Coverage Report

Created: 2025-06-22 08:04

/src/aom/av1/encoder/tpl_model.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2019, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <assert.h>
13
#include <float.h>
14
#include <stdint.h>
15
16
#include "config/aom_config.h"
17
18
#if CONFIG_THREE_PASS
19
#include "av1/encoder/thirdpass.h"
20
#endif
21
#include "config/aom_dsp_rtcd.h"
22
#include "config/aom_scale_rtcd.h"
23
24
#include "aom/aom_codec.h"
25
#include "aom_util/aom_pthread.h"
26
27
#include "av1/common/av1_common_int.h"
28
#include "av1/common/enums.h"
29
#include "av1/common/idct.h"
30
#include "av1/common/reconintra.h"
31
32
#include "av1/encoder/encoder.h"
33
#include "av1/encoder/ethread.h"
34
#include "av1/encoder/encodeframe_utils.h"
35
#include "av1/encoder/encode_strategy.h"
36
#include "av1/encoder/hybrid_fwd_txfm.h"
37
#include "av1/encoder/motion_search_facade.h"
38
#include "av1/encoder/rd.h"
39
#include "av1/encoder/rdopt.h"
40
#include "av1/encoder/reconinter_enc.h"
41
#include "av1/encoder/tpl_model.h"
42
43
0
static inline double exp_bounded(double v) {
44
  // When v > 700 or <-700, the exp function will be close to overflow
45
  // For details, see the "Notes" in the following link.
46
  // https://en.cppreference.com/w/c/numeric/math/exp
47
0
  if (v > 700) {
48
0
    return DBL_MAX;
49
0
  } else if (v < -700) {
50
0
    return 0;
51
0
  }
52
0
  return exp(v);
53
0
}
54
55
0
void av1_init_tpl_txfm_stats(TplTxfmStats *tpl_txfm_stats) {
56
0
  tpl_txfm_stats->ready = 0;
57
0
  tpl_txfm_stats->coeff_num = 256;
58
0
  tpl_txfm_stats->txfm_block_count = 0;
59
0
  memset(tpl_txfm_stats->abs_coeff_sum, 0,
60
0
         sizeof(tpl_txfm_stats->abs_coeff_sum[0]) * tpl_txfm_stats->coeff_num);
61
0
  memset(tpl_txfm_stats->abs_coeff_mean, 0,
62
0
         sizeof(tpl_txfm_stats->abs_coeff_mean[0]) * tpl_txfm_stats->coeff_num);
63
0
}
64
65
#if CONFIG_BITRATE_ACCURACY
66
void av1_accumulate_tpl_txfm_stats(const TplTxfmStats *sub_stats,
67
                                   TplTxfmStats *accumulated_stats) {
68
  accumulated_stats->txfm_block_count += sub_stats->txfm_block_count;
69
  for (int i = 0; i < accumulated_stats->coeff_num; ++i) {
70
    accumulated_stats->abs_coeff_sum[i] += sub_stats->abs_coeff_sum[i];
71
  }
72
}
73
74
void av1_record_tpl_txfm_block(TplTxfmStats *tpl_txfm_stats,
75
                               const tran_low_t *coeff) {
76
  // For transform larger than 16x16, the scale of coeff need to be adjusted.
77
  // It's not LOSSLESS_Q_STEP.
78
  assert(tpl_txfm_stats->coeff_num <= 256);
79
  for (int i = 0; i < tpl_txfm_stats->coeff_num; ++i) {
80
    tpl_txfm_stats->abs_coeff_sum[i] += abs(coeff[i]) / (double)LOSSLESS_Q_STEP;
81
  }
82
  ++tpl_txfm_stats->txfm_block_count;
83
}
84
85
void av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats *txfm_stats) {
86
  if (txfm_stats->txfm_block_count > 0) {
87
    for (int j = 0; j < txfm_stats->coeff_num; j++) {
88
      txfm_stats->abs_coeff_mean[j] =
89
          txfm_stats->abs_coeff_sum[j] / txfm_stats->txfm_block_count;
90
    }
91
    txfm_stats->ready = 1;
92
  } else {
93
    txfm_stats->ready = 0;
94
  }
95
}
96
97
static inline void av1_tpl_store_txfm_stats(TplParams *tpl_data,
98
                                            const TplTxfmStats *tpl_txfm_stats,
99
                                            const int frame_index) {
100
  tpl_data->txfm_stats_list[frame_index] = *tpl_txfm_stats;
101
}
102
#endif  // CONFIG_BITRATE_ACCURACY
103
104
static inline void get_quantize_error(const MACROBLOCK *x, int plane,
105
                                      const tran_low_t *coeff,
106
                                      tran_low_t *qcoeff, tran_low_t *dqcoeff,
107
                                      TX_SIZE tx_size, uint16_t *eob,
108
0
                                      int64_t *recon_error, int64_t *sse) {
109
0
  const struct macroblock_plane *const p = &x->plane[plane];
110
0
  const MACROBLOCKD *xd = &x->e_mbd;
111
0
  const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
112
0
  int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
113
0
  const int shift = tx_size == TX_32X32 ? 0 : 2;
114
115
0
  QUANT_PARAM quant_param;
116
0
  av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
117
118
0
#if CONFIG_AV1_HIGHBITDEPTH
119
0
  if (is_cur_buf_hbd(xd)) {
120
0
    av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob,
121
0
                                  scan_order, &quant_param);
122
0
    *recon_error =
123
0
        av1_highbd_block_error(coeff, dqcoeff, pix_num, sse, xd->bd) >> shift;
124
0
  } else {
125
0
    av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
126
0
                           &quant_param);
127
0
    *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
128
0
  }
129
#else
130
  (void)xd;
131
  av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
132
                         &quant_param);
133
  *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
134
#endif  // CONFIG_AV1_HIGHBITDEPTH
135
136
0
  *recon_error = AOMMAX(*recon_error, 1);
137
138
0
  *sse = (*sse) >> shift;
139
0
  *sse = AOMMAX(*sse, 1);
140
0
}
141
142
static inline void set_tpl_stats_block_size(uint8_t *block_mis_log2,
143
0
                                            uint8_t *tpl_bsize_1d) {
144
  // tpl stats bsize: 2 means 16x16
145
0
  *block_mis_log2 = 2;
146
  // Block size used in tpl motion estimation
147
0
  *tpl_bsize_1d = 16;
148
  // MIN_TPL_BSIZE_1D = 16;
149
0
  assert(*tpl_bsize_1d >= 16);
150
0
}
151
152
void av1_setup_tpl_buffers(AV1_PRIMARY *const ppi,
153
                           CommonModeInfoParams *const mi_params, int width,
154
0
                           int height, int byte_alignment, int lag_in_frames) {
155
0
  SequenceHeader *const seq_params = &ppi->seq_params;
156
0
  TplParams *const tpl_data = &ppi->tpl_data;
157
0
  set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
158
0
                           &tpl_data->tpl_bsize_1d);
159
0
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
160
0
  tpl_data->border_in_pixels =
161
0
      ALIGN_POWER_OF_TWO(tpl_data->tpl_bsize_1d + 2 * AOM_INTERP_EXTEND, 5);
162
163
0
  const int alloc_y_plane_only =
164
0
      ppi->cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : 0;
165
0
  for (int frame = 0; frame < MAX_LENGTH_TPL_FRAME_STATS; ++frame) {
166
0
    const int mi_cols =
167
0
        ALIGN_POWER_OF_TWO(mi_params->mi_cols, MAX_MIB_SIZE_LOG2);
168
0
    const int mi_rows =
169
0
        ALIGN_POWER_OF_TWO(mi_params->mi_rows, MAX_MIB_SIZE_LOG2);
170
0
    TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame];
171
0
    tpl_frame->is_valid = 0;
172
0
    tpl_frame->width = mi_cols >> block_mis_log2;
173
0
    tpl_frame->height = mi_rows >> block_mis_log2;
174
0
    tpl_frame->stride = tpl_data->tpl_stats_buffer[frame].width;
175
0
    tpl_frame->mi_rows = mi_params->mi_rows;
176
0
    tpl_frame->mi_cols = mi_params->mi_cols;
177
0
  }
178
0
  tpl_data->tpl_frame = &tpl_data->tpl_stats_buffer[REF_FRAMES + 1];
179
180
  // If lag_in_frames <= 1, TPL module is not invoked. Hence dynamic memory
181
  // allocations are avoided for buffers in tpl_data.
182
0
  if (lag_in_frames <= 1) return;
183
184
0
  AOM_CHECK_MEM_ERROR(&ppi->error, tpl_data->txfm_stats_list,
185
0
                      aom_calloc(MAX_LENGTH_TPL_FRAME_STATS,
186
0
                                 sizeof(*tpl_data->txfm_stats_list)));
187
188
0
  for (int frame = 0; frame < lag_in_frames; ++frame) {
189
0
    AOM_CHECK_MEM_ERROR(
190
0
        &ppi->error, tpl_data->tpl_stats_pool[frame],
191
0
        aom_calloc(tpl_data->tpl_stats_buffer[frame].width *
192
0
                       tpl_data->tpl_stats_buffer[frame].height,
193
0
                   sizeof(*tpl_data->tpl_stats_buffer[frame].tpl_stats_ptr)));
194
195
0
    if (aom_alloc_frame_buffer(
196
0
            &tpl_data->tpl_rec_pool[frame], width, height,
197
0
            seq_params->subsampling_x, seq_params->subsampling_y,
198
0
            seq_params->use_highbitdepth, tpl_data->border_in_pixels,
199
0
            byte_alignment, false, alloc_y_plane_only))
200
0
      aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
201
0
                         "Failed to allocate frame buffer");
202
0
  }
203
0
}
204
205
static inline int32_t tpl_get_satd_cost(BitDepthInfo bd_info, int16_t *src_diff,
206
                                        int diff_stride, const uint8_t *src,
207
                                        int src_stride, const uint8_t *dst,
208
                                        int dst_stride, tran_low_t *coeff,
209
0
                                        int bw, int bh, TX_SIZE tx_size) {
210
0
  const int pix_num = bw * bh;
211
212
0
  av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
213
0
                     dst, dst_stride);
214
0
  av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
215
0
  return aom_satd(coeff, pix_num);
216
0
}
217
218
0
static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
219
0
  const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
220
221
0
  assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
222
0
  int rate_cost = 1;
223
224
0
  for (int idx = 0; idx < eob; ++idx) {
225
0
    unsigned int abs_level = abs(qcoeff[scan_order->scan[idx]]);
226
0
    rate_cost += get_msb(abs_level + 1) + 1 + (abs_level > 0);
227
0
  }
228
229
0
  return (rate_cost << AV1_PROB_COST_SHIFT);
230
0
}
231
232
static inline void txfm_quant_rdcost(
233
    const MACROBLOCK *x, int16_t *src_diff, int diff_stride, uint8_t *src,
234
    int src_stride, uint8_t *dst, int dst_stride, tran_low_t *coeff,
235
    tran_low_t *qcoeff, tran_low_t *dqcoeff, int bw, int bh, TX_SIZE tx_size,
236
0
    int do_recon, int *rate_cost, int64_t *recon_error, int64_t *sse) {
237
0
  const MACROBLOCKD *xd = &x->e_mbd;
238
0
  const BitDepthInfo bd_info = get_bit_depth_info(xd);
239
0
  uint16_t eob;
240
0
  av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
241
0
                     dst, dst_stride);
242
0
  av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
243
244
0
  get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &eob, recon_error,
245
0
                     sse);
246
247
0
  *rate_cost = rate_estimator(qcoeff, eob, tx_size);
248
249
0
  if (do_recon)
250
0
    av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst,
251
0
                                dst_stride, eob, 0);
252
0
}
253
254
static uint32_t motion_estimation(AV1_COMP *cpi, MACROBLOCK *x,
255
                                  uint8_t *cur_frame_buf,
256
                                  uint8_t *ref_frame_buf, int stride,
257
                                  int ref_stride, int width, int ref_width,
258
                                  BLOCK_SIZE bsize, MV center_mv,
259
0
                                  int_mv *best_mv) {
260
0
  AV1_COMMON *cm = &cpi->common;
261
0
  MACROBLOCKD *const xd = &x->e_mbd;
262
0
  TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
263
0
  int step_param;
264
0
  uint32_t bestsme = UINT_MAX;
265
0
  FULLPEL_MV_STATS best_mv_stats;
266
0
  int distortion;
267
0
  uint32_t sse;
268
0
  int cost_list[5];
269
0
  FULLPEL_MV start_mv = get_fullmv_from_mv(&center_mv);
270
271
  // Setup frame pointers
272
0
  x->plane[0].src.buf = cur_frame_buf;
273
0
  x->plane[0].src.stride = stride;
274
0
  x->plane[0].src.width = width;
275
0
  xd->plane[0].pre[0].buf = ref_frame_buf;
276
0
  xd->plane[0].pre[0].stride = ref_stride;
277
0
  xd->plane[0].pre[0].width = ref_width;
278
279
0
  step_param = tpl_sf->reduce_first_step_size;
280
0
  step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
281
282
0
  const search_site_config *search_site_cfg =
283
0
      cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
284
0
  if (search_site_cfg->stride != ref_stride)
285
0
    search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
286
0
  assert(search_site_cfg->stride == ref_stride);
287
288
0
  FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
289
0
  av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &center_mv,
290
0
                                     start_mv, search_site_cfg,
291
0
                                     tpl_sf->search_method,
292
0
                                     /*fine_search_interval=*/0);
293
294
0
  bestsme = av1_full_pixel_search(start_mv, &full_ms_params, step_param,
295
0
                                  cond_cost_list(cpi, cost_list),
296
0
                                  &best_mv->as_fullmv, &best_mv_stats, NULL);
297
298
  // When sub-pel motion search is skipped, populate sub-pel precision MV and
299
  // return.
300
0
  if (tpl_sf->subpel_force_stop == FULL_PEL) {
301
0
    best_mv->as_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
302
0
    return bestsme;
303
0
  }
304
305
0
  SUBPEL_MOTION_SEARCH_PARAMS ms_params;
306
0
  av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &center_mv,
307
0
                                    cost_list);
308
0
  ms_params.forced_stop = tpl_sf->subpel_force_stop;
309
0
  ms_params.var_params.subpel_search_type = USE_2_TAPS;
310
0
  ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
311
0
  best_mv_stats.err_cost = 0;
312
0
  MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
313
0
  assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
314
0
  bestsme = cpi->mv_search_params.find_fractional_mv_step(
315
0
      xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &best_mv->as_mv,
316
0
      &distortion, &sse, NULL);
317
318
0
  return bestsme;
319
0
}
320
321
typedef struct {
322
  int_mv mv;
323
  int sad;
324
} center_mv_t;
325
326
0
static int compare_sad(const void *a, const void *b) {
327
0
  const int diff = ((center_mv_t *)a)->sad - ((center_mv_t *)b)->sad;
328
0
  if (diff < 0)
329
0
    return -1;
330
0
  else if (diff > 0)
331
0
    return 1;
332
0
  return 0;
333
0
}
334
335
static int is_alike_mv(int_mv candidate_mv, center_mv_t *center_mvs,
336
0
                       int center_mvs_count, int skip_alike_starting_mv) {
337
  // MV difference threshold is in 1/8 precision.
338
0
  const int mv_diff_thr[3] = { 1, (8 << 3), (16 << 3) };
339
0
  int thr = mv_diff_thr[skip_alike_starting_mv];
340
0
  int i;
341
342
0
  for (i = 0; i < center_mvs_count; i++) {
343
0
    if (abs(center_mvs[i].mv.as_mv.col - candidate_mv.as_mv.col) < thr &&
344
0
        abs(center_mvs[i].mv.as_mv.row - candidate_mv.as_mv.row) < thr)
345
0
      return 1;
346
0
  }
347
348
0
  return 0;
349
0
}
350
351
static void get_rate_distortion(
352
    int *rate_cost, int64_t *recon_error, int64_t *pred_error,
353
    int16_t *src_diff, tran_low_t *coeff, tran_low_t *qcoeff,
354
    tran_low_t *dqcoeff, AV1_COMMON *cm, MACROBLOCK *x,
355
    const YV12_BUFFER_CONFIG *ref_frame_ptr[2], uint8_t *rec_buffer_pool[3],
356
    const int rec_stride_pool[3], TX_SIZE tx_size, PREDICTION_MODE best_mode,
357
    int mi_row, int mi_col, int use_y_only_rate_distortion, int do_recon,
358
0
    TplTxfmStats *tpl_txfm_stats) {
359
0
  const SequenceHeader *seq_params = cm->seq_params;
360
0
  *rate_cost = 0;
361
0
  *recon_error = 1;
362
0
  *pred_error = 1;
363
364
0
  (void)tpl_txfm_stats;
365
366
0
  MACROBLOCKD *xd = &x->e_mbd;
367
0
  int is_compound = (best_mode == NEW_NEWMV);
368
0
  int num_planes = use_y_only_rate_distortion ? 1 : MAX_MB_PLANE;
369
370
0
  uint8_t *src_buffer_pool[MAX_MB_PLANE] = {
371
0
    xd->cur_buf->y_buffer,
372
0
    xd->cur_buf->u_buffer,
373
0
    xd->cur_buf->v_buffer,
374
0
  };
375
0
  const int src_stride_pool[MAX_MB_PLANE] = {
376
0
    xd->cur_buf->y_stride,
377
0
    xd->cur_buf->uv_stride,
378
0
    xd->cur_buf->uv_stride,
379
0
  };
380
381
0
  const int_interpfilters kernel =
382
0
      av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
383
384
0
  for (int plane = 0; plane < num_planes; ++plane) {
385
0
    struct macroblockd_plane *pd = &xd->plane[plane];
386
0
    BLOCK_SIZE bsize_plane =
387
0
        av1_ss_size_lookup[txsize_to_bsize[tx_size]][pd->subsampling_x]
388
0
                          [pd->subsampling_y];
389
390
0
    int dst_buffer_stride = rec_stride_pool[plane];
391
0
    int dst_mb_offset =
392
0
        ((mi_row * MI_SIZE * dst_buffer_stride) >> pd->subsampling_y) +
393
0
        ((mi_col * MI_SIZE) >> pd->subsampling_x);
394
0
    uint8_t *dst_buffer = rec_buffer_pool[plane] + dst_mb_offset;
395
0
    for (int ref = 0; ref < 1 + is_compound; ++ref) {
396
0
      if (!is_inter_mode(best_mode)) {
397
0
        av1_predict_intra_block(
398
0
            xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
399
0
            block_size_wide[bsize_plane], block_size_high[bsize_plane],
400
0
            max_txsize_rect_lookup[bsize_plane], best_mode, 0, 0,
401
0
            FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, dst_buffer,
402
0
            dst_buffer_stride, 0, 0, plane);
403
0
      } else {
404
0
        int_mv best_mv = xd->mi[0]->mv[ref];
405
0
        uint8_t *ref_buffer_pool[MAX_MB_PLANE] = {
406
0
          ref_frame_ptr[ref]->y_buffer,
407
0
          ref_frame_ptr[ref]->u_buffer,
408
0
          ref_frame_ptr[ref]->v_buffer,
409
0
        };
410
0
        InterPredParams inter_pred_params;
411
0
        struct buf_2d ref_buf = {
412
0
          NULL, ref_buffer_pool[plane],
413
0
          plane ? ref_frame_ptr[ref]->uv_width : ref_frame_ptr[ref]->y_width,
414
0
          plane ? ref_frame_ptr[ref]->uv_height : ref_frame_ptr[ref]->y_height,
415
0
          plane ? ref_frame_ptr[ref]->uv_stride : ref_frame_ptr[ref]->y_stride
416
0
        };
417
0
        av1_init_inter_params(&inter_pred_params, block_size_wide[bsize_plane],
418
0
                              block_size_high[bsize_plane],
419
0
                              (mi_row * MI_SIZE) >> pd->subsampling_y,
420
0
                              (mi_col * MI_SIZE) >> pd->subsampling_x,
421
0
                              pd->subsampling_x, pd->subsampling_y, xd->bd,
422
0
                              is_cur_buf_hbd(xd), 0,
423
0
                              xd->block_ref_scale_factors[0], &ref_buf, kernel);
424
0
        if (is_compound) av1_init_comp_mode(&inter_pred_params);
425
0
        inter_pred_params.conv_params = get_conv_params_no_round(
426
0
            ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
427
428
0
        av1_enc_build_one_inter_predictor(dst_buffer, dst_buffer_stride,
429
0
                                          &best_mv.as_mv, &inter_pred_params);
430
0
      }
431
0
    }
432
433
0
    int src_stride = src_stride_pool[plane];
434
0
    int src_mb_offset = ((mi_row * MI_SIZE * src_stride) >> pd->subsampling_y) +
435
0
                        ((mi_col * MI_SIZE) >> pd->subsampling_x);
436
437
0
    int this_rate = 1;
438
0
    int64_t this_recon_error = 1;
439
0
    int64_t sse;
440
0
    txfm_quant_rdcost(
441
0
        x, src_diff, block_size_wide[bsize_plane],
442
0
        src_buffer_pool[plane] + src_mb_offset, src_stride, dst_buffer,
443
0
        dst_buffer_stride, coeff, qcoeff, dqcoeff, block_size_wide[bsize_plane],
444
0
        block_size_high[bsize_plane], max_txsize_rect_lookup[bsize_plane],
445
0
        do_recon, &this_rate, &this_recon_error, &sse);
446
447
#if CONFIG_BITRATE_ACCURACY
448
    if (plane == 0 && tpl_txfm_stats) {
449
      // We only collect Y plane's transform coefficient
450
      av1_record_tpl_txfm_block(tpl_txfm_stats, coeff);
451
    }
452
#endif  // CONFIG_BITRATE_ACCURACY
453
454
0
    *recon_error += this_recon_error;
455
0
    *pred_error += sse;
456
0
    *rate_cost += this_rate;
457
0
  }
458
0
}
459
460
static inline int32_t get_inter_cost(const AV1_COMP *cpi, MACROBLOCKD *xd,
461
                                     const uint8_t *src_mb_buffer,
462
                                     int src_stride,
463
                                     TplBuffers *tpl_tmp_buffers,
464
                                     BLOCK_SIZE bsize, TX_SIZE tx_size,
465
                                     int mi_row, int mi_col, int rf_idx,
466
0
                                     MV *rfidx_mv, int use_pred_sad) {
467
0
  const BitDepthInfo bd_info = get_bit_depth_info(xd);
468
0
  TplParams *tpl_data = &cpi->ppi->tpl_data;
469
0
  const YV12_BUFFER_CONFIG *const ref_frame_ptr =
470
0
      tpl_data->src_ref_frame[rf_idx];
471
0
  int16_t *src_diff = tpl_tmp_buffers->src_diff;
472
0
  tran_low_t *coeff = tpl_tmp_buffers->coeff;
473
0
  const int bw = 4 << mi_size_wide_log2[bsize];
474
0
  const int bh = 4 << mi_size_high_log2[bsize];
475
0
  int32_t inter_cost;
476
477
0
  if (cpi->sf.tpl_sf.subpel_force_stop != FULL_PEL) {
478
0
    const int_interpfilters kernel =
479
0
        av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
480
0
    uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
481
0
    uint8_t *predictor =
482
0
        is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
483
0
    struct buf_2d ref_buf = { NULL, ref_frame_ptr->y_buffer,
484
0
                              ref_frame_ptr->y_width, ref_frame_ptr->y_height,
485
0
                              ref_frame_ptr->y_stride };
486
0
    InterPredParams inter_pred_params;
487
0
    av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
488
0
                          mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0,
489
0
                          &tpl_data->sf, &ref_buf, kernel);
490
0
    inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd);
491
492
0
    av1_enc_build_one_inter_predictor(predictor, bw, rfidx_mv,
493
0
                                      &inter_pred_params);
494
495
0
    if (use_pred_sad) {
496
0
      inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(src_mb_buffer, src_stride,
497
0
                                                    predictor, bw);
498
0
    } else {
499
0
      inter_cost =
500
0
          tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
501
0
                            predictor, bw, coeff, bw, bh, tx_size);
502
0
    }
503
0
  } else {
504
0
    int ref_mb_offset =
505
0
        mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
506
0
    uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
507
0
    int ref_stride = ref_frame_ptr->y_stride;
508
0
    const FULLPEL_MV fullmv = get_fullmv_from_mv(rfidx_mv);
509
    // Since sub-pel motion search is not performed, use the prediction pixels
510
    // directly from the reference block ref_mb
511
0
    if (use_pred_sad) {
512
0
      inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(
513
0
          src_mb_buffer, src_stride,
514
0
          &ref_mb[fullmv.row * ref_stride + fullmv.col], ref_stride);
515
0
    } else {
516
0
      inter_cost =
517
0
          tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
518
0
                            &ref_mb[fullmv.row * ref_stride + fullmv.col],
519
0
                            ref_stride, coeff, bw, bh, tx_size);
520
0
    }
521
0
  }
522
0
  return inter_cost;
523
0
}
524
525
static inline void mode_estimation(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
526
                                   TplBuffers *tpl_tmp_buffers, MACROBLOCK *x,
527
                                   int mi_row, int mi_col, BLOCK_SIZE bsize,
528
0
                                   TX_SIZE tx_size, TplDepStats *tpl_stats) {
529
0
  AV1_COMMON *cm = &cpi->common;
530
0
  const GF_GROUP *gf_group = &cpi->ppi->gf_group;
531
0
  TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
532
533
0
  (void)gf_group;
534
535
0
  MACROBLOCKD *xd = &x->e_mbd;
536
0
  const BitDepthInfo bd_info = get_bit_depth_info(xd);
537
0
  TplParams *tpl_data = &cpi->ppi->tpl_data;
538
0
  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
539
0
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
540
541
0
  const int bw = 4 << mi_size_wide_log2[bsize];
542
0
  const int bh = 4 << mi_size_high_log2[bsize];
543
544
0
  int32_t best_intra_cost = INT32_MAX;
545
0
  int32_t intra_cost;
546
0
  PREDICTION_MODE best_mode = DC_PRED;
547
548
0
  const int mb_y_offset =
549
0
      mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE;
550
0
  uint8_t *src_mb_buffer = xd->cur_buf->y_buffer + mb_y_offset;
551
0
  const int src_stride = xd->cur_buf->y_stride;
552
0
  const int src_width = xd->cur_buf->y_width;
553
554
0
  int dst_mb_offset =
555
0
      mi_row * MI_SIZE * tpl_frame->rec_picture->y_stride + mi_col * MI_SIZE;
556
0
  uint8_t *dst_buffer = tpl_frame->rec_picture->y_buffer + dst_mb_offset;
557
0
  int dst_buffer_stride = tpl_frame->rec_picture->y_stride;
558
0
  int use_y_only_rate_distortion = tpl_sf->use_y_only_rate_distortion;
559
560
0
  uint8_t *rec_buffer_pool[3] = {
561
0
    tpl_frame->rec_picture->y_buffer,
562
0
    tpl_frame->rec_picture->u_buffer,
563
0
    tpl_frame->rec_picture->v_buffer,
564
0
  };
565
566
0
  const int rec_stride_pool[3] = {
567
0
    tpl_frame->rec_picture->y_stride,
568
0
    tpl_frame->rec_picture->uv_stride,
569
0
    tpl_frame->rec_picture->uv_stride,
570
0
  };
571
572
0
  for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
573
0
    struct macroblockd_plane *pd = &xd->plane[plane];
574
0
    pd->subsampling_x = xd->cur_buf->subsampling_x;
575
0
    pd->subsampling_y = xd->cur_buf->subsampling_y;
576
0
  }
577
578
0
  uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
579
0
  int16_t *src_diff = tpl_tmp_buffers->src_diff;
580
0
  tran_low_t *coeff = tpl_tmp_buffers->coeff;
581
0
  tran_low_t *qcoeff = tpl_tmp_buffers->qcoeff;
582
0
  tran_low_t *dqcoeff = tpl_tmp_buffers->dqcoeff;
583
0
  uint8_t *predictor =
584
0
      is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
585
0
  int64_t recon_error = 1;
586
0
  int64_t pred_error = 1;
587
588
0
  memset(tpl_stats, 0, sizeof(*tpl_stats));
589
0
  tpl_stats->ref_frame_index[0] = -1;
590
0
  tpl_stats->ref_frame_index[1] = -1;
591
592
0
  const int mi_width = mi_size_wide[bsize];
593
0
  const int mi_height = mi_size_high[bsize];
594
0
  set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
595
0
                        mi_row, mi_col);
596
0
  set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
597
0
                 cm->mi_params.mi_rows, cm->mi_params.mi_cols);
598
0
  set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
599
0
               av1_num_planes(cm));
600
0
  xd->mi[0]->bsize = bsize;
601
0
  xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
602
603
  // Intra prediction search
604
0
  xd->mi[0]->ref_frame[0] = INTRA_FRAME;
605
606
  // Pre-load the bottom left line.
607
0
  if (xd->left_available &&
608
0
      mi_row + tx_size_high_unit[tx_size] < xd->tile.mi_row_end) {
609
0
    if (is_cur_buf_hbd(xd)) {
610
0
      uint16_t *dst = CONVERT_TO_SHORTPTR(dst_buffer);
611
0
      for (int i = 0; i < bw; ++i)
612
0
        dst[(bw + i) * dst_buffer_stride - 1] =
613
0
            dst[(bw - 1) * dst_buffer_stride - 1];
614
0
    } else {
615
0
      for (int i = 0; i < bw; ++i)
616
0
        dst_buffer[(bw + i) * dst_buffer_stride - 1] =
617
0
            dst_buffer[(bw - 1) * dst_buffer_stride - 1];
618
0
    }
619
0
  }
620
621
  // if cpi->sf.tpl_sf.prune_intra_modes is on, then search only DC_PRED,
622
  // H_PRED, and V_PRED
623
0
  const PREDICTION_MODE last_intra_mode =
624
0
      tpl_sf->prune_intra_modes ? D45_PRED : INTRA_MODE_END;
625
0
  const SequenceHeader *seq_params = cm->seq_params;
626
0
  for (PREDICTION_MODE mode = INTRA_MODE_START; mode < last_intra_mode;
627
0
       ++mode) {
628
0
    av1_predict_intra_block(xd, seq_params->sb_size,
629
0
                            seq_params->enable_intra_edge_filter,
630
0
                            block_size_wide[bsize], block_size_high[bsize],
631
0
                            tx_size, mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
632
0
                            dst_buffer_stride, predictor, bw, 0, 0, 0);
633
634
0
    if (tpl_frame->use_pred_sad) {
635
0
      intra_cost = (int32_t)cpi->ppi->fn_ptr[bsize].sdf(
636
0
          src_mb_buffer, src_stride, predictor, bw);
637
0
    } else {
638
0
      intra_cost =
639
0
          tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
640
0
                            predictor, bw, coeff, bw, bh, tx_size);
641
0
    }
642
643
0
    if (intra_cost < best_intra_cost) {
644
0
      best_intra_cost = intra_cost;
645
0
      best_mode = mode;
646
0
    }
647
0
  }
648
  // Calculate SATD of the best intra mode if SAD was used for mode decision
649
  // as best_intra_cost is used in ML model to skip intra mode evaluation.
650
0
  if (tpl_frame->use_pred_sad) {
651
0
    av1_predict_intra_block(
652
0
        xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
653
0
        block_size_wide[bsize], block_size_high[bsize], tx_size, best_mode, 0,
654
0
        0, FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, predictor, bw, 0,
655
0
        0, 0);
656
0
    best_intra_cost =
657
0
        tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
658
0
                          predictor, bw, coeff, bw, bh, tx_size);
659
0
  }
660
661
0
  int rate_cost = 1;
662
663
0
  if (cpi->use_ducky_encode) {
664
0
    get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
665
0
                        qcoeff, dqcoeff, cm, x, NULL, rec_buffer_pool,
666
0
                        rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
667
0
                        use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
668
669
0
    tpl_stats->intra_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
670
0
    tpl_stats->intra_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
671
0
    tpl_stats->intra_rate = rate_cost;
672
0
  }
673
674
#if CONFIG_THREE_PASS
675
  const int frame_offset = tpl_data->frame_idx - cpi->gf_frame_index;
676
677
  if (cpi->third_pass_ctx &&
678
      frame_offset < cpi->third_pass_ctx->frame_info_count &&
679
      tpl_data->frame_idx < gf_group->size) {
680
    double ratio_h, ratio_w;
681
    av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
682
                             cm->width, &ratio_h, &ratio_w);
683
    THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
684
        cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
685
686
    PREDICTION_MODE third_pass_mode = this_mi->pred_mode;
687
688
    if (third_pass_mode >= last_intra_mode &&
689
        third_pass_mode < INTRA_MODE_END) {
690
      av1_predict_intra_block(
691
          xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
692
          block_size_wide[bsize], block_size_high[bsize], tx_size,
693
          third_pass_mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
694
          dst_buffer_stride, predictor, bw, 0, 0, 0);
695
696
      intra_cost =
697
          tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
698
                            predictor, bw, coeff, bw, bh, tx_size);
699
700
      if (intra_cost < best_intra_cost) {
701
        best_intra_cost = intra_cost;
702
        best_mode = third_pass_mode;
703
      }
704
    }
705
  }
706
#endif  // CONFIG_THREE_PASS
707
708
  // Motion compensated prediction
709
0
  xd->mi[0]->ref_frame[0] = INTRA_FRAME;
710
0
  xd->mi[0]->ref_frame[1] = NONE_FRAME;
711
0
  xd->mi[0]->compound_idx = 1;
712
713
0
  int best_rf_idx = -1;
714
0
  int_mv best_mv[2];
715
0
  int32_t inter_cost;
716
0
  int32_t best_inter_cost = INT32_MAX;
717
0
  int rf_idx;
718
0
  int_mv single_mv[INTER_REFS_PER_FRAME];
719
720
0
  best_mv[0].as_int = INVALID_MV;
721
0
  best_mv[1].as_int = INVALID_MV;
722
723
0
  for (rf_idx = 0; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) {
724
0
    single_mv[rf_idx].as_int = INVALID_MV;
725
0
    if (tpl_data->ref_frame[rf_idx] == NULL ||
726
0
        tpl_data->src_ref_frame[rf_idx] == NULL) {
727
0
      tpl_stats->mv[rf_idx].as_int = INVALID_MV;
728
0
      continue;
729
0
    }
730
731
0
    const YV12_BUFFER_CONFIG *ref_frame_ptr = tpl_data->src_ref_frame[rf_idx];
732
0
    const int ref_mb_offset =
733
0
        mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
734
0
    uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
735
0
    const int ref_stride = ref_frame_ptr->y_stride;
736
0
    const int ref_width = ref_frame_ptr->y_width;
737
738
0
    int_mv best_rfidx_mv = { 0 };
739
0
    uint32_t bestsme = UINT32_MAX;
740
741
0
    center_mv_t center_mvs[4] = { { { 0 }, INT_MAX },
742
0
                                  { { 0 }, INT_MAX },
743
0
                                  { { 0 }, INT_MAX },
744
0
                                  { { 0 }, INT_MAX } };
745
0
    int refmv_count = 1;
746
0
    int idx;
747
748
0
    if (xd->up_available) {
749
0
      TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
750
0
          mi_row - mi_height, mi_col, tpl_frame->stride, block_mis_log2)];
751
0
      if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
752
0
                       tpl_sf->skip_alike_starting_mv)) {
753
0
        center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
754
0
        ++refmv_count;
755
0
      }
756
0
    }
757
758
0
    if (xd->left_available) {
759
0
      TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
760
0
          mi_row, mi_col - mi_width, tpl_frame->stride, block_mis_log2)];
761
0
      if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
762
0
                       tpl_sf->skip_alike_starting_mv)) {
763
0
        center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
764
0
        ++refmv_count;
765
0
      }
766
0
    }
767
768
0
    if (xd->up_available && mi_col + mi_width < xd->tile.mi_col_end) {
769
0
      TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
770
0
          mi_row - mi_height, mi_col + mi_width, tpl_frame->stride,
771
0
          block_mis_log2)];
772
0
      if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
773
0
                       tpl_sf->skip_alike_starting_mv)) {
774
0
        center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
775
0
        ++refmv_count;
776
0
      }
777
0
    }
778
779
#if CONFIG_THREE_PASS
780
    if (cpi->third_pass_ctx &&
781
        frame_offset < cpi->third_pass_ctx->frame_info_count &&
782
        tpl_data->frame_idx < gf_group->size) {
783
      double ratio_h, ratio_w;
784
      av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
785
                               cm->width, &ratio_h, &ratio_w);
786
      THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
787
          cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
788
789
      int_mv tp_mv = av1_get_third_pass_adjusted_mv(this_mi, ratio_h, ratio_w,
790
                                                    rf_idx + LAST_FRAME);
791
      if (tp_mv.as_int != INVALID_MV &&
792
          !is_alike_mv(tp_mv, center_mvs + 1, refmv_count - 1,
793
                       tpl_sf->skip_alike_starting_mv)) {
794
        center_mvs[0].mv = tp_mv;
795
      }
796
    }
797
#endif  // CONFIG_THREE_PASS
798
799
    // Prune starting mvs
800
0
    if (tpl_sf->prune_starting_mv && refmv_count > 1) {
801
      // Get each center mv's sad.
802
0
      for (idx = 0; idx < refmv_count; ++idx) {
803
0
        FULLPEL_MV mv = get_fullmv_from_mv(&center_mvs[idx].mv.as_mv);
804
0
        clamp_fullmv(&mv, &x->mv_limits);
805
0
        center_mvs[idx].sad = (int)cpi->ppi->fn_ptr[bsize].sdf(
806
0
            src_mb_buffer, src_stride, &ref_mb[mv.row * ref_stride + mv.col],
807
0
            ref_stride);
808
0
      }
809
810
      // Rank center_mv using sad.
811
0
      qsort(center_mvs, refmv_count, sizeof(center_mvs[0]), compare_sad);
812
813
0
      refmv_count = AOMMIN(4 - tpl_sf->prune_starting_mv, refmv_count);
814
      // Further reduce number of refmv based on sad difference.
815
0
      if (refmv_count > 1) {
816
0
        int last_sad = center_mvs[refmv_count - 1].sad;
817
0
        int second_to_last_sad = center_mvs[refmv_count - 2].sad;
818
0
        if ((last_sad - second_to_last_sad) * 5 > second_to_last_sad)
819
0
          refmv_count--;
820
0
      }
821
0
    }
822
823
0
    for (idx = 0; idx < refmv_count; ++idx) {
824
0
      int_mv this_mv;
825
0
      uint32_t thissme = motion_estimation(
826
0
          cpi, x, src_mb_buffer, ref_mb, src_stride, ref_stride, src_width,
827
0
          ref_width, bsize, center_mvs[idx].mv.as_mv, &this_mv);
828
829
0
      if (thissme < bestsme) {
830
0
        bestsme = thissme;
831
0
        best_rfidx_mv = this_mv;
832
0
      }
833
0
    }
834
835
0
    tpl_stats->mv[rf_idx].as_int = best_rfidx_mv.as_int;
836
0
    single_mv[rf_idx] = best_rfidx_mv;
837
838
0
    inter_cost = get_inter_cost(
839
0
        cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
840
0
        mi_row, mi_col, rf_idx, &best_rfidx_mv.as_mv, tpl_frame->use_pred_sad);
841
    // Store inter cost for each ref frame. This is used to prune inter modes.
842
0
    tpl_stats->pred_error[rf_idx] = AOMMAX(1, inter_cost);
843
844
0
    if (inter_cost < best_inter_cost) {
845
0
      best_rf_idx = rf_idx;
846
847
0
      best_inter_cost = inter_cost;
848
0
      best_mv[0].as_int = best_rfidx_mv.as_int;
849
0
    }
850
0
  }
851
  // Calculate SATD of the best inter mode if SAD was used for mode decision
852
  // as best_inter_cost is used in ML model to skip intra mode evaluation.
853
0
  if (best_inter_cost < INT32_MAX && tpl_frame->use_pred_sad) {
854
0
    assert(best_rf_idx != -1);
855
0
    best_inter_cost = get_inter_cost(
856
0
        cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
857
0
        mi_row, mi_col, best_rf_idx, &best_mv[0].as_mv, 0 /* use_pred_sad */);
858
0
  }
859
860
0
  if (best_rf_idx != -1 && best_inter_cost < best_intra_cost) {
861
0
    best_mode = NEWMV;
862
0
    xd->mi[0]->ref_frame[0] = best_rf_idx + LAST_FRAME;
863
0
    xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
864
0
  }
865
866
  // Start compound predition search.
867
0
  int comp_ref_frames[3][2] = {
868
0
    { 0, 4 },
869
0
    { 0, 6 },
870
0
    { 3, 6 },
871
0
  };
872
873
0
  int start_rf = 0;
874
0
  int end_rf = 3;
875
0
  if (!tpl_sf->allow_compound_pred) end_rf = 0;
876
#if CONFIG_THREE_PASS
877
  if (cpi->third_pass_ctx &&
878
      frame_offset < cpi->third_pass_ctx->frame_info_count &&
879
      tpl_data->frame_idx < gf_group->size) {
880
    double ratio_h, ratio_w;
881
    av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
882
                             cm->width, &ratio_h, &ratio_w);
883
    THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
884
        cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
885
886
    if (this_mi->ref_frame[0] >= LAST_FRAME &&
887
        this_mi->ref_frame[1] >= LAST_FRAME) {
888
      int found = 0;
889
      for (int i = 0; i < 3; i++) {
890
        if (comp_ref_frames[i][0] + LAST_FRAME == this_mi->ref_frame[0] &&
891
            comp_ref_frames[i][1] + LAST_FRAME == this_mi->ref_frame[1]) {
892
          found = 1;
893
          break;
894
        }
895
      }
896
      if (!found || !tpl_sf->allow_compound_pred) {
897
        comp_ref_frames[2][0] = this_mi->ref_frame[0] - LAST_FRAME;
898
        comp_ref_frames[2][1] = this_mi->ref_frame[1] - LAST_FRAME;
899
        if (!tpl_sf->allow_compound_pred) {
900
          start_rf = 2;
901
          end_rf = 3;
902
        }
903
      }
904
    }
905
  }
906
#endif  // CONFIG_THREE_PASS
907
908
0
  xd->mi_row = mi_row;
909
0
  xd->mi_col = mi_col;
910
0
  int best_cmp_rf_idx = -1;
911
0
  const int_interpfilters kernel =
912
0
      av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
913
0
  for (int cmp_rf_idx = start_rf; cmp_rf_idx < end_rf; ++cmp_rf_idx) {
914
0
    int rf_idx0 = comp_ref_frames[cmp_rf_idx][0];
915
0
    int rf_idx1 = comp_ref_frames[cmp_rf_idx][1];
916
917
0
    if (tpl_data->ref_frame[rf_idx0] == NULL ||
918
0
        tpl_data->src_ref_frame[rf_idx0] == NULL ||
919
0
        tpl_data->ref_frame[rf_idx1] == NULL ||
920
0
        tpl_data->src_ref_frame[rf_idx1] == NULL) {
921
0
      continue;
922
0
    }
923
924
0
    const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
925
0
      tpl_data->src_ref_frame[rf_idx0],
926
0
      tpl_data->src_ref_frame[rf_idx1],
927
0
    };
928
929
0
    xd->mi[0]->ref_frame[0] = rf_idx0 + LAST_FRAME;
930
0
    xd->mi[0]->ref_frame[1] = rf_idx1 + LAST_FRAME;
931
0
    xd->mi[0]->mode = NEW_NEWMV;
932
0
    const int8_t ref_frame_type = av1_ref_frame_type(xd->mi[0]->ref_frame);
933
    // Set up ref_mv for av1_joint_motion_search().
934
0
    CANDIDATE_MV *this_ref_mv_stack = x->mbmi_ext.ref_mv_stack[ref_frame_type];
935
0
    this_ref_mv_stack[xd->mi[0]->ref_mv_idx].this_mv = single_mv[rf_idx0];
936
0
    this_ref_mv_stack[xd->mi[0]->ref_mv_idx].comp_mv = single_mv[rf_idx1];
937
938
0
    struct buf_2d yv12_mb[2][MAX_MB_PLANE];
939
0
    for (int i = 0; i < 2; ++i) {
940
0
      av1_setup_pred_block(xd, yv12_mb[i], ref_frame_ptr[i],
941
0
                           xd->block_ref_scale_factors[i],
942
0
                           xd->block_ref_scale_factors[i], MAX_MB_PLANE);
943
0
      for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
944
0
        xd->plane[plane].pre[i] = yv12_mb[i][plane];
945
0
      }
946
0
    }
947
948
0
    int_mv tmp_mv[2] = { single_mv[rf_idx0], single_mv[rf_idx1] };
949
0
    int rate_mv;
950
0
    av1_joint_motion_search(cpi, x, bsize, tmp_mv, NULL, 0, &rate_mv,
951
0
                            !cpi->sf.mv_sf.disable_second_mv,
952
0
                            NUM_JOINT_ME_REFINE_ITER);
953
954
0
    for (int ref = 0; ref < 2; ++ref) {
955
0
      struct buf_2d ref_buf = { NULL, ref_frame_ptr[ref]->y_buffer,
956
0
                                ref_frame_ptr[ref]->y_width,
957
0
                                ref_frame_ptr[ref]->y_height,
958
0
                                ref_frame_ptr[ref]->y_stride };
959
0
      InterPredParams inter_pred_params;
960
0
      av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
961
0
                            mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd),
962
0
                            0, &tpl_data->sf, &ref_buf, kernel);
963
0
      av1_init_comp_mode(&inter_pred_params);
964
965
0
      inter_pred_params.conv_params = get_conv_params_no_round(
966
0
          ref, 0, xd->tmp_conv_dst, MAX_SB_SIZE, 1, xd->bd);
967
968
0
      av1_enc_build_one_inter_predictor(predictor, bw, &tmp_mv[ref].as_mv,
969
0
                                        &inter_pred_params);
970
0
    }
971
0
    inter_cost =
972
0
        tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
973
0
                          predictor, bw, coeff, bw, bh, tx_size);
974
0
    if (inter_cost < best_inter_cost) {
975
0
      best_cmp_rf_idx = cmp_rf_idx;
976
0
      best_inter_cost = inter_cost;
977
0
      best_mv[0] = tmp_mv[0];
978
0
      best_mv[1] = tmp_mv[1];
979
0
    }
980
0
  }
981
982
0
  if (best_cmp_rf_idx != -1 && best_inter_cost < best_intra_cost) {
983
0
    best_mode = NEW_NEWMV;
984
0
    const int best_rf_idx0 = comp_ref_frames[best_cmp_rf_idx][0];
985
0
    const int best_rf_idx1 = comp_ref_frames[best_cmp_rf_idx][1];
986
0
    xd->mi[0]->ref_frame[0] = best_rf_idx0 + LAST_FRAME;
987
0
    xd->mi[0]->ref_frame[1] = best_rf_idx1 + LAST_FRAME;
988
0
  }
989
990
0
  if (best_inter_cost < INT32_MAX && is_inter_mode(best_mode)) {
991
0
    xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
992
0
    xd->mi[0]->mv[1].as_int = best_mv[1].as_int;
993
0
    const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
994
0
      best_cmp_rf_idx >= 0
995
0
          ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
996
0
          : tpl_data->src_ref_frame[best_rf_idx],
997
0
      best_cmp_rf_idx >= 0
998
0
          ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
999
0
          : NULL,
1000
0
    };
1001
0
    rate_cost = 1;
1002
0
    get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1003
0
                        qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1004
0
                        rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1005
0
                        use_y_only_rate_distortion, 0 /*do_recon*/, NULL);
1006
0
    tpl_stats->srcrf_rate = rate_cost;
1007
0
  }
1008
1009
0
  best_intra_cost = AOMMAX(best_intra_cost, 1);
1010
0
  best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost);
1011
0
  tpl_stats->inter_cost = best_inter_cost;
1012
0
  tpl_stats->intra_cost = best_intra_cost;
1013
1014
0
  tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1015
0
  tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1016
1017
  // Final encode
1018
0
  rate_cost = 0;
1019
0
  const YV12_BUFFER_CONFIG *ref_frame_ptr[2];
1020
1021
0
  ref_frame_ptr[0] =
1022
0
      best_mode == NEW_NEWMV
1023
0
          ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
1024
0
      : best_rf_idx >= 0 ? tpl_data->ref_frame[best_rf_idx]
1025
0
                         : NULL;
1026
0
  ref_frame_ptr[1] =
1027
0
      best_mode == NEW_NEWMV
1028
0
          ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
1029
0
          : NULL;
1030
0
  get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1031
0
                      qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1032
0
                      rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1033
0
                      use_y_only_rate_distortion, 1 /*do_recon*/,
1034
0
                      tpl_txfm_stats);
1035
1036
0
  tpl_stats->recrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1037
0
  tpl_stats->recrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1038
0
  tpl_stats->recrf_rate = rate_cost;
1039
1040
0
  if (!is_inter_mode(best_mode)) {
1041
0
    tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1042
0
    tpl_stats->srcrf_rate = rate_cost;
1043
0
    tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1044
0
  }
1045
1046
0
  tpl_stats->recrf_dist = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->recrf_dist);
1047
0
  tpl_stats->recrf_rate = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->recrf_rate);
1048
1049
0
  if (best_mode == NEW_NEWMV) {
1050
0
    ref_frame_ptr[0] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
1051
0
    ref_frame_ptr[1] =
1052
0
        tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
1053
0
    get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1054
0
                        qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1055
0
                        rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1056
0
                        use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
1057
0
    tpl_stats->cmp_recrf_dist[0] = recon_error << TPL_DEP_COST_SCALE_LOG2;
1058
0
    tpl_stats->cmp_recrf_rate[0] = rate_cost;
1059
1060
0
    tpl_stats->cmp_recrf_dist[0] =
1061
0
        AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[0]);
1062
0
    tpl_stats->cmp_recrf_rate[0] =
1063
0
        AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[0]);
1064
1065
0
    tpl_stats->cmp_recrf_dist[0] =
1066
0
        AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[0]);
1067
0
    tpl_stats->cmp_recrf_rate[0] =
1068
0
        AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[0]);
1069
1070
0
    rate_cost = 0;
1071
0
    ref_frame_ptr[0] =
1072
0
        tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
1073
0
    ref_frame_ptr[1] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
1074
0
    get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1075
0
                        qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1076
0
                        rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1077
0
                        use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
1078
0
    tpl_stats->cmp_recrf_dist[1] = recon_error << TPL_DEP_COST_SCALE_LOG2;
1079
0
    tpl_stats->cmp_recrf_rate[1] = rate_cost;
1080
1081
0
    tpl_stats->cmp_recrf_dist[1] =
1082
0
        AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[1]);
1083
0
    tpl_stats->cmp_recrf_rate[1] =
1084
0
        AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[1]);
1085
1086
0
    tpl_stats->cmp_recrf_dist[1] =
1087
0
        AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[1]);
1088
0
    tpl_stats->cmp_recrf_rate[1] =
1089
0
        AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[1]);
1090
0
  }
1091
1092
0
  if (best_mode == NEWMV) {
1093
0
    tpl_stats->mv[best_rf_idx] = best_mv[0];
1094
0
    tpl_stats->ref_frame_index[0] = best_rf_idx;
1095
0
    tpl_stats->ref_frame_index[1] = NONE_FRAME;
1096
0
  } else if (best_mode == NEW_NEWMV) {
1097
0
    tpl_stats->ref_frame_index[0] = comp_ref_frames[best_cmp_rf_idx][0];
1098
0
    tpl_stats->ref_frame_index[1] = comp_ref_frames[best_cmp_rf_idx][1];
1099
0
    tpl_stats->mv[tpl_stats->ref_frame_index[0]] = best_mv[0];
1100
0
    tpl_stats->mv[tpl_stats->ref_frame_index[1]] = best_mv[1];
1101
0
  }
1102
1103
0
  for (int idy = 0; idy < mi_height; ++idy) {
1104
0
    for (int idx = 0; idx < mi_width; ++idx) {
1105
0
      if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > idx &&
1106
0
          (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > idy) {
1107
0
        xd->mi[idx + idy * cm->mi_params.mi_stride] = xd->mi[0];
1108
0
      }
1109
0
    }
1110
0
  }
1111
0
}
1112
1113
0
static int round_floor(int ref_pos, int bsize_pix) {
1114
0
  int round;
1115
0
  if (ref_pos < 0)
1116
0
    round = -(1 + (-ref_pos - 1) / bsize_pix);
1117
0
  else
1118
0
    round = ref_pos / bsize_pix;
1119
1120
0
  return round;
1121
0
}
1122
1123
int av1_get_overlap_area(int row_a, int col_a, int row_b, int col_b, int width,
1124
0
                         int height) {
1125
0
  int min_row = AOMMAX(row_a, row_b);
1126
0
  int max_row = AOMMIN(row_a + height, row_b + height);
1127
0
  int min_col = AOMMAX(col_a, col_b);
1128
0
  int max_col = AOMMIN(col_a + width, col_b + width);
1129
0
  if (min_row < max_row && min_col < max_col) {
1130
0
    return (max_row - min_row) * (max_col - min_col);
1131
0
  }
1132
0
  return 0;
1133
0
}
1134
1135
0
int av1_tpl_ptr_pos(int mi_row, int mi_col, int stride, uint8_t right_shift) {
1136
0
  return (mi_row >> right_shift) * stride + (mi_col >> right_shift);
1137
0
}
1138
1139
int64_t av1_delta_rate_cost(int64_t delta_rate, int64_t recrf_dist,
1140
0
                            int64_t srcrf_dist, int pix_num) {
1141
0
  double beta = (double)srcrf_dist / recrf_dist;
1142
0
  int64_t rate_cost = delta_rate;
1143
1144
0
  if (srcrf_dist <= 128) return rate_cost;
1145
1146
0
  double dr =
1147
0
      (double)(delta_rate >> (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT)) /
1148
0
      pix_num;
1149
1150
0
  double log_den = log(beta) / log(2.0) + 2.0 * dr;
1151
1152
0
  if (log_den > log(10.0) / log(2.0)) {
1153
0
    rate_cost = (int64_t)((log(1.0 / beta) * pix_num) / log(2.0) / 2.0);
1154
0
    rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
1155
0
    return rate_cost;
1156
0
  }
1157
1158
0
  double num = pow(2.0, log_den);
1159
0
  double den = num * beta + (1 - beta) * beta;
1160
1161
0
  rate_cost = (int64_t)((pix_num * log(num / den)) / log(2.0) / 2.0);
1162
1163
0
  rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
1164
1165
0
  return rate_cost;
1166
0
}
1167
1168
static inline void tpl_model_update_b(TplParams *const tpl_data, int mi_row,
1169
                                      int mi_col, const BLOCK_SIZE bsize,
1170
0
                                      int frame_idx, int ref) {
1171
0
  TplDepFrame *tpl_frame_ptr = &tpl_data->tpl_frame[frame_idx];
1172
0
  TplDepStats *tpl_ptr = tpl_frame_ptr->tpl_stats_ptr;
1173
0
  TplDepFrame *tpl_frame = tpl_data->tpl_frame;
1174
0
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
1175
0
  TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos(
1176
0
      mi_row, mi_col, tpl_frame->stride, block_mis_log2)];
1177
1178
0
  int is_compound = tpl_stats_ptr->ref_frame_index[1] >= 0;
1179
1180
0
  if (tpl_stats_ptr->ref_frame_index[ref] < 0) return;
1181
0
  const int ref_frame_index = tpl_stats_ptr->ref_frame_index[ref];
1182
0
  TplDepFrame *ref_tpl_frame =
1183
0
      &tpl_frame[tpl_frame[frame_idx].ref_map_index[ref_frame_index]];
1184
0
  TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr;
1185
1186
0
  if (tpl_frame[frame_idx].ref_map_index[ref_frame_index] < 0) return;
1187
1188
0
  const FULLPEL_MV full_mv =
1189
0
      get_fullmv_from_mv(&tpl_stats_ptr->mv[ref_frame_index].as_mv);
1190
0
  const int ref_pos_row = mi_row * MI_SIZE + full_mv.row;
1191
0
  const int ref_pos_col = mi_col * MI_SIZE + full_mv.col;
1192
1193
0
  const int bw = 4 << mi_size_wide_log2[bsize];
1194
0
  const int bh = 4 << mi_size_high_log2[bsize];
1195
0
  const int mi_height = mi_size_high[bsize];
1196
0
  const int mi_width = mi_size_wide[bsize];
1197
0
  const int pix_num = bw * bh;
1198
1199
  // top-left on grid block location in pixel
1200
0
  int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh;
1201
0
  int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw;
1202
0
  int block;
1203
1204
0
  int64_t srcrf_dist = is_compound ? tpl_stats_ptr->cmp_recrf_dist[!ref]
1205
0
                                   : tpl_stats_ptr->srcrf_dist;
1206
0
  int64_t srcrf_rate =
1207
0
      is_compound
1208
0
          ? (tpl_stats_ptr->cmp_recrf_rate[!ref] << TPL_DEP_COST_SCALE_LOG2)
1209
0
          : (tpl_stats_ptr->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
1210
1211
0
  int64_t cur_dep_dist = tpl_stats_ptr->recrf_dist - srcrf_dist;
1212
0
  int64_t mc_dep_dist =
1213
0
      (int64_t)(tpl_stats_ptr->mc_dep_dist *
1214
0
                ((double)(tpl_stats_ptr->recrf_dist - srcrf_dist) /
1215
0
                 tpl_stats_ptr->recrf_dist));
1216
0
  int64_t delta_rate =
1217
0
      (tpl_stats_ptr->recrf_rate << TPL_DEP_COST_SCALE_LOG2) - srcrf_rate;
1218
0
  int64_t mc_dep_rate =
1219
0
      av1_delta_rate_cost(tpl_stats_ptr->mc_dep_rate, tpl_stats_ptr->recrf_dist,
1220
0
                          srcrf_dist, pix_num);
1221
1222
0
  for (block = 0; block < 4; ++block) {
1223
0
    int grid_pos_row = grid_pos_row_base + bh * (block >> 1);
1224
0
    int grid_pos_col = grid_pos_col_base + bw * (block & 0x01);
1225
1226
0
    if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE &&
1227
0
        grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) {
1228
0
      int overlap_area = av1_get_overlap_area(grid_pos_row, grid_pos_col,
1229
0
                                              ref_pos_row, ref_pos_col, bw, bh);
1230
0
      int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height;
1231
0
      int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width;
1232
0
      assert((1 << block_mis_log2) == mi_height);
1233
0
      assert((1 << block_mis_log2) == mi_width);
1234
0
      TplDepStats *des_stats = &ref_stats_ptr[av1_tpl_ptr_pos(
1235
0
          ref_mi_row, ref_mi_col, ref_tpl_frame->stride, block_mis_log2)];
1236
0
      des_stats->mc_dep_dist +=
1237
0
          ((cur_dep_dist + mc_dep_dist) * overlap_area) / pix_num;
1238
0
      des_stats->mc_dep_rate +=
1239
0
          ((delta_rate + mc_dep_rate) * overlap_area) / pix_num;
1240
0
    }
1241
0
  }
1242
0
}
1243
1244
static inline void tpl_model_update(TplParams *const tpl_data, int mi_row,
1245
0
                                    int mi_col, int frame_idx) {
1246
0
  const BLOCK_SIZE tpl_stats_block_size =
1247
0
      convert_length_to_bsize(MI_SIZE << tpl_data->tpl_stats_block_mis_log2);
1248
0
  tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1249
0
                     0);
1250
0
  tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1251
0
                     1);
1252
0
}
1253
1254
static inline void tpl_model_store(TplDepStats *tpl_stats_ptr, int mi_row,
1255
                                   int mi_col, int stride,
1256
                                   const TplDepStats *src_stats,
1257
0
                                   uint8_t block_mis_log2) {
1258
0
  int index = av1_tpl_ptr_pos(mi_row, mi_col, stride, block_mis_log2);
1259
0
  TplDepStats *tpl_ptr = &tpl_stats_ptr[index];
1260
0
  *tpl_ptr = *src_stats;
1261
0
  tpl_ptr->intra_cost = AOMMAX(1, tpl_ptr->intra_cost);
1262
0
  tpl_ptr->inter_cost = AOMMAX(1, tpl_ptr->inter_cost);
1263
0
  tpl_ptr->srcrf_dist = AOMMAX(1, tpl_ptr->srcrf_dist);
1264
0
  tpl_ptr->srcrf_sse = AOMMAX(1, tpl_ptr->srcrf_sse);
1265
0
  tpl_ptr->recrf_dist = AOMMAX(1, tpl_ptr->recrf_dist);
1266
0
  tpl_ptr->srcrf_rate = AOMMAX(1, tpl_ptr->srcrf_rate);
1267
0
  tpl_ptr->recrf_rate = AOMMAX(1, tpl_ptr->recrf_rate);
1268
0
  tpl_ptr->cmp_recrf_dist[0] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[0]);
1269
0
  tpl_ptr->cmp_recrf_dist[1] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[1]);
1270
0
  tpl_ptr->cmp_recrf_rate[0] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[0]);
1271
0
  tpl_ptr->cmp_recrf_rate[1] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[1]);
1272
0
}
1273
1274
// Reset the ref and source frame pointers of tpl_data.
1275
0
static inline void tpl_reset_src_ref_frames(TplParams *tpl_data) {
1276
0
  for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1277
0
    tpl_data->ref_frame[i] = NULL;
1278
0
    tpl_data->src_ref_frame[i] = NULL;
1279
0
  }
1280
0
}
1281
1282
0
static inline int get_gop_length(const GF_GROUP *gf_group) {
1283
0
  int gop_length = AOMMIN(gf_group->size, MAX_TPL_FRAME_IDX - 1);
1284
0
  return gop_length;
1285
0
}
1286
1287
// Initialize the mc_flow parameters used in computing tpl data.
1288
static inline void init_mc_flow_dispenser(AV1_COMP *cpi, int frame_idx,
1289
0
                                          int pframe_qindex) {
1290
0
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
1291
0
  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
1292
0
  const YV12_BUFFER_CONFIG *this_frame = tpl_frame->gf_picture;
1293
0
  const YV12_BUFFER_CONFIG *ref_frames_ordered[INTER_REFS_PER_FRAME];
1294
0
  uint32_t ref_frame_display_indices[INTER_REFS_PER_FRAME];
1295
0
  const GF_GROUP *gf_group = &cpi->ppi->gf_group;
1296
0
  TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
1297
0
  int ref_pruning_enabled = is_frame_eligible_for_ref_pruning(
1298
0
      gf_group, cpi->sf.inter_sf.selective_ref_frame,
1299
0
      tpl_sf->prune_ref_frames_in_tpl, frame_idx);
1300
0
  int gop_length = get_gop_length(gf_group);
1301
0
  int ref_frame_flags;
1302
0
  AV1_COMMON *cm = &cpi->common;
1303
0
  int rdmult, idx;
1304
0
  ThreadData *td = &cpi->td;
1305
0
  MACROBLOCK *x = &td->mb;
1306
0
  MACROBLOCKD *xd = &x->e_mbd;
1307
0
  TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
1308
0
  tpl_data->frame_idx = frame_idx;
1309
0
  tpl_reset_src_ref_frames(tpl_data);
1310
0
  av1_tile_init(&xd->tile, cm, 0, 0);
1311
1312
0
  const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
1313
0
  const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
1314
0
  const FRAME_TYPE frame_type = cm->current_frame.frame_type;
1315
1316
  // Setup scaling factor
1317
0
  av1_setup_scale_factors_for_frame(
1318
0
      &tpl_data->sf, this_frame->y_crop_width, this_frame->y_crop_height,
1319
0
      this_frame->y_crop_width, this_frame->y_crop_height);
1320
1321
0
  xd->cur_buf = this_frame;
1322
1323
0
  for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1324
0
    TplDepFrame *tpl_ref_frame =
1325
0
        &tpl_data->tpl_frame[tpl_frame->ref_map_index[idx]];
1326
0
    tpl_data->ref_frame[idx] = tpl_ref_frame->rec_picture;
1327
0
    tpl_data->src_ref_frame[idx] = tpl_ref_frame->gf_picture;
1328
0
    ref_frame_display_indices[idx] = tpl_ref_frame->frame_display_index;
1329
0
  }
1330
1331
  // Store the reference frames based on priority order
1332
0
  for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1333
0
    ref_frames_ordered[i] =
1334
0
        tpl_data->ref_frame[ref_frame_priority_order[i] - 1];
1335
0
  }
1336
1337
  // Work out which reference frame slots may be used.
1338
0
  ref_frame_flags =
1339
0
      get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi),
1340
0
                          ref_frames_ordered, cpi->ext_flags.ref_frame_flags);
1341
1342
0
  enforce_max_ref_frames(cpi, &ref_frame_flags, ref_frame_display_indices,
1343
0
                         tpl_frame->frame_display_index);
1344
1345
  // Prune reference frames
1346
0
  for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1347
0
    if ((ref_frame_flags & (1 << idx)) == 0) {
1348
0
      tpl_data->ref_frame[idx] = NULL;
1349
0
    }
1350
0
  }
1351
1352
  // Skip motion estimation w.r.t. reference frames which are not
1353
  // considered in RD search, using "selective_ref_frame" speed feature.
1354
  // The reference frame pruning is not enabled for frames beyond the gop
1355
  // length, as there are fewer reference frames and the reference frames
1356
  // differ from the frames considered during RD search.
1357
0
  if (ref_pruning_enabled && (frame_idx < gop_length)) {
1358
0
    for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1359
0
      const MV_REFERENCE_FRAME refs[2] = { idx + 1, NONE_FRAME };
1360
0
      if (prune_ref_by_selective_ref_frame(cpi, NULL, refs,
1361
0
                                           ref_frame_display_indices)) {
1362
0
        tpl_data->ref_frame[idx] = NULL;
1363
0
      }
1364
0
    }
1365
0
  }
1366
1367
  // Make a temporary mbmi for tpl model
1368
0
  MB_MODE_INFO mbmi;
1369
0
  memset(&mbmi, 0, sizeof(mbmi));
1370
0
  MB_MODE_INFO *mbmi_ptr = &mbmi;
1371
0
  xd->mi = &mbmi_ptr;
1372
1373
0
  xd->block_ref_scale_factors[0] = &tpl_data->sf;
1374
0
  xd->block_ref_scale_factors[1] = &tpl_data->sf;
1375
1376
0
  const int base_qindex =
1377
0
      cpi->use_ducky_encode ? gf_group->q_val[frame_idx] : pframe_qindex;
1378
  // The TPL model is only meant to be run in inter mode, so ensure that we are
1379
  // not running in all intra mode, which implies we are not tuning for image
1380
  // quality (IQ).
1381
0
  assert(cpi->oxcf.tune_cfg.tuning != AOM_TUNE_IQ &&
1382
0
         cpi->oxcf.mode != ALLINTRA);
1383
  // Get rd multiplier set up.
1384
0
  rdmult = av1_compute_rd_mult(
1385
0
      base_qindex, cm->seq_params->bit_depth,
1386
0
      cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
1387
0
      boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
1388
0
      is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning);
1389
1390
0
  if (rdmult < 1) rdmult = 1;
1391
0
  av1_set_error_per_bit(&x->errorperbit, rdmult);
1392
0
  av1_set_sad_per_bit(cpi, &x->sadperbit, base_qindex);
1393
1394
0
  tpl_frame->is_valid = 1;
1395
1396
0
  cm->quant_params.base_qindex = base_qindex;
1397
0
  av1_frame_init_quantizer(cpi);
1398
1399
0
  const BitDepthInfo bd_info = get_bit_depth_info(xd);
1400
0
  const FRAME_UPDATE_TYPE update_type =
1401
0
      gf_group->update_type[cpi->gf_frame_index];
1402
0
  tpl_frame->base_rdmult = av1_compute_rd_mult_based_on_qindex(
1403
0
                               bd_info.bit_depth, update_type, base_qindex,
1404
0
                               cpi->oxcf.tune_cfg.tuning) /
1405
0
                           6;
1406
1407
0
  if (cpi->use_ducky_encode)
1408
0
    tpl_frame->base_rdmult = gf_group->rdmult_val[frame_idx];
1409
1410
0
  av1_init_tpl_txfm_stats(tpl_txfm_stats);
1411
1412
  // Initialize x->mbmi_ext when compound predictions are enabled.
1413
0
  if (tpl_sf->allow_compound_pred) av1_zero(x->mbmi_ext);
1414
1415
  // Set the pointer to null since mbmi is only allocated inside this function.
1416
0
  assert(xd->mi == &mbmi_ptr);
1417
0
  xd->mi = NULL;
1418
1419
  // Tpl module is called before the setting of speed features at frame level.
1420
  // Thus, turning off this speed feature for key frame is done here and not
1421
  // integrated into the speed feature setting itself.
1422
0
  const int layer_depth_th = (tpl_sf->use_sad_for_mode_decision == 1) ? 5 : 0;
1423
0
  tpl_frame->use_pred_sad =
1424
0
      tpl_sf->use_sad_for_mode_decision &&
1425
0
      gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
1426
0
      gf_group->layer_depth[frame_idx] >= layer_depth_th;
1427
0
}
1428
1429
// This function stores the motion estimation dependencies of all the blocks in
1430
// a row
1431
void av1_mc_flow_dispenser_row(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
1432
                               TplBuffers *tpl_tmp_buffers, MACROBLOCK *x,
1433
0
                               int mi_row, BLOCK_SIZE bsize, TX_SIZE tx_size) {
1434
0
  AV1_COMMON *const cm = &cpi->common;
1435
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
1436
0
  AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
1437
0
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1438
0
  const int mi_width = mi_size_wide[bsize];
1439
0
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
1440
0
  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
1441
0
  MACROBLOCKD *xd = &x->e_mbd;
1442
1443
0
  const int tplb_cols_in_tile =
1444
0
      ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
1445
0
  const int tplb_row = ROUND_POWER_OF_TWO(mi_row, mi_size_high_log2[bsize]);
1446
0
  assert(mi_size_high[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
1447
0
  assert(mi_size_wide[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
1448
1449
0
  for (int mi_col = 0, tplb_col_in_tile = 0; mi_col < mi_params->mi_cols;
1450
0
       mi_col += mi_width, tplb_col_in_tile++) {
1451
0
    (*tpl_row_mt->sync_read_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
1452
0
                                 tplb_col_in_tile);
1453
1454
0
#if CONFIG_MULTITHREAD
1455
0
    if (mt_info->num_workers > 1) {
1456
0
      pthread_mutex_lock(tpl_row_mt->mutex_);
1457
0
      const bool tpl_mt_exit = tpl_row_mt->tpl_mt_exit;
1458
0
      pthread_mutex_unlock(tpl_row_mt->mutex_);
1459
      // Exit in case any worker has encountered an error.
1460
0
      if (tpl_mt_exit) return;
1461
0
    }
1462
0
#endif
1463
1464
0
    TplDepStats tpl_stats;
1465
1466
    // Motion estimation column boundary
1467
0
    av1_set_mv_col_limits(mi_params, &x->mv_limits, mi_col, mi_width,
1468
0
                          tpl_data->border_in_pixels);
1469
0
    xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE);
1470
0
    xd->mb_to_right_edge =
1471
0
        GET_MV_SUBPEL(mi_params->mi_cols - mi_width - mi_col);
1472
0
    mode_estimation(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row, mi_col,
1473
0
                    bsize, tx_size, &tpl_stats);
1474
1475
    // Motion flow dependency dispenser.
1476
0
    tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, tpl_frame->stride,
1477
0
                    &tpl_stats, tpl_data->tpl_stats_block_mis_log2);
1478
0
    (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
1479
0
                                  tplb_col_in_tile, tplb_cols_in_tile);
1480
0
  }
1481
0
}
1482
1483
0
static inline void mc_flow_dispenser(AV1_COMP *cpi) {
1484
0
  AV1_COMMON *cm = &cpi->common;
1485
0
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1486
0
  ThreadData *td = &cpi->td;
1487
0
  MACROBLOCK *x = &td->mb;
1488
0
  MACROBLOCKD *xd = &x->e_mbd;
1489
0
  const BLOCK_SIZE bsize =
1490
0
      convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
1491
0
  const TX_SIZE tx_size = max_txsize_lookup[bsize];
1492
0
  const int mi_height = mi_size_high[bsize];
1493
0
  for (int mi_row = 0; mi_row < mi_params->mi_rows; mi_row += mi_height) {
1494
    // Motion estimation row boundary
1495
0
    av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
1496
0
                          cpi->ppi->tpl_data.border_in_pixels);
1497
0
    xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1498
0
    xd->mb_to_bottom_edge =
1499
0
        GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
1500
0
    av1_mc_flow_dispenser_row(cpi, &td->tpl_txfm_stats, &td->tpl_tmp_buffers, x,
1501
0
                              mi_row, bsize, tx_size);
1502
0
  }
1503
0
}
1504
1505
static void mc_flow_synthesizer(TplParams *tpl_data, int frame_idx, int mi_rows,
1506
0
                                int mi_cols) {
1507
0
  if (!frame_idx) {
1508
0
    return;
1509
0
  }
1510
0
  const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
1511
0
  const int mi_height = mi_size_high[bsize];
1512
0
  const int mi_width = mi_size_wide[bsize];
1513
0
  assert(mi_height == (1 << tpl_data->tpl_stats_block_mis_log2));
1514
0
  assert(mi_width == (1 << tpl_data->tpl_stats_block_mis_log2));
1515
1516
0
  for (int mi_row = 0; mi_row < mi_rows; mi_row += mi_height) {
1517
0
    for (int mi_col = 0; mi_col < mi_cols; mi_col += mi_width) {
1518
0
      tpl_model_update(tpl_data, mi_row, mi_col, frame_idx);
1519
0
    }
1520
0
  }
1521
0
}
1522
1523
static inline void init_gop_frames_for_tpl(
1524
    AV1_COMP *cpi, const EncodeFrameParams *const init_frame_params,
1525
0
    GF_GROUP *gf_group, int *tpl_group_frames, int *pframe_qindex) {
1526
0
  AV1_COMMON *cm = &cpi->common;
1527
0
  assert(cpi->gf_frame_index == 0);
1528
0
  *pframe_qindex = 0;
1529
1530
0
  RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
1531
0
  init_ref_map_pair(cpi, ref_frame_map_pairs);
1532
1533
0
  int remapped_ref_idx[REF_FRAMES];
1534
1535
0
  EncodeFrameParams frame_params = *init_frame_params;
1536
0
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
1537
1538
0
  int ref_picture_map[REF_FRAMES];
1539
1540
0
  for (int i = 0; i < REF_FRAMES; ++i) {
1541
0
    if (frame_params.frame_type == KEY_FRAME) {
1542
0
      tpl_data->tpl_frame[-i - 1].gf_picture = NULL;
1543
0
      tpl_data->tpl_frame[-i - 1].rec_picture = NULL;
1544
0
      tpl_data->tpl_frame[-i - 1].frame_display_index = 0;
1545
0
    } else {
1546
0
      tpl_data->tpl_frame[-i - 1].gf_picture = &cm->ref_frame_map[i]->buf;
1547
0
      tpl_data->tpl_frame[-i - 1].rec_picture = &cm->ref_frame_map[i]->buf;
1548
0
      tpl_data->tpl_frame[-i - 1].frame_display_index =
1549
0
          cm->ref_frame_map[i]->display_order_hint;
1550
0
    }
1551
1552
0
    ref_picture_map[i] = -i - 1;
1553
0
  }
1554
1555
0
  *tpl_group_frames = 0;
1556
1557
0
  int gf_index;
1558
0
  int process_frame_count = 0;
1559
0
  const int gop_length = get_gop_length(gf_group);
1560
1561
0
  for (gf_index = 0; gf_index < gop_length; ++gf_index) {
1562
0
    TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
1563
0
    FRAME_UPDATE_TYPE frame_update_type = gf_group->update_type[gf_index];
1564
0
    int lookahead_index =
1565
0
        gf_group->cur_frame_idx[gf_index] + gf_group->arf_src_offset[gf_index];
1566
0
    frame_params.show_frame = frame_update_type != ARF_UPDATE &&
1567
0
                              frame_update_type != INTNL_ARF_UPDATE;
1568
0
    frame_params.show_existing_frame =
1569
0
        frame_update_type == INTNL_OVERLAY_UPDATE ||
1570
0
        frame_update_type == OVERLAY_UPDATE;
1571
0
    frame_params.frame_type = gf_group->frame_type[gf_index];
1572
1573
0
    if (frame_update_type == LF_UPDATE)
1574
0
      *pframe_qindex = gf_group->q_val[gf_index];
1575
1576
0
    const struct lookahead_entry *buf = av1_lookahead_peek(
1577
0
        cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
1578
0
    if (buf == NULL) break;
1579
0
    tpl_frame->gf_picture = &buf->img;
1580
1581
    // Use filtered frame buffer if available. This will make tpl stats more
1582
    // precise.
1583
0
    FRAME_DIFF frame_diff;
1584
0
    const YV12_BUFFER_CONFIG *tf_buf =
1585
0
        av1_tf_info_get_filtered_buf(&cpi->ppi->tf_info, gf_index, &frame_diff);
1586
0
    if (tf_buf != NULL) {
1587
0
      tpl_frame->gf_picture = tf_buf;
1588
0
    }
1589
1590
    // 'cm->current_frame.frame_number' is the display number
1591
    // of the current frame.
1592
    // 'lookahead_index' is frame offset within the gf group.
1593
    // 'lookahead_index + cm->current_frame.frame_number'
1594
    // is the display index of the frame.
1595
0
    tpl_frame->frame_display_index =
1596
0
        lookahead_index + cm->current_frame.frame_number;
1597
0
    assert(buf->display_idx ==
1598
0
           cpi->frame_index_set.show_frame_count + lookahead_index);
1599
1600
0
    if (frame_update_type != OVERLAY_UPDATE &&
1601
0
        frame_update_type != INTNL_OVERLAY_UPDATE) {
1602
0
      tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
1603
0
      tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
1604
0
      ++process_frame_count;
1605
0
    }
1606
0
    const int true_disp = (int)(tpl_frame->frame_display_index);
1607
1608
0
    av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
1609
0
                       remapped_ref_idx);
1610
1611
0
    int refresh_mask =
1612
0
        av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
1613
0
                                    gf_index, true_disp, ref_frame_map_pairs);
1614
1615
    // Make the frames marked as is_frame_non_ref to non-reference frames.
1616
0
    if (cpi->ppi->gf_group.is_frame_non_ref[gf_index]) refresh_mask = 0;
1617
1618
0
    int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
1619
1620
0
    if (refresh_frame_map_index < REF_FRAMES &&
1621
0
        refresh_frame_map_index != INVALID_IDX) {
1622
0
      ref_frame_map_pairs[refresh_frame_map_index].disp_order =
1623
0
          AOMMAX(0, true_disp);
1624
0
      ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
1625
0
          get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
1626
0
                             cpi->ppi->gf_group.max_layer_depth);
1627
0
    }
1628
1629
0
    for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
1630
0
      tpl_frame->ref_map_index[i - LAST_FRAME] =
1631
0
          ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
1632
1633
0
    if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
1634
1635
0
    ++*tpl_group_frames;
1636
0
  }
1637
1638
0
  const int tpl_extend = cpi->oxcf.gf_cfg.lag_in_frames - MAX_GF_INTERVAL;
1639
0
  int extend_frame_count = 0;
1640
0
  int extend_frame_length = AOMMIN(
1641
0
      tpl_extend, cpi->rc.frames_to_key - cpi->ppi->p_rc.baseline_gf_interval);
1642
1643
0
  int frame_display_index = gf_group->cur_frame_idx[gop_length - 1] +
1644
0
                            gf_group->arf_src_offset[gop_length - 1] + 1;
1645
1646
0
  for (;
1647
0
       gf_index < MAX_TPL_FRAME_IDX && extend_frame_count < extend_frame_length;
1648
0
       ++gf_index) {
1649
0
    TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
1650
0
    FRAME_UPDATE_TYPE frame_update_type = LF_UPDATE;
1651
0
    frame_params.show_frame = frame_update_type != ARF_UPDATE &&
1652
0
                              frame_update_type != INTNL_ARF_UPDATE;
1653
0
    frame_params.show_existing_frame =
1654
0
        frame_update_type == INTNL_OVERLAY_UPDATE;
1655
0
    frame_params.frame_type = INTER_FRAME;
1656
1657
0
    int lookahead_index = frame_display_index;
1658
0
    struct lookahead_entry *buf = av1_lookahead_peek(
1659
0
        cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
1660
1661
0
    if (buf == NULL) break;
1662
1663
0
    tpl_frame->gf_picture = &buf->img;
1664
0
    tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
1665
0
    tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
1666
    // 'cm->current_frame.frame_number' is the display number
1667
    // of the current frame.
1668
    // 'frame_display_index' is frame offset within the gf group.
1669
    // 'frame_display_index + cm->current_frame.frame_number'
1670
    // is the display index of the frame.
1671
0
    tpl_frame->frame_display_index =
1672
0
        frame_display_index + cm->current_frame.frame_number;
1673
1674
0
    ++process_frame_count;
1675
1676
0
    gf_group->update_type[gf_index] = LF_UPDATE;
1677
1678
#if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
1679
    if (cpi->oxcf.pass == AOM_RC_SECOND_PASS) {
1680
      if (cpi->oxcf.rc_cfg.mode == AOM_Q) {
1681
        *pframe_qindex = cpi->oxcf.rc_cfg.cq_level;
1682
      } else if (cpi->oxcf.rc_cfg.mode == AOM_VBR) {
1683
        // TODO(angiebird): Find a more adaptive method to decide pframe_qindex
1684
        // override the pframe_qindex in the second pass when bitrate accuracy
1685
        // is on. We found that setting this pframe_qindex make the tpl stats
1686
        // more stable.
1687
        *pframe_qindex = 128;
1688
      }
1689
    }
1690
#endif  // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
1691
0
    gf_group->q_val[gf_index] = *pframe_qindex;
1692
0
    const int true_disp = (int)(tpl_frame->frame_display_index);
1693
0
    av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
1694
0
                       remapped_ref_idx);
1695
0
    int refresh_mask =
1696
0
        av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
1697
0
                                    gf_index, true_disp, ref_frame_map_pairs);
1698
0
    int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
1699
1700
0
    if (refresh_frame_map_index < REF_FRAMES &&
1701
0
        refresh_frame_map_index != INVALID_IDX) {
1702
0
      ref_frame_map_pairs[refresh_frame_map_index].disp_order =
1703
0
          AOMMAX(0, true_disp);
1704
0
      ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
1705
0
          get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
1706
0
                             cpi->ppi->gf_group.max_layer_depth);
1707
0
    }
1708
1709
0
    for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
1710
0
      tpl_frame->ref_map_index[i - LAST_FRAME] =
1711
0
          ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
1712
1713
0
    tpl_frame->ref_map_index[ALTREF_FRAME - LAST_FRAME] = -1;
1714
0
    tpl_frame->ref_map_index[LAST3_FRAME - LAST_FRAME] = -1;
1715
0
    tpl_frame->ref_map_index[BWDREF_FRAME - LAST_FRAME] = -1;
1716
0
    tpl_frame->ref_map_index[ALTREF2_FRAME - LAST_FRAME] = -1;
1717
1718
0
    if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
1719
1720
0
    ++*tpl_group_frames;
1721
0
    ++extend_frame_count;
1722
0
    ++frame_display_index;
1723
0
  }
1724
0
}
1725
1726
0
void av1_init_tpl_stats(TplParams *const tpl_data) {
1727
0
  tpl_data->ready = 0;
1728
0
  set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
1729
0
                           &tpl_data->tpl_bsize_1d);
1730
0
  for (int frame_idx = 0; frame_idx < MAX_LENGTH_TPL_FRAME_STATS; ++frame_idx) {
1731
0
    TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
1732
0
    tpl_frame->is_valid = 0;
1733
0
  }
1734
0
  for (int frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
1735
0
    TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
1736
0
    if (tpl_data->tpl_stats_pool[frame_idx] == NULL) continue;
1737
0
    memset(tpl_data->tpl_stats_pool[frame_idx], 0,
1738
0
           tpl_frame->height * tpl_frame->width *
1739
0
               sizeof(*tpl_frame->tpl_stats_ptr));
1740
0
  }
1741
0
}
1742
1743
0
int av1_tpl_stats_ready(const TplParams *tpl_data, int gf_frame_index) {
1744
0
  if (tpl_data->ready == 0) {
1745
0
    return 0;
1746
0
  }
1747
0
  if (gf_frame_index >= MAX_TPL_FRAME_IDX) {
1748
    // The sub-GOP length exceeds the TPL buffer capacity.
1749
    // Hence the TPL related functions are disabled hereafter.
1750
0
    return 0;
1751
0
  }
1752
0
  return tpl_data->tpl_frame[gf_frame_index].is_valid;
1753
0
}
1754
1755
0
static inline int eval_gop_length(double *beta, int gop_eval) {
1756
0
  switch (gop_eval) {
1757
0
    case 1:
1758
      // Allow larger GOP size if the base layer ARF has higher dependency
1759
      // factor than the intermediate ARF and both ARFs have reasonably high
1760
      // dependency factors.
1761
0
      return (beta[0] >= beta[1] + 0.7) && beta[0] > 3.0;
1762
0
    case 2:
1763
0
      if ((beta[0] >= beta[1] + 0.4) && beta[0] > 1.6)
1764
0
        return 1;  // Don't shorten the gf interval
1765
0
      else if ((beta[0] < beta[1] + 0.1) || beta[0] <= 1.4)
1766
0
        return 0;  // Shorten the gf interval
1767
0
      else
1768
0
        return 2;  // Cannot decide the gf interval, so redo the
1769
                   // tpl stats calculation.
1770
0
    case 3: return beta[0] > 1.1;
1771
0
    default: return 2;
1772
0
  }
1773
0
}
1774
1775
// TODO(jingning): Restructure av1_rc_pick_q_and_bounds() to narrow down
1776
// the scope of input arguments.
1777
void av1_tpl_preload_rc_estimate(AV1_COMP *cpi,
1778
0
                                 const EncodeFrameParams *const frame_params) {
1779
0
  AV1_COMMON *cm = &cpi->common;
1780
0
  GF_GROUP *gf_group = &cpi->ppi->gf_group;
1781
0
  int bottom_index, top_index;
1782
0
  if (cpi->use_ducky_encode) return;
1783
1784
0
  cm->current_frame.frame_type = frame_params->frame_type;
1785
0
  for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
1786
0
       ++gf_index) {
1787
0
    cm->current_frame.frame_type = gf_group->frame_type[gf_index];
1788
0
    cm->show_frame = gf_group->update_type[gf_index] != ARF_UPDATE &&
1789
0
                     gf_group->update_type[gf_index] != INTNL_ARF_UPDATE;
1790
0
    gf_group->q_val[gf_index] = av1_rc_pick_q_and_bounds(
1791
0
        cpi, cm->width, cm->height, gf_index, &bottom_index, &top_index);
1792
0
  }
1793
0
}
1794
1795
static inline int skip_tpl_for_frame(const GF_GROUP *gf_group, int frame_idx,
1796
                                     int gop_eval, int approx_gop_eval,
1797
0
                                     int reduce_num_frames) {
1798
  // When gop_eval is set to 2, tpl stats calculation is done for ARFs from base
1799
  // layer, (base+1) layer and (base+2) layer. When gop_eval is set to 3,
1800
  // tpl stats calculation is limited to ARFs from base layer and (base+1)
1801
  // layer.
1802
0
  const int num_arf_layers = (gop_eval == 2) ? 3 : 2;
1803
0
  const int gop_length = get_gop_length(gf_group);
1804
1805
0
  if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE ||
1806
0
      gf_group->update_type[frame_idx] == OVERLAY_UPDATE)
1807
0
    return 1;
1808
1809
  // When approx_gop_eval = 1, skip tpl stats calculation for higher layer
1810
  // frames and for frames beyond gop length.
1811
0
  if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers ||
1812
0
                          frame_idx >= gop_length))
1813
0
    return 1;
1814
1815
0
  if (reduce_num_frames && gf_group->update_type[frame_idx] == LF_UPDATE &&
1816
0
      frame_idx < gop_length)
1817
0
    return 1;
1818
1819
0
  return 0;
1820
0
}
1821
1822
/*!\brief Compute the frame importance from TPL stats
1823
 *
1824
 * \param[in]       tpl_data          TPL struct
1825
 * \param[in]       gf_frame_index    current frame index in the GOP
1826
 *
1827
 * \return frame_importance
1828
 */
1829
static double get_frame_importance(const TplParams *tpl_data,
1830
0
                                   int gf_frame_index) {
1831
0
  const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_frame_index];
1832
0
  const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
1833
1834
0
  const int tpl_stride = tpl_frame->stride;
1835
0
  double intra_cost_base = 0;
1836
0
  double mc_dep_cost_base = 0;
1837
0
  double cbcmp_base = 1;
1838
0
  const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
1839
1840
0
  for (int row = 0; row < tpl_frame->mi_rows; row += step) {
1841
0
    for (int col = 0; col < tpl_frame->mi_cols; col += step) {
1842
0
      const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
1843
0
          row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
1844
0
      double cbcmp = (double)this_stats->srcrf_dist;
1845
0
      const int64_t mc_dep_delta =
1846
0
          RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
1847
0
                 this_stats->mc_dep_dist);
1848
0
      double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
1849
0
      dist_scaled = AOMMAX(dist_scaled, 1);
1850
0
      intra_cost_base += log(dist_scaled) * cbcmp;
1851
0
      mc_dep_cost_base += log(dist_scaled + mc_dep_delta) * cbcmp;
1852
0
      cbcmp_base += cbcmp;
1853
0
    }
1854
0
  }
1855
0
  return exp((mc_dep_cost_base - intra_cost_base) / cbcmp_base);
1856
0
}
1857
1858
int av1_tpl_setup_stats(AV1_COMP *cpi, int gop_eval,
1859
0
                        const EncodeFrameParams *const frame_params) {
1860
#if CONFIG_COLLECT_COMPONENT_TIMING
1861
  start_timing(cpi, av1_tpl_setup_stats_time);
1862
#endif
1863
0
  assert(cpi->gf_frame_index == 0);
1864
0
  AV1_COMMON *cm = &cpi->common;
1865
0
  MultiThreadInfo *const mt_info = &cpi->mt_info;
1866
0
  AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
1867
0
  GF_GROUP *gf_group = &cpi->ppi->gf_group;
1868
0
  EncodeFrameParams this_frame_params = *frame_params;
1869
0
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
1870
0
  int approx_gop_eval = (gop_eval > 1);
1871
1872
0
  if (cpi->superres_mode != AOM_SUPERRES_NONE) {
1873
0
    assert(cpi->superres_mode != AOM_SUPERRES_AUTO);
1874
0
    av1_init_tpl_stats(tpl_data);
1875
0
    return 0;
1876
0
  }
1877
1878
0
  cm->current_frame.frame_type = frame_params->frame_type;
1879
0
  for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
1880
0
       ++gf_index) {
1881
0
    cm->current_frame.frame_type = gf_group->frame_type[gf_index];
1882
0
    av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
1883
0
                                 gf_group->update_type[gf_index],
1884
0
                                 gf_group->refbuf_state[gf_index], 0);
1885
1886
0
    memcpy(&cpi->refresh_frame, &this_frame_params.refresh_frame,
1887
0
           sizeof(cpi->refresh_frame));
1888
0
  }
1889
1890
0
  int pframe_qindex;
1891
0
  int tpl_gf_group_frames;
1892
0
  init_gop_frames_for_tpl(cpi, frame_params, gf_group, &tpl_gf_group_frames,
1893
0
                          &pframe_qindex);
1894
1895
0
  cpi->ppi->p_rc.base_layer_qp = pframe_qindex;
1896
1897
0
  av1_init_tpl_stats(tpl_data);
1898
1899
0
  TplBuffers *tpl_tmp_buffers = &cpi->td.tpl_tmp_buffers;
1900
0
  if (!tpl_alloc_temp_buffers(tpl_tmp_buffers, tpl_data->tpl_bsize_1d)) {
1901
0
    aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
1902
0
                       "Error allocating tpl data");
1903
0
  }
1904
1905
0
  tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read_dummy;
1906
0
  tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write_dummy;
1907
1908
0
  av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
1909
0
                                    cm->width, cm->height);
1910
1911
0
  if (frame_params->frame_type == KEY_FRAME) {
1912
0
    av1_init_mv_probs(cm);
1913
0
  }
1914
0
  av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
1915
0
                    cm->features.allow_high_precision_mv, cpi->td.mb.mv_costs);
1916
1917
0
  const int num_planes =
1918
0
      cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : av1_num_planes(cm);
1919
  // As tpl module is called before the setting of speed features at frame
1920
  // level, turning off this speed feature for the first GF group of the
1921
  // key-frame interval is done here.
1922
0
  int reduce_num_frames =
1923
0
      cpi->sf.tpl_sf.reduce_num_frames &&
1924
0
      gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
1925
0
      gf_group->max_layer_depth > 2;
1926
  // TPL processing is skipped for frames of type LF_UPDATE when
1927
  // 'reduce_num_frames' is 1, which affects the r0 calcuation. Thus, a factor
1928
  // to adjust r0 is used. The value of 1.6 corresponds to using ~60% of the
1929
  // frames in the gf group on an average.
1930
0
  tpl_data->r0_adjust_factor = reduce_num_frames ? 1.6 : 1.0;
1931
1932
  // Backward propagation from tpl_group_frames to 1.
1933
0
  for (int frame_idx = cpi->gf_frame_index; frame_idx < tpl_gf_group_frames;
1934
0
       ++frame_idx) {
1935
0
    if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
1936
0
                           reduce_num_frames))
1937
0
      continue;
1938
1939
0
    init_mc_flow_dispenser(cpi, frame_idx, pframe_qindex);
1940
0
    if (mt_info->num_workers > 1) {
1941
0
      tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read;
1942
0
      tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write;
1943
0
      av1_mc_flow_dispenser_mt(cpi);
1944
0
    } else {
1945
0
      mc_flow_dispenser(cpi);
1946
0
    }
1947
#if CONFIG_BITRATE_ACCURACY
1948
    av1_tpl_txfm_stats_update_abs_coeff_mean(&cpi->td.tpl_txfm_stats);
1949
    av1_tpl_store_txfm_stats(tpl_data, &cpi->td.tpl_txfm_stats, frame_idx);
1950
#endif  // CONFIG_BITRATE_ACCURACY
1951
#if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
1952
    if (cpi->oxcf.pass == AOM_RC_THIRD_PASS) {
1953
      int frame_coding_idx =
1954
          av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, frame_idx);
1955
      rc_log_frame_stats(&cpi->rc_log, frame_coding_idx,
1956
                         &cpi->td.tpl_txfm_stats);
1957
    }
1958
#endif  // CONFIG_RATECTRL_LOG
1959
1960
0
    aom_extend_frame_borders(tpl_data->tpl_frame[frame_idx].rec_picture,
1961
0
                             num_planes);
1962
0
  }
1963
1964
0
  for (int frame_idx = tpl_gf_group_frames - 1;
1965
0
       frame_idx >= cpi->gf_frame_index; --frame_idx) {
1966
0
    if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
1967
0
                           reduce_num_frames))
1968
0
      continue;
1969
1970
0
    mc_flow_synthesizer(tpl_data, frame_idx, cm->mi_params.mi_rows,
1971
0
                        cm->mi_params.mi_cols);
1972
0
  }
1973
1974
0
  av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
1975
0
                               gf_group->update_type[cpi->gf_frame_index],
1976
0
                               gf_group->update_type[cpi->gf_frame_index], 0);
1977
0
  cm->current_frame.frame_type = frame_params->frame_type;
1978
0
  cm->show_frame = frame_params->show_frame;
1979
1980
#if CONFIG_COLLECT_COMPONENT_TIMING
1981
  // Record the time if the function returns.
1982
  if (cpi->common.tiles.large_scale || gf_group->max_layer_depth_allowed == 0 ||
1983
      !gop_eval)
1984
    end_timing(cpi, av1_tpl_setup_stats_time);
1985
#endif
1986
1987
0
  tpl_dealloc_temp_buffers(tpl_tmp_buffers);
1988
1989
0
  if (!approx_gop_eval) {
1990
0
    tpl_data->ready = 1;
1991
0
  }
1992
0
  if (cpi->common.tiles.large_scale) return 0;
1993
0
  if (gf_group->max_layer_depth_allowed == 0) return 1;
1994
0
  if (!gop_eval) return 0;
1995
0
  assert(gf_group->arf_index >= 0);
1996
1997
0
  double beta[2] = { 0.0 };
1998
0
  const int frame_idx_0 = gf_group->arf_index;
1999
0
  const int frame_idx_1 =
2000
0
      AOMMIN(tpl_gf_group_frames - 1, gf_group->arf_index + 1);
2001
0
  beta[0] = get_frame_importance(tpl_data, frame_idx_0);
2002
0
  beta[1] = get_frame_importance(tpl_data, frame_idx_1);
2003
#if CONFIG_COLLECT_COMPONENT_TIMING
2004
  end_timing(cpi, av1_tpl_setup_stats_time);
2005
#endif
2006
0
  return eval_gop_length(beta, gop_eval);
2007
0
}
2008
2009
0
void av1_tpl_rdmult_setup(AV1_COMP *cpi) {
2010
0
  const AV1_COMMON *const cm = &cpi->common;
2011
0
  const int tpl_idx = cpi->gf_frame_index;
2012
2013
0
  assert(
2014
0
      IMPLIES(cpi->ppi->gf_group.size > 0, tpl_idx < cpi->ppi->gf_group.size));
2015
2016
0
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
2017
0
  const TplDepFrame *const tpl_frame = &tpl_data->tpl_frame[tpl_idx];
2018
2019
0
  if (!tpl_frame->is_valid) return;
2020
2021
0
  const TplDepStats *const tpl_stats = tpl_frame->tpl_stats_ptr;
2022
0
  const int tpl_stride = tpl_frame->stride;
2023
0
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
2024
2025
0
  const int block_size = BLOCK_16X16;
2026
0
  const int num_mi_w = mi_size_wide[block_size];
2027
0
  const int num_mi_h = mi_size_high[block_size];
2028
0
  const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
2029
0
  const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
2030
0
  const double c = 1.2;
2031
0
  const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
2032
2033
  // Loop through each 'block_size' X 'block_size' block.
2034
0
  for (int row = 0; row < num_rows; row++) {
2035
0
    for (int col = 0; col < num_cols; col++) {
2036
0
      double intra_cost = 0.0, mc_dep_cost = 0.0;
2037
      // Loop through each mi block.
2038
0
      for (int mi_row = row * num_mi_h; mi_row < (row + 1) * num_mi_h;
2039
0
           mi_row += step) {
2040
0
        for (int mi_col = col * num_mi_w; mi_col < (col + 1) * num_mi_w;
2041
0
             mi_col += step) {
2042
0
          if (mi_row >= cm->mi_params.mi_rows || mi_col >= mi_cols_sr) continue;
2043
0
          const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
2044
0
              mi_row, mi_col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
2045
0
          int64_t mc_dep_delta =
2046
0
              RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
2047
0
                     this_stats->mc_dep_dist);
2048
0
          intra_cost += (double)(this_stats->recrf_dist << RDDIV_BITS);
2049
0
          mc_dep_cost +=
2050
0
              (double)(this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
2051
0
        }
2052
0
      }
2053
0
      const double rk = intra_cost / mc_dep_cost;
2054
0
      const int index = row * num_cols + col;
2055
0
      cpi->tpl_rdmult_scaling_factors[index] = rk / cpi->rd.r0 + c;
2056
0
    }
2057
0
  }
2058
0
}
2059
2060
void av1_tpl_rdmult_setup_sb(AV1_COMP *cpi, MACROBLOCK *const x,
2061
0
                             BLOCK_SIZE sb_size, int mi_row, int mi_col) {
2062
0
  AV1_COMMON *const cm = &cpi->common;
2063
0
  GF_GROUP *gf_group = &cpi->ppi->gf_group;
2064
0
  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
2065
0
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));
2066
0
  const int tpl_idx = cpi->gf_frame_index;
2067
2068
0
  const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
2069
0
  const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
2070
0
  const FRAME_TYPE frame_type = cm->current_frame.frame_type;
2071
2072
0
  if (tpl_idx >= MAX_TPL_FRAME_IDX) return;
2073
0
  TplDepFrame *tpl_frame = &cpi->ppi->tpl_data.tpl_frame[tpl_idx];
2074
0
  if (!tpl_frame->is_valid) return;
2075
0
  if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return;
2076
0
  if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return;
2077
2078
0
  const int mi_col_sr =
2079
0
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
2080
0
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
2081
0
  const int sb_mi_width_sr = coded_to_superres_mi(
2082
0
      mi_size_wide[sb_size], cm->superres_scale_denominator);
2083
2084
0
  const int bsize_base = BLOCK_16X16;
2085
0
  const int num_mi_w = mi_size_wide[bsize_base];
2086
0
  const int num_mi_h = mi_size_high[bsize_base];
2087
0
  const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
2088
0
  const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
2089
0
  const int num_bcols = (sb_mi_width_sr + num_mi_w - 1) / num_mi_w;
2090
0
  const int num_brows = (mi_size_high[sb_size] + num_mi_h - 1) / num_mi_h;
2091
0
  int row, col;
2092
2093
0
  double base_block_count = 0.0;
2094
0
  double log_sum = 0.0;
2095
2096
0
  for (row = mi_row / num_mi_w;
2097
0
       row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
2098
0
    for (col = mi_col_sr / num_mi_h;
2099
0
         col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
2100
0
      const int index = row * num_cols + col;
2101
0
      log_sum += log(cpi->tpl_rdmult_scaling_factors[index]);
2102
0
      base_block_count += 1.0;
2103
0
    }
2104
0
  }
2105
2106
0
  const CommonQuantParams *quant_params = &cm->quant_params;
2107
2108
0
  const int orig_qindex_rdmult =
2109
0
      quant_params->base_qindex + quant_params->y_dc_delta_q;
2110
0
  const int orig_rdmult = av1_compute_rd_mult(
2111
0
      orig_qindex_rdmult, cm->seq_params->bit_depth,
2112
0
      cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
2113
0
      boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
2114
0
      is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning);
2115
2116
0
  const int new_qindex_rdmult = quant_params->base_qindex +
2117
0
                                x->rdmult_delta_qindex +
2118
0
                                quant_params->y_dc_delta_q;
2119
0
  const int new_rdmult = av1_compute_rd_mult(
2120
0
      new_qindex_rdmult, cm->seq_params->bit_depth,
2121
0
      cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
2122
0
      boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
2123
0
      is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning);
2124
2125
0
  const double scaling_factor = (double)new_rdmult / (double)orig_rdmult;
2126
2127
0
  double scale_adj = log(scaling_factor) - log_sum / base_block_count;
2128
0
  scale_adj = exp_bounded(scale_adj);
2129
2130
0
  for (row = mi_row / num_mi_w;
2131
0
       row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
2132
0
    for (col = mi_col_sr / num_mi_h;
2133
0
         col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
2134
0
      const int index = row * num_cols + col;
2135
0
      cpi->ppi->tpl_sb_rdmult_scaling_factors[index] =
2136
0
          scale_adj * cpi->tpl_rdmult_scaling_factors[index];
2137
0
    }
2138
0
  }
2139
0
}
2140
2141
0
double av1_exponential_entropy(double q_step, double b) {
2142
0
  b = AOMMAX(b, TPL_EPSILON);
2143
0
  double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
2144
0
  return -log2(1 - z) - z * log2(z) / (1 - z);
2145
0
}
2146
2147
0
double av1_laplace_entropy(double q_step, double b, double zero_bin_ratio) {
2148
  // zero bin's size is zero_bin_ratio * q_step
2149
  // non-zero bin's size is q_step
2150
0
  b = AOMMAX(b, TPL_EPSILON);
2151
0
  double z = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
2152
0
  double h = av1_exponential_entropy(q_step, b);
2153
0
  double r = -(1 - z) * log2(1 - z) - z * log2(z) + z * (h + 1);
2154
0
  return r;
2155
0
}
2156
2157
#if CONFIG_BITRATE_ACCURACY
2158
double av1_laplace_estimate_frame_rate(int q_index, int block_count,
2159
                                       const double *abs_coeff_mean,
2160
                                       int coeff_num) {
2161
  double zero_bin_ratio = 2;
2162
  double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
2163
  double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
2164
  double est_rate = 0;
2165
  // dc coeff
2166
  est_rate += av1_laplace_entropy(dc_q_step, abs_coeff_mean[0], zero_bin_ratio);
2167
  // ac coeff
2168
  for (int i = 1; i < coeff_num; ++i) {
2169
    est_rate +=
2170
        av1_laplace_entropy(ac_q_step, abs_coeff_mean[i], zero_bin_ratio);
2171
  }
2172
  est_rate *= block_count;
2173
  return est_rate;
2174
}
2175
#endif  // CONFIG_BITRATE_ACCURACY
2176
2177
double av1_estimate_coeff_entropy(double q_step, double b,
2178
0
                                  double zero_bin_ratio, int qcoeff) {
2179
0
  b = AOMMAX(b, TPL_EPSILON);
2180
0
  int abs_qcoeff = abs(qcoeff);
2181
0
  double z0 = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
2182
0
  if (abs_qcoeff == 0) {
2183
0
    double r = -log2(1 - z0);
2184
0
    return r;
2185
0
  } else {
2186
0
    double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
2187
0
    double r = 1 - log2(z0) - log2(1 - z) - (abs_qcoeff - 1) * log2(z);
2188
0
    return r;
2189
0
  }
2190
0
}
2191
2192
#if CONFIG_RD_COMMAND
2193
void av1_read_rd_command(const char *filepath, RD_COMMAND *rd_command) {
2194
  FILE *fptr = fopen(filepath, "r");
2195
  fscanf(fptr, "%d", &rd_command->frame_count);
2196
  rd_command->frame_index = 0;
2197
  for (int i = 0; i < rd_command->frame_count; ++i) {
2198
    int option;
2199
    fscanf(fptr, "%d", &option);
2200
    rd_command->option_ls[i] = (RD_OPTION)option;
2201
    if (option == RD_OPTION_SET_Q) {
2202
      fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
2203
    } else if (option == RD_OPTION_SET_Q_RDMULT) {
2204
      fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
2205
      fscanf(fptr, "%d", &rd_command->rdmult_ls[i]);
2206
    }
2207
  }
2208
  fclose(fptr);
2209
}
2210
#endif  // CONFIG_RD_COMMAND
2211
2212
0
double av1_tpl_get_qstep_ratio(const TplParams *tpl_data, int gf_frame_index) {
2213
0
  if (!av1_tpl_stats_ready(tpl_data, gf_frame_index)) {
2214
0
    return 1;
2215
0
  }
2216
0
  const double frame_importance =
2217
0
      get_frame_importance(tpl_data, gf_frame_index);
2218
0
  return sqrt(1 / frame_importance);
2219
0
}
2220
2221
int av1_get_q_index_from_qstep_ratio(int leaf_qindex, double qstep_ratio,
2222
0
                                     aom_bit_depth_t bit_depth) {
2223
0
  const double leaf_qstep = av1_dc_quant_QTX(leaf_qindex, 0, bit_depth);
2224
0
  const double target_qstep = leaf_qstep * qstep_ratio;
2225
0
  int qindex = leaf_qindex;
2226
0
  if (qstep_ratio < 1.0) {
2227
0
    for (qindex = leaf_qindex; qindex > 0; --qindex) {
2228
0
      const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
2229
0
      if (qstep <= target_qstep) break;
2230
0
    }
2231
0
  } else {
2232
0
    for (qindex = leaf_qindex; qindex <= MAXQ; ++qindex) {
2233
0
      const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
2234
0
      if (qstep >= target_qstep) break;
2235
0
    }
2236
0
  }
2237
0
  return qindex;
2238
0
}
2239
2240
int av1_tpl_get_q_index(const TplParams *tpl_data, int gf_frame_index,
2241
0
                        int leaf_qindex, aom_bit_depth_t bit_depth) {
2242
0
  const double qstep_ratio = av1_tpl_get_qstep_ratio(tpl_data, gf_frame_index);
2243
0
  return av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
2244
0
}
2245
2246
#if CONFIG_BITRATE_ACCURACY
2247
void av1_vbr_rc_init(VBR_RATECTRL_INFO *vbr_rc_info, double total_bit_budget,
2248
                     int show_frame_count) {
2249
  av1_zero(*vbr_rc_info);
2250
  vbr_rc_info->ready = 0;
2251
  vbr_rc_info->total_bit_budget = total_bit_budget;
2252
  vbr_rc_info->show_frame_count = show_frame_count;
2253
  const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.94559, 1,
2254
                                                     0.94559, 1,       1,
2255
                                                     0.94559 };
2256
2257
  // TODO(angiebird): Based on the previous code, only the scale factor 0.94559
2258
  // will be used in most of the cases with --limi=17. Figure out if the
2259
  // following scale factors works better.
2260
  // const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.12040, 1,
2261
  //                                                    1.10199, 1,       1,
2262
  //                                                    0.16393 };
2263
2264
  const double mv_scale_factors[FRAME_UPDATE_TYPES] = { 3, 3, 3, 3, 3, 3, 3 };
2265
  memcpy(vbr_rc_info->scale_factors, scale_factors,
2266
         sizeof(scale_factors[0]) * FRAME_UPDATE_TYPES);
2267
  memcpy(vbr_rc_info->mv_scale_factors, mv_scale_factors,
2268
         sizeof(mv_scale_factors[0]) * FRAME_UPDATE_TYPES);
2269
2270
  vbr_rc_reset_gop_data(vbr_rc_info);
2271
#if CONFIG_THREE_PASS
2272
  // TODO(angiebird): Explain why we use -1 here
2273
  vbr_rc_info->cur_gop_idx = -1;
2274
  vbr_rc_info->gop_count = 0;
2275
  vbr_rc_info->total_frame_count = 0;
2276
#endif  // CONFIG_THREE_PASS
2277
}
2278
2279
#if CONFIG_THREE_PASS
2280
int av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO *vbr_rc_info,
2281
                                int gf_frame_index) {
2282
  int gop_idx = vbr_rc_info->cur_gop_idx;
2283
  int gop_start_idx = vbr_rc_info->gop_start_idx_list[gop_idx];
2284
  return gop_start_idx + gf_frame_index;
2285
}
2286
2287
void av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO *vbr_rc_info,
2288
                                const TPL_INFO *tpl_info) {
2289
  int gop_start_idx = vbr_rc_info->total_frame_count;
2290
  vbr_rc_info->gop_start_idx_list[vbr_rc_info->gop_count] = gop_start_idx;
2291
  vbr_rc_info->gop_length_list[vbr_rc_info->gop_count] = tpl_info->gf_length;
2292
  assert(gop_start_idx + tpl_info->gf_length <= VBR_RC_INFO_MAX_FRAMES);
2293
  for (int i = 0; i < tpl_info->gf_length; ++i) {
2294
    vbr_rc_info->txfm_stats_list[gop_start_idx + i] =
2295
        tpl_info->txfm_stats_list[i];
2296
    vbr_rc_info->qstep_ratio_list[gop_start_idx + i] =
2297
        tpl_info->qstep_ratio_ls[i];
2298
    vbr_rc_info->update_type_list[gop_start_idx + i] =
2299
        tpl_info->update_type_list[i];
2300
  }
2301
  vbr_rc_info->total_frame_count += tpl_info->gf_length;
2302
  vbr_rc_info->gop_count++;
2303
}
2304
#endif  // CONFIG_THREE_PASS
2305
2306
void av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO *vbr_rc_info,
2307
                                   int gop_showframe_count) {
2308
  vbr_rc_info->gop_showframe_count = gop_showframe_count;
2309
  vbr_rc_info->gop_bit_budget = vbr_rc_info->total_bit_budget *
2310
                                gop_showframe_count /
2311
                                vbr_rc_info->show_frame_count;
2312
}
2313
2314
void av1_vbr_rc_compute_q_indices(int base_q_index, int frame_count,
2315
                                  const double *qstep_ratio_list,
2316
                                  aom_bit_depth_t bit_depth,
2317
                                  int *q_index_list) {
2318
  for (int i = 0; i < frame_count; ++i) {
2319
    q_index_list[i] = av1_get_q_index_from_qstep_ratio(
2320
        base_q_index, qstep_ratio_list[i], bit_depth);
2321
  }
2322
}
2323
2324
double av1_vbr_rc_info_estimate_gop_bitrate(
2325
    int base_q_index, aom_bit_depth_t bit_depth,
2326
    const double *update_type_scale_factors, int frame_count,
2327
    const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
2328
    const TplTxfmStats *stats_list, int *q_index_list,
2329
    double *estimated_bitrate_byframe) {
2330
  av1_vbr_rc_compute_q_indices(base_q_index, frame_count, qstep_ratio_list,
2331
                               bit_depth, q_index_list);
2332
  double estimated_gop_bitrate = 0;
2333
  for (int frame_index = 0; frame_index < frame_count; frame_index++) {
2334
    const TplTxfmStats *frame_stats = &stats_list[frame_index];
2335
    double frame_bitrate = 0;
2336
    if (frame_stats->ready) {
2337
      int q_index = q_index_list[frame_index];
2338
2339
      frame_bitrate = av1_laplace_estimate_frame_rate(
2340
          q_index, frame_stats->txfm_block_count, frame_stats->abs_coeff_mean,
2341
          frame_stats->coeff_num);
2342
    }
2343
    FRAME_UPDATE_TYPE update_type = update_type_list[frame_index];
2344
    estimated_gop_bitrate +=
2345
        frame_bitrate * update_type_scale_factors[update_type];
2346
    if (estimated_bitrate_byframe != NULL) {
2347
      estimated_bitrate_byframe[frame_index] = frame_bitrate;
2348
    }
2349
  }
2350
  return estimated_gop_bitrate;
2351
}
2352
2353
int av1_vbr_rc_info_estimate_base_q(
2354
    double bit_budget, aom_bit_depth_t bit_depth,
2355
    const double *update_type_scale_factors, int frame_count,
2356
    const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
2357
    const TplTxfmStats *stats_list, int *q_index_list,
2358
    double *estimated_bitrate_byframe) {
2359
  int q_max = 255;  // Maximum q value.
2360
  int q_min = 0;    // Minimum q value.
2361
  int q = (q_max + q_min) / 2;
2362
2363
  double q_max_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2364
      q_max, bit_depth, update_type_scale_factors, frame_count,
2365
      update_type_list, qstep_ratio_list, stats_list, q_index_list,
2366
      estimated_bitrate_byframe);
2367
2368
  double q_min_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2369
      q_min, bit_depth, update_type_scale_factors, frame_count,
2370
      update_type_list, qstep_ratio_list, stats_list, q_index_list,
2371
      estimated_bitrate_byframe);
2372
  while (q_min + 1 < q_max) {
2373
    double estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2374
        q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
2375
        qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
2376
    if (estimate > bit_budget) {
2377
      q_min = q;
2378
      q_min_estimate = estimate;
2379
    } else {
2380
      q_max = q;
2381
      q_max_estimate = estimate;
2382
    }
2383
    q = (q_max + q_min) / 2;
2384
  }
2385
  // Pick the estimate that lands closest to the budget.
2386
  if (fabs(q_max_estimate - bit_budget) < fabs(q_min_estimate - bit_budget)) {
2387
    q = q_max;
2388
  } else {
2389
    q = q_min;
2390
  }
2391
  // Update q_index_list and vbr_rc_info.
2392
  av1_vbr_rc_info_estimate_gop_bitrate(
2393
      q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
2394
      qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
2395
  return q;
2396
}
2397
void av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO *vbr_rc_info,
2398
                                    const TplParams *tpl_data,
2399
                                    const GF_GROUP *gf_group,
2400
                                    aom_bit_depth_t bit_depth) {
2401
  vbr_rc_info->q_index_list_ready = 1;
2402
  double gop_bit_budget = vbr_rc_info->gop_bit_budget;
2403
2404
  for (int i = 0; i < gf_group->size; i++) {
2405
    vbr_rc_info->qstep_ratio_list[i] = av1_tpl_get_qstep_ratio(tpl_data, i);
2406
  }
2407
2408
  double mv_bits = 0;
2409
  for (int i = 0; i < gf_group->size; i++) {
2410
    double frame_mv_bits = 0;
2411
    if (av1_tpl_stats_ready(tpl_data, i)) {
2412
      TplDepFrame *tpl_frame = &tpl_data->tpl_frame[i];
2413
      frame_mv_bits = av1_tpl_compute_frame_mv_entropy(
2414
          tpl_frame, tpl_data->tpl_stats_block_mis_log2);
2415
      FRAME_UPDATE_TYPE updae_type = gf_group->update_type[i];
2416
      mv_bits += frame_mv_bits * vbr_rc_info->mv_scale_factors[updae_type];
2417
    }
2418
  }
2419
2420
  mv_bits = AOMMIN(mv_bits, 0.6 * gop_bit_budget);
2421
  gop_bit_budget -= mv_bits;
2422
2423
  vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q(
2424
      gop_bit_budget, bit_depth, vbr_rc_info->scale_factors, gf_group->size,
2425
      gf_group->update_type, vbr_rc_info->qstep_ratio_list,
2426
      tpl_data->txfm_stats_list, vbr_rc_info->q_index_list, NULL);
2427
}
2428
2429
#endif  // CONFIG_BITRATE_ACCURACY
2430
2431
// Use upper and left neighbor block as the reference MVs.
2432
// Compute the minimum difference between current MV and reference MV.
2433
int_mv av1_compute_mv_difference(const TplDepFrame *tpl_frame, int row, int col,
2434
0
                                 int step, int tpl_stride, int right_shift) {
2435
0
  const TplDepStats *tpl_stats =
2436
0
      &tpl_frame
2437
0
           ->tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_stride, right_shift)];
2438
0
  int_mv current_mv = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2439
0
  int current_mv_magnitude =
2440
0
      abs(current_mv.as_mv.row) + abs(current_mv.as_mv.col);
2441
2442
  // Retrieve the up and left neighbors.
2443
0
  int up_error = INT_MAX;
2444
0
  int_mv up_mv_diff;
2445
0
  if (row - step >= 0) {
2446
0
    tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
2447
0
        row - step, col, tpl_stride, right_shift)];
2448
0
    up_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2449
0
    up_mv_diff.as_mv.row = current_mv.as_mv.row - up_mv_diff.as_mv.row;
2450
0
    up_mv_diff.as_mv.col = current_mv.as_mv.col - up_mv_diff.as_mv.col;
2451
0
    up_error = abs(up_mv_diff.as_mv.row) + abs(up_mv_diff.as_mv.col);
2452
0
  }
2453
2454
0
  int left_error = INT_MAX;
2455
0
  int_mv left_mv_diff;
2456
0
  if (col - step >= 0) {
2457
0
    tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
2458
0
        row, col - step, tpl_stride, right_shift)];
2459
0
    left_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2460
0
    left_mv_diff.as_mv.row = current_mv.as_mv.row - left_mv_diff.as_mv.row;
2461
0
    left_mv_diff.as_mv.col = current_mv.as_mv.col - left_mv_diff.as_mv.col;
2462
0
    left_error = abs(left_mv_diff.as_mv.row) + abs(left_mv_diff.as_mv.col);
2463
0
  }
2464
2465
  // Return the MV with the minimum distance from current.
2466
0
  if (up_error < left_error && up_error < current_mv_magnitude) {
2467
0
    return up_mv_diff;
2468
0
  } else if (left_error < up_error && left_error < current_mv_magnitude) {
2469
0
    return left_mv_diff;
2470
0
  }
2471
0
  return current_mv;
2472
0
}
2473
2474
/* Compute the entropy of motion vectors for a single frame. */
2475
double av1_tpl_compute_frame_mv_entropy(const TplDepFrame *tpl_frame,
2476
0
                                        uint8_t right_shift) {
2477
0
  if (!tpl_frame->is_valid) {
2478
0
    return 0;
2479
0
  }
2480
2481
0
  int count_row[500] = { 0 };
2482
0
  int count_col[500] = { 0 };
2483
0
  int n = 0;  // number of MVs to process
2484
2485
0
  const int tpl_stride = tpl_frame->stride;
2486
0
  const int step = 1 << right_shift;
2487
2488
0
  for (int row = 0; row < tpl_frame->mi_rows; row += step) {
2489
0
    for (int col = 0; col < tpl_frame->mi_cols; col += step) {
2490
0
      int_mv mv = av1_compute_mv_difference(tpl_frame, row, col, step,
2491
0
                                            tpl_stride, right_shift);
2492
0
      count_row[clamp(mv.as_mv.row, 0, 499)] += 1;
2493
0
      count_col[clamp(mv.as_mv.row, 0, 499)] += 1;
2494
0
      n += 1;
2495
0
    }
2496
0
  }
2497
2498
  // Estimate the bits used using the entropy formula.
2499
0
  double rate_row = 0;
2500
0
  double rate_col = 0;
2501
0
  for (int i = 0; i < 500; i++) {
2502
0
    if (count_row[i] != 0) {
2503
0
      double p = count_row[i] / (double)n;
2504
0
      rate_row += count_row[i] * -log2(p);
2505
0
    }
2506
0
    if (count_col[i] != 0) {
2507
0
      double p = count_col[i] / (double)n;
2508
0
      rate_col += count_col[i] * -log2(p);
2509
0
    }
2510
0
  }
2511
2512
0
  return rate_row + rate_col;
2513
0
}