/src/aom/av1/encoder/rd.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
3 | | * |
4 | | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | | * was not distributed with this source code in the LICENSE file, you can |
7 | | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | | * Media Patent License 1.0 was not distributed with this source code in the |
9 | | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | | */ |
11 | | |
12 | | #include <assert.h> |
13 | | #include <limits.h> |
14 | | #include <math.h> |
15 | | #include <stdio.h> |
16 | | |
17 | | #include "aom_dsp/aom_dsp_common.h" |
18 | | #include "aom_mem/aom_mem.h" |
19 | | #include "aom_ports/bitops.h" |
20 | | #include "aom_ports/mem.h" |
21 | | #include "aom_ports/aom_once.h" |
22 | | |
23 | | #include "av1/common/common.h" |
24 | | #include "av1/common/entropy.h" |
25 | | #include "av1/common/entropymode.h" |
26 | | #include "av1/common/pred_common.h" |
27 | | #include "av1/common/quant_common.h" |
28 | | #include "av1/common/reconinter.h" |
29 | | #include "av1/common/reconintra.h" |
30 | | #include "av1/common/seg_common.h" |
31 | | |
32 | | #include "av1/encoder/cost.h" |
33 | | #include "av1/encoder/encodemv.h" |
34 | | #include "av1/encoder/encoder.h" |
35 | | #include "av1/encoder/nonrd_opt.h" |
36 | | #include "av1/encoder/ratectrl.h" |
37 | | #include "av1/encoder/rd.h" |
38 | | #include "config/aom_config.h" |
39 | | |
40 | | #define RD_THRESH_POW 1.25 |
41 | | |
42 | | // The baseline rd thresholds for breaking out of the rd loop for |
43 | | // certain modes are assumed to be based on 8x8 blocks. |
44 | | // This table is used to correct for block size. |
45 | | // The factors here are << 2 (2 = x0.5, 32 = x8 etc). |
46 | | static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES_ALL] = { |
47 | | 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, 48, 48, 64, 4, 4, 8, 8, 16, 16 |
48 | | }; |
49 | | |
50 | | static const int use_intra_ext_tx_for_txsize[EXT_TX_SETS_INTRA] |
51 | | [EXT_TX_SIZES] = { |
52 | | { 1, 1, 1, 1 }, // unused |
53 | | { 1, 1, 0, 0 }, |
54 | | { 0, 0, 1, 0 }, |
55 | | }; |
56 | | |
57 | | static const int use_inter_ext_tx_for_txsize[EXT_TX_SETS_INTER] |
58 | | [EXT_TX_SIZES] = { |
59 | | { 1, 1, 1, 1 }, // unused |
60 | | { 1, 1, 0, 0 }, |
61 | | { 0, 0, 1, 0 }, |
62 | | { 0, 1, 1, 1 }, |
63 | | }; |
64 | | |
65 | | static const int av1_ext_tx_set_idx_to_type[2][AOMMAX(EXT_TX_SETS_INTRA, |
66 | | EXT_TX_SETS_INTER)] = { |
67 | | { |
68 | | // Intra |
69 | | EXT_TX_SET_DCTONLY, |
70 | | EXT_TX_SET_DTT4_IDTX_1DDCT, |
71 | | EXT_TX_SET_DTT4_IDTX, |
72 | | }, |
73 | | { |
74 | | // Inter |
75 | | EXT_TX_SET_DCTONLY, |
76 | | EXT_TX_SET_ALL16, |
77 | | EXT_TX_SET_DTT9_IDTX_1DDCT, |
78 | | EXT_TX_SET_DCT_IDTX, |
79 | | }, |
80 | | }; |
81 | | |
82 | | void av1_fill_mode_rates(AV1_COMMON *const cm, ModeCosts *mode_costs, |
83 | 0 | FRAME_CONTEXT *fc) { |
84 | 0 | int i, j; |
85 | |
|
86 | 0 | for (i = 0; i < PARTITION_CONTEXTS; ++i) |
87 | 0 | av1_cost_tokens_from_cdf(mode_costs->partition_cost[i], |
88 | 0 | fc->partition_cdf[i], NULL); |
89 | |
|
90 | 0 | if (cm->current_frame.skip_mode_info.skip_mode_flag) { |
91 | 0 | for (i = 0; i < SKIP_MODE_CONTEXTS; ++i) { |
92 | 0 | av1_cost_tokens_from_cdf(mode_costs->skip_mode_cost[i], |
93 | 0 | fc->skip_mode_cdfs[i], NULL); |
94 | 0 | } |
95 | 0 | } |
96 | |
|
97 | 0 | for (i = 0; i < SKIP_CONTEXTS; ++i) { |
98 | 0 | av1_cost_tokens_from_cdf(mode_costs->skip_txfm_cost[i], |
99 | 0 | fc->skip_txfm_cdfs[i], NULL); |
100 | 0 | } |
101 | |
|
102 | 0 | for (i = 0; i < KF_MODE_CONTEXTS; ++i) |
103 | 0 | for (j = 0; j < KF_MODE_CONTEXTS; ++j) |
104 | 0 | av1_cost_tokens_from_cdf(mode_costs->y_mode_costs[i][j], |
105 | 0 | fc->kf_y_cdf[i][j], NULL); |
106 | |
|
107 | 0 | for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) |
108 | 0 | av1_cost_tokens_from_cdf(mode_costs->mbmode_cost[i], fc->y_mode_cdf[i], |
109 | 0 | NULL); |
110 | 0 | for (i = 0; i < CFL_ALLOWED_TYPES; ++i) |
111 | 0 | for (j = 0; j < INTRA_MODES; ++j) |
112 | 0 | av1_cost_tokens_from_cdf(mode_costs->intra_uv_mode_cost[i][j], |
113 | 0 | fc->uv_mode_cdf[i][j], NULL); |
114 | |
|
115 | 0 | av1_cost_tokens_from_cdf(mode_costs->filter_intra_mode_cost, |
116 | 0 | fc->filter_intra_mode_cdf, NULL); |
117 | 0 | for (i = 0; i < BLOCK_SIZES_ALL; ++i) { |
118 | 0 | if (av1_filter_intra_allowed_bsize(cm, i)) |
119 | 0 | av1_cost_tokens_from_cdf(mode_costs->filter_intra_cost[i], |
120 | 0 | fc->filter_intra_cdfs[i], NULL); |
121 | 0 | } |
122 | |
|
123 | 0 | for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
124 | 0 | av1_cost_tokens_from_cdf(mode_costs->switchable_interp_costs[i], |
125 | 0 | fc->switchable_interp_cdf[i], NULL); |
126 | |
|
127 | 0 | for (i = 0; i < PALATTE_BSIZE_CTXS; ++i) { |
128 | 0 | av1_cost_tokens_from_cdf(mode_costs->palette_y_size_cost[i], |
129 | 0 | fc->palette_y_size_cdf[i], NULL); |
130 | 0 | av1_cost_tokens_from_cdf(mode_costs->palette_uv_size_cost[i], |
131 | 0 | fc->palette_uv_size_cdf[i], NULL); |
132 | 0 | for (j = 0; j < PALETTE_Y_MODE_CONTEXTS; ++j) { |
133 | 0 | av1_cost_tokens_from_cdf(mode_costs->palette_y_mode_cost[i][j], |
134 | 0 | fc->palette_y_mode_cdf[i][j], NULL); |
135 | 0 | } |
136 | 0 | } |
137 | |
|
138 | 0 | for (i = 0; i < PALETTE_UV_MODE_CONTEXTS; ++i) { |
139 | 0 | av1_cost_tokens_from_cdf(mode_costs->palette_uv_mode_cost[i], |
140 | 0 | fc->palette_uv_mode_cdf[i], NULL); |
141 | 0 | } |
142 | |
|
143 | 0 | for (i = 0; i < PALETTE_SIZES; ++i) { |
144 | 0 | for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) { |
145 | 0 | av1_cost_tokens_from_cdf(mode_costs->palette_y_color_cost[i][j], |
146 | 0 | fc->palette_y_color_index_cdf[i][j], NULL); |
147 | 0 | av1_cost_tokens_from_cdf(mode_costs->palette_uv_color_cost[i][j], |
148 | 0 | fc->palette_uv_color_index_cdf[i][j], NULL); |
149 | 0 | } |
150 | 0 | } |
151 | |
|
152 | 0 | int sign_cost[CFL_JOINT_SIGNS]; |
153 | 0 | av1_cost_tokens_from_cdf(sign_cost, fc->cfl_sign_cdf, NULL); |
154 | 0 | for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) { |
155 | 0 | int *cost_u = mode_costs->cfl_cost[joint_sign][CFL_PRED_U]; |
156 | 0 | int *cost_v = mode_costs->cfl_cost[joint_sign][CFL_PRED_V]; |
157 | 0 | if (CFL_SIGN_U(joint_sign) == CFL_SIGN_ZERO) { |
158 | 0 | memset(cost_u, 0, CFL_ALPHABET_SIZE * sizeof(*cost_u)); |
159 | 0 | } else { |
160 | 0 | const aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
161 | 0 | av1_cost_tokens_from_cdf(cost_u, cdf_u, NULL); |
162 | 0 | } |
163 | 0 | if (CFL_SIGN_V(joint_sign) == CFL_SIGN_ZERO) { |
164 | 0 | memset(cost_v, 0, CFL_ALPHABET_SIZE * sizeof(*cost_v)); |
165 | 0 | } else { |
166 | 0 | const aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
167 | 0 | av1_cost_tokens_from_cdf(cost_v, cdf_v, NULL); |
168 | 0 | } |
169 | 0 | for (int u = 0; u < CFL_ALPHABET_SIZE; u++) |
170 | 0 | cost_u[u] += sign_cost[joint_sign]; |
171 | 0 | } |
172 | |
|
173 | 0 | for (i = 0; i < MAX_TX_CATS; ++i) |
174 | 0 | for (j = 0; j < TX_SIZE_CONTEXTS; ++j) |
175 | 0 | av1_cost_tokens_from_cdf(mode_costs->tx_size_cost[i][j], |
176 | 0 | fc->tx_size_cdf[i][j], NULL); |
177 | |
|
178 | 0 | for (i = 0; i < TXFM_PARTITION_CONTEXTS; ++i) { |
179 | 0 | av1_cost_tokens_from_cdf(mode_costs->txfm_partition_cost[i], |
180 | 0 | fc->txfm_partition_cdf[i], NULL); |
181 | 0 | } |
182 | |
|
183 | 0 | for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
184 | 0 | int s; |
185 | 0 | for (s = 1; s < EXT_TX_SETS_INTER; ++s) { |
186 | 0 | if (use_inter_ext_tx_for_txsize[s][i]) { |
187 | 0 | av1_cost_tokens_from_cdf( |
188 | 0 | mode_costs->inter_tx_type_costs[s][i], fc->inter_ext_tx_cdf[s][i], |
189 | 0 | av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[1][s]]); |
190 | 0 | } |
191 | 0 | } |
192 | 0 | for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { |
193 | 0 | if (use_intra_ext_tx_for_txsize[s][i]) { |
194 | 0 | for (j = 0; j < INTRA_MODES; ++j) { |
195 | 0 | av1_cost_tokens_from_cdf( |
196 | 0 | mode_costs->intra_tx_type_costs[s][i][j], |
197 | 0 | fc->intra_ext_tx_cdf[s][i][j], |
198 | 0 | av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[0][s]]); |
199 | 0 | } |
200 | 0 | } |
201 | 0 | } |
202 | 0 | } |
203 | 0 | for (i = 0; i < DIRECTIONAL_MODES; ++i) { |
204 | 0 | av1_cost_tokens_from_cdf(mode_costs->angle_delta_cost[i], |
205 | 0 | fc->angle_delta_cdf[i], NULL); |
206 | 0 | } |
207 | 0 | av1_cost_tokens_from_cdf(mode_costs->intrabc_cost, fc->intrabc_cdf, NULL); |
208 | |
|
209 | 0 | for (i = 0; i < SPATIAL_PREDICTION_PROBS; ++i) { |
210 | 0 | av1_cost_tokens_from_cdf(mode_costs->spatial_pred_cost[i], |
211 | 0 | fc->seg.spatial_pred_seg_cdf[i], NULL); |
212 | 0 | } |
213 | |
|
214 | 0 | for (i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) { |
215 | 0 | av1_cost_tokens_from_cdf(mode_costs->tmp_pred_cost[i], fc->seg.pred_cdf[i], |
216 | 0 | NULL); |
217 | 0 | } |
218 | |
|
219 | 0 | if (!frame_is_intra_only(cm)) { |
220 | 0 | for (i = 0; i < COMP_INTER_CONTEXTS; ++i) { |
221 | 0 | av1_cost_tokens_from_cdf(mode_costs->comp_inter_cost[i], |
222 | 0 | fc->comp_inter_cdf[i], NULL); |
223 | 0 | } |
224 | |
|
225 | 0 | for (i = 0; i < REF_CONTEXTS; ++i) { |
226 | 0 | for (j = 0; j < SINGLE_REFS - 1; ++j) { |
227 | 0 | av1_cost_tokens_from_cdf(mode_costs->single_ref_cost[i][j], |
228 | 0 | fc->single_ref_cdf[i][j], NULL); |
229 | 0 | } |
230 | 0 | } |
231 | |
|
232 | 0 | for (i = 0; i < COMP_REF_TYPE_CONTEXTS; ++i) { |
233 | 0 | av1_cost_tokens_from_cdf(mode_costs->comp_ref_type_cost[i], |
234 | 0 | fc->comp_ref_type_cdf[i], NULL); |
235 | 0 | } |
236 | |
|
237 | 0 | for (i = 0; i < UNI_COMP_REF_CONTEXTS; ++i) { |
238 | 0 | for (j = 0; j < UNIDIR_COMP_REFS - 1; ++j) { |
239 | 0 | av1_cost_tokens_from_cdf(mode_costs->uni_comp_ref_cost[i][j], |
240 | 0 | fc->uni_comp_ref_cdf[i][j], NULL); |
241 | 0 | } |
242 | 0 | } |
243 | |
|
244 | 0 | for (i = 0; i < REF_CONTEXTS; ++i) { |
245 | 0 | for (j = 0; j < FWD_REFS - 1; ++j) { |
246 | 0 | av1_cost_tokens_from_cdf(mode_costs->comp_ref_cost[i][j], |
247 | 0 | fc->comp_ref_cdf[i][j], NULL); |
248 | 0 | } |
249 | 0 | } |
250 | |
|
251 | 0 | for (i = 0; i < REF_CONTEXTS; ++i) { |
252 | 0 | for (j = 0; j < BWD_REFS - 1; ++j) { |
253 | 0 | av1_cost_tokens_from_cdf(mode_costs->comp_bwdref_cost[i][j], |
254 | 0 | fc->comp_bwdref_cdf[i][j], NULL); |
255 | 0 | } |
256 | 0 | } |
257 | |
|
258 | 0 | for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) { |
259 | 0 | av1_cost_tokens_from_cdf(mode_costs->intra_inter_cost[i], |
260 | 0 | fc->intra_inter_cdf[i], NULL); |
261 | 0 | } |
262 | |
|
263 | 0 | for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) { |
264 | 0 | av1_cost_tokens_from_cdf(mode_costs->newmv_mode_cost[i], fc->newmv_cdf[i], |
265 | 0 | NULL); |
266 | 0 | } |
267 | |
|
268 | 0 | for (i = 0; i < GLOBALMV_MODE_CONTEXTS; ++i) { |
269 | 0 | av1_cost_tokens_from_cdf(mode_costs->zeromv_mode_cost[i], |
270 | 0 | fc->zeromv_cdf[i], NULL); |
271 | 0 | } |
272 | |
|
273 | 0 | for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) { |
274 | 0 | av1_cost_tokens_from_cdf(mode_costs->refmv_mode_cost[i], fc->refmv_cdf[i], |
275 | 0 | NULL); |
276 | 0 | } |
277 | |
|
278 | 0 | for (i = 0; i < DRL_MODE_CONTEXTS; ++i) { |
279 | 0 | av1_cost_tokens_from_cdf(mode_costs->drl_mode_cost0[i], fc->drl_cdf[i], |
280 | 0 | NULL); |
281 | 0 | } |
282 | 0 | for (i = 0; i < INTER_MODE_CONTEXTS; ++i) |
283 | 0 | av1_cost_tokens_from_cdf(mode_costs->inter_compound_mode_cost[i], |
284 | 0 | fc->inter_compound_mode_cdf[i], NULL); |
285 | 0 | for (i = 0; i < BLOCK_SIZES_ALL; ++i) |
286 | 0 | av1_cost_tokens_from_cdf(mode_costs->compound_type_cost[i], |
287 | 0 | fc->compound_type_cdf[i], NULL); |
288 | 0 | for (i = 0; i < BLOCK_SIZES_ALL; ++i) { |
289 | 0 | if (av1_is_wedge_used(i)) { |
290 | 0 | av1_cost_tokens_from_cdf(mode_costs->wedge_idx_cost[i], |
291 | 0 | fc->wedge_idx_cdf[i], NULL); |
292 | 0 | } |
293 | 0 | } |
294 | 0 | for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) { |
295 | 0 | av1_cost_tokens_from_cdf(mode_costs->interintra_cost[i], |
296 | 0 | fc->interintra_cdf[i], NULL); |
297 | 0 | av1_cost_tokens_from_cdf(mode_costs->interintra_mode_cost[i], |
298 | 0 | fc->interintra_mode_cdf[i], NULL); |
299 | 0 | } |
300 | 0 | for (i = 0; i < BLOCK_SIZES_ALL; ++i) { |
301 | 0 | av1_cost_tokens_from_cdf(mode_costs->wedge_interintra_cost[i], |
302 | 0 | fc->wedge_interintra_cdf[i], NULL); |
303 | 0 | } |
304 | 0 | for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { |
305 | 0 | av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost[i], |
306 | 0 | fc->motion_mode_cdf[i], NULL); |
307 | 0 | } |
308 | 0 | for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { |
309 | 0 | av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost1[i], |
310 | 0 | fc->obmc_cdf[i], NULL); |
311 | 0 | } |
312 | 0 | for (i = 0; i < COMP_INDEX_CONTEXTS; ++i) { |
313 | 0 | av1_cost_tokens_from_cdf(mode_costs->comp_idx_cost[i], |
314 | 0 | fc->compound_index_cdf[i], NULL); |
315 | 0 | } |
316 | 0 | for (i = 0; i < COMP_GROUP_IDX_CONTEXTS; ++i) { |
317 | 0 | av1_cost_tokens_from_cdf(mode_costs->comp_group_idx_cost[i], |
318 | 0 | fc->comp_group_idx_cdf[i], NULL); |
319 | 0 | } |
320 | 0 | } |
321 | 0 | } |
322 | | |
323 | | #if !CONFIG_REALTIME_ONLY |
324 | 0 | void av1_fill_lr_rates(ModeCosts *mode_costs, FRAME_CONTEXT *fc) { |
325 | 0 | av1_cost_tokens_from_cdf(mode_costs->switchable_restore_cost, |
326 | 0 | fc->switchable_restore_cdf, NULL); |
327 | 0 | av1_cost_tokens_from_cdf(mode_costs->wiener_restore_cost, |
328 | 0 | fc->wiener_restore_cdf, NULL); |
329 | 0 | av1_cost_tokens_from_cdf(mode_costs->sgrproj_restore_cost, |
330 | 0 | fc->sgrproj_restore_cdf, NULL); |
331 | 0 | } |
332 | | #endif // !CONFIG_REALTIME_ONLY |
333 | | |
334 | | // Values are now correlated to quantizer. |
335 | | static int sad_per_bit_lut_8[QINDEX_RANGE]; |
336 | | static int sad_per_bit_lut_10[QINDEX_RANGE]; |
337 | | static int sad_per_bit_lut_12[QINDEX_RANGE]; |
338 | | |
339 | | static void init_me_luts_bd(int *bit16lut, int range, |
340 | 0 | aom_bit_depth_t bit_depth) { |
341 | 0 | int i; |
342 | | // Initialize the sad lut tables using a formulaic calculation for now. |
343 | | // This is to make it easier to resolve the impact of experimental changes |
344 | | // to the quantizer tables. |
345 | 0 | for (i = 0; i < range; i++) { |
346 | 0 | const double q = av1_convert_qindex_to_q(i, bit_depth); |
347 | 0 | bit16lut[i] = (int)(0.0418 * q + 2.4107); |
348 | 0 | } |
349 | 0 | } |
350 | | |
351 | 0 | static void init_me_luts(void) { |
352 | 0 | init_me_luts_bd(sad_per_bit_lut_8, QINDEX_RANGE, AOM_BITS_8); |
353 | 0 | init_me_luts_bd(sad_per_bit_lut_10, QINDEX_RANGE, AOM_BITS_10); |
354 | 0 | init_me_luts_bd(sad_per_bit_lut_12, QINDEX_RANGE, AOM_BITS_12); |
355 | 0 | } |
356 | | |
357 | 0 | void av1_init_me_luts(void) { aom_once(init_me_luts); } |
358 | | |
359 | | static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12, |
360 | | 8, 8, 4, 4, 2, 2, 1, 0 }; |
361 | | |
362 | | static const int rd_layer_depth_factor[7] = { |
363 | | 160, 160, 160, 160, 192, 208, 224 |
364 | | }; |
365 | | |
366 | | // Returns the default rd multiplier for inter frames for a given qindex. |
367 | | // The function here is a first pass estimate based on data from |
368 | | // a previous Vizer run |
369 | 0 | static double def_inter_rd_multiplier(int qindex) { |
370 | 0 | return 3.2 + (0.0015 * (double)qindex); |
371 | 0 | } |
372 | | |
373 | | // Returns the default rd multiplier for ARF/Golden Frames for a given qindex. |
374 | | // The function here is a first pass estimate based on data from |
375 | | // a previous Vizer run |
376 | 0 | static double def_arf_rd_multiplier(int qindex) { |
377 | 0 | return 3.25 + (0.0015 * (double)qindex); |
378 | 0 | } |
379 | | |
380 | | // Returns the default rd multiplier for key frames for a given qindex. |
381 | | // The function here is a first pass estimate based on data from |
382 | | // a previous Vizer run |
383 | 0 | static double def_kf_rd_multiplier(int qindex) { |
384 | 0 | return 3.3 + (0.0015 * (double)qindex); |
385 | 0 | } |
386 | | |
387 | | int av1_compute_rd_mult_based_on_qindex(aom_bit_depth_t bit_depth, |
388 | | FRAME_UPDATE_TYPE update_type, |
389 | 0 | int qindex, aom_tune_metric tuning) { |
390 | 0 | const int q = av1_dc_quant_QTX(qindex, 0, bit_depth); |
391 | 0 | int64_t rdmult = q * q; |
392 | 0 | if (update_type == KF_UPDATE) { |
393 | 0 | double def_rd_q_mult = def_kf_rd_multiplier(q); |
394 | 0 | rdmult = (int64_t)((double)rdmult * def_rd_q_mult); |
395 | 0 | } else if ((update_type == GF_UPDATE) || (update_type == ARF_UPDATE)) { |
396 | 0 | double def_rd_q_mult = def_arf_rd_multiplier(q); |
397 | 0 | rdmult = (int64_t)((double)rdmult * def_rd_q_mult); |
398 | 0 | } else { |
399 | 0 | double def_rd_q_mult = def_inter_rd_multiplier(q); |
400 | 0 | rdmult = (int64_t)((double)rdmult * def_rd_q_mult); |
401 | 0 | } |
402 | |
|
403 | 0 | if (tuning == AOM_TUNE_IQ) { |
404 | | // Further multiply rdmult (by up to 200/128 = 1.5625) to improve image |
405 | | // quality. The most noticeable effect is a mild bias towards choosing |
406 | | // larger transform sizes (e.g. one 16x16 transform instead of 4 8x8 |
407 | | // transforms). |
408 | | // For very high qindexes, start progressively reducing the weight towards |
409 | | // unity (128/128), as transforms are large enough and making them even |
410 | | // larger actually harms subjective quality and SSIMULACRA 2 scores. |
411 | | // This weight part of the equation was determined by iteratively increasing |
412 | | // weight on CID22 and Daala's subset1, and observing its effects on visual |
413 | | // quality and SSIMULACRA 2 scores along the usable (0-100) range. |
414 | | // The ramp-down part of the equation was determined by choosing a fixed |
415 | | // initial qindex point [qindex 159 = (255 - 159) * 3 / 4] where SSIMULACRA |
416 | | // 2 scores for encodes with qindexes greater than 159 scored at or above |
417 | | // their equivalents with no rdmult adjustment. |
418 | 0 | const int weight = clamp(((255 - qindex) * 3) / 4, 0, 72) + 128; |
419 | 0 | rdmult = (int64_t)((double)rdmult * weight / 128.0); |
420 | 0 | } |
421 | |
|
422 | 0 | switch (bit_depth) { |
423 | 0 | case AOM_BITS_8: break; |
424 | 0 | case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break; |
425 | 0 | case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break; |
426 | 0 | default: |
427 | 0 | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
428 | 0 | return -1; |
429 | 0 | } |
430 | 0 | return rdmult > 0 ? (int)AOMMIN(rdmult, INT_MAX) : 1; |
431 | 0 | } |
432 | | |
433 | | int av1_compute_rd_mult(const int qindex, const aom_bit_depth_t bit_depth, |
434 | | const FRAME_UPDATE_TYPE update_type, |
435 | | const int layer_depth, const int boost_index, |
436 | | const FRAME_TYPE frame_type, |
437 | | const int use_fixed_qp_offsets, |
438 | | const int is_stat_consumption_stage, |
439 | 0 | const aom_tune_metric tuning) { |
440 | 0 | int64_t rdmult = av1_compute_rd_mult_based_on_qindex(bit_depth, update_type, |
441 | 0 | qindex, tuning); |
442 | 0 | if (is_stat_consumption_stage && !use_fixed_qp_offsets && |
443 | 0 | (frame_type != KEY_FRAME)) { |
444 | | // Layer depth adjustment |
445 | 0 | rdmult = (rdmult * rd_layer_depth_factor[layer_depth]) >> 7; |
446 | | // ARF boost adjustment |
447 | 0 | rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7); |
448 | 0 | } |
449 | 0 | return rdmult > 0 ? (int)AOMMIN(rdmult, INT_MAX) : 1; |
450 | 0 | } |
451 | | |
452 | 0 | int av1_get_deltaq_offset(aom_bit_depth_t bit_depth, int qindex, double beta) { |
453 | 0 | assert(beta > 0.0); |
454 | 0 | int q = av1_dc_quant_QTX(qindex, 0, bit_depth); |
455 | 0 | int newq = (int)rint(q / sqrt(beta)); |
456 | 0 | int orig_qindex = qindex; |
457 | 0 | if (newq == q) { |
458 | 0 | return 0; |
459 | 0 | } |
460 | 0 | if (newq < q) { |
461 | 0 | while (qindex > 0) { |
462 | 0 | qindex--; |
463 | 0 | q = av1_dc_quant_QTX(qindex, 0, bit_depth); |
464 | 0 | if (newq >= q) { |
465 | 0 | break; |
466 | 0 | } |
467 | 0 | } |
468 | 0 | } else { |
469 | 0 | while (qindex < MAXQ) { |
470 | 0 | qindex++; |
471 | 0 | q = av1_dc_quant_QTX(qindex, 0, bit_depth); |
472 | 0 | if (newq <= q) { |
473 | 0 | break; |
474 | 0 | } |
475 | 0 | } |
476 | 0 | } |
477 | 0 | return qindex - orig_qindex; |
478 | 0 | } |
479 | | |
480 | | int av1_adjust_q_from_delta_q_res(int delta_q_res, int prev_qindex, |
481 | 0 | int curr_qindex) { |
482 | 0 | curr_qindex = clamp(curr_qindex, delta_q_res, 256 - delta_q_res); |
483 | 0 | const int sign_deltaq_index = curr_qindex - prev_qindex >= 0 ? 1 : -1; |
484 | 0 | const int deltaq_deadzone = delta_q_res / 4; |
485 | 0 | const int qmask = ~(delta_q_res - 1); |
486 | 0 | int abs_deltaq_index = abs(curr_qindex - prev_qindex); |
487 | 0 | abs_deltaq_index = (abs_deltaq_index + deltaq_deadzone) & qmask; |
488 | 0 | int adjust_qindex = prev_qindex + sign_deltaq_index * abs_deltaq_index; |
489 | 0 | adjust_qindex = AOMMAX(adjust_qindex, MINQ + 1); |
490 | 0 | return adjust_qindex; |
491 | 0 | } |
492 | | |
493 | | #if !CONFIG_REALTIME_ONLY |
494 | 0 | int av1_get_adaptive_rdmult(const AV1_COMP *cpi, double beta) { |
495 | 0 | assert(beta > 0.0); |
496 | 0 | const AV1_COMMON *cm = &cpi->common; |
497 | |
|
498 | 0 | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
499 | 0 | const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100)); |
500 | 0 | const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); |
501 | 0 | const FRAME_TYPE frame_type = cm->current_frame.frame_type; |
502 | |
|
503 | 0 | const int qindex_rdmult = cm->quant_params.base_qindex; |
504 | 0 | return (int)(av1_compute_rd_mult( |
505 | 0 | qindex_rdmult, cm->seq_params->bit_depth, |
506 | 0 | cpi->ppi->gf_group.update_type[cpi->gf_frame_index], |
507 | 0 | layer_depth, boost_index, frame_type, |
508 | 0 | cpi->oxcf.q_cfg.use_fixed_qp_offsets, |
509 | 0 | is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning) / |
510 | 0 | beta); |
511 | 0 | } |
512 | | #endif // !CONFIG_REALTIME_ONLY |
513 | | |
514 | 0 | static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) { |
515 | 0 | double q; |
516 | 0 | switch (bit_depth) { |
517 | 0 | case AOM_BITS_8: q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_8) / 4.0; break; |
518 | 0 | case AOM_BITS_10: |
519 | 0 | q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_10) / 16.0; |
520 | 0 | break; |
521 | 0 | case AOM_BITS_12: |
522 | 0 | q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_12) / 64.0; |
523 | 0 | break; |
524 | 0 | default: |
525 | 0 | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
526 | 0 | return -1; |
527 | 0 | } |
528 | | // TODO(debargha): Adjust the function below. |
529 | 0 | return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8); |
530 | 0 | } |
531 | | |
532 | 0 | void av1_set_sad_per_bit(const AV1_COMP *cpi, int *sadperbit, int qindex) { |
533 | 0 | switch (cpi->common.seq_params->bit_depth) { |
534 | 0 | case AOM_BITS_8: *sadperbit = sad_per_bit_lut_8[qindex]; break; |
535 | 0 | case AOM_BITS_10: *sadperbit = sad_per_bit_lut_10[qindex]; break; |
536 | 0 | case AOM_BITS_12: *sadperbit = sad_per_bit_lut_12[qindex]; break; |
537 | 0 | default: |
538 | 0 | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
539 | 0 | } |
540 | 0 | } |
541 | | |
542 | | static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd, |
543 | 0 | int use_nonrd_pick_mode) { |
544 | 0 | int i, bsize, segment_id; |
545 | 0 | THR_MODES mode_indices[RTC_REFS * RTC_MODES] = { 0 }; |
546 | 0 | int num_modes_count = use_nonrd_pick_mode ? 0 : MAX_MODES; |
547 | |
|
548 | 0 | if (use_nonrd_pick_mode) { |
549 | 0 | for (int r_idx = 0; r_idx < RTC_REFS; r_idx++) { |
550 | 0 | const MV_REFERENCE_FRAME ref = real_time_ref_combos[r_idx][0]; |
551 | 0 | if (ref != INTRA_FRAME) { |
552 | 0 | for (i = 0; i < RTC_INTER_MODES; i++) |
553 | 0 | mode_indices[num_modes_count++] = |
554 | 0 | mode_idx[ref][mode_offset(inter_mode_list[i])]; |
555 | 0 | } else { |
556 | 0 | for (i = 0; i < RTC_INTRA_MODES; i++) |
557 | 0 | mode_indices[num_modes_count++] = |
558 | 0 | mode_idx[ref][mode_offset(intra_mode_list[i])]; |
559 | 0 | } |
560 | 0 | } |
561 | 0 | } |
562 | |
|
563 | 0 | for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) { |
564 | 0 | const int qindex = clamp( |
565 | 0 | av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex) + |
566 | 0 | cm->quant_params.y_dc_delta_q, |
567 | 0 | 0, MAXQ); |
568 | 0 | const int q = compute_rd_thresh_factor(qindex, cm->seq_params->bit_depth); |
569 | |
|
570 | 0 | for (bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { |
571 | | // Threshold here seems unnecessarily harsh but fine given actual |
572 | | // range of values used for cpi->sf.thresh_mult[]. |
573 | 0 | const int t = q * rd_thresh_block_size_factor[bsize]; |
574 | 0 | const int thresh_max = INT_MAX / t; |
575 | |
|
576 | 0 | for (i = 0; i < num_modes_count; ++i) { |
577 | 0 | const int mode_index = use_nonrd_pick_mode ? mode_indices[i] : i; |
578 | 0 | rd->threshes[segment_id][bsize][mode_index] = |
579 | 0 | rd->thresh_mult[mode_index] < thresh_max |
580 | 0 | ? rd->thresh_mult[mode_index] * t / 4 |
581 | 0 | : INT_MAX; |
582 | 0 | } |
583 | 0 | } |
584 | 0 | } |
585 | 0 | } |
586 | | |
587 | | void av1_fill_coeff_costs(CoeffCosts *coeff_costs, FRAME_CONTEXT *fc, |
588 | 0 | const int num_planes) { |
589 | 0 | const int nplanes = AOMMIN(num_planes, PLANE_TYPES); |
590 | 0 | for (int eob_multi_size = 0; eob_multi_size < 7; ++eob_multi_size) { |
591 | 0 | for (int plane = 0; plane < nplanes; ++plane) { |
592 | 0 | LV_MAP_EOB_COST *pcost = &coeff_costs->eob_costs[eob_multi_size][plane]; |
593 | |
|
594 | 0 | for (int ctx = 0; ctx < 2; ++ctx) { |
595 | 0 | aom_cdf_prob *pcdf; |
596 | 0 | switch (eob_multi_size) { |
597 | 0 | case 0: pcdf = fc->eob_flag_cdf16[plane][ctx]; break; |
598 | 0 | case 1: pcdf = fc->eob_flag_cdf32[plane][ctx]; break; |
599 | 0 | case 2: pcdf = fc->eob_flag_cdf64[plane][ctx]; break; |
600 | 0 | case 3: pcdf = fc->eob_flag_cdf128[plane][ctx]; break; |
601 | 0 | case 4: pcdf = fc->eob_flag_cdf256[plane][ctx]; break; |
602 | 0 | case 5: pcdf = fc->eob_flag_cdf512[plane][ctx]; break; |
603 | 0 | case 6: |
604 | 0 | default: pcdf = fc->eob_flag_cdf1024[plane][ctx]; break; |
605 | 0 | } |
606 | 0 | av1_cost_tokens_from_cdf(pcost->eob_cost[ctx], pcdf, NULL); |
607 | 0 | } |
608 | 0 | } |
609 | 0 | } |
610 | 0 | for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) { |
611 | 0 | for (int plane = 0; plane < nplanes; ++plane) { |
612 | 0 | LV_MAP_COEFF_COST *pcost = &coeff_costs->coeff_costs[tx_size][plane]; |
613 | |
|
614 | 0 | for (int ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx) |
615 | 0 | av1_cost_tokens_from_cdf(pcost->txb_skip_cost[ctx], |
616 | 0 | fc->txb_skip_cdf[tx_size][ctx], NULL); |
617 | |
|
618 | 0 | for (int ctx = 0; ctx < SIG_COEF_CONTEXTS_EOB; ++ctx) |
619 | 0 | av1_cost_tokens_from_cdf(pcost->base_eob_cost[ctx], |
620 | 0 | fc->coeff_base_eob_cdf[tx_size][plane][ctx], |
621 | 0 | NULL); |
622 | 0 | for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) |
623 | 0 | av1_cost_tokens_from_cdf(pcost->base_cost[ctx], |
624 | 0 | fc->coeff_base_cdf[tx_size][plane][ctx], NULL); |
625 | |
|
626 | 0 | for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) { |
627 | 0 | pcost->base_cost[ctx][4] = 0; |
628 | 0 | pcost->base_cost[ctx][5] = pcost->base_cost[ctx][1] + |
629 | 0 | av1_cost_literal(1) - |
630 | 0 | pcost->base_cost[ctx][0]; |
631 | 0 | pcost->base_cost[ctx][6] = |
632 | 0 | pcost->base_cost[ctx][2] - pcost->base_cost[ctx][1]; |
633 | 0 | pcost->base_cost[ctx][7] = |
634 | 0 | pcost->base_cost[ctx][3] - pcost->base_cost[ctx][2]; |
635 | 0 | } |
636 | |
|
637 | 0 | for (int ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx) |
638 | 0 | av1_cost_tokens_from_cdf(pcost->eob_extra_cost[ctx], |
639 | 0 | fc->eob_extra_cdf[tx_size][plane][ctx], NULL); |
640 | |
|
641 | 0 | for (int ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx) |
642 | 0 | av1_cost_tokens_from_cdf(pcost->dc_sign_cost[ctx], |
643 | 0 | fc->dc_sign_cdf[plane][ctx], NULL); |
644 | |
|
645 | 0 | for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { |
646 | 0 | int br_rate[BR_CDF_SIZE]; |
647 | 0 | int prev_cost = 0; |
648 | 0 | int i, j; |
649 | 0 | av1_cost_tokens_from_cdf( |
650 | 0 | br_rate, fc->coeff_br_cdf[AOMMIN(tx_size, TX_32X32)][plane][ctx], |
651 | 0 | NULL); |
652 | | // printf("br_rate: "); |
653 | | // for(j = 0; j < BR_CDF_SIZE; j++) |
654 | | // printf("%4d ", br_rate[j]); |
655 | | // printf("\n"); |
656 | 0 | for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) { |
657 | 0 | for (j = 0; j < BR_CDF_SIZE - 1; j++) { |
658 | 0 | pcost->lps_cost[ctx][i + j] = prev_cost + br_rate[j]; |
659 | 0 | } |
660 | 0 | prev_cost += br_rate[j]; |
661 | 0 | } |
662 | 0 | pcost->lps_cost[ctx][i] = prev_cost; |
663 | | // printf("lps_cost: %d %d %2d : ", tx_size, plane, ctx); |
664 | | // for (i = 0; i <= COEFF_BASE_RANGE; i++) |
665 | | // printf("%5d ", pcost->lps_cost[ctx][i]); |
666 | | // printf("\n"); |
667 | 0 | } |
668 | 0 | for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { |
669 | 0 | pcost->lps_cost[ctx][0 + COEFF_BASE_RANGE + 1] = |
670 | 0 | pcost->lps_cost[ctx][0]; |
671 | 0 | for (int i = 1; i <= COEFF_BASE_RANGE; ++i) { |
672 | 0 | pcost->lps_cost[ctx][i + COEFF_BASE_RANGE + 1] = |
673 | 0 | pcost->lps_cost[ctx][i] - pcost->lps_cost[ctx][i - 1]; |
674 | 0 | } |
675 | 0 | } |
676 | 0 | } |
677 | 0 | } |
678 | 0 | } |
679 | | |
680 | | void av1_fill_mv_costs(const nmv_context *nmvc, int integer_mv, int usehp, |
681 | 0 | MvCosts *mv_costs) { |
682 | | // Avoid accessing 'mv_costs' when it is not allocated. |
683 | 0 | if (mv_costs == NULL) return; |
684 | | |
685 | 0 | mv_costs->nmv_cost[0] = &mv_costs->nmv_cost_alloc[0][MV_MAX]; |
686 | 0 | mv_costs->nmv_cost[1] = &mv_costs->nmv_cost_alloc[1][MV_MAX]; |
687 | 0 | mv_costs->nmv_cost_hp[0] = &mv_costs->nmv_cost_hp_alloc[0][MV_MAX]; |
688 | 0 | mv_costs->nmv_cost_hp[1] = &mv_costs->nmv_cost_hp_alloc[1][MV_MAX]; |
689 | 0 | if (integer_mv) { |
690 | 0 | mv_costs->mv_cost_stack = (int **)&mv_costs->nmv_cost; |
691 | 0 | av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, |
692 | 0 | nmvc, MV_SUBPEL_NONE); |
693 | 0 | } else { |
694 | 0 | mv_costs->mv_cost_stack = |
695 | 0 | usehp ? mv_costs->nmv_cost_hp : mv_costs->nmv_cost; |
696 | 0 | av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, |
697 | 0 | nmvc, usehp); |
698 | 0 | } |
699 | 0 | } |
700 | | |
701 | 0 | void av1_fill_dv_costs(const nmv_context *ndvc, IntraBCMVCosts *dv_costs) { |
702 | 0 | dv_costs->dv_costs[0] = &dv_costs->dv_costs_alloc[0][MV_MAX]; |
703 | 0 | dv_costs->dv_costs[1] = &dv_costs->dv_costs_alloc[1][MV_MAX]; |
704 | 0 | av1_build_nmv_cost_table(dv_costs->joint_mv, dv_costs->dv_costs, ndvc, |
705 | 0 | MV_SUBPEL_NONE); |
706 | 0 | } |
707 | | |
708 | | // Populates speed features based on codec control settings (of type |
709 | | // COST_UPDATE_TYPE) and expected speed feature settings (of type |
710 | | // INTERNAL_COST_UPDATE_TYPE) by considering the least frequent cost update. |
711 | | // The populated/updated speed features are used for cost updates in the |
712 | | // encoder. |
713 | | // WARNING: Population of unified cost update frequency needs to be taken care |
714 | | // accordingly, in case of any modifications/additions to the enum |
715 | | // COST_UPDATE_TYPE/INTERNAL_COST_UPDATE_TYPE. |
716 | | static inline void populate_unified_cost_update_freq( |
717 | 0 | const CostUpdateFreq cost_upd_freq, SPEED_FEATURES *const sf) { |
718 | 0 | INTER_MODE_SPEED_FEATURES *const inter_sf = &sf->inter_sf; |
719 | | // Mapping of entropy cost update frequency from the encoder's codec control |
720 | | // settings of type COST_UPDATE_TYPE to speed features of type |
721 | | // INTERNAL_COST_UPDATE_TYPE. |
722 | 0 | static const INTERNAL_COST_UPDATE_TYPE |
723 | 0 | map_cost_upd_to_internal_cost_upd[NUM_COST_UPDATE_TYPES] = { |
724 | 0 | INTERNAL_COST_UPD_SB, INTERNAL_COST_UPD_SBROW, INTERNAL_COST_UPD_TILE, |
725 | 0 | INTERNAL_COST_UPD_OFF |
726 | 0 | }; |
727 | |
|
728 | 0 | inter_sf->mv_cost_upd_level = |
729 | 0 | AOMMIN(inter_sf->mv_cost_upd_level, |
730 | 0 | map_cost_upd_to_internal_cost_upd[cost_upd_freq.mv]); |
731 | 0 | inter_sf->coeff_cost_upd_level = |
732 | 0 | AOMMIN(inter_sf->coeff_cost_upd_level, |
733 | 0 | map_cost_upd_to_internal_cost_upd[cost_upd_freq.coeff]); |
734 | 0 | inter_sf->mode_cost_upd_level = |
735 | 0 | AOMMIN(inter_sf->mode_cost_upd_level, |
736 | 0 | map_cost_upd_to_internal_cost_upd[cost_upd_freq.mode]); |
737 | 0 | sf->intra_sf.dv_cost_upd_level = |
738 | 0 | AOMMIN(sf->intra_sf.dv_cost_upd_level, |
739 | 0 | map_cost_upd_to_internal_cost_upd[cost_upd_freq.dv]); |
740 | 0 | } |
741 | | |
742 | | // Checks if entropy costs should be initialized/updated at frame level or not. |
743 | | static inline int is_frame_level_cost_upd_freq_set( |
744 | | const AV1_COMMON *const cm, const INTERNAL_COST_UPDATE_TYPE cost_upd_level, |
745 | 0 | const int use_nonrd_pick_mode, const int frames_since_key) { |
746 | 0 | const int fill_costs = |
747 | 0 | frame_is_intra_only(cm) || |
748 | 0 | (use_nonrd_pick_mode ? frames_since_key < 2 |
749 | 0 | : (cm->current_frame.frame_number & 0x07) == 1); |
750 | 0 | return ((!use_nonrd_pick_mode && cost_upd_level != INTERNAL_COST_UPD_OFF) || |
751 | 0 | cost_upd_level == INTERNAL_COST_UPD_TILE || fill_costs); |
752 | 0 | } |
753 | | |
754 | | // Decide whether we want to update the mode entropy cost for the current frame. |
755 | | // The logit is currently inherited from selective_disable_cdf_rtc. |
756 | 0 | static inline int should_force_mode_cost_update(const AV1_COMP *cpi) { |
757 | 0 | const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf; |
758 | 0 | if (!rt_sf->frame_level_mode_cost_update) { |
759 | 0 | return false; |
760 | 0 | } |
761 | | |
762 | 0 | if (cpi->oxcf.algo_cfg.cdf_update_mode == 2) { |
763 | 0 | return cpi->frames_since_last_update == 1; |
764 | 0 | } else if (cpi->oxcf.algo_cfg.cdf_update_mode == 1) { |
765 | 0 | if (cpi->svc.number_spatial_layers == 1 && |
766 | 0 | cpi->svc.number_temporal_layers == 1) { |
767 | 0 | const AV1_COMMON *const cm = &cpi->common; |
768 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
769 | |
|
770 | 0 | return frame_is_intra_only(cm) || is_frame_resize_pending(cpi) || |
771 | 0 | rc->high_source_sad || rc->frames_since_key < 10 || |
772 | 0 | cpi->cyclic_refresh->counter_encode_maxq_scene_change < 10 || |
773 | 0 | cm->current_frame.frame_number % 8 == 0; |
774 | 0 | } else if (cpi->svc.number_temporal_layers > 1) { |
775 | 0 | return cpi->svc.temporal_layer_id != cpi->svc.number_temporal_layers - 1; |
776 | 0 | } |
777 | 0 | } |
778 | | |
779 | 0 | return false; |
780 | 0 | } |
781 | | |
782 | 0 | void av1_initialize_rd_consts(AV1_COMP *cpi) { |
783 | 0 | AV1_COMMON *const cm = &cpi->common; |
784 | 0 | MACROBLOCK *const x = &cpi->td.mb; |
785 | 0 | SPEED_FEATURES *const sf = &cpi->sf; |
786 | 0 | RD_OPT *const rd = &cpi->rd; |
787 | 0 | int use_nonrd_pick_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; |
788 | 0 | int frames_since_key = cpi->rc.frames_since_key; |
789 | |
|
790 | 0 | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
791 | 0 | const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100)); |
792 | 0 | const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); |
793 | 0 | const FRAME_TYPE frame_type = cm->current_frame.frame_type; |
794 | |
|
795 | 0 | const int qindex_rdmult = |
796 | 0 | cm->quant_params.base_qindex + cm->quant_params.y_dc_delta_q; |
797 | 0 | rd->RDMULT = av1_compute_rd_mult( |
798 | 0 | qindex_rdmult, cm->seq_params->bit_depth, |
799 | 0 | cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth, |
800 | 0 | boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets, |
801 | 0 | is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning); |
802 | | #if CONFIG_RD_COMMAND |
803 | | if (cpi->oxcf.pass == 2) { |
804 | | const RD_COMMAND *rd_command = &cpi->rd_command; |
805 | | if (rd_command->option_ls[rd_command->frame_index] == |
806 | | RD_OPTION_SET_Q_RDMULT) { |
807 | | rd->RDMULT = rd_command->rdmult_ls[rd_command->frame_index]; |
808 | | } |
809 | | } |
810 | | #endif // CONFIG_RD_COMMAND |
811 | |
|
812 | 0 | av1_set_error_per_bit(&x->errorperbit, rd->RDMULT); |
813 | |
|
814 | 0 | set_block_thresholds(cm, rd, cpi->sf.rt_sf.use_nonrd_pick_mode); |
815 | |
|
816 | 0 | populate_unified_cost_update_freq(cpi->oxcf.cost_upd_freq, sf); |
817 | 0 | const INTER_MODE_SPEED_FEATURES *const inter_sf = &cpi->sf.inter_sf; |
818 | | // Frame level mv cost update |
819 | 0 | if (is_frame_level_cost_upd_freq_set(cm, inter_sf->mv_cost_upd_level, |
820 | 0 | use_nonrd_pick_mode, frames_since_key)) |
821 | 0 | av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv, |
822 | 0 | cm->features.allow_high_precision_mv, x->mv_costs); |
823 | | |
824 | | // Frame level coefficient cost update |
825 | 0 | if (is_frame_level_cost_upd_freq_set(cm, inter_sf->coeff_cost_upd_level, |
826 | 0 | use_nonrd_pick_mode, frames_since_key)) |
827 | 0 | av1_fill_coeff_costs(&x->coeff_costs, cm->fc, av1_num_planes(cm)); |
828 | | |
829 | | // Frame level mode cost update |
830 | 0 | if (should_force_mode_cost_update(cpi) || |
831 | 0 | is_frame_level_cost_upd_freq_set(cm, inter_sf->mode_cost_upd_level, |
832 | 0 | use_nonrd_pick_mode, frames_since_key)) |
833 | 0 | av1_fill_mode_rates(cm, &x->mode_costs, cm->fc); |
834 | | |
835 | | // Frame level dv cost update |
836 | 0 | if (av1_need_dv_costs(cpi)) { |
837 | 0 | if (cpi->td.dv_costs_alloc == NULL) { |
838 | 0 | CHECK_MEM_ERROR( |
839 | 0 | cm, cpi->td.dv_costs_alloc, |
840 | 0 | (IntraBCMVCosts *)aom_malloc(sizeof(*cpi->td.dv_costs_alloc))); |
841 | 0 | cpi->td.mb.dv_costs = cpi->td.dv_costs_alloc; |
842 | 0 | } |
843 | 0 | av1_fill_dv_costs(&cm->fc->ndvc, x->dv_costs); |
844 | 0 | } |
845 | 0 | } |
846 | | |
847 | 0 | static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) { |
848 | | // NOTE: The tables below must be of the same size. |
849 | | |
850 | | // The functions described below are sampled at the four most significant |
851 | | // bits of x^2 + 8 / 256. |
852 | | |
853 | | // Normalized rate: |
854 | | // This table models the rate for a Laplacian source with given variance |
855 | | // when quantized with a uniform quantizer with given stepsize. The |
856 | | // closed form expression is: |
857 | | // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], |
858 | | // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), |
859 | | // and H(x) is the binary entropy function. |
860 | 0 | static const int rate_tab_q10[] = { |
861 | 0 | 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, |
862 | 0 | 4044, 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, |
863 | 0 | 3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, |
864 | 0 | 2290, 2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, |
865 | 0 | 1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, |
866 | 0 | 911, 864, 821, 781, 745, 680, 623, 574, 530, 490, 455, 424, |
867 | 0 | 395, 345, 304, 269, 239, 213, 190, 171, 154, 126, 104, 87, |
868 | 0 | 73, 61, 52, 44, 38, 28, 21, 16, 12, 10, 8, 6, |
869 | 0 | 5, 3, 2, 1, 1, 1, 0, 0, |
870 | 0 | }; |
871 | | // Normalized distortion: |
872 | | // This table models the normalized distortion for a Laplacian source |
873 | | // with given variance when quantized with a uniform quantizer |
874 | | // with given stepsize. The closed form expression is: |
875 | | // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) |
876 | | // where x = qpstep / sqrt(variance). |
877 | | // Note the actual distortion is Dn * variance. |
878 | 0 | static const int dist_tab_q10[] = { |
879 | 0 | 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, |
880 | 0 | 5, 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, |
881 | 0 | 18, 21, 24, 26, 29, 31, 34, 36, 39, 44, 49, 54, |
882 | 0 | 59, 64, 69, 73, 78, 88, 97, 106, 115, 124, 133, 142, |
883 | 0 | 151, 167, 184, 200, 215, 231, 245, 260, 274, 301, 327, 351, |
884 | 0 | 375, 397, 418, 439, 458, 495, 528, 559, 587, 613, 637, 659, |
885 | 0 | 680, 717, 749, 777, 801, 823, 842, 859, 874, 899, 919, 936, |
886 | 0 | 949, 960, 969, 977, 983, 994, 1001, 1006, 1010, 1013, 1015, 1017, |
887 | 0 | 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024, |
888 | 0 | }; |
889 | 0 | static const int xsq_iq_q10[] = { |
890 | 0 | 0, 4, 8, 12, 16, 20, 24, 28, 32, |
891 | 0 | 40, 48, 56, 64, 72, 80, 88, 96, 112, |
892 | 0 | 128, 144, 160, 176, 192, 208, 224, 256, 288, |
893 | 0 | 320, 352, 384, 416, 448, 480, 544, 608, 672, |
894 | 0 | 736, 800, 864, 928, 992, 1120, 1248, 1376, 1504, |
895 | 0 | 1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296, |
896 | 0 | 3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136, |
897 | 0 | 7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328, |
898 | 0 | 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736, |
899 | 0 | 36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696, |
900 | 0 | 81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808, |
901 | 0 | 180192, 196576, 212960, 229344, 245728, |
902 | 0 | }; |
903 | 0 | const int tmp = (xsq_q10 >> 2) + 8; |
904 | 0 | const int k = get_msb(tmp) - 3; |
905 | 0 | const int xq = (k << 3) + ((tmp >> k) & 0x7); |
906 | 0 | const int one_q10 = 1 << 10; |
907 | 0 | const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k); |
908 | 0 | const int b_q10 = one_q10 - a_q10; |
909 | 0 | *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; |
910 | 0 | *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; |
911 | 0 | } |
912 | | |
913 | | void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2, |
914 | | unsigned int qstep, int *rate, |
915 | 0 | int64_t *dist) { |
916 | | // This function models the rate and distortion for a Laplacian |
917 | | // source with given variance when quantized with a uniform quantizer |
918 | | // with given stepsize. The closed form expressions are in: |
919 | | // Hang and Chen, "Source Model for transform video coder and its |
920 | | // application - Part I: Fundamental Theory", IEEE Trans. Circ. |
921 | | // Sys. for Video Tech., April 1997. |
922 | 0 | if (var == 0) { |
923 | 0 | *rate = 0; |
924 | 0 | *dist = 0; |
925 | 0 | } else { |
926 | 0 | int d_q10, r_q10; |
927 | 0 | static const uint32_t MAX_XSQ_Q10 = 245727; |
928 | 0 | const uint64_t xsq_q10_64 = |
929 | 0 | (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var; |
930 | 0 | const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10); |
931 | 0 | model_rd_norm(xsq_q10, &r_q10, &d_q10); |
932 | 0 | *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT); |
933 | 0 | *dist = (var * (int64_t)d_q10 + 512) >> 10; |
934 | 0 | } |
935 | 0 | } |
936 | | |
937 | 0 | static double interp_cubic(const double *p, double x) { |
938 | 0 | return p[1] + 0.5 * x * |
939 | 0 | (p[2] - p[0] + |
940 | 0 | x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + |
941 | 0 | x * (3.0 * (p[1] - p[2]) + p[3] - p[0]))); |
942 | 0 | } |
943 | | |
944 | | /* |
945 | | static double interp_bicubic(const double *p, int p_stride, double x, |
946 | | double y) { |
947 | | double q[4]; |
948 | | q[0] = interp_cubic(p, x); |
949 | | q[1] = interp_cubic(p + p_stride, x); |
950 | | q[2] = interp_cubic(p + 2 * p_stride, x); |
951 | | q[3] = interp_cubic(p + 3 * p_stride, x); |
952 | | return interp_cubic(q, y); |
953 | | } |
954 | | */ |
955 | | |
956 | | static const uint8_t bsize_curvfit_model_cat_lookup[BLOCK_SIZES_ALL] = { |
957 | | 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 3, 3 |
958 | | }; |
959 | | |
960 | 0 | static int sse_norm_curvfit_model_cat_lookup(double sse_norm) { |
961 | 0 | return (sse_norm > 16.0); |
962 | 0 | } |
963 | | |
964 | | static const double interp_rgrid_curv[4][65] = { |
965 | | { |
966 | | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
967 | | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
968 | | 0.000000, 118.257702, 120.210658, 121.434853, 122.100487, |
969 | | 122.377758, 122.436865, 72.290102, 96.974289, 101.652727, |
970 | | 126.830141, 140.417377, 157.644879, 184.315291, 215.823873, |
971 | | 262.300169, 335.919859, 420.624173, 519.185032, 619.854243, |
972 | | 726.053595, 827.663369, 933.127475, 1037.988755, 1138.839609, |
973 | | 1233.342933, 1333.508064, 1428.760126, 1533.396364, 1616.952052, |
974 | | 1744.539319, 1803.413586, 1951.466618, 1994.227838, 2086.031680, |
975 | | 2148.635443, 2239.068450, 2222.590637, 2338.859809, 2402.929011, |
976 | | 2418.727875, 2435.342670, 2471.159469, 2523.187446, 2591.183827, |
977 | | 2674.905840, 2774.110714, 2888.555675, 3017.997952, 3162.194773, |
978 | | 3320.903365, 3493.880956, 3680.884773, 3881.672045, 4096.000000, |
979 | | }, |
980 | | { |
981 | | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
982 | | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
983 | | 0.000000, 13.087244, 15.919735, 25.930313, 24.412411, |
984 | | 28.567417, 29.924194, 30.857010, 32.742979, 36.382570, |
985 | | 39.210386, 42.265690, 47.378572, 57.014850, 82.740067, |
986 | | 137.346562, 219.968084, 316.781856, 415.643773, 516.706538, |
987 | | 614.914364, 714.303763, 815.512135, 911.210485, 1008.501528, |
988 | | 1109.787854, 1213.772279, 1322.922561, 1414.752579, 1510.505641, |
989 | | 1615.741888, 1697.989032, 1780.123933, 1847.453790, 1913.742309, |
990 | | 1960.828122, 2047.500168, 2085.454095, 2129.230668, 2158.171824, |
991 | | 2182.231724, 2217.684864, 2269.589211, 2337.264824, 2420.618694, |
992 | | 2519.557814, 2633.989178, 2763.819779, 2908.956609, 3069.306660, |
993 | | 3244.776927, 3435.274401, 3640.706076, 3860.978945, 4096.000000, |
994 | | }, |
995 | | { |
996 | | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
997 | | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
998 | | 0.000000, 4.656893, 5.123633, 5.594132, 6.162376, |
999 | | 6.918433, 7.768444, 8.739415, 10.105862, 11.477328, |
1000 | | 13.236604, 15.421030, 19.093623, 25.801871, 46.724612, |
1001 | | 98.841054, 181.113466, 272.586364, 359.499769, 445.546343, |
1002 | | 525.944439, 605.188743, 681.793483, 756.668359, 838.486885, |
1003 | | 926.950356, 1015.482542, 1113.353926, 1204.897193, 1288.871992, |
1004 | | 1373.464145, 1455.746628, 1527.796460, 1588.475066, 1658.144771, |
1005 | | 1710.302500, 1807.563351, 1863.197608, 1927.281616, 1964.450872, |
1006 | | 2022.719898, 2100.041145, 2185.205712, 2280.993936, 2387.616216, |
1007 | | 2505.282950, 2634.204540, 2774.591385, 2926.653884, 3090.602436, |
1008 | | 3266.647443, 3454.999303, 3655.868416, 3869.465182, 4096.000000, |
1009 | | }, |
1010 | | { |
1011 | | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
1012 | | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
1013 | | 0.000000, 0.337370, 0.391916, 0.468839, 0.566334, |
1014 | | 0.762564, 1.069225, 1.384361, 1.787581, 2.293948, |
1015 | | 3.251909, 4.412991, 8.050068, 11.606073, 27.668092, |
1016 | | 65.227758, 128.463938, 202.097653, 262.715851, 312.464873, |
1017 | | 355.601398, 400.609054, 447.201352, 495.761568, 552.871938, |
1018 | | 619.067625, 691.984883, 773.753288, 860.628503, 946.262808, |
1019 | | 1019.805896, 1106.061360, 1178.422145, 1244.852258, 1302.173987, |
1020 | | 1399.650266, 1548.092912, 1545.928652, 1670.817500, 1694.523823, |
1021 | | 1779.195362, 1882.155494, 1990.662097, 2108.325181, 2235.456119, |
1022 | | 2372.366287, 2519.367059, 2676.769812, 2844.885918, 3024.026754, |
1023 | | 3214.503695, 3416.628115, 3630.711389, 3857.064892, 4096.000000, |
1024 | | }, |
1025 | | }; |
1026 | | |
1027 | | static const double interp_dgrid_curv[3][65] = { |
1028 | | { |
1029 | | 16.000000, 15.962891, 15.925174, 15.886888, 15.848074, 15.808770, |
1030 | | 15.769015, 15.728850, 15.688313, 15.647445, 15.606284, 15.564870, |
1031 | | 15.525918, 15.483820, 15.373330, 15.126844, 14.637442, 14.184387, |
1032 | | 13.560070, 12.880717, 12.165995, 11.378144, 10.438769, 9.130790, |
1033 | | 7.487633, 5.688649, 4.267515, 3.196300, 2.434201, 1.834064, |
1034 | | 1.369920, 1.035921, 0.775279, 0.574895, 0.427232, 0.314123, |
1035 | | 0.233236, 0.171440, 0.128188, 0.092762, 0.067569, 0.049324, |
1036 | | 0.036330, 0.027008, 0.019853, 0.015539, 0.011093, 0.008733, |
1037 | | 0.007624, 0.008105, 0.005427, 0.004065, 0.003427, 0.002848, |
1038 | | 0.002328, 0.001865, 0.001457, 0.001103, 0.000801, 0.000550, |
1039 | | 0.000348, 0.000193, 0.000085, 0.000021, 0.000000, |
1040 | | }, |
1041 | | { |
1042 | | 16.000000, 15.996116, 15.984769, 15.966413, 15.941505, 15.910501, |
1043 | | 15.873856, 15.832026, 15.785466, 15.734633, 15.679981, 15.621967, |
1044 | | 15.560961, 15.460157, 15.288367, 15.052462, 14.466922, 13.921212, |
1045 | | 13.073692, 12.222005, 11.237799, 9.985848, 8.898823, 7.423519, |
1046 | | 5.995325, 4.773152, 3.744032, 2.938217, 2.294526, 1.762412, |
1047 | | 1.327145, 1.020728, 0.765535, 0.570548, 0.425833, 0.313825, |
1048 | | 0.232959, 0.171324, 0.128174, 0.092750, 0.067558, 0.049319, |
1049 | | 0.036330, 0.027008, 0.019853, 0.015539, 0.011093, 0.008733, |
1050 | | 0.007624, 0.008105, 0.005427, 0.004065, 0.003427, 0.002848, |
1051 | | 0.002328, 0.001865, 0.001457, 0.001103, 0.000801, 0.000550, |
1052 | | 0.000348, 0.000193, 0.000085, 0.000021, -0.000000, |
1053 | | }, |
1054 | | }; |
1055 | | |
1056 | | void av1_model_rd_curvfit(BLOCK_SIZE bsize, double sse_norm, double xqr, |
1057 | 0 | double *rate_f, double *distbysse_f) { |
1058 | 0 | const double x_start = -15.5; |
1059 | 0 | const double x_end = 16.5; |
1060 | 0 | const double x_step = 0.5; |
1061 | 0 | const double epsilon = 1e-6; |
1062 | 0 | const int rcat = bsize_curvfit_model_cat_lookup[bsize]; |
1063 | 0 | const int dcat = sse_norm_curvfit_model_cat_lookup(sse_norm); |
1064 | 0 | (void)x_end; |
1065 | |
|
1066 | 0 | xqr = AOMMAX(xqr, x_start + x_step + epsilon); |
1067 | 0 | xqr = AOMMIN(xqr, x_end - x_step - epsilon); |
1068 | 0 | const double x = (xqr - x_start) / x_step; |
1069 | 0 | const int xi = (int)floor(x); |
1070 | 0 | const double xo = x - xi; |
1071 | |
|
1072 | 0 | assert(xi > 0); |
1073 | |
|
1074 | 0 | const double *prate = &interp_rgrid_curv[rcat][(xi - 1)]; |
1075 | 0 | *rate_f = interp_cubic(prate, xo); |
1076 | 0 | const double *pdist = &interp_dgrid_curv[dcat][(xi - 1)]; |
1077 | 0 | *distbysse_f = interp_cubic(pdist, xo); |
1078 | 0 | } |
1079 | | |
1080 | | static void get_entropy_contexts_plane(BLOCK_SIZE plane_bsize, |
1081 | | const struct macroblockd_plane *pd, |
1082 | | ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], |
1083 | 0 | ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) { |
1084 | 0 | const int num_4x4_w = mi_size_wide[plane_bsize]; |
1085 | 0 | const int num_4x4_h = mi_size_high[plane_bsize]; |
1086 | 0 | const ENTROPY_CONTEXT *const above = pd->above_entropy_context; |
1087 | 0 | const ENTROPY_CONTEXT *const left = pd->left_entropy_context; |
1088 | |
|
1089 | 0 | memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); |
1090 | 0 | memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); |
1091 | 0 | } |
1092 | | |
1093 | | void av1_get_entropy_contexts(BLOCK_SIZE plane_bsize, |
1094 | | const struct macroblockd_plane *pd, |
1095 | | ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], |
1096 | 0 | ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) { |
1097 | 0 | assert(plane_bsize < BLOCK_SIZES_ALL); |
1098 | 0 | get_entropy_contexts_plane(plane_bsize, pd, t_above, t_left); |
1099 | 0 | } |
1100 | | |
1101 | | // Special clamping used in the encoder when calculating a prediction |
1102 | | // |
1103 | | // Logically, all pixel fetches used for prediction are clamped against the |
1104 | | // edges of the frame. But doing this directly is slow, so instead we allocate |
1105 | | // a finite border around the frame and fill it with copies of the outermost |
1106 | | // pixels. |
1107 | | // |
1108 | | // Since this border is finite, we need to clamp the motion vector before |
1109 | | // prediction in order to avoid out-of-bounds reads. At the same time, this |
1110 | | // clamp must not change the prediction result. |
1111 | | // |
1112 | | // We can balance both of these concerns by calculating how far we would have |
1113 | | // to go in each direction before the extended prediction region (the current |
1114 | | // block + AOM_INTERP_EXTEND many pixels around the block) would be mapped |
1115 | | // so that it touches the frame only at one row or column. This is a special |
1116 | | // point because any more extreme MV will always lead to the same prediction. |
1117 | | // So it is safe to clamp at that point. |
1118 | | // |
1119 | | // In the worst case, this requires a border of |
1120 | | // max_block_width + 2*AOM_INTERP_EXTEND = 128 + 2*4 = 136 pixels |
1121 | | // around the frame edges. |
1122 | | static inline void enc_clamp_mv(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
1123 | 0 | MV *mv) { |
1124 | 0 | int bw = xd->width << MI_SIZE_LOG2; |
1125 | 0 | int bh = xd->height << MI_SIZE_LOG2; |
1126 | |
|
1127 | 0 | int px_to_left_edge = xd->mi_col << MI_SIZE_LOG2; |
1128 | 0 | int px_to_right_edge = (cm->mi_params.mi_cols - xd->mi_col) << MI_SIZE_LOG2; |
1129 | 0 | int px_to_top_edge = xd->mi_row << MI_SIZE_LOG2; |
1130 | 0 | int px_to_bottom_edge = (cm->mi_params.mi_rows - xd->mi_row) << MI_SIZE_LOG2; |
1131 | |
|
1132 | 0 | const SubpelMvLimits mv_limits = { |
1133 | 0 | .col_min = -GET_MV_SUBPEL(px_to_left_edge + bw + AOM_INTERP_EXTEND), |
1134 | 0 | .col_max = GET_MV_SUBPEL(px_to_right_edge + AOM_INTERP_EXTEND), |
1135 | 0 | .row_min = -GET_MV_SUBPEL(px_to_top_edge + bh + AOM_INTERP_EXTEND), |
1136 | 0 | .row_max = GET_MV_SUBPEL(px_to_bottom_edge + AOM_INTERP_EXTEND) |
1137 | 0 | }; |
1138 | 0 | clamp_mv(mv, &mv_limits); |
1139 | 0 | } |
1140 | | |
1141 | | void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, |
1142 | 0 | int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) { |
1143 | 0 | const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME }; |
1144 | 0 | const int_mv ref_mv = |
1145 | 0 | av1_get_ref_mv_from_stack(0, ref_frames, 0, &x->mbmi_ext); |
1146 | 0 | const int_mv ref_mv1 = |
1147 | 0 | av1_get_ref_mv_from_stack(0, ref_frames, 1, &x->mbmi_ext); |
1148 | 0 | MV pred_mv[MAX_MV_REF_CANDIDATES + 1]; |
1149 | 0 | int num_mv_refs = 0; |
1150 | 0 | pred_mv[num_mv_refs++] = ref_mv.as_mv; |
1151 | 0 | if (ref_mv.as_int != ref_mv1.as_int) { |
1152 | 0 | pred_mv[num_mv_refs++] = ref_mv1.as_mv; |
1153 | 0 | } |
1154 | |
|
1155 | 0 | assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0]))); |
1156 | |
|
1157 | 0 | const uint8_t *const src_y_ptr = x->plane[0].src.buf; |
1158 | 0 | int zero_seen = 0; |
1159 | 0 | int best_sad = INT_MAX; |
1160 | 0 | int max_mv = 0; |
1161 | | // Get the sad for each candidate reference mv. |
1162 | 0 | for (int i = 0; i < num_mv_refs; ++i) { |
1163 | 0 | MV *this_mv = &pred_mv[i]; |
1164 | 0 | enc_clamp_mv(&cpi->common, &x->e_mbd, this_mv); |
1165 | |
|
1166 | 0 | const int fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3; |
1167 | 0 | const int fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3; |
1168 | 0 | max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3); |
1169 | |
|
1170 | 0 | if (fp_row == 0 && fp_col == 0 && zero_seen) continue; |
1171 | 0 | zero_seen |= (fp_row == 0 && fp_col == 0); |
1172 | |
|
1173 | 0 | const uint8_t *const ref_y_ptr = |
1174 | 0 | &ref_y_buffer[ref_y_stride * fp_row + fp_col]; |
1175 | | // Find sad for current vector. |
1176 | 0 | const int this_sad = cpi->ppi->fn_ptr[block_size].sdf( |
1177 | 0 | src_y_ptr, x->plane[0].src.stride, ref_y_ptr, ref_y_stride); |
1178 | | // Note if it is the best so far. |
1179 | 0 | if (this_sad < best_sad) { |
1180 | 0 | best_sad = this_sad; |
1181 | 0 | } |
1182 | 0 | if (i == 0) |
1183 | 0 | x->pred_mv0_sad[ref_frame] = this_sad; |
1184 | 0 | else if (i == 1) |
1185 | 0 | x->pred_mv1_sad[ref_frame] = this_sad; |
1186 | 0 | } |
1187 | | |
1188 | | // Note the index of the mv that worked best in the reference list. |
1189 | 0 | x->max_mv_context[ref_frame] = max_mv; |
1190 | 0 | x->pred_mv_sad[ref_frame] = best_sad; |
1191 | 0 | } |
1192 | | |
1193 | | void av1_setup_pred_block(const MACROBLOCKD *xd, |
1194 | | struct buf_2d dst[MAX_MB_PLANE], |
1195 | | const YV12_BUFFER_CONFIG *src, |
1196 | | const struct scale_factors *scale, |
1197 | | const struct scale_factors *scale_uv, |
1198 | 0 | const int num_planes) { |
1199 | 0 | dst[0].buf = src->y_buffer; |
1200 | 0 | dst[0].stride = src->y_stride; |
1201 | 0 | dst[1].buf = src->u_buffer; |
1202 | 0 | dst[2].buf = src->v_buffer; |
1203 | 0 | dst[1].stride = dst[2].stride = src->uv_stride; |
1204 | |
|
1205 | 0 | const int mi_row = xd->mi_row; |
1206 | 0 | const int mi_col = xd->mi_col; |
1207 | 0 | for (int i = 0; i < num_planes; ++i) { |
1208 | 0 | setup_pred_plane(dst + i, xd->mi[0]->bsize, dst[i].buf, |
1209 | 0 | i ? src->uv_crop_width : src->y_crop_width, |
1210 | 0 | i ? src->uv_crop_height : src->y_crop_height, |
1211 | 0 | dst[i].stride, mi_row, mi_col, i ? scale_uv : scale, |
1212 | 0 | xd->plane[i].subsampling_x, xd->plane[i].subsampling_y); |
1213 | 0 | } |
1214 | 0 | } |
1215 | | |
1216 | | YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi, |
1217 | 0 | int ref_frame) { |
1218 | 0 | assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME); |
1219 | 0 | RefCntBuffer *const scaled_buf = cpi->scaled_ref_buf[ref_frame - 1]; |
1220 | 0 | const RefCntBuffer *const ref_buf = |
1221 | 0 | get_ref_frame_buf(&cpi->common, ref_frame); |
1222 | 0 | return (scaled_buf != ref_buf && scaled_buf != NULL) ? &scaled_buf->buf |
1223 | 0 | : NULL; |
1224 | 0 | } |
1225 | | |
1226 | | int av1_get_switchable_rate(const MACROBLOCK *x, const MACROBLOCKD *xd, |
1227 | 0 | InterpFilter interp_filter, int dual_filter) { |
1228 | 0 | if (interp_filter == SWITCHABLE) { |
1229 | 0 | const MB_MODE_INFO *const mbmi = xd->mi[0]; |
1230 | 0 | int inter_filter_cost = 0; |
1231 | 0 | for (int dir = 0; dir < 2; ++dir) { |
1232 | 0 | if (dir && !dual_filter) break; |
1233 | 0 | const int ctx = av1_get_pred_context_switchable_interp(xd, dir); |
1234 | 0 | const InterpFilter filter = |
1235 | 0 | av1_extract_interp_filter(mbmi->interp_filters, dir); |
1236 | 0 | inter_filter_cost += x->mode_costs.switchable_interp_costs[ctx][filter]; |
1237 | 0 | } |
1238 | 0 | return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; |
1239 | 0 | } else { |
1240 | 0 | return 0; |
1241 | 0 | } |
1242 | 0 | } |
1243 | | |
1244 | 0 | void av1_set_rd_speed_thresholds(AV1_COMP *cpi) { |
1245 | 0 | RD_OPT *const rd = &cpi->rd; |
1246 | | |
1247 | | // Set baseline threshold values. |
1248 | 0 | av1_zero(rd->thresh_mult); |
1249 | |
|
1250 | 0 | rd->thresh_mult[THR_NEARESTMV] = 300; |
1251 | 0 | rd->thresh_mult[THR_NEARESTL2] = 300; |
1252 | 0 | rd->thresh_mult[THR_NEARESTL3] = 300; |
1253 | 0 | rd->thresh_mult[THR_NEARESTB] = 300; |
1254 | 0 | rd->thresh_mult[THR_NEARESTA2] = 300; |
1255 | 0 | rd->thresh_mult[THR_NEARESTA] = 300; |
1256 | 0 | rd->thresh_mult[THR_NEARESTG] = 300; |
1257 | |
|
1258 | 0 | rd->thresh_mult[THR_NEWMV] = 1000; |
1259 | 0 | rd->thresh_mult[THR_NEWL2] = 1000; |
1260 | 0 | rd->thresh_mult[THR_NEWL3] = 1000; |
1261 | 0 | rd->thresh_mult[THR_NEWB] = 1000; |
1262 | 0 | rd->thresh_mult[THR_NEWA2] = 1100; |
1263 | 0 | rd->thresh_mult[THR_NEWA] = 1000; |
1264 | 0 | rd->thresh_mult[THR_NEWG] = 1000; |
1265 | |
|
1266 | 0 | rd->thresh_mult[THR_NEARMV] = 1000; |
1267 | 0 | rd->thresh_mult[THR_NEARL2] = 1000; |
1268 | 0 | rd->thresh_mult[THR_NEARL3] = 1000; |
1269 | 0 | rd->thresh_mult[THR_NEARB] = 1000; |
1270 | 0 | rd->thresh_mult[THR_NEARA2] = 1000; |
1271 | 0 | rd->thresh_mult[THR_NEARA] = 1000; |
1272 | 0 | rd->thresh_mult[THR_NEARG] = 1000; |
1273 | |
|
1274 | 0 | rd->thresh_mult[THR_GLOBALMV] = 2200; |
1275 | 0 | rd->thresh_mult[THR_GLOBALL2] = 2000; |
1276 | 0 | rd->thresh_mult[THR_GLOBALL3] = 2000; |
1277 | 0 | rd->thresh_mult[THR_GLOBALB] = 2400; |
1278 | 0 | rd->thresh_mult[THR_GLOBALA2] = 2000; |
1279 | 0 | rd->thresh_mult[THR_GLOBALG] = 2000; |
1280 | 0 | rd->thresh_mult[THR_GLOBALA] = 2400; |
1281 | |
|
1282 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] = 1100; |
1283 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] = 1000; |
1284 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] = 800; |
1285 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] = 900; |
1286 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] = 1000; |
1287 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] = 1000; |
1288 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] = 1000; |
1289 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] = 1000; |
1290 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA2] = 1000; |
1291 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A2] = 1000; |
1292 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A2] = 1000; |
1293 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA2] = 1000; |
1294 | |
|
1295 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL2] = 2000; |
1296 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL3] = 2000; |
1297 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLG] = 2000; |
1298 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEARESTBA] = 2000; |
1299 | |
|
1300 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARLA] = 1200; |
1301 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWLA] = 1500; |
1302 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTLA] = 1500; |
1303 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWLA] = 1530; |
1304 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARLA] = 1870; |
1305 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWLA] = 2400; |
1306 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA] = 2750; |
1307 | |
|
1308 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARL2A] = 1200; |
1309 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] = 1500; |
1310 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] = 1500; |
1311 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWL2A] = 1870; |
1312 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARL2A] = 1700; |
1313 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWL2A] = 1800; |
1314 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A] = 2500; |
1315 | |
|
1316 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARL3A] = 1200; |
1317 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] = 1500; |
1318 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] = 1500; |
1319 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWL3A] = 1700; |
1320 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARL3A] = 1700; |
1321 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWL3A] = 2000; |
1322 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A] = 3000; |
1323 | |
|
1324 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARGA] = 1320; |
1325 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWGA] = 1500; |
1326 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTGA] = 1500; |
1327 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWGA] = 2040; |
1328 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARGA] = 1700; |
1329 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWGA] = 2000; |
1330 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA] = 2250; |
1331 | |
|
1332 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARLB] = 1200; |
1333 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWLB] = 1500; |
1334 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTLB] = 1500; |
1335 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWLB] = 1360; |
1336 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARLB] = 1700; |
1337 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWLB] = 2400; |
1338 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLB] = 2250; |
1339 | |
|
1340 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARL2B] = 1200; |
1341 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] = 1500; |
1342 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] = 1500; |
1343 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWL2B] = 1700; |
1344 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARL2B] = 1700; |
1345 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWL2B] = 2000; |
1346 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2B] = 2500; |
1347 | |
|
1348 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARL3B] = 1200; |
1349 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] = 1500; |
1350 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] = 1500; |
1351 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWL3B] = 1870; |
1352 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARL3B] = 1700; |
1353 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWL3B] = 2000; |
1354 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3B] = 2500; |
1355 | |
|
1356 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARGB] = 1200; |
1357 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWGB] = 1500; |
1358 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTGB] = 1500; |
1359 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWGB] = 1700; |
1360 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARGB] = 1700; |
1361 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWGB] = 2000; |
1362 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGB] = 2500; |
1363 | |
|
1364 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARLA2] = 1200; |
1365 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWLA2] = 1800; |
1366 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTLA2] = 1500; |
1367 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWLA2] = 1700; |
1368 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARLA2] = 1700; |
1369 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWLA2] = 2000; |
1370 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA2] = 2500; |
1371 | |
|
1372 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARL2A2] = 1200; |
1373 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWL2A2] = 1500; |
1374 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTL2A2] = 1500; |
1375 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWL2A2] = 1700; |
1376 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARL2A2] = 1700; |
1377 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWL2A2] = 2000; |
1378 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A2] = 2500; |
1379 | |
|
1380 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARL3A2] = 1440; |
1381 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWL3A2] = 1500; |
1382 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTL3A2] = 1500; |
1383 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWL3A2] = 1700; |
1384 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARL3A2] = 1700; |
1385 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWL3A2] = 2000; |
1386 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A2] = 2500; |
1387 | |
|
1388 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARGA2] = 1200; |
1389 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWGA2] = 1500; |
1390 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTGA2] = 1500; |
1391 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWGA2] = 1700; |
1392 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARGA2] = 1700; |
1393 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWGA2] = 2000; |
1394 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA2] = 2750; |
1395 | |
|
1396 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARLL2] = 1600; |
1397 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWLL2] = 2000; |
1398 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTLL2] = 2000; |
1399 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWLL2] = 2640; |
1400 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARLL2] = 2200; |
1401 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWLL2] = 2400; |
1402 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL2] = 3200; |
1403 | |
|
1404 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARLL3] = 1600; |
1405 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWLL3] = 2000; |
1406 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTLL3] = 1800; |
1407 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWLL3] = 2200; |
1408 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARLL3] = 2200; |
1409 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWLL3] = 2400; |
1410 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL3] = 3200; |
1411 | |
|
1412 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARLG] = 1760; |
1413 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWLG] = 2400; |
1414 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTLG] = 2000; |
1415 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWLG] = 1760; |
1416 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARLG] = 2640; |
1417 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWLG] = 2400; |
1418 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLG] = 3200; |
1419 | |
|
1420 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEARBA] = 1600; |
1421 | 0 | rd->thresh_mult[THR_COMP_NEAREST_NEWBA] = 2000; |
1422 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARESTBA] = 2000; |
1423 | 0 | rd->thresh_mult[THR_COMP_NEAR_NEWBA] = 2200; |
1424 | 0 | rd->thresh_mult[THR_COMP_NEW_NEARBA] = 1980; |
1425 | 0 | rd->thresh_mult[THR_COMP_NEW_NEWBA] = 2640; |
1426 | 0 | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALBA] = 3200; |
1427 | |
|
1428 | 0 | rd->thresh_mult[THR_DC] = 1000; |
1429 | 0 | rd->thresh_mult[THR_PAETH] = 1000; |
1430 | 0 | rd->thresh_mult[THR_SMOOTH] = 2200; |
1431 | 0 | rd->thresh_mult[THR_SMOOTH_V] = 2000; |
1432 | 0 | rd->thresh_mult[THR_SMOOTH_H] = 2000; |
1433 | 0 | rd->thresh_mult[THR_H_PRED] = 2000; |
1434 | 0 | rd->thresh_mult[THR_V_PRED] = 1800; |
1435 | 0 | rd->thresh_mult[THR_D135_PRED] = 2500; |
1436 | 0 | rd->thresh_mult[THR_D203_PRED] = 2000; |
1437 | 0 | rd->thresh_mult[THR_D157_PRED] = 2500; |
1438 | 0 | rd->thresh_mult[THR_D67_PRED] = 2000; |
1439 | 0 | rd->thresh_mult[THR_D113_PRED] = 2500; |
1440 | 0 | rd->thresh_mult[THR_D45_PRED] = 2500; |
1441 | 0 | } |
1442 | | |
1443 | | static inline void update_thr_fact(int (*factor_buf)[MAX_MODES], |
1444 | | THR_MODES best_mode_index, |
1445 | | THR_MODES mode_start, THR_MODES mode_end, |
1446 | | BLOCK_SIZE min_size, BLOCK_SIZE max_size, |
1447 | 0 | int max_rd_thresh_factor) { |
1448 | 0 | for (THR_MODES mode = mode_start; mode < mode_end; ++mode) { |
1449 | 0 | for (BLOCK_SIZE bs = min_size; bs <= max_size; ++bs) { |
1450 | 0 | int *const fact = &factor_buf[bs][mode]; |
1451 | 0 | if (mode == best_mode_index) { |
1452 | 0 | *fact -= (*fact >> RD_THRESH_LOG_DEC_FACTOR); |
1453 | 0 | } else { |
1454 | 0 | *fact = AOMMIN(*fact + RD_THRESH_INC, max_rd_thresh_factor); |
1455 | 0 | } |
1456 | 0 | } |
1457 | 0 | } |
1458 | 0 | } |
1459 | | |
1460 | | void av1_update_rd_thresh_fact( |
1461 | | const AV1_COMMON *const cm, int (*factor_buf)[MAX_MODES], |
1462 | | int use_adaptive_rd_thresh, BLOCK_SIZE bsize, THR_MODES best_mode_index, |
1463 | | THR_MODES inter_mode_start, THR_MODES inter_mode_end, |
1464 | 0 | THR_MODES intra_mode_start, THR_MODES intra_mode_end) { |
1465 | 0 | assert(use_adaptive_rd_thresh > 0); |
1466 | 0 | const int max_rd_thresh_factor = use_adaptive_rd_thresh * RD_THRESH_MAX_FACT; |
1467 | |
|
1468 | 0 | const int bsize_is_1_to_4 = bsize > cm->seq_params->sb_size; |
1469 | 0 | BLOCK_SIZE min_size, max_size; |
1470 | 0 | if (bsize_is_1_to_4) { |
1471 | | // This part handles block sizes with 1:4 and 4:1 aspect ratios |
1472 | | // TODO(any): Experiment with threshold update for parent/child blocks |
1473 | 0 | min_size = bsize; |
1474 | 0 | max_size = bsize; |
1475 | 0 | } else { |
1476 | 0 | min_size = AOMMAX(bsize - 2, BLOCK_4X4); |
1477 | 0 | max_size = AOMMIN(bsize + 2, (int)cm->seq_params->sb_size); |
1478 | 0 | } |
1479 | |
|
1480 | 0 | update_thr_fact(factor_buf, best_mode_index, inter_mode_start, inter_mode_end, |
1481 | 0 | min_size, max_size, max_rd_thresh_factor); |
1482 | 0 | update_thr_fact(factor_buf, best_mode_index, intra_mode_start, intra_mode_end, |
1483 | 0 | min_size, max_size, max_rd_thresh_factor); |
1484 | 0 | } |
1485 | | |
1486 | | int av1_get_intra_cost_penalty(int qindex, int qdelta, |
1487 | 0 | aom_bit_depth_t bit_depth) { |
1488 | 0 | const int q = av1_dc_quant_QTX(qindex, qdelta, bit_depth); |
1489 | 0 | switch (bit_depth) { |
1490 | 0 | case AOM_BITS_8: return 20 * q; |
1491 | 0 | case AOM_BITS_10: return 5 * q; |
1492 | 0 | case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2); |
1493 | 0 | default: |
1494 | 0 | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
1495 | 0 | return -1; |
1496 | 0 | } |
1497 | 0 | } |