FRAME_TYPE frame_type, |
2557 | 0 | int qindex, double rate_target_ratio) { |
2558 | 0 | const RATE_CONTROL *rc = &cpi->rc; |
2559 | | |
2560 | | // Look up the current projected bits per block for the base index |
2561 | 0 | const int base_bits_per_mb = |
2562 | 0 | av1_rc_bits_per_mb(cpi, frame_type, qindex, 1.0, 0); |
2563 | | |
2564 | | // Find the target bits per mb based on the base value and given ratio. |
2565 | 0 | const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); |
2566 | |
|
2567 | 0 | const int target_index = find_qindex_by_rate( |
2568 | 0 | cpi, target_bits_per_mb, frame_type, rc->best_quality, rc->worst_quality); |
2569 | 0 | return target_index - qindex; |
2570 | 0 | } |
2571 | | |
2572 | | static void set_gf_interval_range(const AV1_COMP *const cpi, |
2573 | 0 | RATE_CONTROL *const rc) { |
2574 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
2575 | | |
2576 | | // Special case code for 1 pass fixed Q mode tests |
2577 | 0 | if ((has_no_stats_stage(cpi)) && (oxcf->rc_cfg.mode == AOM_Q)) { |
2578 | 0 | rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; |
2579 | 0 | rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; |
2580 | 0 | rc->static_scene_max_gf_interval = rc->min_gf_interval + 1; |
2581 | 0 | } else { |
2582 | | // Set Maximum gf/arf interval |
2583 | 0 | rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; |
2584 | 0 | rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; |
2585 | 0 | if (rc->min_gf_interval == 0) |
2586 | 0 | rc->min_gf_interval = av1_rc_get_default_min_gf_interval( |
2587 | 0 | oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, cpi->framerate); |
2588 | 0 | if (rc->max_gf_interval == 0) |
2589 | 0 | rc->max_gf_interval = |
2590 | 0 | get_default_max_gf_interval(cpi->framerate, rc->min_gf_interval); |
2591 | | /* |
2592 | | * Extended max interval for genuinely static scenes like slide shows. |
2593 | | * The no.of.stats available in the case of LAP is limited, |
2594 | | * hence setting to max_gf_interval. |
2595 | | */ |
2596 | 0 | if (cpi->ppi->lap_enabled) |
2597 | 0 | rc->static_scene_max_gf_interval = rc->max_gf_interval + 1; |
2598 | 0 | else |
2599 | 0 | rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH; |
2600 | |
|
2601 | 0 | if (rc->max_gf_interval > rc->static_scene_max_gf_interval) |
2602 | 0 | rc->max_gf_interval = rc->static_scene_max_gf_interval; |
2603 | | |
2604 | | // Clamp min to max |
2605 | 0 | rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval); |
2606 | 0 | } |
2607 | 0 | } |
2608 | | |
2609 | 0 | void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) { |
2610 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
2611 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2612 | 0 | const int MBs = av1_get_MBs(width, height); |
2613 | |
|
2614 | 0 | rc->avg_frame_bandwidth = saturate_cast_double_to_int( |
2615 | 0 | round(oxcf->rc_cfg.target_bandwidth / cpi->framerate)); |
2616 | |
|
2617 | 0 | int64_t vbr_min_bits = |
2618 | 0 | (int64_t)rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmin_section / 100; |
2619 | 0 | vbr_min_bits = AOMMIN(vbr_min_bits, INT_MAX); |
2620 | |
|
2621 | 0 | rc->min_frame_bandwidth = AOMMAX((int)vbr_min_bits, FRAME_OVERHEAD_BITS); |
2622 | | |
2623 | | // A maximum bitrate for a frame is defined. |
2624 | | // The baseline for this aligns with HW implementations that |
2625 | | // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits |
2626 | | // per 16x16 MB (averaged over a frame). However this limit is extended if |
2627 | | // a very high rate is given on the command line or the rate cannot |
2628 | | // be achieved because of a user specified max q (e.g. when the user |
2629 | | // specifies lossless encode. |
2630 | 0 | int64_t vbr_max_bits = |
2631 | 0 | (int64_t)rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmax_section / 100; |
2632 | 0 | vbr_max_bits = AOMMIN(vbr_max_bits, INT_MAX); |
2633 | |
|
2634 | 0 | rc->max_frame_bandwidth = |
2635 | 0 | AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), (int)vbr_max_bits); |
2636 | |
|
2637 | 0 | set_gf_interval_range(cpi, rc); |
2638 | 0 | } |
2639 | | |
2640 | | #define VBR_PCT_ADJUSTMENT_LIMIT 50 |
2641 | | // For VBR...adjustment to the frame target based on error from previous frames |
2642 | 0 | static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) { |
2643 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2644 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
2645 | | #if CONFIG_FPMT_TEST |
2646 | | const int simulate_parallel_frame = |
2647 | | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
2648 | | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
2649 | | int64_t vbr_bits_off_target = simulate_parallel_frame |
2650 | | ? cpi->ppi->p_rc.temp_vbr_bits_off_target |
2651 | | : p_rc->vbr_bits_off_target; |
2652 | | #else |
2653 | 0 | int64_t vbr_bits_off_target = p_rc->vbr_bits_off_target; |
2654 | 0 | #endif |
2655 | 0 | int64_t frame_target = *this_frame_target; |
2656 | |
|
2657 | 0 | const double stats_count = |
2658 | 0 | cpi->ppi->twopass.stats_buf_ctx->total_stats != NULL |
2659 | 0 | ? cpi->ppi->twopass.stats_buf_ctx->total_stats->count |
2660 | 0 | : 0.0; |
2661 | 0 | const int frame_window = |
2662 | 0 | (int)AOMMIN(16, stats_count - cpi->common.current_frame.frame_number); |
2663 | 0 | assert(VBR_PCT_ADJUSTMENT_LIMIT <= 100); |
2664 | 0 | if (frame_window > 0) { |
2665 | 0 | const int64_t max_delta = |
2666 | 0 | AOMMIN(llabs((vbr_bits_off_target / frame_window)), |
2667 | 0 | (frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100); |
2668 | | |
2669 | | // vbr_bits_off_target > 0 means we have extra bits to spend |
2670 | | // vbr_bits_off_target < 0 we are currently overshooting |
2671 | 0 | frame_target += (vbr_bits_off_target >= 0) ? max_delta : -max_delta; |
2672 | 0 | } |
2673 | |
|
2674 | | #if CONFIG_FPMT_TEST |
2675 | | int64_t vbr_bits_off_target_fast = |
2676 | | simulate_parallel_frame ? cpi->ppi->p_rc.temp_vbr_bits_off_target_fast |
2677 | | : p_rc->vbr_bits_off_target_fast; |
2678 | | #endif |
2679 | | // Fast redistribution of bits arising from massive local undershoot. |
2680 | | // Don't do it for kf,arf,gf or overlay frames. |
2681 | 0 | if (!frame_is_kf_gf_arf(cpi) && |
2682 | | #if CONFIG_FPMT_TEST |
2683 | | vbr_bits_off_target_fast && |
2684 | | #else |
2685 | 0 | p_rc->vbr_bits_off_target_fast && |
2686 | 0 | #endif |
2687 | 0 | !rc->is_src_frame_alt_ref) { |
2688 | 0 | int64_t one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, frame_target); |
2689 | 0 | int64_t fast_extra_bits; |
2690 | | #if CONFIG_FPMT_TEST |
2691 | | fast_extra_bits = AOMMIN(vbr_bits_off_target_fast, one_frame_bits); |
2692 | | fast_extra_bits = |
2693 | | AOMMIN(fast_extra_bits, |
2694 | | AOMMAX(one_frame_bits / 8, vbr_bits_off_target_fast / 8)); |
2695 | | #else |
2696 | 0 | fast_extra_bits = AOMMIN(p_rc->vbr_bits_off_target_fast, one_frame_bits); |
2697 | 0 | fast_extra_bits = |
2698 | 0 | AOMMIN(fast_extra_bits, |
2699 | 0 | AOMMAX(one_frame_bits / 8, p_rc->vbr_bits_off_target_fast / 8)); |
2700 | 0 | #endif |
2701 | 0 | fast_extra_bits = AOMMIN(fast_extra_bits, INT_MAX); |
2702 | 0 | if (fast_extra_bits > 0) { |
2703 | | // Update frame_target only if additional bits are available from |
2704 | | // local undershoot. |
2705 | 0 | frame_target += fast_extra_bits; |
2706 | 0 | } |
2707 | | // Store the fast_extra_bits of the frame and reduce it from |
2708 | | // vbr_bits_off_target_fast during postencode stage. |
2709 | 0 | rc->frame_level_fast_extra_bits = (int)fast_extra_bits; |
2710 | | // Retaining the condition to update during postencode stage since |
2711 | | // fast_extra_bits are calculated based on vbr_bits_off_target_fast. |
2712 | 0 | cpi->do_update_vbr_bits_off_target_fast = 1; |
2713 | 0 | } |
2714 | | |
2715 | | // Clamp the target for the frame to the maximum allowed for one frame. |
2716 | 0 | *this_frame_target = (int)AOMMIN(frame_target, INT_MAX); |
2717 | 0 | } |
2718 | | |
2719 | 0 | void av1_set_target_rate(AV1_COMP *cpi, int width, int height) { |
2720 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2721 | 0 | int target_rate = rc->base_frame_target; |
2722 | | |
2723 | | // Correction to rate target based on prior over or under shoot. |
2724 | 0 | if (cpi->oxcf.rc_cfg.mode == AOM_VBR || cpi->oxcf.rc_cfg.mode == AOM_CQ) |
2725 | 0 | vbr_rate_correction(cpi, &target_rate); |
2726 | 0 | av1_rc_set_frame_target(cpi, target_rate, width, height); |
2727 | 0 | } |
2728 | | |
2729 | | int av1_calc_pframe_target_size_one_pass_vbr( |
2730 | 0 | const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) { |
2731 | 0 | static const int af_ratio = 10; |
2732 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
2733 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
2734 | 0 | int64_t target; |
2735 | 0 | #if USE_ALTREF_FOR_ONE_PASS |
2736 | 0 | if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE || |
2737 | 0 | frame_update_type == ARF_UPDATE) { |
2738 | 0 | target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * |
2739 | 0 | af_ratio) / |
2740 | 0 | (p_rc->baseline_gf_interval + af_ratio - 1); |
2741 | 0 | } else { |
2742 | 0 | target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval) / |
2743 | 0 | (p_rc->baseline_gf_interval + af_ratio - 1); |
2744 | 0 | } |
2745 | | #else |
2746 | | target = rc->avg_frame_bandwidth; |
2747 | | #endif |
2748 | 0 | return clamp_pframe_target_size(cpi, target, frame_update_type); |
2749 | 0 | } |
2750 | | |
2751 | 0 | int av1_calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) { |
2752 | 0 | static const int kf_ratio = 25; |
2753 | 0 | const RATE_CONTROL *rc = &cpi->rc; |
2754 | 0 | const int64_t target = (int64_t)rc->avg_frame_bandwidth * kf_ratio; |
2755 | 0 | return clamp_iframe_target_size(cpi, target); |
2756 | 0 | } |
2757 | | |
2758 | | int av1_calc_pframe_target_size_one_pass_cbr( |
2759 | 0 | const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) { |
2760 | 0 | const AV1EncoderConfig *oxcf = &cpi->oxcf; |
2761 | 0 | const RATE_CONTROL *rc = &cpi->rc; |
2762 | 0 | const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; |
2763 | 0 | const RateControlCfg *rc_cfg = &oxcf->rc_cfg; |
2764 | 0 | const int64_t diff = p_rc->optimal_buffer_level - p_rc->buffer_level; |
2765 | 0 | const int64_t one_pct_bits = 1 + p_rc->optimal_buffer_level / 100; |
2766 | 0 | int min_frame_target = |
2767 | 0 | AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); |
2768 | 0 | int64_t target; |
2769 | |
|
2770 | 0 | if (rc_cfg->gf_cbr_boost_pct) { |
2771 | 0 | const int af_ratio_pct = rc_cfg->gf_cbr_boost_pct + 100; |
2772 | 0 | if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE) { |
2773 | 0 | target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * |
2774 | 0 | af_ratio_pct) / |
2775 | 0 | (p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100); |
2776 | 0 | } else { |
2777 | 0 | target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * |
2778 | 0 | 100) / |
2779 | 0 | (p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100); |
2780 | 0 | } |
2781 | 0 | } else { |
2782 | 0 | target = rc->avg_frame_bandwidth; |
2783 | 0 | } |
2784 | 0 | if (cpi->ppi->use_svc) { |
2785 | | // Note that for layers, avg_frame_bandwidth is the cumulative |
2786 | | // per-frame-bandwidth. For the target size of this frame, use the |
2787 | | // layer average frame size (i.e., non-cumulative per-frame-bw). |
2788 | 0 | int layer = |
2789 | 0 | LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id, |
2790 | 0 | cpi->svc.number_temporal_layers); |
2791 | 0 | const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; |
2792 | 0 | target = lc->avg_frame_size; |
2793 | 0 | min_frame_target = AOMMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS); |
2794 | 0 | } |
2795 | 0 | if (diff > 0) { |
2796 | | // Lower the target bandwidth for this frame. |
2797 | 0 | const int pct_low = |
2798 | 0 | (int)AOMMIN(diff / one_pct_bits, rc_cfg->under_shoot_pct); |
2799 | 0 | target -= (target * pct_low) / 200; |
2800 | 0 | } else if (diff < 0) { |
2801 | | // Increase the target bandwidth for this frame. |
2802 | 0 | const int pct_high = |
2803 | 0 | (int)AOMMIN(-diff / one_pct_bits, rc_cfg->over_shoot_pct); |
2804 | 0 | target += (target * pct_high) / 200; |
2805 | 0 | } |
2806 | 0 | if (rc_cfg->max_inter_bitrate_pct) { |
2807 | 0 | const int64_t max_rate = |
2808 | 0 | (int64_t)rc->avg_frame_bandwidth * rc_cfg->max_inter_bitrate_pct / 100; |
2809 | 0 | target = AOMMIN(target, max_rate); |
2810 | 0 | } |
2811 | 0 | if (target > INT_MAX) target = INT_MAX; |
2812 | 0 | return AOMMAX(min_frame_target, (int)target); |
2813 | 0 | } |
2814 | | |
2815 | 0 | int av1_calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) { |
2816 | 0 | const RATE_CONTROL *rc = &cpi->rc; |
2817 | 0 | const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; |
2818 | 0 | int64_t target; |
2819 | 0 | if (cpi->common.current_frame.frame_number == 0) { |
2820 | 0 | target = ((p_rc->starting_buffer_level / 2) > INT_MAX) |
2821 | 0 | ? INT_MAX |
2822 | 0 | : (int)(p_rc->starting_buffer_level / 2); |
2823 | 0 | if (cpi->svc.number_temporal_layers > 1 && target < (INT_MAX >> 2)) { |
2824 | 0 | target = target << AOMMIN(2, (cpi->svc.number_temporal_layers - 1)); |
2825 | 0 | } |
2826 | 0 | } else { |
2827 | 0 | int kf_boost = 32; |
2828 | 0 | double framerate = cpi->framerate; |
2829 | |
|
2830 | 0 | kf_boost = AOMMAX(kf_boost, (int)round(2 * framerate - 16)); |
2831 | 0 | if (rc->frames_since_key < framerate / 2) { |
2832 | 0 | kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2)); |
2833 | 0 | } |
2834 | 0 | target = ((int64_t)(16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; |
2835 | 0 | } |
2836 | 0 | return clamp_iframe_target_size(cpi, target); |
2837 | 0 | } |
2838 | | |
2839 | 0 | static void set_golden_update(AV1_COMP *const cpi) { |
2840 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2841 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
2842 | 0 | int divisor = 10; |
2843 | 0 | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) |
2844 | 0 | divisor = cpi->cyclic_refresh->percent_refresh; |
2845 | | |
2846 | | // Set minimum gf_interval for GF update to a multiple of the refresh period, |
2847 | | // with some max limit. Depending on past encoding stats, GF flag may be |
2848 | | // reset and update may not occur until next baseline_gf_interval. |
2849 | 0 | const int gf_length_mult[2] = { 8, 4 }; |
2850 | 0 | if (divisor > 0) |
2851 | 0 | p_rc->baseline_gf_interval = |
2852 | 0 | AOMMIN(gf_length_mult[cpi->sf.rt_sf.gf_length_lvl] * (100 / divisor), |
2853 | 0 | MAX_GF_INTERVAL_RT); |
2854 | 0 | else |
2855 | 0 | p_rc->baseline_gf_interval = FIXED_GF_INTERVAL_RT; |
2856 | 0 | if (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 40) |
2857 | 0 | p_rc->baseline_gf_interval = 16; |
2858 | 0 | } |
2859 | | |
2860 | 0 | static void set_baseline_gf_interval(AV1_COMP *cpi, FRAME_TYPE frame_type) { |
2861 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2862 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
2863 | 0 | GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
2864 | |
|
2865 | 0 | set_golden_update(cpi); |
2866 | |
|
2867 | 0 | if (p_rc->baseline_gf_interval > rc->frames_to_key && |
2868 | 0 | cpi->oxcf.kf_cfg.auto_key) |
2869 | 0 | p_rc->baseline_gf_interval = rc->frames_to_key; |
2870 | 0 | p_rc->gfu_boost = DEFAULT_GF_BOOST_RT; |
2871 | 0 | p_rc->constrained_gf_group = |
2872 | 0 | (p_rc->baseline_gf_interval >= rc->frames_to_key && |
2873 | 0 | cpi->oxcf.kf_cfg.auto_key) |
2874 | 0 | ? 1 |
2875 | 0 | : 0; |
2876 | 0 | rc->frames_till_gf_update_due = p_rc->baseline_gf_interval; |
2877 | 0 | cpi->gf_frame_index = 0; |
2878 | | // SVC does not use GF as periodic boost. |
2879 | | // TODO(marpan): Find better way to disable this for SVC. |
2880 | 0 | if (cpi->ppi->use_svc) { |
2881 | 0 | SVC *const svc = &cpi->svc; |
2882 | 0 | p_rc->baseline_gf_interval = MAX_STATIC_GF_GROUP_LENGTH - 1; |
2883 | 0 | p_rc->gfu_boost = 1; |
2884 | 0 | p_rc->constrained_gf_group = 0; |
2885 | 0 | rc->frames_till_gf_update_due = p_rc->baseline_gf_interval; |
2886 | 0 | for (int layer = 0; |
2887 | 0 | layer < svc->number_spatial_layers * svc->number_temporal_layers; |
2888 | 0 | ++layer) { |
2889 | 0 | LAYER_CONTEXT *const lc = &svc->layer_context[layer]; |
2890 | 0 | lc->p_rc.baseline_gf_interval = p_rc->baseline_gf_interval; |
2891 | 0 | lc->p_rc.gfu_boost = p_rc->gfu_boost; |
2892 | 0 | lc->p_rc.constrained_gf_group = p_rc->constrained_gf_group; |
2893 | 0 | lc->rc.frames_till_gf_update_due = rc->frames_till_gf_update_due; |
2894 | 0 | lc->group_index = 0; |
2895 | 0 | } |
2896 | 0 | } |
2897 | 0 | gf_group->size = p_rc->baseline_gf_interval; |
2898 | 0 | gf_group->update_type[0] = (frame_type == KEY_FRAME) ? KF_UPDATE : GF_UPDATE; |
2899 | 0 | gf_group->refbuf_state[cpi->gf_frame_index] = |
2900 | 0 | (frame_type == KEY_FRAME) ? REFBUF_RESET : REFBUF_UPDATE; |
2901 | 0 | } |
2902 | | |
2903 | 0 | void av1_adjust_gf_refresh_qp_one_pass_rt(AV1_COMP *cpi) { |
2904 | 0 | AV1_COMMON *const cm = &cpi->common; |
2905 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2906 | 0 | RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; |
2907 | 0 | const int resize_pending = is_frame_resize_pending(cpi); |
2908 | 0 | if (!resize_pending && !rc->high_source_sad) { |
2909 | | // Check if we should disable GF refresh (if period is up), |
2910 | | // or force a GF refresh update (if we are at least halfway through |
2911 | | // period) based on QP. Look into add info on segment deltaq. |
2912 | 0 | PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; |
2913 | 0 | const int avg_qp = p_rc->avg_frame_qindex[INTER_FRAME]; |
2914 | 0 | const int allow_gf_update = |
2915 | 0 | rc->frames_till_gf_update_due <= (p_rc->baseline_gf_interval - 10); |
2916 | 0 | int gf_update_changed = 0; |
2917 | 0 | int thresh = 87; |
2918 | 0 | if ((cm->current_frame.frame_number - cpi->rc.frame_num_last_gf_refresh) < |
2919 | 0 | FIXED_GF_INTERVAL_RT && |
2920 | 0 | rc->frames_till_gf_update_due == 1 && |
2921 | 0 | cm->quant_params.base_qindex > avg_qp) { |
2922 | | // Disable GF refresh since QP is above the running average QP. |
2923 | 0 | rtc_ref->refresh[rtc_ref->gld_idx_1layer] = 0; |
2924 | 0 | gf_update_changed = 1; |
2925 | 0 | cpi->refresh_frame.golden_frame = 0; |
2926 | 0 | } else if (allow_gf_update && |
2927 | 0 | ((cm->quant_params.base_qindex < thresh * avg_qp / 100) || |
2928 | 0 | (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 20))) { |
2929 | | // Force refresh since QP is well below average QP or this is a high |
2930 | | // motion frame. |
2931 | 0 | rtc_ref->refresh[rtc_ref->gld_idx_1layer] = 1; |
2932 | 0 | gf_update_changed = 1; |
2933 | 0 | cpi->refresh_frame.golden_frame = 1; |
2934 | 0 | } |
2935 | 0 | if (gf_update_changed) { |
2936 | 0 | set_baseline_gf_interval(cpi, INTER_FRAME); |
2937 | 0 | int refresh_mask = 0; |
2938 | 0 | for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { |
2939 | 0 | int ref_frame_map_idx = rtc_ref->ref_idx[i]; |
2940 | 0 | refresh_mask |= rtc_ref->refresh[ref_frame_map_idx] |
2941 | 0 | << ref_frame_map_idx; |
2942 | 0 | } |
2943 | 0 | cm->current_frame.refresh_frame_flags = refresh_mask; |
2944 | 0 | } |
2945 | 0 | } |
2946 | 0 | } |
2947 | | |
2948 | | /*!\brief Setup the reference prediction structure for 1 pass real-time |
2949 | | * |
2950 | | * Set the reference prediction structure for 1 layer. |
2951 | | * Current structure is to use 3 references (LAST, GOLDEN, ALTREF), |
2952 | | * where ALT_REF always behind current by lag_alt frames, and GOLDEN is |
2953 | | * either updated on LAST with period baseline_gf_interval (fixed slot) |
2954 | | * or always behind current by lag_gld (gld_fixed_slot = 0, lag_gld <= 7). |
2955 | | * |
2956 | | * \ingroup rate_control |
2957 | | * \param[in] cpi Top level encoder structure |
2958 | | * \param[in] gf_update Flag to indicate if GF is updated |
2959 | | * |
2960 | | * \remark Nothing is returned. Instead the settings for the prediction |
2961 | | * structure are set in \c cpi-ext_flags; and the buffer slot index |
2962 | | * (for each of 7 references) and refresh flags (for each of the 8 slots) |
2963 | | * are set in \c cpi->svc.ref_idx[] and \c cpi->svc.refresh[]. |
2964 | | */ |
2965 | 0 | void av1_set_rtc_reference_structure_one_layer(AV1_COMP *cpi, int gf_update) { |
2966 | 0 | AV1_COMMON *const cm = &cpi->common; |
2967 | 0 | ExternalFlags *const ext_flags = &cpi->ext_flags; |
2968 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
2969 | 0 | ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags = |
2970 | 0 | &ext_flags->refresh_frame; |
2971 | 0 | RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; |
2972 | 0 | unsigned int frame_number = (cpi->oxcf.rc_cfg.drop_frames_water_mark) |
2973 | 0 | ? rc->frame_number_encoded |
2974 | 0 | : cm->current_frame.frame_number; |
2975 | 0 | unsigned int lag_alt = 4; |
2976 | 0 | int last_idx = 0; |
2977 | 0 | int last_idx_refresh = 0; |
2978 | 0 | int gld_idx = 0; |
2979 | 0 | int alt_ref_idx = 0; |
2980 | 0 | int last2_idx = 0; |
2981 | 0 | ext_refresh_frame_flags->update_pending = 1; |
2982 | 0 | ext_flags->ref_frame_flags = 0; |
2983 | 0 | ext_refresh_frame_flags->last_frame = 1; |
2984 | 0 | ext_refresh_frame_flags->golden_frame = 0; |
2985 | 0 | ext_refresh_frame_flags->alt_ref_frame = 0; |
2986 | | // Decide altref lag adaptively for rt |
2987 | 0 | if (cpi->sf.rt_sf.sad_based_adp_altref_lag) { |
2988 | 0 | lag_alt = 6; |
2989 | 0 | const uint64_t th_frame_sad[4][3] = { |
2990 | 0 | { 18000, 18000, 18000 }, // HDRES CPU 9 |
2991 | 0 | { 25000, 25000, 25000 }, // MIDRES CPU 9 |
2992 | 0 | { 40000, 30000, 20000 }, // HDRES CPU 10 |
2993 | 0 | { 30000, 25000, 20000 } // MIDRES CPU 10 |
2994 | 0 | }; |
2995 | 0 | int th_idx = cpi->sf.rt_sf.sad_based_adp_altref_lag - 1; |
2996 | 0 | assert(th_idx < 4); |
2997 | 0 | if (rc->avg_source_sad > th_frame_sad[th_idx][0]) |
2998 | 0 | lag_alt = 3; |
2999 | 0 | else if (rc->avg_source_sad > th_frame_sad[th_idx][1]) |
3000 | 0 | lag_alt = 4; |
3001 | 0 | else if (rc->avg_source_sad > th_frame_sad[th_idx][2]) |
3002 | 0 | lag_alt = 5; |
3003 | 0 | } |
3004 | | // This defines the reference structure for 1 layer (non-svc) RTC encoding. |
3005 | | // To avoid the internal/default reference structure for non-realtime |
3006 | | // overwriting this behavior, we use the "svc" ref parameters from the |
3007 | | // external control SET_SVC_REF_FRAME_CONFIG. |
3008 | | // TODO(marpan): rename that control and the related internal parameters |
3009 | | // to rtc_ref. |
3010 | 0 | for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) rtc_ref->ref_idx[i] = 7; |
3011 | 0 | for (int i = 0; i < REF_FRAMES; ++i) rtc_ref->refresh[i] = 0; |
3012 | | // Set the reference frame flags. |
3013 | 0 | ext_flags->ref_frame_flags ^= AOM_LAST_FLAG; |
3014 | 0 | if (!cpi->sf.rt_sf.force_only_last_ref) { |
3015 | 0 | ext_flags->ref_frame_flags ^= AOM_ALT_FLAG; |
3016 | 0 | ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG; |
3017 | 0 | if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) |
3018 | 0 | ext_flags->ref_frame_flags ^= AOM_LAST2_FLAG; |
3019 | 0 | } |
3020 | 0 | const int sh = 6; |
3021 | | // Moving index slot for last: 0 - (sh - 1). |
3022 | 0 | if (frame_number > 1) last_idx = ((frame_number - 1) % sh); |
3023 | | // Moving index for refresh of last: one ahead for next frame. |
3024 | 0 | last_idx_refresh = (frame_number % sh); |
3025 | 0 | gld_idx = 6; |
3026 | | |
3027 | | // Moving index for alt_ref, lag behind LAST by lag_alt frames. |
3028 | 0 | if (frame_number > lag_alt) alt_ref_idx = ((frame_number - lag_alt) % sh); |
3029 | 0 | if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) { |
3030 | | // Moving index for LAST2, lag behind LAST by 2 frames. |
3031 | 0 | if (frame_number > 2) last2_idx = ((frame_number - 2) % sh); |
3032 | 0 | } |
3033 | 0 | rtc_ref->ref_idx[0] = last_idx; // LAST |
3034 | 0 | rtc_ref->ref_idx[1] = last_idx_refresh; // LAST2 (for refresh of last). |
3035 | 0 | if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) { |
3036 | 0 | rtc_ref->ref_idx[1] = last2_idx; // LAST2 |
3037 | 0 | rtc_ref->ref_idx[2] = last_idx_refresh; // LAST3 (for refresh of last). |
3038 | 0 | } |
3039 | 0 | rtc_ref->ref_idx[3] = gld_idx; // GOLDEN |
3040 | 0 | rtc_ref->ref_idx[6] = alt_ref_idx; // ALT_REF |
3041 | | // Refresh this slot, which will become LAST on next frame. |
3042 | 0 | rtc_ref->refresh[last_idx_refresh] = 1; |
3043 | | // Update GOLDEN on period for fixed slot case. |
3044 | 0 | if (gf_update && cm->current_frame.frame_type != KEY_FRAME) { |
3045 | 0 | ext_refresh_frame_flags->golden_frame = 1; |
3046 | 0 | rtc_ref->refresh[gld_idx] = 1; |
3047 | 0 | } |
3048 | 0 | rtc_ref->gld_idx_1layer = gld_idx; |
3049 | | // Set the flag to reduce the number of reference frame buffers used. |
3050 | | // This assumes that slot 7 is never used. |
3051 | 0 | cpi->rt_reduce_num_ref_buffers = 1; |
3052 | 0 | cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[0] < 7); |
3053 | 0 | cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[1] < 7); |
3054 | 0 | cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[3] < 7); |
3055 | 0 | cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[6] < 7); |
3056 | 0 | if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) |
3057 | 0 | cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[2] < 7); |
3058 | 0 | } |
3059 | | |
3060 | | // Returns whether the 64x64 block is active or inactive: used |
3061 | | // by the scene detection, which is over 64x64 blocks. |
3062 | | static int set_block_is_active(unsigned char *const active_map_4x4, int mi_cols, |
3063 | 0 | int mi_rows, int sbi_col, int sbi_row) { |
3064 | 0 | int num_4x4 = 16; |
3065 | 0 | int r = sbi_row << 4; |
3066 | 0 | int c = sbi_col << 4; |
3067 | 0 | const int row_max = AOMMIN(num_4x4, mi_rows - r); |
3068 | 0 | const int col_max = AOMMIN(num_4x4, mi_cols - c); |
3069 | | // Active map is set for 16x16 blocks, so only need to |
3070 | | // check over16x16, |
3071 | 0 | for (int x = 0; x < row_max; x += 4) { |
3072 | 0 | for (int y = 0; y < col_max; y += 4) { |
3073 | 0 | if (active_map_4x4[(r + x) * mi_cols + (c + y)] == AM_SEGMENT_ID_ACTIVE) |
3074 | 0 | return 1; |
3075 | 0 | } |
3076 | 0 | } |
3077 | 0 | return 0; |
3078 | 0 | } |
3079 | | |
3080 | | // Returns the best sad for column or row motion of the superblock. |
3081 | | static unsigned int estimate_scroll_motion( |
3082 | | const AV1_COMP *cpi, uint8_t *src_buf, uint8_t *last_src_buf, |
3083 | | int src_stride, int ref_stride, BLOCK_SIZE bsize, int pos_col, int pos_row, |
3084 | 0 | int *best_intmv_col, int *best_intmv_row, int sw_col, int sw_row) { |
3085 | 0 | const AV1_COMMON *const cm = &cpi->common; |
3086 | 0 | const int bw = block_size_wide[bsize]; |
3087 | 0 | const int bh = block_size_high[bsize]; |
3088 | 0 | const int full_search = 1; |
3089 | | // Keep border a multiple of 16. |
3090 | 0 | const int border = (cpi->oxcf.border_in_pixels >> 4) << 4; |
3091 | 0 | int search_size_width = sw_col; |
3092 | 0 | int search_size_height = sw_row; |
3093 | | // Adjust based on boundary. |
3094 | 0 | if ((pos_col - search_size_width < -border) || |
3095 | 0 | (pos_col + search_size_width > cm->width + border)) |
3096 | 0 | search_size_width = border; |
3097 | 0 | if ((pos_row - search_size_height < -border) || |
3098 | 0 | (pos_row + search_size_height > cm->height + border)) |
3099 | 0 | search_size_height = border; |
3100 | 0 | const uint8_t *ref_buf; |
3101 | 0 | const int row_norm_factor = mi_size_high_log2[bsize] + 1; |
3102 | 0 | const int col_norm_factor = 3 + (bw >> 5); |
3103 | 0 | const int ref_buf_width = (search_size_width << 1) + bw; |
3104 | 0 | const int ref_buf_height = (search_size_height << 1) + bh; |
3105 | 0 | int16_t *hbuf = (int16_t *)aom_malloc(ref_buf_width * sizeof(*hbuf)); |
3106 | 0 | int16_t *vbuf = (int16_t *)aom_malloc(ref_buf_height * sizeof(*vbuf)); |
3107 | 0 | int16_t *src_hbuf = (int16_t *)aom_malloc(bw * sizeof(*src_hbuf)); |
3108 | 0 | int16_t *src_vbuf = (int16_t *)aom_malloc(bh * sizeof(*src_vbuf)); |
3109 | 0 | if (!hbuf || !vbuf || !src_hbuf || !src_vbuf) { |
3110 | 0 | aom_free(hbuf); |
3111 | 0 | aom_free(vbuf); |
3112 | 0 | aom_free(src_hbuf); |
3113 | 0 | aom_free(src_vbuf); |
3114 | 0 | aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
3115 | 0 | "Failed to allocate hbuf, vbuf, src_hbuf, or src_vbuf"); |
3116 | 0 | } |
3117 | | // Set up prediction 1-D reference set for rows. |
3118 | 0 | ref_buf = last_src_buf - search_size_width; |
3119 | 0 | aom_int_pro_row(hbuf, ref_buf, ref_stride, ref_buf_width, bh, |
3120 | 0 | row_norm_factor); |
3121 | | // Set up prediction 1-D reference set for cols |
3122 | 0 | ref_buf = last_src_buf - search_size_height * ref_stride; |
3123 | 0 | aom_int_pro_col(vbuf, ref_buf, ref_stride, bw, ref_buf_height, |
3124 | 0 | col_norm_factor); |
3125 | | // Set up src 1-D reference set |
3126 | 0 | aom_int_pro_row(src_hbuf, src_buf, src_stride, bw, bh, row_norm_factor); |
3127 | 0 | aom_int_pro_col(src_vbuf, src_buf, src_stride, bw, bh, col_norm_factor); |
3128 | 0 | unsigned int best_sad; |
3129 | 0 | int best_sad_col, best_sad_row; |
3130 | | // Find the best match per 1-D search |
3131 | 0 | *best_intmv_col = |
3132 | 0 | av1_vector_match(hbuf, src_hbuf, mi_size_wide_log2[bsize], |
3133 | 0 | search_size_width, full_search, &best_sad_col); |
3134 | 0 | *best_intmv_row = |
3135 | 0 | av1_vector_match(vbuf, src_vbuf, mi_size_high_log2[bsize], |
3136 | 0 | search_size_height, full_search, &best_sad_row); |
3137 | 0 | if (best_sad_col < best_sad_row) { |
3138 | 0 | *best_intmv_row = 0; |
3139 | 0 | best_sad = best_sad_col; |
3140 | 0 | } else { |
3141 | 0 | *best_intmv_col = 0; |
3142 | 0 | best_sad = best_sad_row; |
3143 | 0 | } |
3144 | 0 | aom_free(hbuf); |
3145 | 0 | aom_free(vbuf); |
3146 | 0 | aom_free(src_hbuf); |
3147 | 0 | aom_free(src_vbuf); |
3148 | 0 | return best_sad; |
3149 | 0 | } |
3150 | | |
3151 | | /*!\brief Check for scene detection, for 1 pass real-time mode. |
3152 | | * |
3153 | | * Compute average source sad (temporal sad: between current source and |
3154 | | * previous source) over a subset of superblocks. Use this is detect big changes |
3155 | | * in content and set the \c cpi->rc.high_source_sad flag. |
3156 | | * |
3157 | | * \ingroup rate_control |
3158 | | * \param[in] cpi Top level encoder structure |
3159 | | * \param[in] frame_input Current and last input source frames |
3160 | | * |
3161 | | * \remark Nothing is returned. Instead the flag \c cpi->rc.high_source_sad |
3162 | | * is set if scene change is detected, and \c cpi->rc.avg_source_sad is updated. |
3163 | | */ |
3164 | | static void rc_scene_detection_onepass_rt(AV1_COMP *cpi, |
3165 | 0 | const EncodeFrameInput *frame_input) { |
3166 | 0 | AV1_COMMON *const cm = &cpi->common; |
3167 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
3168 | 0 | YV12_BUFFER_CONFIG const *const unscaled_src = frame_input->source; |
3169 | 0 | YV12_BUFFER_CONFIG const *const unscaled_last_src = frame_input->last_source; |
3170 | 0 | uint8_t *src_y; |
3171 | 0 | int src_ystride; |
3172 | 0 | int src_width; |
3173 | 0 | int src_height; |
3174 | 0 | uint8_t *last_src_y; |
3175 | 0 | int last_src_ystride; |
3176 | 0 | int last_src_width; |
3177 | 0 | int last_src_height; |
3178 | 0 | int width = cm->width; |
3179 | 0 | int height = cm->height; |
3180 | 0 | if (cpi->svc.number_spatial_layers > 1) { |
3181 | 0 | width = cpi->oxcf.frm_dim_cfg.width; |
3182 | 0 | height = cpi->oxcf.frm_dim_cfg.height; |
3183 | 0 | } |
3184 | 0 | if (width != cm->render_width || height != cm->render_height || |
3185 | 0 | unscaled_src == NULL || unscaled_last_src == NULL) { |
3186 | 0 | aom_free(cpi->src_sad_blk_64x64); |
3187 | 0 | cpi->src_sad_blk_64x64 = NULL; |
3188 | 0 | } |
3189 | 0 | if (unscaled_src == NULL || unscaled_last_src == NULL) return; |
3190 | 0 | src_y = unscaled_src->y_buffer; |
3191 | 0 | src_ystride = unscaled_src->y_stride; |
3192 | 0 | src_width = unscaled_src->y_width; |
3193 | 0 | src_height = unscaled_src->y_height; |
3194 | 0 | last_src_y = unscaled_last_src->y_buffer; |
3195 | 0 | last_src_ystride = unscaled_last_src->y_stride; |
3196 | 0 | last_src_width = unscaled_last_src->y_width; |
3197 | 0 | last_src_height = unscaled_last_src->y_height; |
3198 | 0 | if (src_width != last_src_width || src_height != last_src_height) { |
3199 | 0 | aom_free(cpi->src_sad_blk_64x64); |
3200 | 0 | cpi->src_sad_blk_64x64 = NULL; |
3201 | 0 | return; |
3202 | 0 | } |
3203 | 0 | rc->high_source_sad = 0; |
3204 | 0 | rc->percent_blocks_with_motion = 0; |
3205 | 0 | rc->max_block_source_sad = 0; |
3206 | 0 | rc->prev_avg_source_sad = rc->avg_source_sad; |
3207 | 0 | int num_mi_cols = cm->mi_params.mi_cols; |
3208 | 0 | int num_mi_rows = cm->mi_params.mi_rows; |
3209 | 0 | if (cpi->svc.number_spatial_layers > 1) { |
3210 | 0 | num_mi_cols = cpi->svc.mi_cols_full_resoln; |
3211 | 0 | num_mi_rows = cpi->svc.mi_rows_full_resoln; |
3212 | 0 | } |
3213 | 0 | int num_zero_temp_sad = 0; |
3214 | 0 | uint32_t min_thresh = |
3215 | 0 | (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) ? 8000 : 10000; |
3216 | 0 | if (cpi->sf.rt_sf.higher_thresh_scene_detection) { |
3217 | 0 | min_thresh = cm->width * cm->height <= 320 * 240 && cpi->framerate < 10.0 |
3218 | 0 | ? 50000 |
3219 | 0 | : 100000; |
3220 | 0 | } |
3221 | 0 | const BLOCK_SIZE bsize = BLOCK_64X64; |
3222 | | // Loop over sub-sample of frame, compute average sad over 64x64 blocks. |
3223 | 0 | uint64_t avg_sad = 0; |
3224 | 0 | uint64_t tmp_sad = 0; |
3225 | 0 | int num_samples = 0; |
3226 | 0 | const int thresh = |
3227 | 0 | ((cm->width * cm->height <= 320 * 240 && cpi->framerate < 10.0) || |
3228 | 0 | (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN)) |
3229 | 0 | ? 5 |
3230 | 0 | : 6; |
3231 | | // SAD is computed on 64x64 blocks |
3232 | 0 | const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128) |
3233 | 0 | ? (cm->seq_params->mib_size >> 1) |
3234 | 0 | : cm->seq_params->mib_size; |
3235 | 0 | const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; |
3236 | 0 | const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb; |
3237 | 0 | uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5 |
3238 | 0 | int num_low_var_high_sumdiff = 0; |
3239 | 0 | int light_change = 0; |
3240 | | // Flag to check light change or not. |
3241 | 0 | const int check_light_change = 0; |
3242 | | // TODO(marpan): There seems some difference along the bottom border when |
3243 | | // using the source_last_tl0 for last_source (used for temporal layers or |
3244 | | // when previous frame is dropped). |
3245 | | // Remove this border parameter when issue is resolved: difference is that |
3246 | | // non-zero sad exists along bottom border even though source is static. |
3247 | 0 | const int border = |
3248 | 0 | rc->prev_frame_is_dropped || cpi->svc.number_temporal_layers > 1; |
3249 | | // Store blkwise SAD for later use |
3250 | 0 | if (width == cm->render_width && height == cm->render_height) { |
3251 | 0 | if (cpi->src_sad_blk_64x64 == NULL) { |
3252 | 0 | CHECK_MEM_ERROR(cm, cpi->src_sad_blk_64x64, |
3253 | 0 | (uint64_t *)aom_calloc(sb_cols * sb_rows, |
3254 | 0 | sizeof(*cpi->src_sad_blk_64x64))); |
3255 | 0 | } |
3256 | 0 | } |
3257 | 0 | const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; |
3258 | 0 | const int mi_cols = mi_params->mi_cols; |
3259 | 0 | const int mi_rows = mi_params->mi_rows; |
3260 | 0 | unsigned char *const active_map_4x4 = cpi->active_map.map; |
3261 | | // Avoid bottom and right border. |
3262 | 0 | for (int sbi_row = 0; sbi_row < sb_rows - border; ++sbi_row) { |
3263 | 0 | for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) { |
3264 | 0 | int block_is_active = 1; |
3265 | 0 | if (cpi->active_map.enabled && rc->percent_blocks_inactive > 0) { |
3266 | 0 | block_is_active = set_block_is_active(active_map_4x4, mi_cols, mi_rows, |
3267 | 0 | sbi_col, sbi_row); |
3268 | 0 | } |
3269 | 0 | if (block_is_active) { |
3270 | 0 | tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, |
3271 | 0 | last_src_ystride); |
3272 | 0 | } else { |
3273 | 0 | tmp_sad = 0; |
3274 | 0 | } |
3275 | 0 | if (cpi->src_sad_blk_64x64 != NULL) |
3276 | 0 | cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols] = tmp_sad; |
3277 | 0 | if (check_light_change) { |
3278 | 0 | unsigned int sse, variance; |
3279 | 0 | variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y, |
3280 | 0 | last_src_ystride, &sse); |
3281 | | // Note: sse - variance = ((sum * sum) >> 12) |
3282 | | // Detect large lighting change. |
3283 | 0 | if (variance < (sse >> 1) && (sse - variance) > sum_sq_thresh) { |
3284 | 0 | num_low_var_high_sumdiff++; |
3285 | 0 | } |
3286 | 0 | } |
3287 | 0 | avg_sad += tmp_sad; |
3288 | 0 | num_samples++; |
3289 | 0 | if (tmp_sad == 0) num_zero_temp_sad++; |
3290 | 0 | if (tmp_sad > rc->max_block_source_sad) |
3291 | 0 | rc->max_block_source_sad = tmp_sad; |
3292 | |
|
3293 | 0 | src_y += 64; |
3294 | 0 | last_src_y += 64; |
3295 | 0 | } |
3296 | 0 | src_y += (src_ystride << 6) - (sb_cols << 6); |
3297 | 0 | last_src_y += (last_src_ystride << 6) - (sb_cols << 6); |
3298 | 0 | } |
3299 | 0 | if (check_light_change && num_samples > 0 && |
3300 | 0 | num_low_var_high_sumdiff > (num_samples >> 1)) |
3301 | 0 | light_change = 1; |
3302 | 0 | if (num_samples > 0) avg_sad = avg_sad / num_samples; |
3303 | | // Set high_source_sad flag if we detect very high increase in avg_sad |
3304 | | // between current and previous frame value(s). Use minimum threshold |
3305 | | // for cases where there is small change from content that is completely |
3306 | | // static. |
3307 | 0 | if (!light_change && |
3308 | 0 | avg_sad > |
3309 | 0 | AOMMAX(min_thresh, (unsigned int)(rc->avg_source_sad * thresh)) && |
3310 | 0 | rc->frames_since_key > 1 + cpi->svc.number_spatial_layers && |
3311 | 0 | num_zero_temp_sad < 3 * (num_samples >> 2)) |
3312 | 0 | rc->high_source_sad = 1; |
3313 | 0 | else |
3314 | 0 | rc->high_source_sad = 0; |
3315 | 0 | rc->avg_source_sad = (3 * rc->avg_source_sad + avg_sad) >> 2; |
3316 | 0 | rc->frame_source_sad = avg_sad; |
3317 | 0 | if (num_samples > 0) |
3318 | 0 | rc->percent_blocks_with_motion = |
3319 | 0 | ((num_samples - num_zero_temp_sad) * 100) / num_samples; |
3320 | 0 | if (rc->frame_source_sad > 0) rc->static_since_last_scene_change = 0; |
3321 | 0 | if (rc->high_source_sad) { |
3322 | 0 | cpi->rc.frames_since_scene_change = 0; |
3323 | 0 | rc->static_since_last_scene_change = 1; |
3324 | 0 | } |
3325 | | // Update the high_motion_content_screen_rtc flag on TL0. Avoid the update |
3326 | | // if too many consecutive frame drops occurred. |
3327 | 0 | const uint64_t thresh_high_motion = 9 * 64 * 64; |
3328 | 0 | if (cpi->svc.temporal_layer_id == 0 && rc->drop_count_consec < 3) { |
3329 | 0 | cpi->rc.high_motion_content_screen_rtc = 0; |
3330 | 0 | if (cpi->oxcf.speed >= 11 && |
3331 | 0 | cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
3332 | 0 | rc->percent_blocks_with_motion > 40 && |
3333 | 0 | rc->prev_avg_source_sad > thresh_high_motion && |
3334 | 0 | rc->avg_source_sad > thresh_high_motion && |
3335 | 0 | rc->avg_frame_low_motion < 60 && unscaled_src->y_width >= 1280 && |
3336 | 0 | unscaled_src->y_height >= 720) { |
3337 | 0 | cpi->rc.high_motion_content_screen_rtc = 1; |
3338 | | // Compute fast coarse/global motion for 128x128 superblock centered |
3339 | | // at middle of frame, and one to the upper left and one to lower right. |
3340 | | // to determine if motion is scroll. Only test 3 points (pts) for now. |
3341 | | // TODO(marpan): Only allow for 8 bit-depth for now. |
3342 | 0 | if (cm->seq_params->bit_depth == 8) { |
3343 | 0 | const int sw_row = (cpi->rc.frame_source_sad > 20000) ? 512 : 192; |
3344 | 0 | const int sw_col = (cpi->rc.frame_source_sad > 20000) ? 512 : 160; |
3345 | 0 | const int num_pts = |
3346 | 0 | unscaled_src->y_width * unscaled_src->y_height >= 1920 * 1080 ? 3 |
3347 | 0 | : 1; |
3348 | 0 | for (int pts = 0; pts < num_pts; pts++) { |
3349 | | // fac and shift are used to move the center block for the other |
3350 | | // two points (pts). |
3351 | 0 | int fac = 1; |
3352 | 0 | int shift = 1; |
3353 | 0 | if (pts == 1) { |
3354 | 0 | fac = 1; |
3355 | 0 | shift = 2; |
3356 | 0 | } else if (pts == 2) { |
3357 | 0 | fac = 3; |
3358 | 0 | shift = 2; |
3359 | 0 | } |
3360 | 0 | int pos_col = (fac * unscaled_src->y_width >> shift) - 64; |
3361 | 0 | int pos_row = (fac * unscaled_src->y_height >> shift) - 64; |
3362 | 0 | pos_col = AOMMAX(sw_col, |
3363 | 0 | AOMMIN(unscaled_src->y_width - sw_col - 1, pos_col)); |
3364 | 0 | pos_row = AOMMAX( |
3365 | 0 | sw_row, AOMMIN(unscaled_src->y_height - sw_row - 1, pos_row)); |
3366 | 0 | if (pos_col >= 0 && pos_col < unscaled_src->y_width - 64 && |
3367 | 0 | pos_row >= 0 && pos_row < unscaled_src->y_height - 64) { |
3368 | 0 | src_y = unscaled_src->y_buffer + pos_row * src_ystride + pos_col; |
3369 | 0 | last_src_y = unscaled_last_src->y_buffer + |
3370 | 0 | pos_row * last_src_ystride + pos_col; |
3371 | 0 | int best_intmv_col = 0; |
3372 | 0 | int best_intmv_row = 0; |
3373 | 0 | unsigned int y_sad = estimate_scroll_motion( |
3374 | 0 | cpi, src_y, last_src_y, src_ystride, last_src_ystride, |
3375 | 0 | BLOCK_128X128, pos_col, pos_row, &best_intmv_col, |
3376 | 0 | &best_intmv_row, sw_col, sw_row); |
3377 | 0 | if (y_sad < 100 && |
3378 | 0 | (abs(best_intmv_col) > 16 || abs(best_intmv_row) > 16)) { |
3379 | 0 | cpi->rc.high_motion_content_screen_rtc = 0; |
3380 | 0 | break; |
3381 | 0 | } |
3382 | 0 | } |
3383 | 0 | } |
3384 | 0 | } |
3385 | 0 | } |
3386 | | // Pass the flag value to all layer frames. |
3387 | 0 | if (cpi->svc.number_spatial_layers > 1 || |
3388 | 0 | cpi->svc.number_temporal_layers > 1) { |
3389 | 0 | SVC *svc = &cpi->svc; |
3390 | 0 | for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { |
3391 | 0 | for (int tl = 1; tl < svc->number_temporal_layers; ++tl) { |
3392 | 0 | const int layer = |
3393 | 0 | LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); |
3394 | 0 | LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
3395 | 0 | RATE_CONTROL *lrc = &lc->rc; |
3396 | 0 | lrc->high_motion_content_screen_rtc = |
3397 | 0 | rc->high_motion_content_screen_rtc; |
3398 | 0 | } |
3399 | 0 | } |
3400 | 0 | } |
3401 | 0 | } |
3402 | | // Scene detection is only on base SLO, and using full/original resolution. |
3403 | | // Pass the state to the upper spatial layers. |
3404 | 0 | if (cpi->svc.number_spatial_layers > 1) { |
3405 | 0 | SVC *svc = &cpi->svc; |
3406 | 0 | for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { |
3407 | 0 | int tl = svc->temporal_layer_id; |
3408 | 0 | const int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); |
3409 | 0 | LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
3410 | 0 | RATE_CONTROL *lrc = &lc->rc; |
3411 | 0 | lrc->high_source_sad = rc->high_source_sad; |
3412 | 0 | lrc->frame_source_sad = rc->frame_source_sad; |
3413 | 0 | lrc->avg_source_sad = rc->avg_source_sad; |
3414 | 0 | lrc->percent_blocks_with_motion = rc->percent_blocks_with_motion; |
3415 | 0 | lrc->max_block_source_sad = rc->max_block_source_sad; |
3416 | 0 | } |
3417 | 0 | } |
3418 | 0 | } |
3419 | | |
3420 | | // This is used as a reference when computing the source variance. |
3421 | | static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { |
3422 | | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
3423 | | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
3424 | | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
3425 | | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
3426 | | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
3427 | | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
3428 | | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
3429 | | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
3430 | | 128, 128, 128, 128, 128, 128, 128, 128 |
3431 | | }; |
3432 | | |
3433 | | /*!\brief Compute spatial activity for frame, 1 pass real-time mode. |
3434 | | * |
3435 | | * Compute average spatial activity/variance for source frame over a |
3436 | | * subset of superblocks. |
3437 | | * |
3438 | | * \ingroup rate_control |
3439 | | * \param[in] cpi Top level encoder structure |
3440 | | * \param[in] src_y Input source buffer for y channel. |
3441 | | * \param[in] src_ystride Input source stride for y channel. |
3442 | | * |
3443 | | * \remark Nothing is returned. Instead the average spatial variance |
3444 | | * computed is stored in flag \c cpi->rc.frame_spatial_variance. |
3445 | | */ |
3446 | | static void rc_spatial_act_onepass_rt(AV1_COMP *cpi, uint8_t *src_y, |
3447 | 0 | int src_ystride) { |
3448 | 0 | AV1_COMMON *const cm = &cpi->common; |
3449 | 0 | int num_mi_cols = cm->mi_params.mi_cols; |
3450 | 0 | int num_mi_rows = cm->mi_params.mi_rows; |
3451 | 0 | const BLOCK_SIZE bsize = BLOCK_64X64; |
3452 | | // Loop over sub-sample of frame, compute average over 64x64 blocks. |
3453 | 0 | uint64_t avg_variance = 0; |
3454 | 0 | int num_samples = 0; |
3455 | 0 | int num_zero_var_blocks = 0; |
3456 | 0 | cpi->rc.perc_spatial_flat_blocks = 0; |
3457 | 0 | const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128) |
3458 | 0 | ? (cm->seq_params->mib_size >> 1) |
3459 | 0 | : cm->seq_params->mib_size; |
3460 | 0 | const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; |
3461 | 0 | const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb; |
3462 | 0 | for (int sbi_row = 0; sbi_row < sb_rows; ++sbi_row) { |
3463 | 0 | for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) { |
3464 | 0 | unsigned int sse; |
3465 | 0 | const unsigned int var = |
3466 | 0 | cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, AV1_VAR_OFFS, 0, &sse); |
3467 | 0 | avg_variance += var; |
3468 | 0 | num_samples++; |
3469 | 0 | if (var == 0) num_zero_var_blocks++; |
3470 | 0 | src_y += 64; |
3471 | 0 | } |
3472 | 0 | src_y += (src_ystride << 6) - (sb_cols << 6); |
3473 | 0 | } |
3474 | 0 | if (num_samples > 0) { |
3475 | 0 | cpi->rc.perc_spatial_flat_blocks = 100 * num_zero_var_blocks / num_samples; |
3476 | 0 | avg_variance = avg_variance / num_samples; |
3477 | 0 | } |
3478 | 0 | cpi->rc.frame_spatial_variance = avg_variance >> 12; |
3479 | 0 | } |
3480 | | |
3481 | | /*!\brief Set the GF baseline interval for 1 pass real-time mode. |
3482 | | * |
3483 | | * |
3484 | | * \ingroup rate_control |
3485 | | * \param[in] cpi Top level encoder structure |
3486 | | * \param[in] frame_type frame type |
3487 | | * |
3488 | | * \return Return GF update flag, and update the \c cpi->rc with |
3489 | | * the next GF interval settings. |
3490 | | */ |
3491 | | static int set_gf_interval_update_onepass_rt(AV1_COMP *cpi, |
3492 | 0 | FRAME_TYPE frame_type) { |
3493 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
3494 | 0 | int gf_update = 0; |
3495 | 0 | const int resize_pending = is_frame_resize_pending(cpi); |
3496 | | // GF update based on frames_till_gf_update_due, also |
3497 | | // force update on resize pending frame or for scene change. |
3498 | 0 | if ((resize_pending || rc->high_source_sad || |
3499 | 0 | rc->frames_till_gf_update_due == 0) && |
3500 | 0 | cpi->svc.temporal_layer_id == 0 && cpi->svc.spatial_layer_id == 0) { |
3501 | 0 | set_baseline_gf_interval(cpi, frame_type); |
3502 | 0 | gf_update = 1; |
3503 | 0 | } |
3504 | 0 | return gf_update; |
3505 | 0 | } |
3506 | | |
3507 | | static void resize_reset_rc(AV1_COMP *cpi, int resize_width, int resize_height, |
3508 | 0 | int prev_width, int prev_height) { |
3509 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
3510 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
3511 | 0 | SVC *const svc = &cpi->svc; |
3512 | 0 | int target_bits_per_frame; |
3513 | 0 | int active_worst_quality; |
3514 | 0 | int qindex; |
3515 | 0 | double tot_scale_change = (double)(resize_width * resize_height) / |
3516 | 0 | (double)(prev_width * prev_height); |
3517 | | // Disable the skip mv search for svc on resize frame. |
3518 | 0 | svc->skip_mvsearch_last = 0; |
3519 | 0 | svc->skip_mvsearch_gf = 0; |
3520 | 0 | svc->skip_mvsearch_altref = 0; |
3521 | | // Reset buffer level to optimal, update target size. |
3522 | 0 | p_rc->buffer_level = p_rc->optimal_buffer_level; |
3523 | 0 | p_rc->bits_off_target = p_rc->optimal_buffer_level; |
3524 | 0 | rc->this_frame_target = |
3525 | 0 | av1_calc_pframe_target_size_one_pass_cbr(cpi, INTER_FRAME); |
3526 | 0 | target_bits_per_frame = rc->this_frame_target; |
3527 | 0 | if (tot_scale_change > 4.0) |
3528 | 0 | p_rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality; |
3529 | 0 | else if (tot_scale_change > 1.0) |
3530 | 0 | p_rc->avg_frame_qindex[INTER_FRAME] = |
3531 | 0 | (p_rc->avg_frame_qindex[INTER_FRAME] + rc->worst_quality) >> 1; |
3532 | 0 | active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi); |
3533 | 0 | qindex = av1_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality, |
3534 | 0 | active_worst_quality, resize_width, resize_height); |
3535 | | // If resize is down, check if projected q index is close to worst_quality, |
3536 | | // and if so, reduce the rate correction factor (since likely can afford |
3537 | | // lower q for resized frame). |
3538 | 0 | if (tot_scale_change < 1.0 && qindex > 90 * rc->worst_quality / 100) |
3539 | 0 | p_rc->rate_correction_factors[INTER_NORMAL] *= 0.85; |
3540 | | // If resize is back up: check if projected q index is too much above the |
3541 | | // previous index, and if so, reduce the rate correction factor |
3542 | | // (since prefer to keep q for resized frame at least closet to previous q). |
3543 | | // Also check if projected qindex is close to previous qindex, if so |
3544 | | // increase correction factor (to push qindex higher and avoid overshoot). |
3545 | 0 | if (tot_scale_change >= 1.0) { |
3546 | 0 | if (tot_scale_change < 4.0 && |
3547 | 0 | qindex > 130 * p_rc->last_q[INTER_FRAME] / 100) |
3548 | 0 | p_rc->rate_correction_factors[INTER_NORMAL] *= 0.8; |
3549 | 0 | if (qindex <= 120 * p_rc->last_q[INTER_FRAME] / 100) |
3550 | 0 | p_rc->rate_correction_factors[INTER_NORMAL] *= 1.5; |
3551 | 0 | } |
3552 | 0 | if (svc->number_temporal_layers > 1) { |
3553 | | // Apply the same rate control reset to all temporal layers. |
3554 | 0 | for (int tl = 0; tl < svc->number_temporal_layers; tl++) { |
3555 | 0 | LAYER_CONTEXT *lc = NULL; |
3556 | 0 | lc = &svc->layer_context[svc->spatial_layer_id * |
3557 | 0 | svc->number_temporal_layers + |
3558 | 0 | tl]; |
3559 | 0 | lc->rc.resize_state = rc->resize_state; |
3560 | 0 | lc->p_rc.buffer_level = lc->p_rc.optimal_buffer_level; |
3561 | 0 | lc->p_rc.bits_off_target = lc->p_rc.optimal_buffer_level; |
3562 | 0 | lc->p_rc.rate_correction_factors[INTER_NORMAL] = |
3563 | 0 | p_rc->rate_correction_factors[INTER_NORMAL]; |
3564 | 0 | lc->p_rc.avg_frame_qindex[INTER_FRAME] = |
3565 | 0 | p_rc->avg_frame_qindex[INTER_FRAME]; |
3566 | 0 | } |
3567 | 0 | } |
3568 | 0 | } |
3569 | | |
3570 | | /*!\brief Check for resize based on Q, for 1 pass real-time mode. |
3571 | | * |
3572 | | * Check if we should resize, based on average QP from past x frames. |
3573 | | * Only allow for resize at most 1/2 scale down for now, Scaling factor |
3574 | | * for each step may be 3/4 or 1/2. |
3575 | | * |
3576 | | * \ingroup rate_control |
3577 | | * \param[in] cpi Top level encoder structure |
3578 | | * |
3579 | | * \remark Return resized width/height in \c cpi->resize_pending_params, |
3580 | | * and update some resize counters in \c rc. |
3581 | | */ |
3582 | 0 | static void dynamic_resize_one_pass_cbr(AV1_COMP *cpi) { |
3583 | 0 | const AV1_COMMON *const cm = &cpi->common; |
3584 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
3585 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
3586 | 0 | RESIZE_ACTION resize_action = NO_RESIZE; |
3587 | 0 | const int avg_qp_thr1 = 70; |
3588 | 0 | const int avg_qp_thr2 = 50; |
3589 | | // Don't allow for resized frame to go below 160x90, resize in steps of 3/4. |
3590 | 0 | const int min_width = (160 * 4) / 3; |
3591 | 0 | const int min_height = (90 * 4) / 3; |
3592 | 0 | int down_size_on = 1; |
3593 | | // Don't resize on key frame; reset the counters on key frame. |
3594 | 0 | if (cm->current_frame.frame_type == KEY_FRAME) { |
3595 | 0 | rc->resize_avg_qp = 0; |
3596 | 0 | rc->resize_count = 0; |
3597 | 0 | rc->resize_buffer_underflow = 0; |
3598 | 0 | return; |
3599 | 0 | } |
3600 | | // No resizing down if frame size is below some limit. |
3601 | 0 | if ((cm->width * cm->height) < min_width * min_height) down_size_on = 0; |
3602 | | |
3603 | | // Resize based on average buffer underflow and QP over some window. |
3604 | | // Ignore samples close to key frame, since QP is usually high after key. |
3605 | 0 | if (cpi->rc.frames_since_key > cpi->framerate) { |
3606 | 0 | const int window = AOMMIN(30, (int)(2 * cpi->framerate)); |
3607 | 0 | rc->resize_avg_qp += p_rc->last_q[INTER_FRAME]; |
3608 | 0 | if (cpi->ppi->p_rc.buffer_level < |
3609 | 0 | (int)(30 * p_rc->optimal_buffer_level / 100)) |
3610 | 0 | ++rc->resize_buffer_underflow; |
3611 | 0 | ++rc->resize_count; |
3612 | | // Check for resize action every "window" frames. |
3613 | 0 | if (rc->resize_count >= window) { |
3614 | 0 | int avg_qp = rc->resize_avg_qp / rc->resize_count; |
3615 | | // Resize down if buffer level has underflowed sufficient amount in past |
3616 | | // window, and we are at original or 3/4 of original resolution. |
3617 | | // Resize back up if average QP is low, and we are currently in a resized |
3618 | | // down state, i.e. 1/2 or 3/4 of original resolution. |
3619 | | // Currently, use a flag to turn 3/4 resizing feature on/off. |
3620 | 0 | if (rc->resize_buffer_underflow > (rc->resize_count >> 2) && |
3621 | 0 | down_size_on) { |
3622 | 0 | if (rc->resize_state == THREE_QUARTER) { |
3623 | 0 | resize_action = DOWN_ONEHALF; |
3624 | 0 | rc->resize_state = ONE_HALF; |
3625 | 0 | } else if (rc->resize_state == ORIG) { |
3626 | 0 | resize_action = DOWN_THREEFOUR; |
3627 | 0 | rc->resize_state = THREE_QUARTER; |
3628 | 0 | } |
3629 | 0 | } else if (rc->resize_state != ORIG && |
3630 | 0 | avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) { |
3631 | 0 | if (rc->resize_state == THREE_QUARTER || |
3632 | 0 | avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100) { |
3633 | 0 | resize_action = UP_ORIG; |
3634 | 0 | rc->resize_state = ORIG; |
3635 | 0 | } else if (rc->resize_state == ONE_HALF) { |
3636 | 0 | resize_action = UP_THREEFOUR; |
3637 | 0 | rc->resize_state = THREE_QUARTER; |
3638 | 0 | } |
3639 | 0 | } |
3640 | | // Reset for next window measurement. |
3641 | 0 | rc->resize_avg_qp = 0; |
3642 | 0 | rc->resize_count = 0; |
3643 | 0 | rc->resize_buffer_underflow = 0; |
3644 | 0 | } |
3645 | 0 | } |
3646 | | // If decision is to resize, reset some quantities, and check is we should |
3647 | | // reduce rate correction factor, |
3648 | 0 | if (resize_action != NO_RESIZE) { |
3649 | 0 | int resize_width = cpi->oxcf.frm_dim_cfg.width; |
3650 | 0 | int resize_height = cpi->oxcf.frm_dim_cfg.height; |
3651 | 0 | int resize_scale_num = 1; |
3652 | 0 | int resize_scale_den = 1; |
3653 | 0 | if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) { |
3654 | 0 | resize_scale_num = 3; |
3655 | 0 | resize_scale_den = 4; |
3656 | 0 | } else if (resize_action == DOWN_ONEHALF) { |
3657 | 0 | resize_scale_num = 1; |
3658 | 0 | resize_scale_den = 2; |
3659 | 0 | } |
3660 | 0 | resize_width = resize_width * resize_scale_num / resize_scale_den; |
3661 | 0 | resize_height = resize_height * resize_scale_num / resize_scale_den; |
3662 | 0 | resize_reset_rc(cpi, resize_width, resize_height, cm->width, cm->height); |
3663 | 0 | } |
3664 | 0 | return; |
3665 | 0 | } |
3666 | | |
3667 | 0 | static inline int set_key_frame(AV1_COMP *cpi, unsigned int frame_flags) { |
3668 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
3669 | 0 | AV1_COMMON *const cm = &cpi->common; |
3670 | 0 | SVC *const svc = &cpi->svc; |
3671 | | |
3672 | | // Very first frame has to be key frame. |
3673 | 0 | if (cm->current_frame.frame_number == 0) return 1; |
3674 | | // Set key frame if forced by frame flags. |
3675 | 0 | if (frame_flags & FRAMEFLAGS_KEY) return 1; |
3676 | 0 | if (!cpi->ppi->use_svc) { |
3677 | | // Non-SVC |
3678 | 0 | if (cpi->oxcf.kf_cfg.auto_key && rc->frames_to_key == 0) return 1; |
3679 | 0 | } else { |
3680 | | // SVC |
3681 | 0 | if (svc->spatial_layer_id == 0 && |
3682 | 0 | (cpi->oxcf.kf_cfg.auto_key && |
3683 | 0 | (cpi->oxcf.kf_cfg.key_freq_max == 0 || |
3684 | 0 | svc->current_superframe % cpi->oxcf.kf_cfg.key_freq_max == 0))) |
3685 | 0 | return 1; |
3686 | 0 | } |
3687 | | |
3688 | 0 | return 0; |
3689 | 0 | } |
3690 | | |
3691 | | // Set to true if this frame is a recovery frame, for 1 layer RPS, |
3692 | | // and whether we should apply some boost (QP, adjust speed features, etc). |
3693 | | // Recovery frame here means frame whose closest reference suddenly |
3694 | | // switched from previous frame to one much further away. |
3695 | | // TODO(marpan): Consider adding on/off flag to SVC_REF_FRAME_CONFIG to |
3696 | | // allow more control for applications. |
3697 | 0 | static bool set_flag_rps_bias_recovery_frame(const AV1_COMP *const cpi) { |
3698 | 0 | if (cpi->ppi->rtc_ref.set_ref_frame_config && |
3699 | 0 | cpi->svc.number_temporal_layers == 1 && |
3700 | 0 | cpi->svc.number_spatial_layers == 1 && |
3701 | 0 | cpi->ppi->rtc_ref.reference_was_previous_frame) { |
3702 | 0 | int min_dist = av1_svc_get_min_ref_dist(cpi); |
3703 | | // Only consider boost for this frame if its closest reference is further |
3704 | | // than x frames away, using x = 4 for now. |
3705 | 0 | if (min_dist != INT_MAX && min_dist > 4) return true; |
3706 | 0 | } |
3707 | 0 | return false; |
3708 | 0 | } |
3709 | | |
3710 | | void av1_get_one_pass_rt_params(AV1_COMP *cpi, FRAME_TYPE *const frame_type, |
3711 | | const EncodeFrameInput *frame_input, |
3712 | 0 | unsigned int frame_flags) { |
3713 | 0 | RATE_CONTROL *const rc = &cpi->rc; |
3714 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
3715 | 0 | AV1_COMMON *const cm = &cpi->common; |
3716 | 0 | GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
3717 | 0 | SVC *const svc = &cpi->svc; |
3718 | 0 | ResizePendingParams *const resize_pending_params = |
3719 | 0 | &cpi->resize_pending_params; |
3720 | 0 | int target; |
3721 | 0 | const int layer = |
3722 | 0 | LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id, |
3723 | 0 | svc->number_temporal_layers); |
3724 | 0 | if (cpi->oxcf.rc_cfg.max_consec_drop_ms > 0) { |
3725 | 0 | double framerate = |
3726 | 0 | cpi->framerate > 1 ? round(cpi->framerate) : cpi->framerate; |
3727 | 0 | rc->max_consec_drop = saturate_cast_double_to_int( |
3728 | 0 | ceil(cpi->oxcf.rc_cfg.max_consec_drop_ms * framerate / 1000)); |
3729 | 0 | } |
3730 | 0 | if (cpi->ppi->use_svc) { |
3731 | 0 | av1_update_temporal_layer_framerate(cpi); |
3732 | 0 | av1_restore_layer_context(cpi); |
3733 | 0 | } |
3734 | 0 | cpi->ppi->rtc_ref.bias_recovery_frame = set_flag_rps_bias_recovery_frame(cpi); |
3735 | | // Set frame type. |
3736 | 0 | if (set_key_frame(cpi, frame_flags)) { |
3737 | 0 | *frame_type = KEY_FRAME; |
3738 | 0 | p_rc->this_key_frame_forced = |
3739 | 0 | cm->current_frame.frame_number != 0 && rc->frames_to_key == 0; |
3740 | 0 | rc->frames_to_key = cpi->oxcf.kf_cfg.key_freq_max; |
3741 | 0 | p_rc->kf_boost = DEFAULT_KF_BOOST_RT; |
3742 | 0 | gf_group->update_type[cpi->gf_frame_index] = KF_UPDATE; |
3743 | 0 | gf_group->frame_type[cpi->gf_frame_index] = KEY_FRAME; |
3744 | 0 | gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_RESET; |
3745 | 0 | if (cpi->ppi->use_svc) { |
3746 | 0 | if (cm->current_frame.frame_number > 0) |
3747 | 0 | av1_svc_reset_temporal_layers(cpi, 1); |
3748 | 0 | svc->layer_context[layer].is_key_frame = 1; |
3749 | 0 | } |
3750 | 0 | rc->frame_number_encoded = 0; |
3751 | 0 | cpi->ppi->rtc_ref.non_reference_frame = 0; |
3752 | 0 | rc->static_since_last_scene_change = 0; |
3753 | 0 | } else { |
3754 | 0 | *frame_type = INTER_FRAME; |
3755 | 0 | gf_group->update_type[cpi->gf_frame_index] = LF_UPDATE; |
3756 | 0 | gf_group->frame_type[cpi->gf_frame_index] = INTER_FRAME; |
3757 | 0 | gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_UPDATE; |
3758 | 0 | if (cpi->ppi->use_svc) { |
3759 | 0 | LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
3760 | 0 | lc->is_key_frame = |
3761 | 0 | svc->spatial_layer_id == 0 |
3762 | 0 | ? 0 |
3763 | 0 | : svc->layer_context[svc->temporal_layer_id].is_key_frame; |
3764 | 0 | } |
3765 | | // If the user is setting the reference structure with |
3766 | | // set_ref_frame_config and did not set any references, set the |
3767 | | // frame type to Intra-only. |
3768 | 0 | if (cpi->ppi->rtc_ref.set_ref_frame_config) { |
3769 | 0 | int no_references_set = 1; |
3770 | 0 | for (int i = 0; i < INTER_REFS_PER_FRAME; i++) { |
3771 | 0 | if (cpi->ppi->rtc_ref.reference[i]) { |
3772 | 0 | no_references_set = 0; |
3773 | 0 | break; |
3774 | 0 | } |
3775 | 0 | } |
3776 | | |
3777 | | // Set to intra_only_frame if no references are set. |
3778 | | // The stream can start decoding on INTRA_ONLY_FRAME so long as the |
3779 | | // layer with the intra_only_frame doesn't signal a reference to a slot |
3780 | | // that hasn't been set yet. |
3781 | 0 | if (no_references_set) *frame_type = INTRA_ONLY_FRAME; |
3782 | 0 | } |
3783 | 0 | } |
3784 | 0 | if (cpi->active_map.enabled && cpi->rc.percent_blocks_inactive == 100) { |
3785 | 0 | rc->frame_source_sad = 0; |
3786 | 0 | rc->avg_source_sad = (3 * rc->avg_source_sad + rc->frame_source_sad) >> 2; |
3787 | 0 | rc->percent_blocks_with_motion = 0; |
3788 | 0 | rc->high_source_sad = 0; |
3789 | 0 | } else if (cpi->sf.rt_sf.check_scene_detection && |
3790 | 0 | svc->spatial_layer_id == 0) { |
3791 | 0 | if (rc->prev_coded_width == cm->width && |
3792 | 0 | rc->prev_coded_height == cm->height) { |
3793 | 0 | rc_scene_detection_onepass_rt(cpi, frame_input); |
3794 | 0 | } else { |
3795 | 0 | aom_free(cpi->src_sad_blk_64x64); |
3796 | 0 | cpi->src_sad_blk_64x64 = NULL; |
3797 | 0 | } |
3798 | 0 | } |
3799 | 0 | if (((*frame_type == KEY_FRAME && cpi->sf.rt_sf.rc_adjust_keyframe) || |
3800 | 0 | (cpi->sf.rt_sf.rc_compute_spatial_var_sc && rc->high_source_sad)) && |
3801 | 0 | svc->spatial_layer_id == 0 && cm->seq_params->bit_depth == 8 && |
3802 | 0 | cpi->oxcf.rc_cfg.max_intra_bitrate_pct > 0) |
3803 | 0 | rc_spatial_act_onepass_rt(cpi, frame_input->source->y_buffer, |
3804 | 0 | frame_input->source->y_stride); |
3805 | | // Check for dynamic resize, for single spatial layer for now. |
3806 | | // For temporal layers only check on base temporal layer. |
3807 | 0 | if (cpi->oxcf.resize_cfg.resize_mode == RESIZE_DYNAMIC) { |
3808 | 0 | if (svc->number_spatial_layers == 1 && svc->temporal_layer_id == 0) |
3809 | 0 | dynamic_resize_one_pass_cbr(cpi); |
3810 | 0 | if (rc->resize_state == THREE_QUARTER) { |
3811 | 0 | resize_pending_params->width = (3 + cpi->oxcf.frm_dim_cfg.width * 3) >> 2; |
3812 | 0 | resize_pending_params->height = |
3813 | 0 | (3 + cpi->oxcf.frm_dim_cfg.height * 3) >> 2; |
3814 | 0 | } else if (rc->resize_state == ONE_HALF) { |
3815 | 0 | resize_pending_params->width = (1 + cpi->oxcf.frm_dim_cfg.width) >> 1; |
3816 | 0 | resize_pending_params->height = (1 + cpi->oxcf.frm_dim_cfg.height) >> 1; |
3817 | 0 | } else { |
3818 | 0 | resize_pending_params->width = cpi->oxcf.frm_dim_cfg.width; |
3819 | 0 | resize_pending_params->height = cpi->oxcf.frm_dim_cfg.height; |
3820 | 0 | } |
3821 | 0 | } else if (is_frame_resize_pending(cpi)) { |
3822 | 0 | resize_reset_rc(cpi, resize_pending_params->width, |
3823 | 0 | resize_pending_params->height, cm->width, cm->height); |
3824 | 0 | } |
3825 | | // Set the GF interval and update flag. |
3826 | 0 | if (!rc->rtc_external_ratectrl) |
3827 | 0 | set_gf_interval_update_onepass_rt(cpi, *frame_type); |
3828 | | // Set target size. |
3829 | 0 | if (cpi->oxcf.rc_cfg.mode == AOM_CBR) { |
3830 | 0 | if (*frame_type == KEY_FRAME || *frame_type == INTRA_ONLY_FRAME) { |
3831 | 0 | target = av1_calc_iframe_target_size_one_pass_cbr(cpi); |
3832 | 0 | } else { |
3833 | 0 | target = av1_calc_pframe_target_size_one_pass_cbr( |
3834 | 0 | cpi, gf_group->update_type[cpi->gf_frame_index]); |
3835 | 0 | } |
3836 | 0 | } else { |
3837 | 0 | if (*frame_type == KEY_FRAME || *frame_type == INTRA_ONLY_FRAME) { |
3838 | 0 | target = av1_calc_iframe_target_size_one_pass_vbr(cpi); |
3839 | 0 | } else { |
3840 | 0 | target = av1_calc_pframe_target_size_one_pass_vbr( |
3841 | 0 | cpi, gf_group->update_type[cpi->gf_frame_index]); |
3842 | 0 | } |
3843 | 0 | } |
3844 | 0 | if (cpi->oxcf.rc_cfg.mode == AOM_Q) |
3845 | 0 | rc->active_worst_quality = cpi->oxcf.rc_cfg.cq_level; |
3846 | |
|
3847 | 0 | av1_rc_set_frame_target(cpi, target, cm->width, cm->height); |
3848 | 0 | rc->base_frame_target = target; |
3849 | 0 | cm->current_frame.frame_type = *frame_type; |
3850 | | // For fixed mode SVC: if KSVC is enabled remove inter layer |
3851 | | // prediction on spatial enhancement layer frames for frames |
3852 | | // whose base is not KEY frame. |
3853 | 0 | if (cpi->ppi->use_svc && !svc->use_flexible_mode && svc->ksvc_fixed_mode && |
3854 | 0 | svc->number_spatial_layers > 1 && |
3855 | 0 | !svc->layer_context[layer].is_key_frame) { |
3856 | 0 | ExternalFlags *const ext_flags = &cpi->ext_flags; |
3857 | 0 | ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG; |
3858 | 0 | } |
3859 | 0 | } |
3860 | | |
3861 | | #define CHECK_INTER_LAYER_PRED(ref_frame) \ |
3862 | 0 | ((cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) && \ |
3863 | 0 | (av1_check_ref_is_low_spatial_res_super_frame(cpi, ref_frame))) |
3864 | | |
3865 | 0 | int av1_encodedframe_overshoot_cbr(AV1_COMP *cpi, int *q) { |
3866 | 0 | AV1_COMMON *const cm = &cpi->common; |
3867 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
3868 | 0 | double rate_correction_factor = |
3869 | 0 | cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL]; |
3870 | 0 | const int target_size = cpi->rc.avg_frame_bandwidth; |
3871 | 0 | double new_correction_factor; |
3872 | 0 | int target_bits_per_mb; |
3873 | 0 | double q2; |
3874 | 0 | int enumerator; |
3875 | 0 | int inter_layer_pred_on = 0; |
3876 | 0 | int is_screen_content = (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN); |
3877 | 0 | cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0; |
3878 | 0 | if (cpi->svc.spatial_layer_id > 0) { |
3879 | | // For spatial layers: check if inter-layer (spatial) prediction is used |
3880 | | // (check if any reference is being used that is the lower spatial layer), |
3881 | 0 | inter_layer_pred_on = CHECK_INTER_LAYER_PRED(LAST_FRAME) || |
3882 | 0 | CHECK_INTER_LAYER_PRED(GOLDEN_FRAME) || |
3883 | 0 | CHECK_INTER_LAYER_PRED(ALTREF_FRAME); |
3884 | 0 | } |
3885 | | // If inter-layer prediction is on: we expect to pull up the quality from |
3886 | | // the lower spatial layer, so we can use a lower q. |
3887 | 0 | if (cpi->svc.spatial_layer_id > 0 && inter_layer_pred_on) { |
3888 | 0 | *q = (cpi->rc.worst_quality + *q) >> 1; |
3889 | 0 | } else { |
3890 | | // For easy scene changes used lower QP, otherwise set max-q. |
3891 | | // If rt_sf->compute_spatial_var_sc is enabled relax the max-q |
3892 | | // condition based on frame spatial variance. |
3893 | 0 | if (cpi->sf.rt_sf.rc_compute_spatial_var_sc) { |
3894 | 0 | if (cpi->rc.frame_spatial_variance < 100) { |
3895 | 0 | *q = (cpi->rc.worst_quality + *q) >> 1; |
3896 | 0 | } else if (cpi->rc.frame_spatial_variance < 400 || |
3897 | 0 | (cpi->rc.frame_source_sad < 80000 && |
3898 | 0 | cpi->rc.frame_spatial_variance < 1000)) { |
3899 | 0 | *q = (3 * cpi->rc.worst_quality + *q) >> 2; |
3900 | 0 | } else { |
3901 | 0 | *q = cpi->rc.worst_quality; |
3902 | 0 | } |
3903 | 0 | } else { |
3904 | 0 | *q = (3 * cpi->rc.worst_quality + *q) >> 2; |
3905 | | // For screen content use the max-q set by the user to allow for less |
3906 | | // overshoot on slide changes. |
3907 | 0 | if (is_screen_content) *q = cpi->rc.worst_quality; |
3908 | 0 | } |
3909 | 0 | } |
3910 | | // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as |
3911 | | // these parameters will affect QP selection for subsequent frames. If they |
3912 | | // have settled down to a very different (low QP) state, then not adjusting |
3913 | | // them may cause next frame to select low QP and overshoot again. |
3914 | 0 | p_rc->avg_frame_qindex[INTER_FRAME] = *q; |
3915 | 0 | p_rc->buffer_level = p_rc->optimal_buffer_level; |
3916 | 0 | p_rc->bits_off_target = p_rc->optimal_buffer_level; |
3917 | | // Reset rate under/over-shoot flags. |
3918 | 0 | cpi->rc.rc_1_frame = 0; |
3919 | 0 | cpi->rc.rc_2_frame = 0; |
3920 | | // Adjust rate correction factor. |
3921 | 0 | target_bits_per_mb = |
3922 | 0 | (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->mi_params.MBs); |
3923 | | // Reset rate correction factor: for now base it on target_bits_per_mb |
3924 | | // and qp (==max_QP). This comes from the inverse computation of |
3925 | | // av1_rc_bits_per_mb(). |
3926 | 0 | q2 = av1_convert_qindex_to_q(*q, cm->seq_params->bit_depth); |
3927 | 0 | enumerator = get_bpmb_enumerator(INTER_NORMAL, is_screen_content); |
3928 | 0 | new_correction_factor = (double)target_bits_per_mb * q2 / enumerator; |
3929 | 0 | if (new_correction_factor > rate_correction_factor) { |
3930 | 0 | rate_correction_factor = |
3931 | 0 | (new_correction_factor + rate_correction_factor) / 2.0; |
3932 | 0 | if (rate_correction_factor > MAX_BPB_FACTOR) |
3933 | 0 | rate_correction_factor = MAX_BPB_FACTOR; |
3934 | 0 | cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL] = |
3935 | 0 | rate_correction_factor; |
3936 | 0 | } |
3937 | | // For temporal layers: reset the rate control parameters across all |
3938 | | // temporal layers. Only do it for spatial enhancement layers when |
3939 | | // inter_layer_pred_on is not set (off). |
3940 | 0 | if (cpi->svc.number_temporal_layers > 1 && |
3941 | 0 | (cpi->svc.spatial_layer_id == 0 || inter_layer_pred_on == 0)) { |
3942 | 0 | SVC *svc = &cpi->svc; |
3943 | 0 | for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { |
3944 | 0 | int sl = svc->spatial_layer_id; |
3945 | 0 | const int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); |
3946 | 0 | LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
3947 | 0 | RATE_CONTROL *lrc = &lc->rc; |
3948 | 0 | PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc; |
3949 | 0 | lp_rc->avg_frame_qindex[INTER_FRAME] = *q; |
3950 | 0 | lp_rc->buffer_level = lp_rc->optimal_buffer_level; |
3951 | 0 | lp_rc->bits_off_target = lp_rc->optimal_buffer_level; |
3952 | 0 | lrc->rc_1_frame = 0; |
3953 | 0 | lrc->rc_2_frame = 0; |
3954 | 0 | lp_rc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor; |
3955 | 0 | } |
3956 | 0 | } |
3957 | 0 | return 1; |
3958 | 0 | } |
3959 | | |
3960 | 0 | int av1_postencode_drop_cbr(AV1_COMP *cpi, size_t *size) { |
3961 | 0 | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
3962 | 0 | size_t frame_size = *size << 3; |
3963 | 0 | const int64_t new_buffer_level = |
3964 | 0 | p_rc->buffer_level + cpi->rc.avg_frame_bandwidth - (int64_t)frame_size; |
3965 | | // Drop if new buffer level (given the encoded frame size) goes below a |
3966 | | // threshold and encoded frame size is much larger than per-frame-bandwidth. |
3967 | | // If the frame is already labelled as scene change (high_source_sad = 1) |
3968 | | // or the QP is close to max, then no need to drop. |
3969 | 0 | const int qp_thresh = 3 * (cpi->rc.worst_quality >> 2); |
3970 | 0 | const int64_t buffer_thresh = p_rc->optimal_buffer_level >> 2; |
3971 | 0 | if (!cpi->rc.high_source_sad && new_buffer_level < buffer_thresh && |
3972 | 0 | frame_size > 8 * (unsigned int)cpi->rc.avg_frame_bandwidth && |
3973 | 0 | cpi->common.quant_params.base_qindex < qp_thresh) { |
3974 | 0 | *size = 0; |
3975 | 0 | cpi->is_dropped_frame = true; |
3976 | 0 | restore_all_coding_context(cpi); |
3977 | 0 | av1_rc_postencode_update_drop_frame(cpi); |
3978 | | // Force max_q on next fame. Reset some RC parameters. |
3979 | 0 | cpi->rc.force_max_q = 1; |
3980 | 0 | p_rc->avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality; |
3981 | 0 | p_rc->buffer_level = p_rc->optimal_buffer_level; |
3982 | 0 | p_rc->bits_off_target = p_rc->optimal_buffer_level; |
3983 | 0 | cpi->rc.rc_1_frame = 0; |
3984 | 0 | cpi->rc.rc_2_frame = 0; |
3985 | 0 | if (cpi->svc.number_spatial_layers > 1 || |
3986 | 0 | cpi->svc.number_temporal_layers > 1) { |
3987 | 0 | SVC *svc = &cpi->svc; |
3988 | | // Postencode drop is only checked on base spatial layer, |
3989 | | // for now if max-q is set on base we force it on all layers. |
3990 | 0 | for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { |
3991 | 0 | for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { |
3992 | 0 | const int layer = |
3993 | 0 | LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); |
3994 | 0 | LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
3995 | 0 | RATE_CONTROL *lrc = &lc->rc; |
3996 | 0 | PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc; |
3997 | | // Force max_q on next fame. Reset some RC parameters. |
3998 | 0 | lrc->force_max_q = 1; |
3999 | 0 | lp_rc->avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality; |
4000 | 0 | lp_rc->buffer_level = lp_rc->optimal_buffer_level; |
4001 | 0 | lp_rc->bits_off_target = lp_rc->optimal_buffer_level; |
4002 | 0 | lrc->rc_1_frame = 0; |
4003 | 0 | lrc->rc_2_frame = 0; |
4004 | 0 | } |
4005 | 0 | } |
4006 | 0 | } |
4007 | 0 | return 1; |
4008 | 0 | } |
4009 | 0 | return 0; |
4010 | 0 | } |