Coverage Report

Created: 2025-06-22 08:04

/src/aom/av1/encoder/tokenize.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <assert.h>
13
#include <math.h>
14
#include <stdio.h>
15
#include <string.h>
16
17
#include "aom_mem/aom_mem.h"
18
19
#include "av1/common/entropy.h"
20
#include "av1/common/pred_common.h"
21
#include "av1/common/scan.h"
22
#include "av1/common/seg_common.h"
23
24
#include "av1/encoder/cost.h"
25
#include "av1/encoder/encoder.h"
26
#include "av1/encoder/encodetxb.h"
27
#include "av1/encoder/rdopt.h"
28
#include "av1/encoder/tokenize.h"
29
30
static inline int av1_fast_palette_color_index_context_on_edge(
31
0
    const uint8_t *color_map, int stride, int r, int c, int *color_idx) {
32
0
  const bool has_left = (c - 1 >= 0);
33
0
  const bool has_above = (r - 1 >= 0);
34
0
  assert(r > 0 || c > 0);
35
0
  assert(has_above ^ has_left);
36
0
  assert(color_idx);
37
0
  (void)has_left;
38
39
0
  const uint8_t color_neighbor = has_above
40
0
                                     ? color_map[(r - 1) * stride + (c - 0)]
41
0
                                     : color_map[(r - 0) * stride + (c - 1)];
42
  // If the neighbor color has higher index than current color index, then we
43
  // move up by 1.
44
0
  const uint8_t current_color = *color_idx = color_map[r * stride + c];
45
0
  if (color_neighbor > current_color) {
46
0
    (*color_idx)++;
47
0
  } else if (color_neighbor == current_color) {
48
0
    *color_idx = 0;
49
0
  }
50
51
  // Get hash value of context.
52
  // The non-diagonal neighbors get a weight of 2.
53
0
  const uint8_t color_score = 2;
54
0
  const uint8_t hash_multiplier = 1;
55
0
  const uint8_t color_index_ctx_hash = color_score * hash_multiplier;
56
57
  // Lookup context from hash.
58
0
  const int color_index_ctx =
59
0
      av1_palette_color_index_context_lookup[color_index_ctx_hash];
60
0
  assert(color_index_ctx == 0);
61
0
  (void)color_index_ctx;
62
0
  return 0;
63
0
}
64
65
#define SWAP(i, j)                           \
66
0
  do {                                       \
67
0
    const uint8_t tmp_score = score_rank[i]; \
68
0
    const uint8_t tmp_color = color_rank[i]; \
69
0
    score_rank[i] = score_rank[j];           \
70
0
    color_rank[i] = color_rank[j];           \
71
0
    score_rank[j] = tmp_score;               \
72
0
    color_rank[j] = tmp_color;               \
73
0
  } while (0)
74
0
#define INVALID_COLOR_IDX (UINT8_MAX)
75
76
// A faster version of av1_get_palette_color_index_context used by the encoder
77
// exploiting the fact that the encoder does not need to maintain a color order.
78
static inline int av1_fast_palette_color_index_context(const uint8_t *color_map,
79
                                                       int stride, int r, int c,
80
0
                                                       int *color_idx) {
81
0
  assert(r > 0 || c > 0);
82
83
0
  const bool has_above = (r - 1 >= 0);
84
0
  const bool has_left = (c - 1 >= 0);
85
0
  assert(has_above || has_left);
86
0
  if (has_above ^ has_left) {
87
0
    return av1_fast_palette_color_index_context_on_edge(color_map, stride, r, c,
88
0
                                                        color_idx);
89
0
  }
90
91
  // This goes in the order of left, top, and top-left. This has the advantage
92
  // that unless anything here are not distinct or invalid, this will already
93
  // be in sorted order. Furthermore, if either of the first two is
94
  // invalid, we know the last one is also invalid.
95
0
  uint8_t color_neighbors[NUM_PALETTE_NEIGHBORS];
96
0
  color_neighbors[0] = color_map[(r - 0) * stride + (c - 1)];
97
0
  color_neighbors[1] = color_map[(r - 1) * stride + (c - 0)];
98
0
  color_neighbors[2] = color_map[(r - 1) * stride + (c - 1)];
99
100
  // Aggregate duplicated values.
101
  // Since our array is so small, using a couple if statements is faster
102
0
  uint8_t scores[NUM_PALETTE_NEIGHBORS] = { 2, 2, 1 };
103
0
  uint8_t num_invalid_colors = 0;
104
0
  if (color_neighbors[0] == color_neighbors[1]) {
105
0
    scores[0] += scores[1];
106
0
    color_neighbors[1] = INVALID_COLOR_IDX;
107
0
    num_invalid_colors += 1;
108
109
0
    if (color_neighbors[0] == color_neighbors[2]) {
110
0
      scores[0] += scores[2];
111
0
      num_invalid_colors += 1;
112
0
    }
113
0
  } else if (color_neighbors[0] == color_neighbors[2]) {
114
0
    scores[0] += scores[2];
115
0
    num_invalid_colors += 1;
116
0
  } else if (color_neighbors[1] == color_neighbors[2]) {
117
0
    scores[1] += scores[2];
118
0
    num_invalid_colors += 1;
119
0
  }
120
121
0
  const uint8_t num_valid_colors = NUM_PALETTE_NEIGHBORS - num_invalid_colors;
122
123
0
  uint8_t *color_rank = color_neighbors;
124
0
  uint8_t *score_rank = scores;
125
126
  // Sort everything
127
0
  if (num_valid_colors > 1) {
128
0
    if (color_neighbors[1] == INVALID_COLOR_IDX) {
129
0
      scores[1] = scores[2];
130
0
      color_neighbors[1] = color_neighbors[2];
131
0
    }
132
133
    // We need to swap the first two elements if they have the same score but
134
    // the color indices are not in the right order
135
0
    if (score_rank[0] < score_rank[1] ||
136
0
        (score_rank[0] == score_rank[1] && color_rank[0] > color_rank[1])) {
137
0
      SWAP(0, 1);
138
0
    }
139
0
    if (num_valid_colors > 2) {
140
0
      if (score_rank[0] < score_rank[2]) {
141
0
        SWAP(0, 2);
142
0
      }
143
0
      if (score_rank[1] < score_rank[2]) {
144
0
        SWAP(1, 2);
145
0
      }
146
0
    }
147
0
  }
148
149
  // If any of the neighbor colors has higher index than current color index,
150
  // then we move up by 1 unless the current color is the same as one of the
151
  // neighbors.
152
0
  const uint8_t current_color = *color_idx = color_map[r * stride + c];
153
0
  for (int idx = 0; idx < num_valid_colors; idx++) {
154
0
    if (color_rank[idx] > current_color) {
155
0
      (*color_idx)++;
156
0
    } else if (color_rank[idx] == current_color) {
157
0
      *color_idx = idx;
158
0
      break;
159
0
    }
160
0
  }
161
162
  // Get hash value of context.
163
0
  uint8_t color_index_ctx_hash = 0;
164
0
  static const uint8_t hash_multipliers[NUM_PALETTE_NEIGHBORS] = { 1, 2, 2 };
165
0
  for (int idx = 0; idx < num_valid_colors; ++idx) {
166
0
    color_index_ctx_hash += score_rank[idx] * hash_multipliers[idx];
167
0
  }
168
0
  assert(color_index_ctx_hash > 0);
169
0
  assert(color_index_ctx_hash <= MAX_COLOR_CONTEXT_HASH);
170
171
  // Lookup context from hash.
172
0
  const int color_index_ctx = 9 - color_index_ctx_hash;
173
0
  assert(color_index_ctx ==
174
0
         av1_palette_color_index_context_lookup[color_index_ctx_hash]);
175
0
  assert(color_index_ctx >= 0);
176
0
  assert(color_index_ctx < PALETTE_COLOR_INDEX_CONTEXTS);
177
0
  return color_index_ctx;
178
0
}
179
#undef INVALID_COLOR_IDX
180
#undef SWAP
181
182
static int cost_and_tokenize_map(Av1ColorMapParam *param, TokenExtra **t,
183
                                 int plane, int calc_rate, int allow_update_cdf,
184
0
                                 FRAME_COUNTS *counts) {
185
0
  const uint8_t *const color_map = param->color_map;
186
0
  MapCdf map_cdf = param->map_cdf;
187
0
  ColorCost color_cost = param->color_cost;
188
0
  const int plane_block_width = param->plane_width;
189
0
  const int rows = param->rows;
190
0
  const int cols = param->cols;
191
0
  const int n = param->n_colors;
192
0
  const int palette_size_idx = n - PALETTE_MIN_SIZE;
193
0
  int this_rate = 0;
194
195
0
  (void)plane;
196
0
  (void)counts;
197
198
0
  for (int k = 1; k < rows + cols - 1; ++k) {
199
0
    for (int j = AOMMIN(k, cols - 1); j >= AOMMAX(0, k - rows + 1); --j) {
200
0
      int i = k - j;
201
0
      int color_new_idx;
202
0
      const int color_ctx = av1_fast_palette_color_index_context(
203
0
          color_map, plane_block_width, i, j, &color_new_idx);
204
0
      assert(color_new_idx >= 0 && color_new_idx < n);
205
0
      if (calc_rate) {
206
0
        this_rate += color_cost[palette_size_idx][color_ctx][color_new_idx];
207
0
      } else {
208
0
        (*t)->token = color_new_idx;
209
0
        (*t)->color_ctx = color_ctx;
210
0
        ++(*t);
211
0
        if (allow_update_cdf)
212
0
          update_cdf(map_cdf[palette_size_idx][color_ctx], color_new_idx, n);
213
#if CONFIG_ENTROPY_STATS
214
        if (plane) {
215
          ++counts->palette_uv_color_index[palette_size_idx][color_ctx]
216
                                          [color_new_idx];
217
        } else {
218
          ++counts->palette_y_color_index[palette_size_idx][color_ctx]
219
                                         [color_new_idx];
220
        }
221
#endif
222
0
      }
223
0
    }
224
0
  }
225
0
  if (calc_rate) return this_rate;
226
0
  return 0;
227
0
}
228
229
static void get_palette_params(const MACROBLOCK *const x, int plane,
230
0
                               BLOCK_SIZE bsize, Av1ColorMapParam *params) {
231
0
  const MACROBLOCKD *const xd = &x->e_mbd;
232
0
  const MB_MODE_INFO *const mbmi = xd->mi[0];
233
0
  const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
234
0
  params->color_map = xd->plane[plane].color_index_map;
235
0
  params->map_cdf = plane ? xd->tile_ctx->palette_uv_color_index_cdf
236
0
                          : xd->tile_ctx->palette_y_color_index_cdf;
237
0
  params->color_cost = plane ? x->mode_costs.palette_uv_color_cost
238
0
                             : x->mode_costs.palette_y_color_cost;
239
0
  params->n_colors = pmi->palette_size[plane];
240
0
  av1_get_block_dimensions(bsize, plane, xd, &params->plane_width, NULL,
241
0
                           &params->rows, &params->cols);
242
0
}
243
244
// TODO(any): Remove this function
245
static void get_color_map_params(const MACROBLOCK *const x, int plane,
246
                                 BLOCK_SIZE bsize, TX_SIZE tx_size,
247
                                 COLOR_MAP_TYPE type,
248
0
                                 Av1ColorMapParam *params) {
249
0
  (void)tx_size;
250
0
  memset(params, 0, sizeof(*params));
251
0
  switch (type) {
252
0
    case PALETTE_MAP: get_palette_params(x, plane, bsize, params); break;
253
0
    default: assert(0 && "Invalid color map type"); return;
254
0
  }
255
0
}
256
257
int av1_cost_color_map(const MACROBLOCK *const x, int plane, BLOCK_SIZE bsize,
258
0
                       TX_SIZE tx_size, COLOR_MAP_TYPE type) {
259
0
  assert(plane == 0 || plane == 1);
260
0
  Av1ColorMapParam color_map_params;
261
0
  get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params);
262
0
  return cost_and_tokenize_map(&color_map_params, NULL, plane, 1, 0, NULL);
263
0
}
264
265
void av1_tokenize_color_map(const MACROBLOCK *const x, int plane,
266
                            TokenExtra **t, BLOCK_SIZE bsize, TX_SIZE tx_size,
267
                            COLOR_MAP_TYPE type, int allow_update_cdf,
268
0
                            FRAME_COUNTS *counts) {
269
0
  assert(plane == 0 || plane == 1);
270
0
  Av1ColorMapParam color_map_params;
271
0
  get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params);
272
  // The first color index does not use context or entropy.
273
0
  (*t)->token = color_map_params.color_map[0];
274
0
  (*t)->color_ctx = -1;
275
0
  ++(*t);
276
0
  cost_and_tokenize_map(&color_map_params, t, plane, 0, allow_update_cdf,
277
0
                        counts);
278
0
}
279
280
static void tokenize_vartx(ThreadData *td, TX_SIZE tx_size,
281
                           BLOCK_SIZE plane_bsize, int blk_row, int blk_col,
282
0
                           int block, int plane, void *arg) {
283
0
  MACROBLOCK *const x = &td->mb;
284
0
  MACROBLOCKD *const xd = &x->e_mbd;
285
0
  MB_MODE_INFO *const mbmi = xd->mi[0];
286
0
  const struct macroblockd_plane *const pd = &xd->plane[plane];
287
0
  const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
288
0
  const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
289
290
0
  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
291
292
0
  const TX_SIZE plane_tx_size =
293
0
      plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
294
0
                                    pd->subsampling_y)
295
0
            : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
296
0
                                                         blk_col)];
297
298
0
  if (tx_size == plane_tx_size || plane) {
299
0
    plane_bsize =
300
0
        get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
301
302
0
    struct tokenize_b_args *args = arg;
303
0
    if (args->allow_update_cdf)
304
0
      av1_update_and_record_txb_context(plane, block, blk_row, blk_col,
305
0
                                        plane_bsize, tx_size, arg);
306
0
    else
307
0
      av1_record_txb_context(plane, block, blk_row, blk_col, plane_bsize,
308
0
                             tx_size, arg);
309
310
0
  } else {
311
    // Half the block size in transform block unit.
312
0
    const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
313
0
    const int bsw = tx_size_wide_unit[sub_txs];
314
0
    const int bsh = tx_size_high_unit[sub_txs];
315
0
    const int step = bsw * bsh;
316
0
    const int row_end =
317
0
        AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
318
0
    const int col_end =
319
0
        AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
320
321
0
    assert(bsw > 0 && bsh > 0);
322
323
0
    for (int row = 0; row < row_end; row += bsh) {
324
0
      const int offsetr = blk_row + row;
325
0
      for (int col = 0; col < col_end; col += bsw) {
326
0
        const int offsetc = blk_col + col;
327
328
0
        tokenize_vartx(td, sub_txs, plane_bsize, offsetr, offsetc, block, plane,
329
0
                       arg);
330
0
        block += step;
331
0
      }
332
0
    }
333
0
  }
334
0
}
335
336
void av1_tokenize_sb_vartx(const AV1_COMP *cpi, ThreadData *td,
337
                           RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate,
338
0
                           uint8_t allow_update_cdf) {
339
0
  assert(bsize < BLOCK_SIZES_ALL);
340
0
  const AV1_COMMON *const cm = &cpi->common;
341
0
  MACROBLOCK *const x = &td->mb;
342
0
  MACROBLOCKD *const xd = &x->e_mbd;
343
0
  const int mi_row = xd->mi_row;
344
0
  const int mi_col = xd->mi_col;
345
0
  if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
346
0
    return;
347
348
0
  const int num_planes = av1_num_planes(cm);
349
0
  MB_MODE_INFO *const mbmi = xd->mi[0];
350
0
  struct tokenize_b_args arg = { cpi, td, 0, allow_update_cdf, dry_run };
351
352
0
  if (mbmi->skip_txfm) {
353
0
    av1_reset_entropy_context(xd, bsize, num_planes);
354
0
    return;
355
0
  }
356
357
0
  for (int plane = 0; plane < num_planes; ++plane) {
358
0
    if (plane && !xd->is_chroma_ref) break;
359
0
    const struct macroblockd_plane *const pd = &xd->plane[plane];
360
0
    const int ss_x = pd->subsampling_x;
361
0
    const int ss_y = pd->subsampling_y;
362
0
    const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
363
0
    assert(plane_bsize < BLOCK_SIZES_ALL);
364
0
    const int mi_width = mi_size_wide[plane_bsize];
365
0
    const int mi_height = mi_size_high[plane_bsize];
366
0
    const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
367
0
    const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
368
0
    const int bw = mi_size_wide[txb_size];
369
0
    const int bh = mi_size_high[txb_size];
370
0
    int block = 0;
371
0
    const int step =
372
0
        tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
373
374
0
    const BLOCK_SIZE max_unit_bsize =
375
0
        get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
376
0
    int mu_blocks_wide = mi_size_wide[max_unit_bsize];
377
0
    int mu_blocks_high = mi_size_high[max_unit_bsize];
378
379
0
    mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
380
0
    mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
381
382
0
    for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
383
0
      for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
384
0
        const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
385
0
        const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
386
0
        for (int blk_row = idy; blk_row < unit_height; blk_row += bh) {
387
0
          for (int blk_col = idx; blk_col < unit_width; blk_col += bw) {
388
0
            tokenize_vartx(td, max_tx_size, plane_bsize, blk_row, blk_col,
389
0
                           block, plane, &arg);
390
0
            block += step;
391
0
          }
392
0
        }
393
0
      }
394
0
    }
395
0
  }
396
0
  if (rate) *rate += arg.this_rate;
397
0
}