/src/libjxl/lib/jxl/base/fast_math-inl.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) the JPEG XL Project Authors. All rights reserved. |
2 | | // |
3 | | // Use of this source code is governed by a BSD-style |
4 | | // license that can be found in the LICENSE file. |
5 | | |
6 | | // Fast SIMD math ops (log2, encoder only, cos, erf for splines) |
7 | | |
8 | | #if defined(LIB_JXL_BASE_FAST_MATH_INL_H_) == defined(HWY_TARGET_TOGGLE) |
9 | | #ifdef LIB_JXL_BASE_FAST_MATH_INL_H_ |
10 | | #undef LIB_JXL_BASE_FAST_MATH_INL_H_ |
11 | | #else |
12 | | #define LIB_JXL_BASE_FAST_MATH_INL_H_ |
13 | | #endif |
14 | | |
15 | | #include <hwy/highway.h> |
16 | | |
17 | | #include "lib/jxl/base/common.h" |
18 | | #include "lib/jxl/base/rational_polynomial-inl.h" |
19 | | HWY_BEFORE_NAMESPACE(); |
20 | | namespace jxl { |
21 | | namespace HWY_NAMESPACE { |
22 | | |
23 | | // These templates are not found via ADL. |
24 | | using hwy::HWY_NAMESPACE::Abs; |
25 | | using hwy::HWY_NAMESPACE::Add; |
26 | | using hwy::HWY_NAMESPACE::Eq; |
27 | | using hwy::HWY_NAMESPACE::Floor; |
28 | | using hwy::HWY_NAMESPACE::Ge; |
29 | | using hwy::HWY_NAMESPACE::GetLane; |
30 | | using hwy::HWY_NAMESPACE::IfThenElse; |
31 | | using hwy::HWY_NAMESPACE::IfThenZeroElse; |
32 | | using hwy::HWY_NAMESPACE::Le; |
33 | | using hwy::HWY_NAMESPACE::Min; |
34 | | using hwy::HWY_NAMESPACE::Mul; |
35 | | using hwy::HWY_NAMESPACE::MulAdd; |
36 | | using hwy::HWY_NAMESPACE::NegMulAdd; |
37 | | using hwy::HWY_NAMESPACE::Rebind; |
38 | | using hwy::HWY_NAMESPACE::ShiftLeft; |
39 | | using hwy::HWY_NAMESPACE::ShiftRight; |
40 | | using hwy::HWY_NAMESPACE::Sub; |
41 | | using hwy::HWY_NAMESPACE::Xor; |
42 | | |
43 | | // Computes base-2 logarithm like std::log2. Undefined if negative / NaN. |
44 | | // L1 error ~3.9E-6 |
45 | | template <class DF, class V> |
46 | 5.43M | V FastLog2f(const DF df, V x) { |
47 | | // 2,2 rational polynomial approximation of std::log1p(x) / std::log(2). |
48 | 5.43M | HWY_ALIGN const float p[4 * (2 + 1)] = {HWY_REP4(-1.8503833400518310E-06f), |
49 | 5.43M | HWY_REP4(1.4287160470083755E+00f), |
50 | 5.43M | HWY_REP4(7.4245873327820566E-01f)}; |
51 | 5.43M | HWY_ALIGN const float q[4 * (2 + 1)] = {HWY_REP4(9.9032814277590719E-01f), |
52 | 5.43M | HWY_REP4(1.0096718572241148E+00f), |
53 | 5.43M | HWY_REP4(1.7409343003366853E-01f)}; |
54 | | |
55 | 5.43M | const Rebind<int32_t, DF> di; |
56 | 5.43M | const auto x_bits = BitCast(di, x); |
57 | | |
58 | | // Range reduction to [-1/3, 1/3] - 3 integer, 2 float ops |
59 | 5.43M | const auto exp_bits = Sub(x_bits, Set(di, 0x3f2aaaab)); // = 2/3 |
60 | | // Shifted exponent = log2; also used to clear mantissa. |
61 | 5.43M | const auto exp_shifted = ShiftRight<23>(exp_bits); |
62 | 5.43M | const auto mantissa = BitCast(df, Sub(x_bits, ShiftLeft<23>(exp_shifted))); |
63 | 5.43M | const auto exp_val = ConvertTo(df, exp_shifted); |
64 | 5.43M | return Add(EvalRationalPolynomial(df, Sub(mantissa, Set(df, 1.0f)), p, q), |
65 | 5.43M | exp_val); |
66 | 5.43M | } |
67 | | |
68 | | // max relative error ~3e-7 |
69 | | template <class DF, class V> |
70 | 5.43M | V FastPow2f(const DF df, V x) { |
71 | 5.43M | const Rebind<int32_t, DF> di; |
72 | 5.43M | auto floorx = Floor(x); |
73 | 5.43M | auto exp = |
74 | 5.43M | BitCast(df, ShiftLeft<23>(Add(ConvertTo(di, floorx), Set(di, 127)))); |
75 | 5.43M | auto frac = Sub(x, floorx); |
76 | 5.43M | auto num = Add(frac, Set(df, 1.01749063e+01)); |
77 | 5.43M | num = MulAdd(num, frac, Set(df, 4.88687798e+01)); |
78 | 5.43M | num = MulAdd(num, frac, Set(df, 9.85506591e+01)); |
79 | 5.43M | num = Mul(num, exp); |
80 | 5.43M | auto den = MulAdd(frac, Set(df, 2.10242958e-01), Set(df, -2.22328856e-02)); |
81 | 5.43M | den = MulAdd(den, frac, Set(df, -1.94414990e+01)); |
82 | 5.43M | den = MulAdd(den, frac, Set(df, 9.85506633e+01)); |
83 | 5.43M | return Div(num, den); |
84 | 5.43M | } |
85 | | |
86 | | // max relative error ~3e-5 |
87 | | template <class DF, class V> |
88 | 5.43M | V FastPowf(const DF df, V base, V exponent) { |
89 | 5.43M | return FastPow2f(df, Mul(FastLog2f(df, base), exponent)); |
90 | 5.43M | } |
91 | | |
92 | | // Computes cosine like std::cos. |
93 | | // L1 error 7e-5. |
94 | | template <class DF, class V> |
95 | 1.85G | V FastCosf(const DF df, V x) { |
96 | | // Step 1: range reduction to [0, 2pi) |
97 | 1.85G | const auto pi2 = Set(df, kPi * 2.0f); |
98 | 1.85G | const auto pi2_inv = Set(df, 0.5f / kPi); |
99 | 1.85G | const auto npi2 = Mul(Floor(Mul(x, pi2_inv)), pi2); |
100 | 1.85G | const auto xmodpi2 = Sub(x, npi2); |
101 | | // Step 2: range reduction to [0, pi] |
102 | 1.85G | const auto x_pi = Min(xmodpi2, Sub(pi2, xmodpi2)); |
103 | | // Step 3: range reduction to [0, pi/2] |
104 | 1.85G | const auto above_pihalf = Ge(x_pi, Set(df, kPi / 2.0f)); |
105 | 1.85G | const auto x_pihalf = IfThenElse(above_pihalf, Sub(Set(df, kPi), x_pi), x_pi); |
106 | | // Step 4: Taylor-like approximation, scaled by 2**0.75 to make angle |
107 | | // duplication steps faster, on x/4. |
108 | 1.85G | const auto xs = Mul(x_pihalf, Set(df, 0.25f)); |
109 | 1.85G | const auto x2 = Mul(xs, xs); |
110 | 1.85G | const auto x4 = Mul(x2, x2); |
111 | 1.85G | const auto cosx_prescaling = |
112 | 1.85G | MulAdd(x4, Set(df, 0.06960438), |
113 | 1.85G | MulAdd(x2, Set(df, -0.84087373), Set(df, 1.68179268))); |
114 | | // Step 5: angle duplication. |
115 | 1.85G | const auto cosx_scale1 = |
116 | 1.85G | MulAdd(cosx_prescaling, cosx_prescaling, Set(df, -1.414213562)); |
117 | 1.85G | const auto cosx_scale2 = MulAdd(cosx_scale1, cosx_scale1, Set(df, -1)); |
118 | | // Step 6: change sign if needed. |
119 | 1.85G | const Rebind<uint32_t, DF> du; |
120 | 1.85G | auto signbit = ShiftLeft<31>(BitCast(du, VecFromMask(df, above_pihalf))); |
121 | 1.85G | return BitCast(df, Xor(signbit, BitCast(du, cosx_scale2))); |
122 | 1.85G | } |
123 | | |
124 | | // Computes the error function like std::erf. |
125 | | // L1 error 7e-4. |
126 | | template <class DF, class V> |
127 | 52.3M | V FastErff(const DF df, V x) { |
128 | | // Formula from |
129 | | // https://en.wikipedia.org/wiki/Error_function#Numerical_approximations |
130 | | // but constants have been recomputed. |
131 | 52.3M | const auto xle0 = Le(x, Zero(df)); |
132 | 52.3M | const auto absx = Abs(x); |
133 | | // Compute 1 - 1 / ((((x * a + b) * x + c) * x + d) * x + 1)**4 |
134 | 52.3M | const auto denom1 = |
135 | 52.3M | MulAdd(absx, Set(df, 7.77394369e-02), Set(df, 2.05260015e-04)); |
136 | 52.3M | const auto denom2 = MulAdd(denom1, absx, Set(df, 2.32120216e-01)); |
137 | 52.3M | const auto denom3 = MulAdd(denom2, absx, Set(df, 2.77820801e-01)); |
138 | 52.3M | const auto denom4 = MulAdd(denom3, absx, Set(df, 1.0f)); |
139 | 52.3M | const auto denom5 = Mul(denom4, denom4); |
140 | 52.3M | const auto inv_denom5 = Div(Set(df, 1.0f), denom5); |
141 | 52.3M | const auto result = NegMulAdd(inv_denom5, inv_denom5, Set(df, 1.0f)); |
142 | | // Change sign if needed. |
143 | 52.3M | const Rebind<uint32_t, DF> du; |
144 | 52.3M | auto signbit = ShiftLeft<31>(BitCast(du, VecFromMask(df, xle0))); |
145 | 52.3M | return BitCast(df, Xor(signbit, BitCast(du, result))); |
146 | 52.3M | } |
147 | | |
148 | 0 | inline float FastLog2f(float f) { |
149 | 0 | HWY_CAPPED(float, 1) D; |
150 | 0 | return GetLane(FastLog2f(D, Set(D, f))); |
151 | 0 | } |
152 | | |
153 | 0 | inline float FastPow2f(float f) { |
154 | 0 | HWY_CAPPED(float, 1) D; |
155 | 0 | return GetLane(FastPow2f(D, Set(D, f))); |
156 | 0 | } |
157 | | |
158 | 151k | inline float FastPowf(float b, float e) { |
159 | 151k | HWY_CAPPED(float, 1) D; |
160 | 151k | return GetLane(FastPowf(D, Set(D, b), Set(D, e))); |
161 | 151k | } |
162 | | |
163 | 0 | inline float FastCosf(float f) { |
164 | 0 | HWY_CAPPED(float, 1) D; |
165 | 0 | return GetLane(FastCosf(D, Set(D, f))); |
166 | 0 | } |
167 | | |
168 | 0 | inline float FastErff(float f) { |
169 | 0 | HWY_CAPPED(float, 1) D; |
170 | 0 | return GetLane(FastErff(D, Set(D, f))); |
171 | 0 | } |
172 | | |
173 | | // Returns cbrt(x) + add with 6 ulp max error. |
174 | | // Modified from vectormath_exp.h, Apache 2 license. |
175 | | // https://www.agner.org/optimize/vectorclass.zip |
176 | | template <class V> |
177 | 0 | V CubeRootAndAdd(const V x, const V add) { |
178 | 0 | const HWY_FULL(float) df; |
179 | 0 | const HWY_FULL(int32_t) di; |
180 | |
|
181 | 0 | const auto kExpBias = Set(di, 0x54800000); // cast(1.) + cast(1.) / 3 |
182 | 0 | const auto kExpMul = Set(di, 0x002AAAAA); // shifted 1/3 |
183 | 0 | const auto k1_3 = Set(df, 1.0f / 3); |
184 | 0 | const auto k4_3 = Set(df, 4.0f / 3); |
185 | |
|
186 | 0 | const auto xa = x; // assume inputs never negative |
187 | 0 | const auto xa_3 = Mul(k1_3, xa); |
188 | | |
189 | | // Multiply exponent by -1/3 |
190 | 0 | const auto m1 = BitCast(di, xa); |
191 | | // Special case for 0. 0 is represented with an exponent of 0, so the |
192 | | // "kExpBias - 1/3 * exp" below gives the wrong result. The IfThenZeroElse() |
193 | | // sets those values as 0, which prevents having NaNs in the computations |
194 | | // below. |
195 | | // TODO(eustas): use fused op |
196 | 0 | const auto m2 = IfThenZeroElse( |
197 | 0 | Eq(m1, Zero(di)), Sub(kExpBias, Mul((ShiftRight<23>(m1)), kExpMul))); |
198 | 0 | auto r = BitCast(df, m2); |
199 | | |
200 | | // Newton-Raphson iterations |
201 | 0 | for (int i = 0; i < 3; i++) { |
202 | 0 | const auto r2 = Mul(r, r); |
203 | 0 | r = NegMulAdd(xa_3, Mul(r2, r2), Mul(k4_3, r)); |
204 | 0 | } |
205 | | // Final iteration |
206 | 0 | auto r2 = Mul(r, r); |
207 | 0 | r = MulAdd(k1_3, NegMulAdd(xa, Mul(r2, r2), r), r); |
208 | 0 | r2 = Mul(r, r); |
209 | 0 | r = MulAdd(r2, x, add); |
210 | |
|
211 | 0 | return r; |
212 | 0 | } |
213 | | |
214 | | // NOLINTNEXTLINE(google-readability-namespace-comments) |
215 | | } // namespace HWY_NAMESPACE |
216 | | } // namespace jxl |
217 | | HWY_AFTER_NAMESPACE(); |
218 | | |
219 | | #endif // LIB_JXL_BASE_FAST_MATH_INL_H_ |
220 | | |
221 | | #if HWY_ONCE |
222 | | #ifndef LIB_JXL_BASE_FAST_MATH_ONCE |
223 | | #define LIB_JXL_BASE_FAST_MATH_ONCE |
224 | | |
225 | | namespace jxl { |
226 | 0 | inline float FastLog2f(float f) { return HWY_STATIC_DISPATCH(FastLog2f)(f); } |
227 | 0 | inline float FastPow2f(float f) { return HWY_STATIC_DISPATCH(FastPow2f)(f); } |
228 | 0 | inline float FastPowf(float b, float e) { |
229 | 0 | return HWY_STATIC_DISPATCH(FastPowf)(b, e); |
230 | 0 | } |
231 | 0 | inline float FastCosf(float f) { return HWY_STATIC_DISPATCH(FastCosf)(f); } |
232 | 0 | inline float FastErff(float f) { return HWY_STATIC_DISPATCH(FastErff)(f); } |
233 | | } // namespace jxl |
234 | | |
235 | | #endif // LIB_JXL_BASE_FAST_MATH_ONCE |
236 | | #endif // HWY_ONCE |