/src/aom/av1/encoder/svc_layercontext.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2019, Alliance for Open Media. All rights reserved. |
3 | | * |
4 | | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | | * was not distributed with this source code in the LICENSE file, you can |
7 | | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | | * Media Patent License 1.0 was not distributed with this source code in the |
9 | | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | | */ |
11 | | |
12 | | #include <assert.h> |
13 | | #include <math.h> |
14 | | |
15 | | #include "av1/encoder/encoder.h" |
16 | | #include "av1/encoder/encoder_alloc.h" |
17 | | |
18 | 0 | static void swap_ptr(void *a, void *b) { |
19 | 0 | void **a_p = (void **)a; |
20 | 0 | void **b_p = (void **)b; |
21 | 0 | void *c = *a_p; |
22 | 0 | *a_p = *b_p; |
23 | 0 | *b_p = c; |
24 | 0 | } |
25 | | |
26 | 0 | void av1_init_layer_context(AV1_COMP *const cpi) { |
27 | 0 | AV1_COMMON *const cm = &cpi->common; |
28 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
29 | 0 | SVC *const svc = &cpi->svc; |
30 | 0 | int mi_rows = cpi->common.mi_params.mi_rows; |
31 | 0 | int mi_cols = cpi->common.mi_params.mi_cols; |
32 | 0 | svc->base_framerate = 30.0; |
33 | 0 | svc->current_superframe = 0; |
34 | 0 | svc->force_zero_mode_spatial_ref = 1; |
35 | 0 | svc->num_encoded_top_layer = 0; |
36 | 0 | svc->use_flexible_mode = 0; |
37 | 0 | svc->has_lower_quality_layer = 0; |
38 | |
|
39 | 0 | for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { |
40 | 0 | for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { |
41 | 0 | int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); |
42 | 0 | LAYER_CONTEXT *const lc = &svc->layer_context[layer]; |
43 | 0 | RATE_CONTROL *const lrc = &lc->rc; |
44 | 0 | PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc; |
45 | 0 | lrc->ni_av_qi = oxcf->rc_cfg.worst_allowed_q; |
46 | 0 | lp_rc->total_actual_bits = 0; |
47 | 0 | lrc->ni_tot_qi = 0; |
48 | 0 | lp_rc->tot_q = 0.0; |
49 | 0 | lp_rc->avg_q = 0.0; |
50 | 0 | lp_rc->ni_frames = 0; |
51 | 0 | lrc->decimation_count = 0; |
52 | 0 | lrc->decimation_factor = 0; |
53 | 0 | lrc->worst_quality = av1_quantizer_to_qindex(lc->max_q); |
54 | 0 | lrc->best_quality = av1_quantizer_to_qindex(lc->min_q); |
55 | 0 | lrc->rtc_external_ratectrl = 0; |
56 | 0 | for (int i = 0; i < RATE_FACTOR_LEVELS; ++i) { |
57 | 0 | lp_rc->rate_correction_factors[i] = 1.0; |
58 | 0 | } |
59 | 0 | lc->target_bandwidth = lc->layer_target_bitrate; |
60 | 0 | lp_rc->last_q[INTER_FRAME] = lrc->worst_quality; |
61 | 0 | lp_rc->avg_frame_qindex[INTER_FRAME] = lrc->worst_quality; |
62 | 0 | lp_rc->avg_frame_qindex[KEY_FRAME] = lrc->worst_quality; |
63 | 0 | lp_rc->buffer_level = |
64 | 0 | oxcf->rc_cfg.starting_buffer_level_ms * lc->target_bandwidth / 1000; |
65 | 0 | lp_rc->bits_off_target = lp_rc->buffer_level; |
66 | | // Initialize the cyclic refresh parameters. If spatial layers are used |
67 | | // (i.e., ss_number_layers > 1), these need to be updated per spatial |
68 | | // layer. Cyclic refresh is only applied on base temporal layer. |
69 | 0 | if (svc->number_spatial_layers > 1 && tl == 0) { |
70 | 0 | lc->sb_index = 0; |
71 | 0 | lc->actual_num_seg1_blocks = 0; |
72 | 0 | lc->actual_num_seg2_blocks = 0; |
73 | 0 | lc->counter_encode_maxq_scene_change = 0; |
74 | 0 | aom_free(lc->map); |
75 | 0 | CHECK_MEM_ERROR(cm, lc->map, |
76 | 0 | aom_calloc(mi_rows * mi_cols, sizeof(*lc->map))); |
77 | 0 | } |
78 | 0 | } |
79 | 0 | svc->downsample_filter_type[sl] = BILINEAR; |
80 | 0 | svc->downsample_filter_phase[sl] = 8; |
81 | 0 | svc->last_layer_dropped[sl] = false; |
82 | 0 | svc->drop_spatial_layer[sl] = false; |
83 | 0 | } |
84 | 0 | if (svc->number_spatial_layers == 3) { |
85 | 0 | svc->downsample_filter_type[0] = EIGHTTAP_SMOOTH; |
86 | 0 | } |
87 | 0 | } |
88 | | |
89 | 0 | bool av1_alloc_layer_context(AV1_COMP *cpi, int num_layers) { |
90 | 0 | SVC *const svc = &cpi->svc; |
91 | 0 | if (svc->layer_context == NULL || svc->num_allocated_layers < num_layers) { |
92 | 0 | assert(num_layers > 1); |
93 | 0 | aom_free(svc->layer_context); |
94 | 0 | svc->num_allocated_layers = 0; |
95 | 0 | svc->layer_context = |
96 | 0 | (LAYER_CONTEXT *)aom_calloc(num_layers, sizeof(*svc->layer_context)); |
97 | 0 | if (svc->layer_context == NULL) return false; |
98 | 0 | svc->num_allocated_layers = num_layers; |
99 | 0 | } |
100 | 0 | return true; |
101 | 0 | } |
102 | | |
103 | | // Update the layer context from a change_config() call. |
104 | | void av1_update_layer_context_change_config(AV1_COMP *const cpi, |
105 | 0 | const int64_t target_bandwidth) { |
106 | 0 | const RATE_CONTROL *const rc = &cpi->rc; |
107 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
108 | 0 | AV1_COMMON *const cm = &cpi->common; |
109 | 0 | SVC *const svc = &cpi->svc; |
110 | 0 | int layer = 0; |
111 | 0 | int64_t spatial_layer_target = 0; |
112 | 0 | float bitrate_alloc = 1.0; |
113 | 0 | const int mi_rows = cm->mi_params.mi_rows; |
114 | 0 | const int mi_cols = cm->mi_params.mi_cols; |
115 | 0 | for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { |
116 | 0 | for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { |
117 | 0 | layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); |
118 | 0 | LAYER_CONTEXT *const lc = &svc->layer_context[layer]; |
119 | 0 | svc->layer_context[layer].target_bandwidth = lc->layer_target_bitrate; |
120 | 0 | } |
121 | 0 | spatial_layer_target = svc->layer_context[layer].target_bandwidth; |
122 | 0 | for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { |
123 | 0 | LAYER_CONTEXT *const lc = |
124 | 0 | &svc->layer_context[sl * svc->number_temporal_layers + tl]; |
125 | 0 | RATE_CONTROL *const lrc = &lc->rc; |
126 | 0 | PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc; |
127 | 0 | lc->spatial_layer_target_bandwidth = spatial_layer_target; |
128 | 0 | if (target_bandwidth != 0) { |
129 | 0 | bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth; |
130 | 0 | } |
131 | 0 | lp_rc->starting_buffer_level = |
132 | 0 | (int64_t)(p_rc->starting_buffer_level * bitrate_alloc); |
133 | 0 | lp_rc->optimal_buffer_level = |
134 | 0 | (int64_t)(p_rc->optimal_buffer_level * bitrate_alloc); |
135 | 0 | lp_rc->maximum_buffer_size = |
136 | 0 | (int64_t)(p_rc->maximum_buffer_size * bitrate_alloc); |
137 | 0 | lp_rc->bits_off_target = |
138 | 0 | AOMMIN(lp_rc->bits_off_target, lp_rc->maximum_buffer_size); |
139 | 0 | lp_rc->buffer_level = |
140 | 0 | AOMMIN(lp_rc->buffer_level, lp_rc->maximum_buffer_size); |
141 | 0 | lc->framerate = cpi->framerate / lc->framerate_factor; |
142 | 0 | lrc->avg_frame_bandwidth = |
143 | 0 | (int)round(lc->target_bandwidth / lc->framerate); |
144 | 0 | lrc->max_frame_bandwidth = rc->max_frame_bandwidth; |
145 | 0 | lrc->rtc_external_ratectrl = rc->rtc_external_ratectrl; |
146 | 0 | lrc->worst_quality = av1_quantizer_to_qindex(lc->max_q); |
147 | 0 | lrc->best_quality = av1_quantizer_to_qindex(lc->min_q); |
148 | 0 | if (rc->use_external_qp_one_pass) { |
149 | 0 | lrc->worst_quality = rc->worst_quality; |
150 | 0 | lrc->best_quality = rc->best_quality; |
151 | 0 | } |
152 | | // Reset the cyclic refresh parameters, if needed (map is NULL), |
153 | | // or number of spatial layers has changed. |
154 | | // Cyclic refresh is only applied on base temporal layer. |
155 | 0 | if (svc->number_spatial_layers > 1 && tl == 0 && |
156 | 0 | (lc->map == NULL || |
157 | 0 | svc->prev_number_spatial_layers != svc->number_spatial_layers)) { |
158 | 0 | lc->sb_index = 0; |
159 | 0 | lc->actual_num_seg1_blocks = 0; |
160 | 0 | lc->actual_num_seg2_blocks = 0; |
161 | 0 | lc->counter_encode_maxq_scene_change = 0; |
162 | 0 | aom_free(lc->map); |
163 | 0 | CHECK_MEM_ERROR(cm, lc->map, |
164 | 0 | aom_calloc(mi_rows * mi_cols, sizeof(*lc->map))); |
165 | 0 | } |
166 | 0 | } |
167 | 0 | } |
168 | 0 | } |
169 | | |
170 | | /*!\brief Return layer context for current layer. |
171 | | * |
172 | | * \ingroup rate_control |
173 | | * \param[in] cpi Top level encoder structure |
174 | | * |
175 | | * \return LAYER_CONTEXT for current layer. |
176 | | */ |
177 | 0 | static LAYER_CONTEXT *get_layer_context(AV1_COMP *const cpi) { |
178 | 0 | return &cpi->svc.layer_context[cpi->svc.spatial_layer_id * |
179 | 0 | cpi->svc.number_temporal_layers + |
180 | 0 | cpi->svc.temporal_layer_id]; |
181 | 0 | } |
182 | | |
183 | 0 | void av1_update_temporal_layer_framerate(AV1_COMP *const cpi) { |
184 | 0 | SVC *const svc = &cpi->svc; |
185 | 0 | LAYER_CONTEXT *const lc = get_layer_context(cpi); |
186 | 0 | RATE_CONTROL *const lrc = &lc->rc; |
187 | 0 | const int tl = svc->temporal_layer_id; |
188 | 0 | lc->framerate = cpi->framerate / lc->framerate_factor; |
189 | 0 | lrc->avg_frame_bandwidth = (int)round(lc->target_bandwidth / lc->framerate); |
190 | 0 | lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth; |
191 | | // Update the average layer frame size (non-cumulative per-frame-bw). |
192 | 0 | if (tl == 0) { |
193 | 0 | lc->avg_frame_size = lrc->avg_frame_bandwidth; |
194 | 0 | } else { |
195 | 0 | int prev_layer = svc->spatial_layer_id * svc->number_temporal_layers + |
196 | 0 | svc->temporal_layer_id - 1; |
197 | 0 | LAYER_CONTEXT *const lcprev = &svc->layer_context[prev_layer]; |
198 | 0 | const double prev_layer_framerate = |
199 | 0 | cpi->framerate / lcprev->framerate_factor; |
200 | 0 | const int64_t prev_layer_target_bandwidth = lcprev->layer_target_bitrate; |
201 | 0 | if (lc->framerate > prev_layer_framerate) { |
202 | 0 | lc->avg_frame_size = |
203 | 0 | (int)round((lc->target_bandwidth - prev_layer_target_bandwidth) / |
204 | 0 | (lc->framerate - prev_layer_framerate)); |
205 | 0 | } else { |
206 | 0 | lc->avg_frame_size = (int)round(lc->target_bandwidth / lc->framerate); |
207 | 0 | } |
208 | 0 | } |
209 | 0 | } |
210 | | |
211 | | bool av1_check_ref_is_low_spatial_res_super_frame(AV1_COMP *const cpi, |
212 | 0 | int ref_frame) { |
213 | 0 | SVC *svc = &cpi->svc; |
214 | 0 | RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; |
215 | 0 | int ref_frame_idx = rtc_ref->ref_idx[ref_frame - 1]; |
216 | 0 | return rtc_ref->buffer_time_index[ref_frame_idx] == svc->current_superframe && |
217 | 0 | rtc_ref->buffer_spatial_layer[ref_frame_idx] <= |
218 | 0 | svc->spatial_layer_id - 1; |
219 | 0 | } |
220 | | |
221 | 0 | void av1_restore_layer_context(AV1_COMP *const cpi) { |
222 | 0 | SVC *const svc = &cpi->svc; |
223 | 0 | RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; |
224 | 0 | const AV1_COMMON *const cm = &cpi->common; |
225 | 0 | LAYER_CONTEXT *const lc = get_layer_context(cpi); |
226 | 0 | const int old_frame_since_key = cpi->rc.frames_since_key; |
227 | 0 | const int old_frame_to_key = cpi->rc.frames_to_key; |
228 | 0 | const int frames_since_scene_change = cpi->rc.frames_since_scene_change; |
229 | 0 | const int last_encoded_size_keyframe = cpi->rc.last_encoded_size_keyframe; |
230 | 0 | const int last_target_size_keyframe = cpi->rc.last_target_size_keyframe; |
231 | 0 | const int max_consec_drop = cpi->rc.max_consec_drop; |
232 | 0 | const int postencode_drop = cpi->rc.postencode_drop; |
233 | 0 | const int static_since_last_scene_change = |
234 | 0 | cpi->rc.static_since_last_scene_change; |
235 | | // Restore layer rate control. |
236 | 0 | cpi->rc = lc->rc; |
237 | 0 | cpi->ppi->p_rc = lc->p_rc; |
238 | 0 | cpi->oxcf.rc_cfg.target_bandwidth = lc->target_bandwidth; |
239 | 0 | cpi->gf_frame_index = 0; |
240 | 0 | cpi->mv_search_params.max_mv_magnitude = lc->max_mv_magnitude; |
241 | 0 | if (cpi->mv_search_params.max_mv_magnitude == 0) |
242 | 0 | cpi->mv_search_params.max_mv_magnitude = AOMMAX(cm->width, cm->height); |
243 | | // Reset the following parameters to their values before |
244 | | // the layer restore. Keep these defined for the stream (not layer). |
245 | 0 | cpi->rc.frames_since_key = old_frame_since_key; |
246 | 0 | cpi->rc.frames_to_key = old_frame_to_key; |
247 | 0 | cpi->rc.frames_since_scene_change = frames_since_scene_change; |
248 | 0 | cpi->rc.last_encoded_size_keyframe = last_encoded_size_keyframe; |
249 | 0 | cpi->rc.last_target_size_keyframe = last_target_size_keyframe; |
250 | 0 | cpi->rc.max_consec_drop = max_consec_drop; |
251 | 0 | cpi->rc.postencode_drop = postencode_drop; |
252 | 0 | cpi->rc.static_since_last_scene_change = static_since_last_scene_change; |
253 | | // For spatial-svc, allow cyclic-refresh to be applied on the spatial layers, |
254 | | // for the base temporal layer. |
255 | 0 | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
256 | 0 | svc->number_spatial_layers > 1 && svc->temporal_layer_id == 0) { |
257 | 0 | CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; |
258 | 0 | swap_ptr(&cr->map, &lc->map); |
259 | 0 | cr->sb_index = lc->sb_index; |
260 | 0 | cr->actual_num_seg1_blocks = lc->actual_num_seg1_blocks; |
261 | 0 | cr->actual_num_seg2_blocks = lc->actual_num_seg2_blocks; |
262 | 0 | cr->counter_encode_maxq_scene_change = lc->counter_encode_maxq_scene_change; |
263 | 0 | } |
264 | 0 | svc->skip_mvsearch_last = 0; |
265 | 0 | svc->skip_mvsearch_gf = 0; |
266 | 0 | svc->skip_mvsearch_altref = 0; |
267 | | // For each reference (LAST/GOLDEN) set the skip_mvsearch_last/gf frame flags. |
268 | | // This is to skip searching mv for that reference if it was last |
269 | | // refreshed (i.e., buffer slot holding that reference was refreshed) on the |
270 | | // previous spatial layer(s) at the same time (current_superframe). |
271 | 0 | if (rtc_ref->set_ref_frame_config && svc->force_zero_mode_spatial_ref && |
272 | 0 | cpi->sf.rt_sf.use_nonrd_pick_mode) { |
273 | 0 | if (av1_check_ref_is_low_spatial_res_super_frame(cpi, LAST_FRAME)) { |
274 | 0 | svc->skip_mvsearch_last = 1; |
275 | 0 | } |
276 | 0 | if (av1_check_ref_is_low_spatial_res_super_frame(cpi, GOLDEN_FRAME)) { |
277 | 0 | svc->skip_mvsearch_gf = 1; |
278 | 0 | } |
279 | 0 | if (av1_check_ref_is_low_spatial_res_super_frame(cpi, ALTREF_FRAME)) { |
280 | 0 | svc->skip_mvsearch_altref = 1; |
281 | 0 | } |
282 | 0 | } |
283 | 0 | } |
284 | | |
285 | 0 | void av1_svc_update_buffer_slot_refreshed(AV1_COMP *const cpi) { |
286 | 0 | SVC *const svc = &cpi->svc; |
287 | 0 | RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; |
288 | 0 | const unsigned int current_frame = |
289 | 0 | cpi->ppi->use_svc ? svc->current_superframe |
290 | 0 | : cpi->common.current_frame.frame_number; |
291 | | // For any buffer slot that is refreshed, update it with |
292 | | // the spatial_layer_id and the current_superframe. |
293 | 0 | if (cpi->common.current_frame.frame_type == KEY_FRAME) { |
294 | | // All slots are refreshed on KEY. |
295 | 0 | for (unsigned int i = 0; i < REF_FRAMES; i++) { |
296 | 0 | rtc_ref->buffer_time_index[i] = current_frame; |
297 | 0 | rtc_ref->buffer_spatial_layer[i] = svc->spatial_layer_id; |
298 | 0 | } |
299 | 0 | } else if (rtc_ref->set_ref_frame_config) { |
300 | 0 | for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { |
301 | 0 | const int ref_frame_map_idx = rtc_ref->ref_idx[i]; |
302 | 0 | if (rtc_ref->refresh[ref_frame_map_idx]) { |
303 | 0 | rtc_ref->buffer_time_index[ref_frame_map_idx] = current_frame; |
304 | 0 | rtc_ref->buffer_spatial_layer[ref_frame_map_idx] = |
305 | 0 | svc->spatial_layer_id; |
306 | 0 | } |
307 | 0 | } |
308 | 0 | } |
309 | 0 | } |
310 | | |
311 | 0 | void av1_save_layer_context(AV1_COMP *const cpi) { |
312 | 0 | SVC *const svc = &cpi->svc; |
313 | 0 | const AV1_COMMON *const cm = &cpi->common; |
314 | 0 | LAYER_CONTEXT *lc = get_layer_context(cpi); |
315 | 0 | lc->rc = cpi->rc; |
316 | 0 | lc->p_rc = cpi->ppi->p_rc; |
317 | 0 | lc->target_bandwidth = (int)cpi->oxcf.rc_cfg.target_bandwidth; |
318 | 0 | lc->group_index = cpi->gf_frame_index; |
319 | 0 | lc->max_mv_magnitude = cpi->mv_search_params.max_mv_magnitude; |
320 | 0 | if (svc->spatial_layer_id == 0) svc->base_framerate = cpi->framerate; |
321 | | // For spatial-svc, allow cyclic-refresh to be applied on the spatial layers, |
322 | | // for the base temporal layer. |
323 | 0 | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
324 | 0 | cpi->svc.number_spatial_layers > 1 && svc->temporal_layer_id == 0) { |
325 | 0 | CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; |
326 | 0 | signed char *temp = lc->map; |
327 | 0 | lc->map = cr->map; |
328 | 0 | cr->map = temp; |
329 | 0 | lc->sb_index = cr->sb_index; |
330 | 0 | lc->actual_num_seg1_blocks = cr->actual_num_seg1_blocks; |
331 | 0 | lc->actual_num_seg2_blocks = cr->actual_num_seg2_blocks; |
332 | 0 | lc->counter_encode_maxq_scene_change = cr->counter_encode_maxq_scene_change; |
333 | 0 | } |
334 | 0 | if (!cpi->is_dropped_frame) { |
335 | 0 | av1_svc_update_buffer_slot_refreshed(cpi); |
336 | 0 | for (unsigned int i = 0; i < REF_FRAMES; i++) { |
337 | 0 | if (frame_is_intra_only(cm) || |
338 | 0 | cm->current_frame.refresh_frame_flags & (1 << i)) { |
339 | 0 | svc->spatial_layer_fb[i] = svc->spatial_layer_id; |
340 | 0 | svc->temporal_layer_fb[i] = svc->temporal_layer_id; |
341 | 0 | } |
342 | 0 | } |
343 | 0 | } |
344 | 0 | if (svc->spatial_layer_id == svc->number_spatial_layers - 1) { |
345 | 0 | svc->current_superframe++; |
346 | | // Reset drop flag to false for next superframe. |
347 | 0 | for (int sl = 0; sl < svc->number_spatial_layers; sl++) |
348 | 0 | svc->drop_spatial_layer[sl] = false; |
349 | 0 | } |
350 | 0 | } |
351 | | |
352 | 0 | int av1_svc_primary_ref_frame(const AV1_COMP *const cpi) { |
353 | 0 | const SVC *const svc = &cpi->svc; |
354 | 0 | const AV1_COMMON *const cm = &cpi->common; |
355 | 0 | int fb_idx = -1; |
356 | 0 | int primary_ref_frame = PRIMARY_REF_NONE; |
357 | 0 | if (cpi->svc.number_spatial_layers > 1 || |
358 | 0 | cpi->svc.number_temporal_layers > 1) { |
359 | | // Set the primary_ref_frame to LAST_FRAME if that buffer slot for LAST |
360 | | // was last updated on a lower temporal layer (or base TL0) and for the |
361 | | // same spatial layer. For RTC patterns this allows for continued decoding |
362 | | // when set of enhancement layers are dropped (continued decoding starting |
363 | | // at next base TL0), so error_resilience can be off/0 for all layers. |
364 | 0 | fb_idx = get_ref_frame_map_idx(cm, LAST_FRAME); |
365 | 0 | if (cpi->ppi->rtc_ref.reference[0] == 1 && |
366 | 0 | svc->spatial_layer_fb[fb_idx] == svc->spatial_layer_id && |
367 | 0 | (svc->temporal_layer_fb[fb_idx] < svc->temporal_layer_id || |
368 | 0 | svc->temporal_layer_fb[fb_idx] == 0)) { |
369 | 0 | primary_ref_frame = 0; // LAST_FRAME: ref_frame - LAST_FRAME |
370 | 0 | } |
371 | 0 | } else if (cpi->ppi->rtc_ref.set_ref_frame_config) { |
372 | 0 | const ExternalFlags *const ext_flags = &cpi->ext_flags; |
373 | 0 | int flags = ext_flags->ref_frame_flags; |
374 | 0 | if (flags & AOM_LAST_FLAG) { |
375 | 0 | primary_ref_frame = 0; // LAST_FRAME: ref_frame - LAST_FRAME |
376 | 0 | } else if (flags & AOM_GOLD_FLAG) { |
377 | 0 | primary_ref_frame = GOLDEN_FRAME - LAST_FRAME; |
378 | 0 | } else if (flags & AOM_ALT_FLAG) { |
379 | 0 | primary_ref_frame = ALTREF_FRAME - LAST_FRAME; |
380 | 0 | } |
381 | 0 | } |
382 | 0 | return primary_ref_frame; |
383 | 0 | } |
384 | | |
385 | 0 | void av1_free_svc_cyclic_refresh(AV1_COMP *const cpi) { |
386 | 0 | SVC *const svc = &cpi->svc; |
387 | 0 | for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { |
388 | 0 | for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { |
389 | 0 | int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); |
390 | 0 | LAYER_CONTEXT *const lc = &svc->layer_context[layer]; |
391 | 0 | aom_free(lc->map); |
392 | 0 | lc->map = NULL; |
393 | 0 | } |
394 | 0 | } |
395 | 0 | } |
396 | | |
397 | 0 | void av1_svc_reset_temporal_layers(AV1_COMP *const cpi, int is_key) { |
398 | 0 | SVC *const svc = &cpi->svc; |
399 | 0 | LAYER_CONTEXT *lc = NULL; |
400 | 0 | for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { |
401 | 0 | for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { |
402 | 0 | lc = &cpi->svc.layer_context[sl * svc->number_temporal_layers + tl]; |
403 | 0 | if (is_key) lc->frames_from_key_frame = 0; |
404 | 0 | } |
405 | 0 | } |
406 | 0 | av1_update_temporal_layer_framerate(cpi); |
407 | 0 | av1_restore_layer_context(cpi); |
408 | 0 | } |
409 | | |
410 | | void av1_get_layer_resolution(const int width_org, const int height_org, |
411 | | const int num, const int den, int *width_out, |
412 | 0 | int *height_out) { |
413 | 0 | int w, h; |
414 | 0 | if (width_out == NULL || height_out == NULL || den == 0) return; |
415 | 0 | if (den == 1 && num == 1) { |
416 | 0 | *width_out = width_org; |
417 | 0 | *height_out = height_org; |
418 | 0 | return; |
419 | 0 | } |
420 | 0 | w = width_org * num / den; |
421 | 0 | h = height_org * num / den; |
422 | | // Make height and width even. |
423 | 0 | w += w % 2; |
424 | 0 | h += h % 2; |
425 | 0 | *width_out = w; |
426 | 0 | *height_out = h; |
427 | 0 | } |
428 | | |
429 | 0 | void av1_one_pass_cbr_svc_start_layer(AV1_COMP *const cpi) { |
430 | 0 | SVC *const svc = &cpi->svc; |
431 | 0 | AV1_COMMON *const cm = &cpi->common; |
432 | 0 | LAYER_CONTEXT *lc = NULL; |
433 | 0 | int width = 0, height = 0; |
434 | 0 | lc = &svc->layer_context[svc->spatial_layer_id * svc->number_temporal_layers + |
435 | 0 | svc->temporal_layer_id]; |
436 | | // Set the lower quality layer flag. |
437 | 0 | svc->has_lower_quality_layer = 0; |
438 | 0 | if (cpi->svc.spatial_layer_id > 0) { |
439 | 0 | const LAYER_CONTEXT *lc_prev = |
440 | 0 | &svc->layer_context[(svc->spatial_layer_id - 1) * |
441 | 0 | svc->number_temporal_layers + |
442 | 0 | svc->temporal_layer_id]; |
443 | 0 | if (lc_prev->scaling_factor_den == 1 && lc_prev->scaling_factor_num == 1) |
444 | 0 | svc->has_lower_quality_layer = 1; |
445 | 0 | } |
446 | 0 | av1_get_layer_resolution(cpi->oxcf.frm_dim_cfg.width, |
447 | 0 | cpi->oxcf.frm_dim_cfg.height, lc->scaling_factor_num, |
448 | 0 | lc->scaling_factor_den, &width, &height); |
449 | | // Use Eightap_smooth for low resolutions. |
450 | 0 | if (width * height <= 320 * 240) |
451 | 0 | svc->downsample_filter_type[svc->spatial_layer_id] = EIGHTTAP_SMOOTH; |
452 | |
|
453 | 0 | cm->width = width; |
454 | 0 | cm->height = height; |
455 | 0 | alloc_mb_mode_info_buffers(cpi); |
456 | 0 | av1_update_frame_size(cpi); |
457 | 0 | if (svc->spatial_layer_id == svc->number_spatial_layers - 1) { |
458 | 0 | svc->mi_cols_full_resoln = cm->mi_params.mi_cols; |
459 | 0 | svc->mi_rows_full_resoln = cm->mi_params.mi_rows; |
460 | 0 | } |
461 | 0 | } |
462 | | |
463 | | enum { |
464 | | SVC_LAST_FRAME = 0, |
465 | | SVC_LAST2_FRAME, |
466 | | SVC_LAST3_FRAME, |
467 | | SVC_GOLDEN_FRAME, |
468 | | SVC_BWDREF_FRAME, |
469 | | SVC_ALTREF2_FRAME, |
470 | | SVC_ALTREF_FRAME |
471 | | }; |
472 | | |
473 | | // For fixed svc mode: fixed pattern is set based on the number of |
474 | | // spatial and temporal layers, and the ksvc_fixed_mode. |
475 | 0 | void av1_set_svc_fixed_mode(AV1_COMP *const cpi) { |
476 | 0 | SVC *const svc = &cpi->svc; |
477 | 0 | RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; |
478 | 0 | int i; |
479 | 0 | assert(svc->use_flexible_mode == 0); |
480 | | // Fixed SVC mode only supports at most 3 spatial or temporal layers. |
481 | 0 | assert(svc->number_spatial_layers >= 1 && svc->number_spatial_layers <= 3 && |
482 | 0 | svc->number_temporal_layers >= 1 && svc->number_temporal_layers <= 3); |
483 | 0 | rtc_ref->set_ref_frame_config = 1; |
484 | 0 | int superframe_cnt = svc->current_superframe; |
485 | | // Set the reference map buffer idx for the 7 references: |
486 | | // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3), |
487 | | // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6). |
488 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) { |
489 | 0 | rtc_ref->reference[i] = 0; |
490 | 0 | rtc_ref->ref_idx[i] = i; |
491 | 0 | } |
492 | 0 | for (i = 0; i < REF_FRAMES; i++) rtc_ref->refresh[i] = 0; |
493 | | // Always reference LAST, and reference GOLDEN on SL > 0. |
494 | | // For KSVC: GOLDEN reference will be removed on INTER_FRAMES later |
495 | | // when frame_type is set. |
496 | 0 | rtc_ref->reference[SVC_LAST_FRAME] = 1; |
497 | 0 | if (svc->spatial_layer_id > 0) rtc_ref->reference[SVC_GOLDEN_FRAME] = 1; |
498 | 0 | if (svc->temporal_layer_id == 0) { |
499 | | // Base temporal layer. |
500 | 0 | if (svc->spatial_layer_id == 0) { |
501 | | // Set all buffer_idx to 0. Update slot 0 (LAST). |
502 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; |
503 | 0 | rtc_ref->refresh[0] = 1; |
504 | 0 | } else if (svc->spatial_layer_id == 1) { |
505 | | // Set buffer_idx for LAST to slot 1, GOLDEN (and all other refs) to |
506 | | // slot 0. Update slot 1 (LAST). |
507 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; |
508 | 0 | rtc_ref->ref_idx[SVC_LAST_FRAME] = 1; |
509 | 0 | rtc_ref->refresh[1] = 1; |
510 | 0 | } else if (svc->spatial_layer_id == 2) { |
511 | | // Set buffer_idx for LAST to slot 2, GOLDEN (and all other refs) to |
512 | | // slot 1. Update slot 2 (LAST). |
513 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 1; |
514 | 0 | rtc_ref->ref_idx[SVC_LAST_FRAME] = 2; |
515 | 0 | rtc_ref->refresh[2] = 1; |
516 | 0 | } |
517 | 0 | } else if (svc->temporal_layer_id == 2 && (superframe_cnt - 1) % 4 == 0) { |
518 | | // First top temporal enhancement layer. |
519 | 0 | if (svc->spatial_layer_id == 0) { |
520 | | // Reference LAST (slot 0). |
521 | | // Set GOLDEN to slot 3 and update slot 3. |
522 | | // Set all other buffer_idx to slot 0. |
523 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; |
524 | 0 | if (svc->spatial_layer_id < svc->number_spatial_layers - 1) { |
525 | 0 | rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 3; |
526 | 0 | rtc_ref->refresh[3] = 1; |
527 | 0 | } |
528 | 0 | } else if (svc->spatial_layer_id == 1) { |
529 | | // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, |
530 | | // GOLDEN (and all other refs) to slot 3. |
531 | | // Set LAST2 to slot 4 and Update slot 4. |
532 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 3; |
533 | 0 | rtc_ref->ref_idx[SVC_LAST_FRAME] = 1; |
534 | 0 | if (svc->spatial_layer_id < svc->number_spatial_layers - 1) { |
535 | 0 | rtc_ref->ref_idx[SVC_LAST2_FRAME] = 4; |
536 | 0 | rtc_ref->refresh[4] = 1; |
537 | 0 | } |
538 | 0 | } else if (svc->spatial_layer_id == 2) { |
539 | | // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2, |
540 | | // GOLDEN (and all other refs) to slot 4. |
541 | | // No update. |
542 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 4; |
543 | 0 | rtc_ref->ref_idx[SVC_LAST_FRAME] = 2; |
544 | 0 | } |
545 | 0 | } else if (svc->temporal_layer_id == 1) { |
546 | | // Middle temporal enhancement layer. |
547 | 0 | if (svc->spatial_layer_id == 0) { |
548 | | // Reference LAST. |
549 | | // Set all buffer_idx to 0. |
550 | | // Set GOLDEN to slot 5 and update slot 5. |
551 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; |
552 | 0 | if (svc->temporal_layer_id < svc->number_temporal_layers - 1 || |
553 | 0 | svc->spatial_layer_id < svc->number_spatial_layers - 1) { |
554 | 0 | rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 5; |
555 | 0 | rtc_ref->refresh[5] = 1; |
556 | 0 | } |
557 | 0 | } else if (svc->spatial_layer_id == 1) { |
558 | | // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, |
559 | | // GOLDEN (and all other refs) to slot 5. |
560 | | // Set LAST3 to slot 6 and update slot 6. |
561 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 5; |
562 | 0 | rtc_ref->ref_idx[SVC_LAST_FRAME] = 1; |
563 | 0 | if (svc->temporal_layer_id < svc->number_temporal_layers - 1 || |
564 | 0 | svc->spatial_layer_id < svc->number_spatial_layers - 1) { |
565 | 0 | rtc_ref->ref_idx[SVC_LAST3_FRAME] = 6; |
566 | 0 | rtc_ref->refresh[6] = 1; |
567 | 0 | } |
568 | 0 | } else if (svc->spatial_layer_id == 2) { |
569 | | // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2, |
570 | | // GOLDEN (and all other refs) to slot 6. |
571 | | // Set LAST3 to slot 7 and update slot 7. |
572 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 6; |
573 | 0 | rtc_ref->ref_idx[SVC_LAST_FRAME] = 2; |
574 | 0 | if (svc->temporal_layer_id < svc->number_temporal_layers - 1) { |
575 | 0 | rtc_ref->ref_idx[SVC_LAST3_FRAME] = 7; |
576 | 0 | rtc_ref->refresh[7] = 1; |
577 | 0 | } |
578 | 0 | } |
579 | 0 | } else if (svc->temporal_layer_id == 2 && (superframe_cnt - 3) % 4 == 0) { |
580 | | // Second top temporal enhancement layer. |
581 | 0 | if (svc->spatial_layer_id == 0) { |
582 | | // Set LAST to slot 5 and reference LAST. |
583 | | // Set GOLDEN to slot 3 and update slot 3. |
584 | | // Set all other buffer_idx to 0. |
585 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; |
586 | 0 | rtc_ref->ref_idx[SVC_LAST_FRAME] = 5; |
587 | 0 | if (svc->spatial_layer_id < svc->number_spatial_layers - 1) { |
588 | 0 | rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 3; |
589 | 0 | rtc_ref->refresh[3] = 1; |
590 | 0 | } |
591 | 0 | } else if (svc->spatial_layer_id == 1) { |
592 | | // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6, |
593 | | // GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4. |
594 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; |
595 | 0 | rtc_ref->ref_idx[SVC_LAST_FRAME] = 6; |
596 | 0 | rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 3; |
597 | 0 | if (svc->spatial_layer_id < svc->number_spatial_layers - 1) { |
598 | 0 | rtc_ref->ref_idx[SVC_LAST2_FRAME] = 4; |
599 | 0 | rtc_ref->refresh[4] = 1; |
600 | 0 | } |
601 | 0 | } else if (svc->spatial_layer_id == 2) { |
602 | | // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 7, |
603 | | // GOLDEN to slot 4. No update. |
604 | 0 | for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; |
605 | 0 | rtc_ref->ref_idx[SVC_LAST_FRAME] = 7; |
606 | 0 | rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 4; |
607 | 0 | } |
608 | 0 | } |
609 | 0 | } |
610 | | |
611 | 0 | void av1_svc_check_reset_layer_rc_flag(AV1_COMP *const cpi) { |
612 | 0 | SVC *const svc = &cpi->svc; |
613 | 0 | for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { |
614 | | // Check for reset based on avg_frame_bandwidth for spatial layer sl. |
615 | | // If avg_frame_bandwidth for top temporal layer is not set |
616 | | // (because enhancement layer was inactive), use the base TL0 |
617 | 0 | int layer = LAYER_IDS_TO_IDX(sl, svc->number_temporal_layers - 1, |
618 | 0 | svc->number_temporal_layers); |
619 | 0 | LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
620 | 0 | RATE_CONTROL *lrc = &lc->rc; |
621 | 0 | int avg_frame_bandwidth = lrc->avg_frame_bandwidth; |
622 | 0 | int prev_avg_frame_bandwidth = lrc->prev_avg_frame_bandwidth; |
623 | 0 | if (avg_frame_bandwidth == 0 || prev_avg_frame_bandwidth == 0) { |
624 | | // Use base TL0. |
625 | 0 | layer = LAYER_IDS_TO_IDX(sl, 0, svc->number_temporal_layers); |
626 | 0 | lc = &svc->layer_context[layer]; |
627 | 0 | lrc = &lc->rc; |
628 | 0 | avg_frame_bandwidth = lrc->avg_frame_bandwidth; |
629 | 0 | prev_avg_frame_bandwidth = lrc->prev_avg_frame_bandwidth; |
630 | 0 | } |
631 | 0 | if (avg_frame_bandwidth / 3 > (prev_avg_frame_bandwidth >> 1) || |
632 | 0 | avg_frame_bandwidth < (prev_avg_frame_bandwidth >> 1)) { |
633 | | // Reset for all temporal layers with spatial layer sl. |
634 | 0 | for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { |
635 | 0 | int layer2 = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); |
636 | 0 | LAYER_CONTEXT *lc2 = &svc->layer_context[layer2]; |
637 | 0 | RATE_CONTROL *lrc2 = &lc2->rc; |
638 | 0 | PRIMARY_RATE_CONTROL *lp_rc2 = &lc2->p_rc; |
639 | 0 | PRIMARY_RATE_CONTROL *const lp_rc = &lc2->p_rc; |
640 | 0 | lrc2->rc_1_frame = 0; |
641 | 0 | lrc2->rc_2_frame = 0; |
642 | 0 | lp_rc2->bits_off_target = lp_rc->optimal_buffer_level; |
643 | 0 | lp_rc2->buffer_level = lp_rc->optimal_buffer_level; |
644 | 0 | } |
645 | 0 | } |
646 | 0 | } |
647 | 0 | } |
648 | | |
649 | | void av1_svc_set_last_source(AV1_COMP *const cpi, EncodeFrameInput *frame_input, |
650 | 0 | YV12_BUFFER_CONFIG *prev_source) { |
651 | 0 | frame_input->last_source = prev_source != NULL ? prev_source : NULL; |
652 | 0 | if (!cpi->ppi->use_svc && cpi->rc.prev_frame_is_dropped && |
653 | 0 | cpi->rc.frame_number_encoded > 0) { |
654 | 0 | frame_input->last_source = &cpi->svc.source_last_TL0; |
655 | 0 | } else { |
656 | 0 | RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; |
657 | 0 | if (cpi->svc.spatial_layer_id == 0) { |
658 | | // For base spatial layer: if the LAST reference (index 0) is not |
659 | | // the previous (super)frame set the last_source to the source |
660 | | // corresponding to the last TL0, otherwise keep it at prev_source. |
661 | | // Always use source_last_TL0 if previous base TL0 was dropped. |
662 | 0 | if (cpi->svc.current_superframe > 0) { |
663 | 0 | const int buffslot_last = rtc_ref->ref_idx[0]; |
664 | | // Check if previous frame was dropped on base TL0 layer. |
665 | 0 | const int layer = |
666 | 0 | LAYER_IDS_TO_IDX(0, 0, cpi->svc.number_temporal_layers); |
667 | 0 | LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; |
668 | 0 | RATE_CONTROL *lrc = &lc->rc; |
669 | 0 | if (lrc->prev_frame_is_dropped || |
670 | 0 | rtc_ref->buffer_time_index[buffslot_last] < |
671 | 0 | cpi->svc.current_superframe - 1) { |
672 | 0 | frame_input->last_source = &cpi->svc.source_last_TL0; |
673 | 0 | } |
674 | 0 | } |
675 | 0 | } else if (cpi->svc.spatial_layer_id > 0) { |
676 | | // For spatial enhancement layers: the previous source (prev_source) |
677 | | // corresponds to the lower spatial layer (which is the same source so |
678 | | // we can't use that), so always set the last_source to the source of the |
679 | | // last TL0. |
680 | 0 | if (cpi->svc.current_superframe > 0) |
681 | 0 | frame_input->last_source = &cpi->svc.source_last_TL0; |
682 | 0 | else |
683 | 0 | frame_input->last_source = NULL; |
684 | 0 | } |
685 | 0 | } |
686 | 0 | } |
687 | | |
688 | 0 | int av1_svc_get_min_ref_dist(const AV1_COMP *cpi) { |
689 | 0 | RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; |
690 | 0 | int min_dist = INT_MAX; |
691 | 0 | const unsigned int current_frame_num = |
692 | 0 | cpi->ppi->use_svc ? cpi->svc.current_superframe |
693 | 0 | : cpi->common.current_frame.frame_number; |
694 | 0 | for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { |
695 | 0 | if (rtc_ref->reference[i]) { |
696 | 0 | const int ref_frame_map_idx = rtc_ref->ref_idx[i]; |
697 | 0 | const int dist = |
698 | 0 | current_frame_num - rtc_ref->buffer_time_index[ref_frame_map_idx]; |
699 | 0 | if (dist < min_dist) min_dist = dist; |
700 | 0 | } |
701 | 0 | } |
702 | 0 | return min_dist; |
703 | 0 | } |
704 | | |
705 | 0 | void av1_svc_set_reference_was_previous(AV1_COMP *cpi) { |
706 | 0 | RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; |
707 | | // Check if the encoded frame had some reference that was the |
708 | | // previous frame. |
709 | 0 | const unsigned int current_frame = |
710 | 0 | cpi->ppi->use_svc ? cpi->svc.current_superframe |
711 | 0 | : cpi->common.current_frame.frame_number; |
712 | 0 | rtc_ref->reference_was_previous_frame = true; |
713 | 0 | if (current_frame > 0) { |
714 | 0 | rtc_ref->reference_was_previous_frame = false; |
715 | 0 | for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { |
716 | 0 | if (rtc_ref->reference[i]) { |
717 | 0 | const int ref_frame_map_idx = rtc_ref->ref_idx[i]; |
718 | 0 | if (rtc_ref->buffer_time_index[ref_frame_map_idx] == current_frame - 1) |
719 | 0 | rtc_ref->reference_was_previous_frame = true; |
720 | 0 | } |
721 | 0 | } |
722 | 0 | } |
723 | 0 | } |