Coverage Report

Created: 2025-06-22 08:04

/src/libjxl/lib/jxl/butteraugli/butteraugli.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
//
6
// Author: Jyrki Alakuijala (jyrki.alakuijala@gmail.com)
7
//
8
// The physical architecture of butteraugli is based on the following naming
9
// convention:
10
//   * Opsin - dynamics of the photosensitive chemicals in the retina
11
//             with their immediate electrical processing
12
//   * Xyb - hybrid opponent/trichromatic color space
13
//     x is roughly red-subtract-green.
14
//     y is yellow.
15
//     b is blue.
16
//     Xyb values are computed from Opsin mixing, not directly from rgb.
17
//   * Mask - for visual masking
18
//   * Hf - color modeling for spatially high-frequency features
19
//   * Lf - color modeling for spatially low-frequency features
20
//   * Diffmap - to cluster and build an image of error between the images
21
//   * Blur - to hold the smoothing code
22
23
#include "lib/jxl/butteraugli/butteraugli.h"
24
25
#include <jxl/memory_manager.h>
26
27
#include <algorithm>
28
#include <cmath>
29
#include <cstdint>
30
#include <cstdio>
31
#include <cstdlib>
32
#include <cstring>
33
#include <memory>
34
#include <vector>
35
36
#include "lib/jxl/image.h"
37
38
#undef HWY_TARGET_INCLUDE
39
#define HWY_TARGET_INCLUDE "lib/jxl/butteraugli/butteraugli.cc"
40
#include <hwy/foreach_target.h>
41
42
#include "lib/jxl/base/fast_math-inl.h"
43
#include "lib/jxl/base/rect.h"
44
#include "lib/jxl/base/status.h"
45
#include "lib/jxl/convolve.h"
46
#include "lib/jxl/image_ops.h"
47
48
#if BUTTERAUGLI_ENABLE_CHECKS
49
#include "lib/jxl/base/printf_macros.h"
50
#endif
51
52
#ifndef JXL_BUTTERAUGLI_ONCE
53
#define JXL_BUTTERAUGLI_ONCE
54
55
namespace jxl {
56
57
static const double wMfMalta = 37.0819870399;
58
static const double norm1Mf = 130262059.556;
59
static const double wMfMaltaX = 8246.75321353;
60
static const double norm1MfX = 1009002.70582;
61
static const double wHfMalta = 18.7237414387;
62
static const double norm1Hf = 4498534.45232;
63
static const double wHfMaltaX = 6923.99476109;
64
static const double norm1HfX = 8051.15833247;
65
static const double wUhfMalta = 1.10039032555;
66
static const double norm1Uhf = 71.7800275169;
67
static const double wUhfMaltaX = 173.5;
68
static const double norm1UhfX = 5.0;
69
static const double wmul[9] = {
70
    400.0,         1.50815703118,  0,
71
    2150.0,        10.6195433239,  16.2176043152,
72
    29.2353797994, 0.844626970982, 0.703646627719,
73
};
74
75
0
std::vector<float> ComputeKernel(float sigma) {
76
0
  const float m = 2.25;  // Accuracy increases when m is increased.
77
0
  const double scaler = -1.0 / (2.0 * sigma * sigma);
78
0
  const int diff = std::max<int>(1, m * std::fabs(sigma));
79
0
  std::vector<float> kernel(2 * diff + 1);
80
0
  for (int i = -diff; i <= diff; ++i) {
81
0
    kernel[i + diff] = std::exp(scaler * i * i);
82
0
  }
83
0
  return kernel;
84
0
}
85
86
void ConvolveBorderColumn(const ImageF& in, const std::vector<float>& kernel,
87
0
                          const size_t x, float* BUTTERAUGLI_RESTRICT row_out) {
88
0
  const size_t offset = kernel.size() / 2;
89
0
  int minx = x < offset ? 0 : x - offset;
90
0
  int maxx = std::min<int>(in.xsize() - 1, x + offset);
91
0
  float weight = 0.0f;
92
0
  for (int j = minx; j <= maxx; ++j) {
93
0
    weight += kernel[j - x + offset];
94
0
  }
95
0
  float scale = 1.0f / weight;
96
0
  for (size_t y = 0; y < in.ysize(); ++y) {
97
0
    const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y);
98
0
    float sum = 0.0f;
99
0
    for (int j = minx; j <= maxx; ++j) {
100
0
      sum += row_in[j] * kernel[j - x + offset];
101
0
    }
102
0
    row_out[y] = sum * scale;
103
0
  }
104
0
}
105
106
// Computes a horizontal convolution and transposes the result.
107
Status ConvolutionWithTranspose(const ImageF& in,
108
                                const std::vector<float>& kernel,
109
0
                                ImageF* BUTTERAUGLI_RESTRICT out) {
110
0
  JXL_ENSURE(out->xsize() == in.ysize());
111
0
  JXL_ENSURE(out->ysize() == in.xsize());
112
0
  const size_t len = kernel.size();
113
0
  const size_t offset = len / 2;
114
0
  float weight_no_border = 0.0f;
115
0
  for (size_t j = 0; j < len; ++j) {
116
0
    weight_no_border += kernel[j];
117
0
  }
118
0
  const float scale_no_border = 1.0f / weight_no_border;
119
0
  const size_t border1 = std::min(in.xsize(), offset);
120
0
  const size_t border2 = in.xsize() > offset ? in.xsize() - offset : 0;
121
0
  std::vector<float> scaled_kernel(len / 2 + 1);
122
0
  for (size_t i = 0; i <= len / 2; ++i) {
123
0
    scaled_kernel[i] = kernel[i] * scale_no_border;
124
0
  }
125
126
  // middle
127
0
  switch (len) {
128
0
    case 7: {
129
0
      const float sk0 = scaled_kernel[0];
130
0
      const float sk1 = scaled_kernel[1];
131
0
      const float sk2 = scaled_kernel[2];
132
0
      const float sk3 = scaled_kernel[3];
133
0
      for (size_t y = 0; y < in.ysize(); ++y) {
134
0
        const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
135
0
        for (size_t x = border1; x < border2; ++x, ++row_in) {
136
0
          const float sum0 = (row_in[0] + row_in[6]) * sk0;
137
0
          const float sum1 = (row_in[1] + row_in[5]) * sk1;
138
0
          const float sum2 = (row_in[2] + row_in[4]) * sk2;
139
0
          const float sum = (row_in[3]) * sk3 + sum0 + sum1 + sum2;
140
0
          float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
141
0
          row_out[y] = sum;
142
0
        }
143
0
      }
144
0
    } break;
145
0
    case 13: {
146
0
      for (size_t y = 0; y < in.ysize(); ++y) {
147
0
        const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
148
0
        for (size_t x = border1; x < border2; ++x, ++row_in) {
149
0
          float sum0 = (row_in[0] + row_in[12]) * scaled_kernel[0];
150
0
          float sum1 = (row_in[1] + row_in[11]) * scaled_kernel[1];
151
0
          float sum2 = (row_in[2] + row_in[10]) * scaled_kernel[2];
152
0
          float sum3 = (row_in[3] + row_in[9]) * scaled_kernel[3];
153
0
          sum0 += (row_in[4] + row_in[8]) * scaled_kernel[4];
154
0
          sum1 += (row_in[5] + row_in[7]) * scaled_kernel[5];
155
0
          const float sum = (row_in[6]) * scaled_kernel[6];
156
0
          float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
157
0
          row_out[y] = sum + sum0 + sum1 + sum2 + sum3;
158
0
        }
159
0
      }
160
0
      break;
161
0
    }
162
0
    case 15: {
163
0
      for (size_t y = 0; y < in.ysize(); ++y) {
164
0
        const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
165
0
        for (size_t x = border1; x < border2; ++x, ++row_in) {
166
0
          float sum0 = (row_in[0] + row_in[14]) * scaled_kernel[0];
167
0
          float sum1 = (row_in[1] + row_in[13]) * scaled_kernel[1];
168
0
          float sum2 = (row_in[2] + row_in[12]) * scaled_kernel[2];
169
0
          float sum3 = (row_in[3] + row_in[11]) * scaled_kernel[3];
170
0
          sum0 += (row_in[4] + row_in[10]) * scaled_kernel[4];
171
0
          sum1 += (row_in[5] + row_in[9]) * scaled_kernel[5];
172
0
          sum2 += (row_in[6] + row_in[8]) * scaled_kernel[6];
173
0
          const float sum = (row_in[7]) * scaled_kernel[7];
174
0
          float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
175
0
          row_out[y] = sum + sum0 + sum1 + sum2 + sum3;
176
0
        }
177
0
      }
178
0
      break;
179
0
    }
180
0
    case 33: {
181
0
      for (size_t y = 0; y < in.ysize(); ++y) {
182
0
        const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
183
0
        for (size_t x = border1; x < border2; ++x, ++row_in) {
184
0
          float sum0 = (row_in[0] + row_in[32]) * scaled_kernel[0];
185
0
          float sum1 = (row_in[1] + row_in[31]) * scaled_kernel[1];
186
0
          float sum2 = (row_in[2] + row_in[30]) * scaled_kernel[2];
187
0
          float sum3 = (row_in[3] + row_in[29]) * scaled_kernel[3];
188
0
          sum0 += (row_in[4] + row_in[28]) * scaled_kernel[4];
189
0
          sum1 += (row_in[5] + row_in[27]) * scaled_kernel[5];
190
0
          sum2 += (row_in[6] + row_in[26]) * scaled_kernel[6];
191
0
          sum3 += (row_in[7] + row_in[25]) * scaled_kernel[7];
192
0
          sum0 += (row_in[8] + row_in[24]) * scaled_kernel[8];
193
0
          sum1 += (row_in[9] + row_in[23]) * scaled_kernel[9];
194
0
          sum2 += (row_in[10] + row_in[22]) * scaled_kernel[10];
195
0
          sum3 += (row_in[11] + row_in[21]) * scaled_kernel[11];
196
0
          sum0 += (row_in[12] + row_in[20]) * scaled_kernel[12];
197
0
          sum1 += (row_in[13] + row_in[19]) * scaled_kernel[13];
198
0
          sum2 += (row_in[14] + row_in[18]) * scaled_kernel[14];
199
0
          sum3 += (row_in[15] + row_in[17]) * scaled_kernel[15];
200
0
          const float sum = (row_in[16]) * scaled_kernel[16];
201
0
          float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
202
0
          row_out[y] = sum + sum0 + sum1 + sum2 + sum3;
203
0
        }
204
0
      }
205
0
      break;
206
0
    }
207
0
    default:
208
0
      return JXL_UNREACHABLE("kernel size %d not implemented",
209
0
                             static_cast<int>(len));
210
0
  }
211
  // left border
212
0
  for (size_t x = 0; x < border1; ++x) {
213
0
    ConvolveBorderColumn(in, kernel, x, out->Row(x));
214
0
  }
215
216
  // right border
217
0
  for (size_t x = border2; x < in.xsize(); ++x) {
218
0
    ConvolveBorderColumn(in, kernel, x, out->Row(x));
219
0
  }
220
0
  return true;
221
0
}
222
223
// A blur somewhat similar to a 2D Gaussian blur.
224
// See: https://en.wikipedia.org/wiki/Gaussian_blur
225
//
226
// This is a bottleneck because the sigma can be quite large (>7). We can use
227
// gauss_blur.cc (runtime independent of sigma, closer to a 4*sigma truncated
228
// Gaussian and our 2.25 in ComputeKernel), but its boundary conditions are
229
// zero-valued. This leads to noticeable differences at the edges of diffmaps.
230
// We retain a special case for 5x5 kernels (even faster than gauss_blur),
231
// optionally use gauss_blur followed by fixup of the borders for large images,
232
// or fall back to the previous truncated FIR followed by a transpose.
233
Status Blur(const ImageF& in, float sigma, const ButteraugliParams& params,
234
0
            BlurTemp* temp, ImageF* out) {
235
0
  std::vector<float> kernel = ComputeKernel(sigma);
236
  // Separable5 does an in-place convolution, so this fast path is not safe if
237
  // in aliases out.
238
0
  if (kernel.size() == 5 && &in != out) {
239
0
    float sum_weights = 0.0f;
240
0
    for (const float w : kernel) {
241
0
      sum_weights += w;
242
0
    }
243
0
    const float scale = 1.0f / sum_weights;
244
0
    const float w0 = kernel[2] * scale;
245
0
    const float w1 = kernel[1] * scale;
246
0
    const float w2 = kernel[0] * scale;
247
0
    const WeightsSeparable5 weights = {
248
0
        {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)},
249
0
        {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)},
250
0
    };
251
0
    JXL_RETURN_IF_ERROR(
252
0
        Separable5(in, Rect(in), weights, /*pool=*/nullptr, out));
253
0
    return true;
254
0
  }
255
256
0
  ImageF* temp_t;
257
0
  JXL_RETURN_IF_ERROR(temp->GetTransposed(in, &temp_t));
258
0
  JXL_RETURN_IF_ERROR(ConvolutionWithTranspose(in, kernel, temp_t));
259
0
  JXL_RETURN_IF_ERROR(ConvolutionWithTranspose(*temp_t, kernel, out));
260
0
  return true;
261
0
}
262
263
// Allows PaddedMaltaUnit to call either function via overloading.
264
struct MaltaTagLF {};
265
struct MaltaTag {};
266
267
}  // namespace jxl
268
269
#endif  // JXL_BUTTERAUGLI_ONCE
270
271
#include <hwy/highway.h>
272
HWY_BEFORE_NAMESPACE();
273
namespace jxl {
274
namespace HWY_NAMESPACE {
275
276
// These templates are not found via ADL.
277
using hwy::HWY_NAMESPACE::Abs;
278
using hwy::HWY_NAMESPACE::Div;
279
using hwy::HWY_NAMESPACE::Gt;
280
using hwy::HWY_NAMESPACE::IfThenElse;
281
using hwy::HWY_NAMESPACE::IfThenElseZero;
282
using hwy::HWY_NAMESPACE::Lt;
283
using hwy::HWY_NAMESPACE::Max;
284
using hwy::HWY_NAMESPACE::Mul;
285
using hwy::HWY_NAMESPACE::MulAdd;
286
using hwy::HWY_NAMESPACE::MulSub;
287
using hwy::HWY_NAMESPACE::Neg;
288
using hwy::HWY_NAMESPACE::Sub;
289
using hwy::HWY_NAMESPACE::Vec;
290
using hwy::HWY_NAMESPACE::ZeroIfNegative;
291
292
template <class D, class V>
293
0
HWY_INLINE V MaximumClamp(D d, V v, double kMaxVal) {
294
0
  static const double kMul = 0.724216145665;
295
0
  const V mul = Set(d, kMul);
296
0
  const V maxval = Set(d, kMaxVal);
297
  // If greater than maxval or less than -maxval, replace with if_*.
298
0
  const V if_pos = MulAdd(Sub(v, maxval), mul, maxval);
299
0
  const V if_neg = MulSub(Add(v, maxval), mul, maxval);
300
0
  const V pos_or_v = IfThenElse(Ge(v, maxval), if_pos, v);
301
0
  return IfThenElse(Lt(v, Neg(maxval)), if_neg, pos_or_v);
302
0
}
303
304
// Make area around zero less important (remove it).
305
template <class D, class V>
306
0
HWY_INLINE V RemoveRangeAroundZero(const D d, const double kw, const V x) {
307
0
  const auto w = Set(d, kw);
308
0
  return IfThenElse(Gt(x, w), Sub(x, w),
309
0
                    IfThenElseZero(Lt(x, Neg(w)), Add(x, w)));
310
0
}
311
312
// Make area around zero more important (2x it until the limit).
313
template <class D, class V>
314
0
HWY_INLINE V AmplifyRangeAroundZero(const D d, const double kw, const V x) {
315
0
  const auto w = Set(d, kw);
316
0
  return IfThenElse(Gt(x, w), Add(x, w),
317
0
                    IfThenElse(Lt(x, Neg(w)), Sub(x, w), Add(x, x)));
318
0
}
319
320
// XybLowFreqToVals converts from low-frequency XYB space to the 'vals' space.
321
// Vals space can be converted to L2-norm space (Euclidean and normalized)
322
// through visual masking.
323
template <class D, class V>
324
HWY_INLINE void XybLowFreqToVals(const D d, const V& x, const V& y,
325
                                 const V& b_arg, V* HWY_RESTRICT valx,
326
0
                                 V* HWY_RESTRICT valy, V* HWY_RESTRICT valb) {
327
0
  static const double xmul_scalar = 33.832837186260;
328
0
  static const double ymul_scalar = 14.458268100570;
329
0
  static const double bmul_scalar = 49.87984651440;
330
0
  static const double y_to_b_mul_scalar = -0.362267051518;
331
0
  const V xmul = Set(d, xmul_scalar);
332
0
  const V ymul = Set(d, ymul_scalar);
333
0
  const V bmul = Set(d, bmul_scalar);
334
0
  const V y_to_b_mul = Set(d, y_to_b_mul_scalar);
335
0
  const V b = MulAdd(y_to_b_mul, y, b_arg);
336
0
  *valb = Mul(b, bmul);
337
0
  *valx = Mul(x, xmul);
338
0
  *valy = Mul(y, ymul);
339
0
}
340
341
0
void XybLowFreqToVals(Image3F* xyb_lf) {
342
  // Modify range around zero code only concerns the high frequency
343
  // planes and only the X and Y channels.
344
  // Convert low freq xyb to vals space so that we can do a simple squared sum
345
  // diff on the low frequencies later.
346
0
  const HWY_FULL(float) d;
347
0
  for (size_t y = 0; y < xyb_lf->ysize(); ++y) {
348
0
    float* BUTTERAUGLI_RESTRICT row_x = xyb_lf->PlaneRow(0, y);
349
0
    float* BUTTERAUGLI_RESTRICT row_y = xyb_lf->PlaneRow(1, y);
350
0
    float* BUTTERAUGLI_RESTRICT row_b = xyb_lf->PlaneRow(2, y);
351
0
    for (size_t x = 0; x < xyb_lf->xsize(); x += Lanes(d)) {
352
0
      auto valx = Undefined(d);
353
0
      auto valy = Undefined(d);
354
0
      auto valb = Undefined(d);
355
0
      XybLowFreqToVals(d, Load(d, row_x + x), Load(d, row_y + x),
356
0
                       Load(d, row_b + x), &valx, &valy, &valb);
357
0
      Store(valx, d, row_x + x);
358
0
      Store(valy, d, row_y + x);
359
0
      Store(valb, d, row_b + x);
360
0
    }
361
0
  }
362
0
}
363
364
0
Status SuppressXByY(const ImageF& in_y, ImageF* HWY_RESTRICT inout_x) {
365
0
  JXL_ENSURE(SameSize(*inout_x, in_y));
366
0
  const size_t xsize = in_y.xsize();
367
0
  const size_t ysize = in_y.ysize();
368
0
  const HWY_FULL(float) d;
369
0
  static const double suppress = 46.0;
370
0
  static const double s = 0.653020556257;
371
0
  const auto sv = Set(d, s);
372
0
  const auto one_minus_s = Set(d, 1.0 - s);
373
0
  const auto ywv = Set(d, suppress);
374
375
0
  for (size_t y = 0; y < ysize; ++y) {
376
0
    const float* HWY_RESTRICT row_y = in_y.ConstRow(y);
377
0
    float* HWY_RESTRICT row_x = inout_x->Row(y);
378
0
    for (size_t x = 0; x < xsize; x += Lanes(d)) {
379
0
      const auto vx = Load(d, row_x + x);
380
0
      const auto vy = Load(d, row_y + x);
381
0
      const auto scaler =
382
0
          MulAdd(Div(ywv, MulAdd(vy, vy, ywv)), one_minus_s, sv);
383
0
      Store(Mul(scaler, vx), d, row_x + x);
384
0
    }
385
0
  }
386
0
  return true;
387
0
}
388
389
0
void Subtract(const ImageF& a, const ImageF& b, ImageF* c) {
390
0
  const HWY_FULL(float) d;
391
0
  for (size_t y = 0; y < a.ysize(); ++y) {
392
0
    const float* row_a = a.ConstRow(y);
393
0
    const float* row_b = b.ConstRow(y);
394
0
    float* row_c = c->Row(y);
395
0
    for (size_t x = 0; x < a.xsize(); x += Lanes(d)) {
396
0
      Store(Sub(Load(d, row_a + x), Load(d, row_b + x)), d, row_c + x);
397
0
    }
398
0
  }
399
0
}
400
401
Status SeparateLFAndMF(const ButteraugliParams& params, const Image3F& xyb,
402
0
                       Image3F* lf, Image3F* mf, BlurTemp* blur_temp) {
403
0
  static const double kSigmaLf = 7.15593339443;
404
0
  for (int i = 0; i < 3; ++i) {
405
    // Extract lf ...
406
0
    JXL_RETURN_IF_ERROR(
407
0
        Blur(xyb.Plane(i), kSigmaLf, params, blur_temp, &lf->Plane(i)));
408
    // ... and keep everything else in mf.
409
0
    Subtract(xyb.Plane(i), lf->Plane(i), &mf->Plane(i));
410
0
  }
411
0
  XybLowFreqToVals(lf);
412
0
  return true;
413
0
}
414
415
Status SeparateMFAndHF(const ButteraugliParams& params, Image3F* mf, ImageF* hf,
416
0
                       BlurTemp* blur_temp) {
417
0
  const HWY_FULL(float) d;
418
0
  static const double kSigmaHf = 3.22489901262;
419
0
  const size_t xsize = mf->xsize();
420
0
  const size_t ysize = mf->ysize();
421
0
  JxlMemoryManager* memory_manager = mf[0].memory_manager();
422
0
  JXL_ASSIGN_OR_RETURN(hf[0], ImageF::Create(memory_manager, xsize, ysize));
423
0
  JXL_ASSIGN_OR_RETURN(hf[1], ImageF::Create(memory_manager, xsize, ysize));
424
0
  for (int i = 0; i < 3; ++i) {
425
0
    if (i == 2) {
426
0
      JXL_RETURN_IF_ERROR(
427
0
          Blur(mf->Plane(i), kSigmaHf, params, blur_temp, &mf->Plane(i)));
428
0
      break;
429
0
    }
430
0
    for (size_t y = 0; y < ysize; ++y) {
431
0
      float* BUTTERAUGLI_RESTRICT row_mf = mf->PlaneRow(i, y);
432
0
      float* BUTTERAUGLI_RESTRICT row_hf = hf[i].Row(y);
433
0
      for (size_t x = 0; x < xsize; x += Lanes(d)) {
434
0
        Store(Load(d, row_mf + x), d, row_hf + x);
435
0
      }
436
0
    }
437
0
    JXL_RETURN_IF_ERROR(
438
0
        Blur(mf->Plane(i), kSigmaHf, params, blur_temp, &mf->Plane(i)));
439
0
    static const double kRemoveMfRange = 0.29;
440
0
    static const double kAddMfRange = 0.1;
441
0
    if (i == 0) {
442
0
      for (size_t y = 0; y < ysize; ++y) {
443
0
        float* BUTTERAUGLI_RESTRICT row_mf = mf->PlaneRow(0, y);
444
0
        float* BUTTERAUGLI_RESTRICT row_hf = hf[0].Row(y);
445
0
        for (size_t x = 0; x < xsize; x += Lanes(d)) {
446
0
          auto mf = Load(d, row_mf + x);
447
0
          auto hf = Sub(Load(d, row_hf + x), mf);
448
0
          mf = RemoveRangeAroundZero(d, kRemoveMfRange, mf);
449
0
          Store(mf, d, row_mf + x);
450
0
          Store(hf, d, row_hf + x);
451
0
        }
452
0
      }
453
0
    } else {
454
0
      for (size_t y = 0; y < ysize; ++y) {
455
0
        float* BUTTERAUGLI_RESTRICT row_mf = mf->PlaneRow(1, y);
456
0
        float* BUTTERAUGLI_RESTRICT row_hf = hf[1].Row(y);
457
0
        for (size_t x = 0; x < xsize; x += Lanes(d)) {
458
0
          auto mf = Load(d, row_mf + x);
459
0
          auto hf = Sub(Load(d, row_hf + x), mf);
460
461
0
          mf = AmplifyRangeAroundZero(d, kAddMfRange, mf);
462
0
          Store(mf, d, row_mf + x);
463
0
          Store(hf, d, row_hf + x);
464
0
        }
465
0
      }
466
0
    }
467
0
  }
468
  // Suppress red-green by intensity change in the high freq channels.
469
0
  JXL_RETURN_IF_ERROR(SuppressXByY(hf[1], &hf[0]));
470
0
  return true;
471
0
}
472
473
Status SeparateHFAndUHF(const ButteraugliParams& params, ImageF* hf,
474
0
                        ImageF* uhf, BlurTemp* blur_temp) {
475
0
  const HWY_FULL(float) d;
476
0
  const size_t xsize = hf[0].xsize();
477
0
  const size_t ysize = hf[0].ysize();
478
0
  JxlMemoryManager* memory_manager = hf[0].memory_manager();
479
0
  static const double kSigmaUhf = 1.56416327805;
480
0
  JXL_ASSIGN_OR_RETURN(uhf[0], ImageF::Create(memory_manager, xsize, ysize));
481
0
  JXL_ASSIGN_OR_RETURN(uhf[1], ImageF::Create(memory_manager, xsize, ysize));
482
0
  for (int i = 0; i < 2; ++i) {
483
    // Divide hf into hf and uhf.
484
0
    for (size_t y = 0; y < ysize; ++y) {
485
0
      float* BUTTERAUGLI_RESTRICT row_uhf = uhf[i].Row(y);
486
0
      float* BUTTERAUGLI_RESTRICT row_hf = hf[i].Row(y);
487
0
      for (size_t x = 0; x < xsize; ++x) {
488
0
        row_uhf[x] = row_hf[x];
489
0
      }
490
0
    }
491
0
    JXL_RETURN_IF_ERROR(Blur(hf[i], kSigmaUhf, params, blur_temp, &hf[i]));
492
0
    static const double kRemoveHfRange = 1.5;
493
0
    static const double kAddHfRange = 0.132;
494
0
    static const double kRemoveUhfRange = 0.04;
495
0
    static const double kMaxclampHf = 28.4691806922;
496
0
    static const double kMaxclampUhf = 5.19175294647;
497
0
    static double kMulYHf = 2.155;
498
0
    static double kMulYUhf = 2.69313763794;
499
0
    if (i == 0) {
500
0
      for (size_t y = 0; y < ysize; ++y) {
501
0
        float* BUTTERAUGLI_RESTRICT row_uhf = uhf[0].Row(y);
502
0
        float* BUTTERAUGLI_RESTRICT row_hf = hf[0].Row(y);
503
0
        for (size_t x = 0; x < xsize; x += Lanes(d)) {
504
0
          auto hf = Load(d, row_hf + x);
505
0
          auto uhf = Sub(Load(d, row_uhf + x), hf);
506
0
          hf = RemoveRangeAroundZero(d, kRemoveHfRange, hf);
507
0
          uhf = RemoveRangeAroundZero(d, kRemoveUhfRange, uhf);
508
0
          Store(hf, d, row_hf + x);
509
0
          Store(uhf, d, row_uhf + x);
510
0
        }
511
0
      }
512
0
    } else {
513
0
      for (size_t y = 0; y < ysize; ++y) {
514
0
        float* BUTTERAUGLI_RESTRICT row_uhf = uhf[1].Row(y);
515
0
        float* BUTTERAUGLI_RESTRICT row_hf = hf[1].Row(y);
516
0
        for (size_t x = 0; x < xsize; x += Lanes(d)) {
517
0
          auto hf = Load(d, row_hf + x);
518
0
          hf = MaximumClamp(d, hf, kMaxclampHf);
519
520
0
          auto uhf = Sub(Load(d, row_uhf + x), hf);
521
0
          uhf = MaximumClamp(d, uhf, kMaxclampUhf);
522
0
          uhf = Mul(uhf, Set(d, kMulYUhf));
523
0
          Store(uhf, d, row_uhf + x);
524
525
0
          hf = Mul(hf, Set(d, kMulYHf));
526
0
          hf = AmplifyRangeAroundZero(d, kAddHfRange, hf);
527
0
          Store(hf, d, row_hf + x);
528
0
        }
529
0
      }
530
0
    }
531
0
  }
532
0
  return true;
533
0
}
534
535
0
void DeallocateHFAndUHF(ImageF* hf, ImageF* uhf) {
536
0
  for (int i = 0; i < 2; ++i) {
537
0
    hf[i] = ImageF();
538
0
    uhf[i] = ImageF();
539
0
  }
540
0
}
541
542
Status SeparateFrequencies(size_t xsize, size_t ysize,
543
                           const ButteraugliParams& params, BlurTemp* blur_temp,
544
0
                           const Image3F& xyb, PsychoImage& ps) {
545
0
  JxlMemoryManager* memory_manager = xyb.memory_manager();
546
0
  JXL_ASSIGN_OR_RETURN(
547
0
      ps.lf, Image3F::Create(memory_manager, xyb.xsize(), xyb.ysize()));
548
0
  JXL_ASSIGN_OR_RETURN(
549
0
      ps.mf, Image3F::Create(memory_manager, xyb.xsize(), xyb.ysize()));
550
0
  JXL_RETURN_IF_ERROR(SeparateLFAndMF(params, xyb, &ps.lf, &ps.mf, blur_temp));
551
0
  JXL_RETURN_IF_ERROR(SeparateMFAndHF(params, &ps.mf, &ps.hf[0], blur_temp));
552
0
  JXL_RETURN_IF_ERROR(
553
0
      SeparateHFAndUHF(params, &ps.hf[0], &ps.uhf[0], blur_temp));
554
0
  return true;
555
0
}
556
557
namespace {
558
template <typename V>
559
0
BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d) {
560
0
  return Add(Add(a, b), Add(c, d));
561
0
}
562
template <typename V>
563
0
BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d, V e) {
564
0
  return Sum(a, b, c, Add(d, e));
565
0
}
566
template <typename V>
567
0
BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d, V e, V f, V g) {
568
0
  return Sum(a, b, c, Sum(d, e, f, g));
569
0
}
570
template <typename V>
571
0
BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d, V e, V f, V g, V h, V i) {
572
0
  return Add(Add(Sum(a, b, c, d), Sum(e, f, g, h)), i);
573
0
}
574
}  // namespace
575
576
template <class D>
577
Vec<D> MaltaUnit(MaltaTagLF /*tag*/, const D df,
578
0
                 const float* BUTTERAUGLI_RESTRICT d, const intptr_t xs) {
579
0
  const intptr_t xs3 = 3 * xs;
580
581
0
  const auto center = LoadU(df, d);
582
583
  // x grows, y constant
584
0
  const auto sum_yconst = Sum(LoadU(df, d - 4), LoadU(df, d - 2), center,
585
0
                              LoadU(df, d + 2), LoadU(df, d + 4));
586
  // Will return this, sum of all line kernels
587
0
  auto retval = Mul(sum_yconst, sum_yconst);
588
0
  {
589
    // y grows, x constant
590
0
    auto sum = Sum(LoadU(df, d - xs3 - xs), LoadU(df, d - xs - xs), center,
591
0
                   LoadU(df, d + xs + xs), LoadU(df, d + xs3 + xs));
592
0
    retval = MulAdd(sum, sum, retval);
593
0
  }
594
0
  {
595
    // both grow
596
0
    auto sum = Sum(LoadU(df, d - xs3 - 3), LoadU(df, d - xs - xs - 2), center,
597
0
                   LoadU(df, d + xs + xs + 2), LoadU(df, d + xs3 + 3));
598
0
    retval = MulAdd(sum, sum, retval);
599
0
  }
600
0
  {
601
    // y grows, x shrinks
602
0
    auto sum = Sum(LoadU(df, d - xs3 + 3), LoadU(df, d - xs - xs + 2), center,
603
0
                   LoadU(df, d + xs + xs - 2), LoadU(df, d + xs3 - 3));
604
0
    retval = MulAdd(sum, sum, retval);
605
0
  }
606
0
  {
607
    // y grows -4 to 4, x shrinks 1 -> -1
608
0
    auto sum =
609
0
        Sum(LoadU(df, d - xs3 - xs + 1), LoadU(df, d - xs - xs + 1), center,
610
0
            LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 + xs - 1));
611
0
    retval = MulAdd(sum, sum, retval);
612
0
  }
613
0
  {
614
    //  y grows -4 to 4, x grows -1 -> 1
615
0
    auto sum =
616
0
        Sum(LoadU(df, d - xs3 - xs - 1), LoadU(df, d - xs - xs - 1), center,
617
0
            LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + xs + 1));
618
0
    retval = MulAdd(sum, sum, retval);
619
0
  }
620
0
  {
621
    // x grows -4 to 4, y grows -1 to 1
622
0
    auto sum = Sum(LoadU(df, d - 4 - xs), LoadU(df, d - 2 - xs), center,
623
0
                   LoadU(df, d + 2 + xs), LoadU(df, d + 4 + xs));
624
0
    retval = MulAdd(sum, sum, retval);
625
0
  }
626
0
  {
627
    // x grows -4 to 4, y shrinks 1 to -1
628
0
    auto sum = Sum(LoadU(df, d - 4 + xs), LoadU(df, d - 2 + xs), center,
629
0
                   LoadU(df, d + 2 - xs), LoadU(df, d + 4 - xs));
630
0
    retval = MulAdd(sum, sum, retval);
631
0
  }
632
0
  {
633
    /* 0_________
634
       1__*______
635
       2___*_____
636
       3_________
637
       4____0____
638
       5_________
639
       6_____*___
640
       7______*__
641
       8_________ */
642
0
    auto sum = Sum(LoadU(df, d - xs3 - 2), LoadU(df, d - xs - xs - 1), center,
643
0
                   LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + 2));
644
0
    retval = MulAdd(sum, sum, retval);
645
0
  }
646
0
  {
647
    /* 0_________
648
       1______*__
649
       2_____*___
650
       3_________
651
       4____0____
652
       5_________
653
       6___*_____
654
       7__*______
655
       8_________ */
656
0
    auto sum = Sum(LoadU(df, d - xs3 + 2), LoadU(df, d - xs - xs + 1), center,
657
0
                   LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 - 2));
658
0
    retval = MulAdd(sum, sum, retval);
659
0
  }
660
0
  {
661
    /* 0_________
662
       1_________
663
       2_*_______
664
       3__*______
665
       4____0____
666
       5______*__
667
       6_______*_
668
       7_________
669
       8_________ */
670
0
    auto sum = Sum(LoadU(df, d - xs - xs - 3), LoadU(df, d - xs - 2), center,
671
0
                   LoadU(df, d + xs + 2), LoadU(df, d + xs + xs + 3));
672
0
    retval = MulAdd(sum, sum, retval);
673
0
  }
674
0
  {
675
    /* 0_________
676
       1_________
677
       2_______*_
678
       3______*__
679
       4____0____
680
       5__*______
681
       6_*_______
682
       7_________
683
       8_________ */
684
0
    auto sum = Sum(LoadU(df, d - xs - xs + 3), LoadU(df, d - xs + 2), center,
685
0
                   LoadU(df, d + xs - 2), LoadU(df, d + xs + xs - 3));
686
0
    retval = MulAdd(sum, sum, retval);
687
0
  }
688
0
  {
689
    /* 0_________
690
       1_________
691
       2________*
692
       3______*__
693
       4____0____
694
       5__*______
695
       6*________
696
       7_________
697
       8_________ */
698
699
0
    auto sum = Sum(LoadU(df, d + xs + xs - 4), LoadU(df, d + xs - 2), center,
700
0
                   LoadU(df, d - xs + 2), LoadU(df, d - xs - xs + 4));
701
0
    retval = MulAdd(sum, sum, retval);
702
0
  }
703
0
  {
704
    /* 0_________
705
       1_________
706
       2*________
707
       3__*______
708
       4____0____
709
       5______*__
710
       6________*
711
       7_________
712
       8_________ */
713
0
    auto sum = Sum(LoadU(df, d - xs - xs - 4), LoadU(df, d - xs - 2), center,
714
0
                   LoadU(df, d + xs + 2), LoadU(df, d + xs + xs + 4));
715
0
    retval = MulAdd(sum, sum, retval);
716
0
  }
717
0
  {
718
    /* 0__*______
719
       1_________
720
       2___*_____
721
       3_________
722
       4____0____
723
       5_________
724
       6_____*___
725
       7_________
726
       8______*__ */
727
0
    auto sum =
728
0
        Sum(LoadU(df, d - xs3 - xs - 2), LoadU(df, d - xs - xs - 1), center,
729
0
            LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + xs + 2));
730
0
    retval = MulAdd(sum, sum, retval);
731
0
  }
732
0
  {
733
    /* 0______*__
734
       1_________
735
       2_____*___
736
       3_________
737
       4____0____
738
       5_________
739
       6___*_____
740
       7_________
741
       8__*______ */
742
0
    auto sum =
743
0
        Sum(LoadU(df, d - xs3 - xs + 2), LoadU(df, d - xs - xs + 1), center,
744
0
            LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 + xs - 2));
745
0
    retval = MulAdd(sum, sum, retval);
746
0
  }
747
0
  return retval;
748
0
}
749
750
template <class D>
751
Vec<D> MaltaUnit(MaltaTag /*tag*/, const D df,
752
0
                 const float* BUTTERAUGLI_RESTRICT d, const intptr_t xs) {
753
0
  const intptr_t xs3 = 3 * xs;
754
755
0
  const auto center = LoadU(df, d);
756
757
  // x grows, y constant
758
0
  const auto sum_yconst =
759
0
      Sum(LoadU(df, d - 4), LoadU(df, d - 3), LoadU(df, d - 2),
760
0
          LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + 2),
761
0
          LoadU(df, d + 3), LoadU(df, d + 4));
762
  // Will return this, sum of all line kernels
763
0
  auto retval = Mul(sum_yconst, sum_yconst);
764
765
0
  {
766
    // y grows, x constant
767
0
    auto sum = Sum(LoadU(df, d - xs3 - xs), LoadU(df, d - xs3),
768
0
                   LoadU(df, d - xs - xs), LoadU(df, d - xs), center,
769
0
                   LoadU(df, d + xs), LoadU(df, d + xs + xs),
770
0
                   LoadU(df, d + xs3), LoadU(df, d + xs3 + xs));
771
0
    retval = MulAdd(sum, sum, retval);
772
0
  }
773
0
  {
774
    // both grow
775
0
    auto sum = Sum(LoadU(df, d - xs3 - 3), LoadU(df, d - xs - xs - 2),
776
0
                   LoadU(df, d - xs - 1), center, LoadU(df, d + xs + 1),
777
0
                   LoadU(df, d + xs + xs + 2), LoadU(df, d + xs3 + 3));
778
0
    retval = MulAdd(sum, sum, retval);
779
0
  }
780
0
  {
781
    // y grows, x shrinks
782
0
    auto sum = Sum(LoadU(df, d - xs3 + 3), LoadU(df, d - xs - xs + 2),
783
0
                   LoadU(df, d - xs + 1), center, LoadU(df, d + xs - 1),
784
0
                   LoadU(df, d + xs + xs - 2), LoadU(df, d + xs3 - 3));
785
0
    retval = MulAdd(sum, sum, retval);
786
0
  }
787
0
  {
788
    // y grows -4 to 4, x shrinks 1 -> -1
789
0
    auto sum = Sum(LoadU(df, d - xs3 - xs + 1), LoadU(df, d - xs3 + 1),
790
0
                   LoadU(df, d - xs - xs + 1), LoadU(df, d - xs), center,
791
0
                   LoadU(df, d + xs), LoadU(df, d + xs + xs - 1),
792
0
                   LoadU(df, d + xs3 - 1), LoadU(df, d + xs3 + xs - 1));
793
0
    retval = MulAdd(sum, sum, retval);
794
0
  }
795
0
  {
796
    //  y grows -4 to 4, x grows -1 -> 1
797
0
    auto sum = Sum(LoadU(df, d - xs3 - xs - 1), LoadU(df, d - xs3 - 1),
798
0
                   LoadU(df, d - xs - xs - 1), LoadU(df, d - xs), center,
799
0
                   LoadU(df, d + xs), LoadU(df, d + xs + xs + 1),
800
0
                   LoadU(df, d + xs3 + 1), LoadU(df, d + xs3 + xs + 1));
801
0
    retval = MulAdd(sum, sum, retval);
802
0
  }
803
0
  {
804
    // x grows -4 to 4, y grows -1 to 1
805
0
    auto sum =
806
0
        Sum(LoadU(df, d - 4 - xs), LoadU(df, d - 3 - xs), LoadU(df, d - 2 - xs),
807
0
            LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + 2 + xs),
808
0
            LoadU(df, d + 3 + xs), LoadU(df, d + 4 + xs));
809
0
    retval = MulAdd(sum, sum, retval);
810
0
  }
811
0
  {
812
    // x grows -4 to 4, y shrinks 1 to -1
813
0
    auto sum =
814
0
        Sum(LoadU(df, d - 4 + xs), LoadU(df, d - 3 + xs), LoadU(df, d - 2 + xs),
815
0
            LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + 2 - xs),
816
0
            LoadU(df, d + 3 - xs), LoadU(df, d + 4 - xs));
817
0
    retval = MulAdd(sum, sum, retval);
818
0
  }
819
0
  {
820
    /* 0_________
821
       1__*______
822
       2___*_____
823
       3___*_____
824
       4____0____
825
       5_____*___
826
       6_____*___
827
       7______*__
828
       8_________ */
829
0
    auto sum = Sum(LoadU(df, d - xs3 - 2), LoadU(df, d - xs - xs - 1),
830
0
                   LoadU(df, d - xs - 1), center, LoadU(df, d + xs + 1),
831
0
                   LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + 2));
832
0
    retval = MulAdd(sum, sum, retval);
833
0
  }
834
0
  {
835
    /* 0_________
836
       1______*__
837
       2_____*___
838
       3_____*___
839
       4____0____
840
       5___*_____
841
       6___*_____
842
       7__*______
843
       8_________ */
844
0
    auto sum = Sum(LoadU(df, d - xs3 + 2), LoadU(df, d - xs - xs + 1),
845
0
                   LoadU(df, d - xs + 1), center, LoadU(df, d + xs - 1),
846
0
                   LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 - 2));
847
0
    retval = MulAdd(sum, sum, retval);
848
0
  }
849
0
  {
850
    /* 0_________
851
       1_________
852
       2_*_______
853
       3__**_____
854
       4____0____
855
       5_____**__
856
       6_______*_
857
       7_________
858
       8_________ */
859
0
    auto sum = Sum(LoadU(df, d - xs - xs - 3), LoadU(df, d - xs - 2),
860
0
                   LoadU(df, d - xs - 1), center, LoadU(df, d + xs + 1),
861
0
                   LoadU(df, d + xs + 2), LoadU(df, d + xs + xs + 3));
862
0
    retval = MulAdd(sum, sum, retval);
863
0
  }
864
0
  {
865
    /* 0_________
866
       1_________
867
       2_______*_
868
       3_____**__
869
       4____0____
870
       5__**_____
871
       6_*_______
872
       7_________
873
       8_________ */
874
0
    auto sum = Sum(LoadU(df, d - xs - xs + 3), LoadU(df, d - xs + 2),
875
0
                   LoadU(df, d - xs + 1), center, LoadU(df, d + xs - 1),
876
0
                   LoadU(df, d + xs - 2), LoadU(df, d + xs + xs - 3));
877
0
    retval = MulAdd(sum, sum, retval);
878
0
  }
879
0
  {
880
    /* 0_________
881
       1_________
882
       2_________
883
       3______***
884
       4___*0*___
885
       5***______
886
       6_________
887
       7_________
888
       8_________ */
889
890
0
    auto sum =
891
0
        Sum(LoadU(df, d + xs - 4), LoadU(df, d + xs - 3), LoadU(df, d + xs - 2),
892
0
            LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d - xs + 2),
893
0
            LoadU(df, d - xs + 3), LoadU(df, d - xs + 4));
894
0
    retval = MulAdd(sum, sum, retval);
895
0
  }
896
0
  {
897
    /* 0_________
898
       1_________
899
       2_________
900
       3***______
901
       4___*0*___
902
       5______***
903
       6_________
904
       7_________
905
       8_________ */
906
0
    auto sum =
907
0
        Sum(LoadU(df, d - xs - 4), LoadU(df, d - xs - 3), LoadU(df, d - xs - 2),
908
0
            LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + xs + 2),
909
0
            LoadU(df, d + xs + 3), LoadU(df, d + xs + 4));
910
0
    retval = MulAdd(sum, sum, retval);
911
0
  }
912
0
  {
913
    /* 0___*_____
914
       1___*_____
915
       2___*_____
916
       3____*____
917
       4____0____
918
       5____*____
919
       6_____*___
920
       7_____*___
921
       8_____*___ */
922
0
    auto sum = Sum(LoadU(df, d - xs3 - xs - 1), LoadU(df, d - xs3 - 1),
923
0
                   LoadU(df, d - xs - xs - 1), LoadU(df, d - xs), center,
924
0
                   LoadU(df, d + xs), LoadU(df, d + xs + xs + 1),
925
0
                   LoadU(df, d + xs3 + 1), LoadU(df, d + xs3 + xs + 1));
926
0
    retval = MulAdd(sum, sum, retval);
927
0
  }
928
0
  {
929
    /* 0_____*___
930
       1_____*___
931
       2____ *___
932
       3____*____
933
       4____0____
934
       5____*____
935
       6___*_____
936
       7___*_____
937
       8___*_____ */
938
0
    auto sum = Sum(LoadU(df, d - xs3 - xs + 1), LoadU(df, d - xs3 + 1),
939
0
                   LoadU(df, d - xs - xs + 1), LoadU(df, d - xs), center,
940
0
                   LoadU(df, d + xs), LoadU(df, d + xs + xs - 1),
941
0
                   LoadU(df, d + xs3 - 1), LoadU(df, d + xs3 + xs - 1));
942
0
    retval = MulAdd(sum, sum, retval);
943
0
  }
944
0
  return retval;
945
0
}
946
947
// Returns MaltaUnit. Avoids bounds-checks when x0 and y0 are known
948
// to be far enough from the image borders. "diffs" is a packed image.
949
template <class Tag>
950
static BUTTERAUGLI_INLINE float PaddedMaltaUnit(const ImageF& diffs,
951
                                                const size_t x0,
952
0
                                                const size_t y0) {
953
0
  const float* BUTTERAUGLI_RESTRICT d = diffs.ConstRow(y0) + x0;
954
0
  const HWY_CAPPED(float, 1) df;
955
0
  if ((x0 >= 4 && y0 >= 4 && x0 < (diffs.xsize() - 4) &&
956
0
       y0 < (diffs.ysize() - 4))) {
957
0
    return GetLane(MaltaUnit(Tag(), df, d, diffs.PixelsPerRow()));
958
0
  }
959
960
0
  float borderimage[12 * 9];  // round up to 4
961
0
  for (int dy = 0; dy < 9; ++dy) {
962
0
    int y = y0 + dy - 4;
963
0
    if (y < 0 || static_cast<size_t>(y) >= diffs.ysize()) {
964
0
      for (int dx = 0; dx < 12; ++dx) {
965
0
        borderimage[dy * 12 + dx] = 0.0f;
966
0
      }
967
0
      continue;
968
0
    }
969
970
0
    const float* row_diffs = diffs.ConstRow(y);
971
0
    for (int dx = 0; dx < 9; ++dx) {
972
0
      int x = x0 + dx - 4;
973
0
      if (x < 0 || static_cast<size_t>(x) >= diffs.xsize()) {
974
0
        borderimage[dy * 12 + dx] = 0.0f;
975
0
      } else {
976
0
        borderimage[dy * 12 + dx] = row_diffs[x];
977
0
      }
978
0
    }
979
0
    std::fill(borderimage + dy * 12 + 9, borderimage + dy * 12 + 12, 0.0f);
980
0
  }
981
0
  return GetLane(MaltaUnit(Tag(), df, &borderimage[4 * 12 + 4], 12));
982
0
}
Unexecuted instantiation: butteraugli.cc:float jxl::N_SCALAR::PaddedMaltaUnit<jxl::MaltaTag>(jxl::Plane<float> const&, unsigned long, unsigned long)
Unexecuted instantiation: butteraugli.cc:float jxl::N_SCALAR::PaddedMaltaUnit<jxl::MaltaTagLF>(jxl::Plane<float> const&, unsigned long, unsigned long)
983
984
template <class Tag>
985
static Status MaltaDiffMapT(const Tag tag, const ImageF& lum0,
986
                            const ImageF& lum1, const double w_0gt1,
987
                            const double w_0lt1, const double norm1,
988
                            const double len, const double mulli,
989
                            ImageF* HWY_RESTRICT diffs,
990
0
                            ImageF* HWY_RESTRICT block_diff_ac) {
991
0
  JXL_ENSURE(SameSize(lum0, lum1) && SameSize(lum0, *diffs));
992
0
  const size_t xsize_ = lum0.xsize();
993
0
  const size_t ysize_ = lum0.ysize();
994
995
0
  const float kWeight0 = 0.5;
996
0
  const float kWeight1 = 0.33;
997
998
0
  const double w_pre0gt1 = mulli * std::sqrt(kWeight0 * w_0gt1) / (len * 2 + 1);
999
0
  const double w_pre0lt1 = mulli * std::sqrt(kWeight1 * w_0lt1) / (len * 2 + 1);
1000
0
  const float norm2_0gt1 = w_pre0gt1 * norm1;
1001
0
  const float norm2_0lt1 = w_pre0lt1 * norm1;
1002
1003
0
  for (size_t y = 0; y < ysize_; ++y) {
1004
0
    const float* HWY_RESTRICT row0 = lum0.ConstRow(y);
1005
0
    const float* HWY_RESTRICT row1 = lum1.ConstRow(y);
1006
0
    float* HWY_RESTRICT row_diffs = diffs->Row(y);
1007
0
    for (size_t x = 0; x < xsize_; ++x) {
1008
0
      const float absval = 0.5f * (std::abs(row0[x]) + std::abs(row1[x]));
1009
0
      const float diff = row0[x] - row1[x];
1010
0
      const float scaler = norm2_0gt1 / (static_cast<float>(norm1) + absval);
1011
1012
      // Primary symmetric quadratic objective.
1013
0
      row_diffs[x] = scaler * diff;
1014
1015
0
      const float scaler2 = norm2_0lt1 / (static_cast<float>(norm1) + absval);
1016
0
      const double fabs0 = std::fabs(row0[x]);
1017
1018
      // Secondary half-open quadratic objectives.
1019
0
      const double too_small = 0.55 * fabs0;
1020
0
      const double too_big = 1.05 * fabs0;
1021
1022
0
      if (row0[x] < 0) {
1023
0
        if (row1[x] > -too_small) {
1024
0
          double impact = scaler2 * (row1[x] + too_small);
1025
0
          row_diffs[x] -= impact;
1026
0
        } else if (row1[x] < -too_big) {
1027
0
          double impact = scaler2 * (-row1[x] - too_big);
1028
0
          row_diffs[x] += impact;
1029
0
        }
1030
0
      } else {
1031
0
        if (row1[x] < too_small) {
1032
0
          double impact = scaler2 * (too_small - row1[x]);
1033
0
          row_diffs[x] += impact;
1034
0
        } else if (row1[x] > too_big) {
1035
0
          double impact = scaler2 * (row1[x] - too_big);
1036
0
          row_diffs[x] -= impact;
1037
0
        }
1038
0
      }
1039
0
    }
1040
0
  }
1041
1042
0
  size_t y0 = 0;
1043
  // Top
1044
0
  for (; y0 < 4; ++y0) {
1045
0
    float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->Row(y0);
1046
0
    for (size_t x0 = 0; x0 < xsize_; ++x0) {
1047
0
      row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
1048
0
    }
1049
0
  }
1050
1051
0
  const HWY_FULL(float) df;
1052
0
  const size_t aligned_x = std::max(static_cast<size_t>(4), Lanes(df));
1053
0
  const intptr_t stride = diffs->PixelsPerRow();
1054
1055
  // Middle
1056
0
  for (; y0 < ysize_ - 4; ++y0) {
1057
0
    const float* BUTTERAUGLI_RESTRICT row_in = diffs->ConstRow(y0);
1058
0
    float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->Row(y0);
1059
0
    size_t x0 = 0;
1060
0
    for (; x0 < aligned_x; ++x0) {
1061
0
      row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
1062
0
    }
1063
0
    for (; x0 + Lanes(df) + 4 <= xsize_; x0 += Lanes(df)) {
1064
0
      auto diff = Load(df, row_diff + x0);
1065
0
      diff = Add(diff, MaltaUnit(Tag(), df, row_in + x0, stride));
1066
0
      Store(diff, df, row_diff + x0);
1067
0
    }
1068
1069
0
    for (; x0 < xsize_; ++x0) {
1070
0
      row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
1071
0
    }
1072
0
  }
1073
1074
  // Bottom
1075
0
  for (; y0 < ysize_; ++y0) {
1076
0
    float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->Row(y0);
1077
0
    for (size_t x0 = 0; x0 < xsize_; ++x0) {
1078
0
      row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
1079
0
    }
1080
0
  }
1081
0
  return true;
1082
0
}
Unexecuted instantiation: butteraugli.cc:jxl::Status jxl::N_SCALAR::MaltaDiffMapT<jxl::MaltaTag>(jxl::MaltaTag, jxl::Plane<float> const&, jxl::Plane<float> const&, double, double, double, double, double, jxl::Plane<float>*, jxl::Plane<float>*)
Unexecuted instantiation: butteraugli.cc:jxl::Status jxl::N_SCALAR::MaltaDiffMapT<jxl::MaltaTagLF>(jxl::MaltaTagLF, jxl::Plane<float> const&, jxl::Plane<float> const&, double, double, double, double, double, jxl::Plane<float>*, jxl::Plane<float>*)
1083
1084
// Need non-template wrapper functions for HWY_EXPORT.
1085
Status MaltaDiffMap(const ImageF& lum0, const ImageF& lum1, const double w_0gt1,
1086
                    const double w_0lt1, const double norm1,
1087
                    ImageF* HWY_RESTRICT diffs,
1088
0
                    ImageF* HWY_RESTRICT block_diff_ac) {
1089
0
  const double len = 3.75;
1090
0
  static const double mulli = 0.39905817637;
1091
0
  JXL_RETURN_IF_ERROR(MaltaDiffMapT(MaltaTag(), lum0, lum1, w_0gt1, w_0lt1,
1092
0
                                    norm1, len, mulli, diffs, block_diff_ac));
1093
0
  return true;
1094
0
}
1095
1096
Status MaltaDiffMapLF(const ImageF& lum0, const ImageF& lum1,
1097
                      const double w_0gt1, const double w_0lt1,
1098
                      const double norm1, ImageF* HWY_RESTRICT diffs,
1099
0
                      ImageF* HWY_RESTRICT block_diff_ac) {
1100
0
  const double len = 3.75;
1101
0
  static const double mulli = 0.611612573796;
1102
0
  JXL_RETURN_IF_ERROR(MaltaDiffMapT(MaltaTagLF(), lum0, lum1, w_0gt1, w_0lt1,
1103
0
                                    norm1, len, mulli, diffs, block_diff_ac));
1104
0
  return true;
1105
0
}
1106
1107
void CombineChannelsForMasking(const ImageF* hf, const ImageF* uhf,
1108
0
                               ImageF* out) {
1109
  // Only X and Y components are involved in masking. B's influence
1110
  // is considered less important in the high frequency area, and we
1111
  // don't model masking from lower frequency signals.
1112
0
  static const float muls[3] = {
1113
0
      2.5f,
1114
0
      0.4f,
1115
0
      0.4f,
1116
0
  };
1117
  // Silly and unoptimized approach here. TODO(jyrki): rework this.
1118
0
  for (size_t y = 0; y < hf[0].ysize(); ++y) {
1119
0
    const float* BUTTERAUGLI_RESTRICT row_y_hf = hf[1].Row(y);
1120
0
    const float* BUTTERAUGLI_RESTRICT row_y_uhf = uhf[1].Row(y);
1121
0
    const float* BUTTERAUGLI_RESTRICT row_x_hf = hf[0].Row(y);
1122
0
    const float* BUTTERAUGLI_RESTRICT row_x_uhf = uhf[0].Row(y);
1123
0
    float* BUTTERAUGLI_RESTRICT row = out->Row(y);
1124
0
    for (size_t x = 0; x < hf[0].xsize(); ++x) {
1125
0
      float xdiff = (row_x_uhf[x] + row_x_hf[x]) * muls[0];
1126
0
      float ydiff = row_y_uhf[x] * muls[1] + row_y_hf[x] * muls[2];
1127
0
      row[x] = xdiff * xdiff + ydiff * ydiff;
1128
0
      row[x] = std::sqrt(row[x]);
1129
0
    }
1130
0
  }
1131
0
}
1132
1133
0
void DiffPrecompute(const ImageF& xyb, float mul, float bias_arg, ImageF* out) {
1134
0
  const size_t xsize = xyb.xsize();
1135
0
  const size_t ysize = xyb.ysize();
1136
0
  const float bias = mul * bias_arg;
1137
0
  const float sqrt_bias = std::sqrt(bias);
1138
0
  for (size_t y = 0; y < ysize; ++y) {
1139
0
    const float* BUTTERAUGLI_RESTRICT row_in = xyb.Row(y);
1140
0
    float* BUTTERAUGLI_RESTRICT row_out = out->Row(y);
1141
0
    for (size_t x = 0; x < xsize; ++x) {
1142
      // kBias makes sqrt behave more linearly.
1143
0
      row_out[x] = std::sqrt(mul * std::abs(row_in[x]) + bias) - sqrt_bias;
1144
0
    }
1145
0
  }
1146
0
}
1147
1148
// std::log(80.0) / std::log(255.0);
1149
constexpr float kIntensityTargetNormalizationHack = 0.79079917404f;
1150
static const float kInternalGoodQualityThreshold =
1151
    17.83f * kIntensityTargetNormalizationHack;
1152
static const float kGlobalScale = 1.0 / kInternalGoodQualityThreshold;
1153
1154
0
void StoreMin3(const float v, float& min0, float& min1, float& min2) {
1155
0
  if (v < min2) {
1156
0
    if (v < min0) {
1157
0
      min2 = min1;
1158
0
      min1 = min0;
1159
0
      min0 = v;
1160
0
    } else if (v < min1) {
1161
0
      min2 = min1;
1162
0
      min1 = v;
1163
0
    } else {
1164
0
      min2 = v;
1165
0
    }
1166
0
  }
1167
0
}
1168
1169
// Look for smooth areas near the area of degradation.
1170
// If the areas area generally smooth, don't do masking.
1171
0
void FuzzyErosion(const ImageF& from, ImageF* to) {
1172
0
  const size_t xsize = from.xsize();
1173
0
  const size_t ysize = from.ysize();
1174
0
  static const int kStep = 3;
1175
0
  for (size_t y = 0; y < ysize; ++y) {
1176
0
    for (size_t x = 0; x < xsize; ++x) {
1177
0
      float min0 = from.Row(y)[x];
1178
0
      float min1 = 2 * min0;
1179
0
      float min2 = min1;
1180
0
      if (x >= kStep) {
1181
0
        float v = from.Row(y)[x - kStep];
1182
0
        StoreMin3(v, min0, min1, min2);
1183
0
        if (y >= kStep) {
1184
0
          float v = from.Row(y - kStep)[x - kStep];
1185
0
          StoreMin3(v, min0, min1, min2);
1186
0
        }
1187
0
        if (y < ysize - kStep) {
1188
0
          float v = from.Row(y + kStep)[x - kStep];
1189
0
          StoreMin3(v, min0, min1, min2);
1190
0
        }
1191
0
      }
1192
0
      if (x < xsize - kStep) {
1193
0
        float v = from.Row(y)[x + kStep];
1194
0
        StoreMin3(v, min0, min1, min2);
1195
0
        if (y >= kStep) {
1196
0
          float v = from.Row(y - kStep)[x + kStep];
1197
0
          StoreMin3(v, min0, min1, min2);
1198
0
        }
1199
0
        if (y < ysize - kStep) {
1200
0
          float v = from.Row(y + kStep)[x + kStep];
1201
0
          StoreMin3(v, min0, min1, min2);
1202
0
        }
1203
0
      }
1204
0
      if (y >= kStep) {
1205
0
        float v = from.Row(y - kStep)[x];
1206
0
        StoreMin3(v, min0, min1, min2);
1207
0
      }
1208
0
      if (y < ysize - kStep) {
1209
0
        float v = from.Row(y + kStep)[x];
1210
0
        StoreMin3(v, min0, min1, min2);
1211
0
      }
1212
0
      to->Row(y)[x] = (0.45f * min0 + 0.3f * min1 + 0.25f * min2);
1213
0
    }
1214
0
  }
1215
0
}
1216
1217
// Compute values of local frequency and dc masking based on the activity
1218
// in the two images. img_diff_ac may be null.
1219
Status Mask(const ImageF& mask0, const ImageF& mask1,
1220
            const ButteraugliParams& params, BlurTemp* blur_temp,
1221
            ImageF* BUTTERAUGLI_RESTRICT mask,
1222
0
            ImageF* BUTTERAUGLI_RESTRICT diff_ac) {
1223
0
  const size_t xsize = mask0.xsize();
1224
0
  const size_t ysize = mask0.ysize();
1225
0
  JxlMemoryManager* memory_manager = mask0.memory_manager();
1226
0
  JXL_ASSIGN_OR_RETURN(*mask, ImageF::Create(memory_manager, xsize, ysize));
1227
0
  static const float kMul = 6.19424080439;
1228
0
  static const float kBias = 12.61050594197;
1229
0
  static const float kRadius = 2.7;
1230
0
  JXL_ASSIGN_OR_RETURN(ImageF diff0,
1231
0
                       ImageF::Create(memory_manager, xsize, ysize));
1232
0
  JXL_ASSIGN_OR_RETURN(ImageF diff1,
1233
0
                       ImageF::Create(memory_manager, xsize, ysize));
1234
0
  JXL_ASSIGN_OR_RETURN(ImageF blurred0,
1235
0
                       ImageF::Create(memory_manager, xsize, ysize));
1236
0
  JXL_ASSIGN_OR_RETURN(ImageF blurred1,
1237
0
                       ImageF::Create(memory_manager, xsize, ysize));
1238
0
  DiffPrecompute(mask0, kMul, kBias, &diff0);
1239
0
  DiffPrecompute(mask1, kMul, kBias, &diff1);
1240
0
  JXL_RETURN_IF_ERROR(Blur(diff0, kRadius, params, blur_temp, &blurred0));
1241
0
  FuzzyErosion(blurred0, &diff0);
1242
0
  JXL_RETURN_IF_ERROR(Blur(diff1, kRadius, params, blur_temp, &blurred1));
1243
0
  for (size_t y = 0; y < ysize; ++y) {
1244
0
    for (size_t x = 0; x < xsize; ++x) {
1245
0
      mask->Row(y)[x] = diff0.Row(y)[x];
1246
0
      if (diff_ac != nullptr) {
1247
0
        static const float kMaskToErrorMul = 10.0;
1248
0
        float diff = blurred0.Row(y)[x] - blurred1.Row(y)[x];
1249
0
        diff_ac->Row(y)[x] += kMaskToErrorMul * diff * diff;
1250
0
      }
1251
0
    }
1252
0
  }
1253
0
  return true;
1254
0
}
1255
1256
// `diff_ac` may be null.
1257
Status MaskPsychoImage(const PsychoImage& pi0, const PsychoImage& pi1,
1258
                       const size_t xsize, const size_t ysize,
1259
                       const ButteraugliParams& params, BlurTemp* blur_temp,
1260
                       ImageF* BUTTERAUGLI_RESTRICT mask,
1261
0
                       ImageF* BUTTERAUGLI_RESTRICT diff_ac) {
1262
0
  JxlMemoryManager* memory_manager = pi0.hf[0].memory_manager();
1263
0
  JXL_ASSIGN_OR_RETURN(ImageF mask0,
1264
0
                       ImageF::Create(memory_manager, xsize, ysize));
1265
0
  JXL_ASSIGN_OR_RETURN(ImageF mask1,
1266
0
                       ImageF::Create(memory_manager, xsize, ysize));
1267
0
  CombineChannelsForMasking(&pi0.hf[0], &pi0.uhf[0], &mask0);
1268
0
  CombineChannelsForMasking(&pi1.hf[0], &pi1.uhf[0], &mask1);
1269
0
  JXL_RETURN_IF_ERROR(Mask(mask0, mask1, params, blur_temp, mask, diff_ac));
1270
0
  return true;
1271
0
}
1272
1273
0
double MaskY(double delta) {
1274
0
  static const double offset = 0.829591754942;
1275
0
  static const double scaler = 0.451936922203;
1276
0
  static const double mul = 2.5485944793;
1277
0
  const double c = mul / ((scaler * delta) + offset);
1278
0
  const double retval = kGlobalScale * (1.0 + c);
1279
0
  return retval * retval;
1280
0
}
1281
1282
0
double MaskDcY(double delta) {
1283
0
  static const double offset = 0.20025578522;
1284
0
  static const double scaler = 3.87449418804;
1285
0
  static const double mul = 0.505054525019;
1286
0
  const double c = mul / ((scaler * delta) + offset);
1287
0
  const double retval = kGlobalScale * (1.0 + c);
1288
0
  return retval * retval;
1289
0
}
1290
1291
0
inline float MaskColor(const float color[3], const float mask) {
1292
0
  return color[0] * mask + color[1] * mask + color[2] * mask;
1293
0
}
1294
1295
// Diffmap := sqrt of sum{diff images by multiplied by X and Y/B masks}
1296
Status CombineChannelsToDiffmap(const ImageF& mask,
1297
                                const Image3F& block_diff_dc,
1298
                                const Image3F& block_diff_ac, float xmul,
1299
0
                                ImageF* result) {
1300
0
  JXL_ENSURE(SameSize(mask, *result));
1301
0
  size_t xsize = mask.xsize();
1302
0
  size_t ysize = mask.ysize();
1303
0
  for (size_t y = 0; y < ysize; ++y) {
1304
0
    float* BUTTERAUGLI_RESTRICT row_out = result->Row(y);
1305
0
    for (size_t x = 0; x < xsize; ++x) {
1306
0
      float val = mask.Row(y)[x];
1307
0
      float maskval = MaskY(val);
1308
0
      float dc_maskval = MaskDcY(val);
1309
0
      float diff_dc[3];
1310
0
      float diff_ac[3];
1311
0
      for (int i = 0; i < 3; ++i) {
1312
0
        diff_dc[i] = block_diff_dc.PlaneRow(i, y)[x];
1313
0
        diff_ac[i] = block_diff_ac.PlaneRow(i, y)[x];
1314
0
      }
1315
0
      diff_ac[0] *= xmul;
1316
0
      diff_dc[0] *= xmul;
1317
0
      row_out[x] = std::sqrt(MaskColor(diff_dc, dc_maskval) +
1318
0
                             MaskColor(diff_ac, maskval));
1319
0
    }
1320
0
  }
1321
0
  return true;
1322
0
}
1323
1324
// Adds weighted L2 difference between i0 and i1 to diffmap.
1325
static void L2Diff(const ImageF& i0, const ImageF& i1, const float w,
1326
0
                   ImageF* BUTTERAUGLI_RESTRICT diffmap) {
1327
0
  if (w == 0) return;
1328
1329
0
  const HWY_FULL(float) d;
1330
0
  const auto weight = Set(d, w);
1331
1332
0
  for (size_t y = 0; y < i0.ysize(); ++y) {
1333
0
    const float* BUTTERAUGLI_RESTRICT row0 = i0.ConstRow(y);
1334
0
    const float* BUTTERAUGLI_RESTRICT row1 = i1.ConstRow(y);
1335
0
    float* BUTTERAUGLI_RESTRICT row_diff = diffmap->Row(y);
1336
1337
0
    for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) {
1338
0
      const auto diff = Sub(Load(d, row0 + x), Load(d, row1 + x));
1339
0
      const auto diff2 = Mul(diff, diff);
1340
0
      const auto prev = Load(d, row_diff + x);
1341
0
      Store(MulAdd(diff2, weight, prev), d, row_diff + x);
1342
0
    }
1343
0
  }
1344
0
}
1345
1346
// Initializes diffmap to the weighted L2 difference between i0 and i1.
1347
static void SetL2Diff(const ImageF& i0, const ImageF& i1, const float w,
1348
0
                      ImageF* BUTTERAUGLI_RESTRICT diffmap) {
1349
0
  if (w == 0) return;
1350
1351
0
  const HWY_FULL(float) d;
1352
0
  const auto weight = Set(d, w);
1353
1354
0
  for (size_t y = 0; y < i0.ysize(); ++y) {
1355
0
    const float* BUTTERAUGLI_RESTRICT row0 = i0.ConstRow(y);
1356
0
    const float* BUTTERAUGLI_RESTRICT row1 = i1.ConstRow(y);
1357
0
    float* BUTTERAUGLI_RESTRICT row_diff = diffmap->Row(y);
1358
1359
0
    for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) {
1360
0
      const auto diff = Sub(Load(d, row0 + x), Load(d, row1 + x));
1361
0
      const auto diff2 = Mul(diff, diff);
1362
0
      Store(Mul(diff2, weight), d, row_diff + x);
1363
0
    }
1364
0
  }
1365
0
}
1366
1367
// i0 is the original image.
1368
// i1 is the deformed copy.
1369
static void L2DiffAsymmetric(const ImageF& i0, const ImageF& i1, float w_0gt1,
1370
                             float w_0lt1,
1371
0
                             ImageF* BUTTERAUGLI_RESTRICT diffmap) {
1372
0
  if (w_0gt1 == 0 && w_0lt1 == 0) {
1373
0
    return;
1374
0
  }
1375
1376
0
  const HWY_FULL(float) d;
1377
0
  const auto vw_0gt1 = Set(d, w_0gt1 * 0.8);
1378
0
  const auto vw_0lt1 = Set(d, w_0lt1 * 0.8);
1379
1380
0
  for (size_t y = 0; y < i0.ysize(); ++y) {
1381
0
    const float* BUTTERAUGLI_RESTRICT row0 = i0.Row(y);
1382
0
    const float* BUTTERAUGLI_RESTRICT row1 = i1.Row(y);
1383
0
    float* BUTTERAUGLI_RESTRICT row_diff = diffmap->Row(y);
1384
1385
0
    for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) {
1386
0
      const auto val0 = Load(d, row0 + x);
1387
0
      const auto val1 = Load(d, row1 + x);
1388
1389
      // Primary symmetric quadratic objective.
1390
0
      const auto diff = Sub(val0, val1);
1391
0
      auto total = MulAdd(Mul(diff, diff), vw_0gt1, Load(d, row_diff + x));
1392
1393
      // Secondary half-open quadratic objectives.
1394
0
      const auto fabs0 = Abs(val0);
1395
0
      const auto too_small = Mul(Set(d, 0.4), fabs0);
1396
0
      const auto too_big = fabs0;
1397
1398
0
      const auto if_neg = IfThenElse(
1399
0
          Gt(val1, Neg(too_small)), Add(val1, too_small),
1400
0
          IfThenElseZero(Lt(val1, Neg(too_big)), Sub(Neg(val1), too_big)));
1401
0
      const auto if_pos =
1402
0
          IfThenElse(Lt(val1, too_small), Sub(too_small, val1),
1403
0
                     IfThenElseZero(Gt(val1, too_big), Sub(val1, too_big)));
1404
0
      const auto v = IfThenElse(Lt(val0, Zero(d)), if_neg, if_pos);
1405
0
      total = MulAdd(vw_0lt1, Mul(v, v), total);
1406
0
      Store(total, d, row_diff + x);
1407
0
    }
1408
0
  }
1409
0
}
1410
1411
// A simple HDR compatible gamma function.
1412
template <class DF, class V>
1413
0
V Gamma(const DF df, V v) {
1414
  // ln(2) constant folded in because we want std::log but have FastLog2f.
1415
0
  const auto kRetMul = Set(df, 19.245013259874995f * 0.693147180559945f);
1416
0
  const auto kRetAdd = Set(df, -23.16046239805755);
1417
  // This should happen rarely, but may lead to a NaN in log, which is
1418
  // undesirable. Since negative photons don't exist we solve the NaNs by
1419
  // clamping here.
1420
0
  v = ZeroIfNegative(v);
1421
1422
0
  const auto biased = Add(v, Set(df, 9.9710635769299145));
1423
0
  const auto log = FastLog2f(df, biased);
1424
  // We could fold this into a custom Log2 polynomial, but there would be
1425
  // relatively little gain.
1426
0
  return MulAdd(kRetMul, log, kRetAdd);
1427
0
}
1428
1429
template <bool Clamp, class DF, class V>
1430
BUTTERAUGLI_INLINE void OpsinAbsorbance(const DF df, const V& in0, const V& in1,
1431
                                        const V& in2, V* JXL_RESTRICT out0,
1432
                                        V* JXL_RESTRICT out1,
1433
0
                                        V* JXL_RESTRICT out2) {
1434
  // https://en.wikipedia.org/wiki/Photopsin absorbance modeling.
1435
0
  static const double mixi0 = 0.29956550340058319;
1436
0
  static const double mixi1 = 0.63373087833825936;
1437
0
  static const double mixi2 = 0.077705617820981968;
1438
0
  static const double mixi3 = 1.7557483643287353;
1439
0
  static const double mixi4 = 0.22158691104574774;
1440
0
  static const double mixi5 = 0.69391388044116142;
1441
0
  static const double mixi6 = 0.0987313588422;
1442
0
  static const double mixi7 = 1.7557483643287353;
1443
0
  static const double mixi8 = 0.02;
1444
0
  static const double mixi9 = 0.02;
1445
0
  static const double mixi10 = 0.20480129041026129;
1446
0
  static const double mixi11 = 12.226454707163354;
1447
1448
0
  const V mix0 = Set(df, mixi0);
1449
0
  const V mix1 = Set(df, mixi1);
1450
0
  const V mix2 = Set(df, mixi2);
1451
0
  const V mix3 = Set(df, mixi3);
1452
0
  const V mix4 = Set(df, mixi4);
1453
0
  const V mix5 = Set(df, mixi5);
1454
0
  const V mix6 = Set(df, mixi6);
1455
0
  const V mix7 = Set(df, mixi7);
1456
0
  const V mix8 = Set(df, mixi8);
1457
0
  const V mix9 = Set(df, mixi9);
1458
0
  const V mix10 = Set(df, mixi10);
1459
0
  const V mix11 = Set(df, mixi11);
1460
1461
0
  *out0 = MulAdd(mix0, in0, MulAdd(mix1, in1, MulAdd(mix2, in2, mix3)));
1462
0
  *out1 = MulAdd(mix4, in0, MulAdd(mix5, in1, MulAdd(mix6, in2, mix7)));
1463
0
  *out2 = MulAdd(mix8, in0, MulAdd(mix9, in1, MulAdd(mix10, in2, mix11)));
1464
1465
0
  if (Clamp) {
1466
0
    *out0 = Max(*out0, mix3);
1467
0
    *out1 = Max(*out1, mix7);
1468
0
    *out2 = Max(*out2, mix11);
1469
0
  }
1470
0
}
Unexecuted instantiation: void jxl::N_SCALAR::OpsinAbsorbance<true, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float> >(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float> const&, hwy::N_SCALAR::Vec1<float> const&, hwy::N_SCALAR::Vec1<float> const&, hwy::N_SCALAR::Vec1<float>*, hwy::N_SCALAR::Vec1<float>*, hwy::N_SCALAR::Vec1<float>*)
Unexecuted instantiation: void jxl::N_SCALAR::OpsinAbsorbance<false, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float> >(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float> const&, hwy::N_SCALAR::Vec1<float> const&, hwy::N_SCALAR::Vec1<float> const&, hwy::N_SCALAR::Vec1<float>*, hwy::N_SCALAR::Vec1<float>*, hwy::N_SCALAR::Vec1<float>*)
1471
1472
// `blurred` is a temporary image used inside this function and not returned.
1473
Status OpsinDynamicsImage(const Image3F& rgb, const ButteraugliParams& params,
1474
0
                          Image3F* blurred, BlurTemp* blur_temp, Image3F* xyb) {
1475
0
  JXL_ENSURE(blurred != nullptr);
1476
0
  const double kSigma = 1.2;
1477
0
  JXL_RETURN_IF_ERROR(
1478
0
      Blur(rgb.Plane(0), kSigma, params, blur_temp, &blurred->Plane(0)));
1479
0
  JXL_RETURN_IF_ERROR(
1480
0
      Blur(rgb.Plane(1), kSigma, params, blur_temp, &blurred->Plane(1)));
1481
0
  JXL_RETURN_IF_ERROR(
1482
0
      Blur(rgb.Plane(2), kSigma, params, blur_temp, &blurred->Plane(2)));
1483
0
  const HWY_FULL(float) df;
1484
0
  const auto intensity_target_multiplier = Set(df, params.intensity_target);
1485
0
  for (size_t y = 0; y < rgb.ysize(); ++y) {
1486
0
    const float* row_r = rgb.ConstPlaneRow(0, y);
1487
0
    const float* row_g = rgb.ConstPlaneRow(1, y);
1488
0
    const float* row_b = rgb.ConstPlaneRow(2, y);
1489
0
    const float* row_blurred_r = blurred->ConstPlaneRow(0, y);
1490
0
    const float* row_blurred_g = blurred->ConstPlaneRow(1, y);
1491
0
    const float* row_blurred_b = blurred->ConstPlaneRow(2, y);
1492
0
    float* row_out_x = xyb->PlaneRow(0, y);
1493
0
    float* row_out_y = xyb->PlaneRow(1, y);
1494
0
    float* row_out_b = xyb->PlaneRow(2, y);
1495
0
    const auto min = Set(df, 1e-4f);
1496
0
    for (size_t x = 0; x < rgb.xsize(); x += Lanes(df)) {
1497
0
      auto sensitivity0 = Undefined(df);
1498
0
      auto sensitivity1 = Undefined(df);
1499
0
      auto sensitivity2 = Undefined(df);
1500
0
      {
1501
        // Calculate sensitivity based on the smoothed image gamma derivative.
1502
0
        auto pre_mixed0 = Undefined(df);
1503
0
        auto pre_mixed1 = Undefined(df);
1504
0
        auto pre_mixed2 = Undefined(df);
1505
0
        OpsinAbsorbance<true>(
1506
0
            df, Mul(Load(df, row_blurred_r + x), intensity_target_multiplier),
1507
0
            Mul(Load(df, row_blurred_g + x), intensity_target_multiplier),
1508
0
            Mul(Load(df, row_blurred_b + x), intensity_target_multiplier),
1509
0
            &pre_mixed0, &pre_mixed1, &pre_mixed2);
1510
0
        pre_mixed0 = Max(pre_mixed0, min);
1511
0
        pre_mixed1 = Max(pre_mixed1, min);
1512
0
        pre_mixed2 = Max(pre_mixed2, min);
1513
0
        sensitivity0 = Div(Gamma(df, pre_mixed0), pre_mixed0);
1514
0
        sensitivity1 = Div(Gamma(df, pre_mixed1), pre_mixed1);
1515
0
        sensitivity2 = Div(Gamma(df, pre_mixed2), pre_mixed2);
1516
0
        sensitivity0 = Max(sensitivity0, min);
1517
0
        sensitivity1 = Max(sensitivity1, min);
1518
0
        sensitivity2 = Max(sensitivity2, min);
1519
0
      }
1520
0
      auto cur_mixed0 = Undefined(df);
1521
0
      auto cur_mixed1 = Undefined(df);
1522
0
      auto cur_mixed2 = Undefined(df);
1523
0
      OpsinAbsorbance<false>(
1524
0
          df, Mul(Load(df, row_r + x), intensity_target_multiplier),
1525
0
          Mul(Load(df, row_g + x), intensity_target_multiplier),
1526
0
          Mul(Load(df, row_b + x), intensity_target_multiplier), &cur_mixed0,
1527
0
          &cur_mixed1, &cur_mixed2);
1528
0
      cur_mixed0 = Mul(cur_mixed0, sensitivity0);
1529
0
      cur_mixed1 = Mul(cur_mixed1, sensitivity1);
1530
0
      cur_mixed2 = Mul(cur_mixed2, sensitivity2);
1531
      // This is a kludge. The negative values should be zeroed away before
1532
      // blurring. Ideally there would be no negative values in the first place.
1533
0
      const auto min01 = Set(df, 1.7557483643287353f);
1534
0
      const auto min2 = Set(df, 12.226454707163354f);
1535
0
      cur_mixed0 = Max(cur_mixed0, min01);
1536
0
      cur_mixed1 = Max(cur_mixed1, min01);
1537
0
      cur_mixed2 = Max(cur_mixed2, min2);
1538
1539
0
      Store(Sub(cur_mixed0, cur_mixed1), df, row_out_x + x);
1540
0
      Store(Add(cur_mixed0, cur_mixed1), df, row_out_y + x);
1541
0
      Store(cur_mixed2, df, row_out_b + x);
1542
0
    }
1543
0
  }
1544
0
  return true;
1545
0
}
1546
1547
Status ButteraugliDiffmapInPlace(Image3F& image0, Image3F& image1,
1548
                                 const ButteraugliParams& params,
1549
0
                                 ImageF& diffmap) {
1550
  // image0 and image1 are in linear sRGB color space
1551
0
  const size_t xsize = image0.xsize();
1552
0
  const size_t ysize = image0.ysize();
1553
0
  JxlMemoryManager* memory_manager = image0.memory_manager();
1554
0
  BlurTemp blur_temp;
1555
0
  {
1556
    // Convert image0 and image1 to XYB in-place
1557
0
    JXL_ASSIGN_OR_RETURN(Image3F temp,
1558
0
                         Image3F::Create(memory_manager, xsize, ysize));
1559
0
    JXL_RETURN_IF_ERROR(
1560
0
        OpsinDynamicsImage(image0, params, &temp, &blur_temp, &image0));
1561
0
    JXL_RETURN_IF_ERROR(
1562
0
        OpsinDynamicsImage(image1, params, &temp, &blur_temp, &image1));
1563
0
  }
1564
  // image0 and image1 are in XYB color space
1565
0
  JXL_ASSIGN_OR_RETURN(ImageF block_diff_dc,
1566
0
                       ImageF::Create(memory_manager, xsize, ysize));
1567
0
  ZeroFillImage(&block_diff_dc);
1568
0
  {
1569
    // separate out LF components from image0 and image1 and compute the dc
1570
    // diff image from them
1571
0
    JXL_ASSIGN_OR_RETURN(Image3F lf0,
1572
0
                         Image3F::Create(memory_manager, xsize, ysize));
1573
0
    JXL_ASSIGN_OR_RETURN(Image3F lf1,
1574
0
                         Image3F::Create(memory_manager, xsize, ysize));
1575
0
    JXL_RETURN_IF_ERROR(
1576
0
        SeparateLFAndMF(params, image0, &lf0, &image0, &blur_temp));
1577
0
    JXL_RETURN_IF_ERROR(
1578
0
        SeparateLFAndMF(params, image1, &lf1, &image1, &blur_temp));
1579
0
    for (size_t c = 0; c < 3; ++c) {
1580
0
      L2Diff(lf0.Plane(c), lf1.Plane(c), wmul[6 + c], &block_diff_dc);
1581
0
    }
1582
0
  }
1583
  // image0 and image1 are MF residuals (before blurring) in XYB color space
1584
0
  ImageF hf0[2];
1585
0
  ImageF hf1[2];
1586
0
  JXL_RETURN_IF_ERROR(SeparateMFAndHF(params, &image0, &hf0[0], &blur_temp));
1587
0
  JXL_RETURN_IF_ERROR(SeparateMFAndHF(params, &image1, &hf1[0], &blur_temp));
1588
  // image0 and image1 are MF-images in XYB color space
1589
1590
0
  JXL_ASSIGN_OR_RETURN(ImageF block_diff_ac,
1591
0
                       ImageF::Create(memory_manager, xsize, ysize));
1592
0
  ZeroFillImage(&block_diff_ac);
1593
  // start accumulating ac diff image from MF images
1594
0
  {
1595
0
    JXL_ASSIGN_OR_RETURN(ImageF diffs,
1596
0
                         ImageF::Create(memory_manager, xsize, ysize));
1597
0
    JXL_RETURN_IF_ERROR(MaltaDiffMapLF(image0.Plane(1), image1.Plane(1),
1598
0
                                       wMfMalta, wMfMalta, norm1Mf, &diffs,
1599
0
                                       &block_diff_ac));
1600
0
    JXL_RETURN_IF_ERROR(MaltaDiffMapLF(image0.Plane(0), image1.Plane(0),
1601
0
                                       wMfMaltaX, wMfMaltaX, norm1MfX, &diffs,
1602
0
                                       &block_diff_ac));
1603
0
  }
1604
0
  for (size_t c = 0; c < 3; ++c) {
1605
0
    L2Diff(image0.Plane(c), image1.Plane(c), wmul[3 + c], &block_diff_ac);
1606
0
  }
1607
  // we will not need the MF-images and more, so we deallocate them to reduce
1608
  // peak memory usage
1609
0
  image0 = Image3F();
1610
0
  image1 = Image3F();
1611
1612
0
  ImageF uhf0[2];
1613
0
  ImageF uhf1[2];
1614
0
  JXL_RETURN_IF_ERROR(SeparateHFAndUHF(params, &hf0[0], &uhf0[0], &blur_temp));
1615
0
  JXL_RETURN_IF_ERROR(SeparateHFAndUHF(params, &hf1[0], &uhf1[0], &blur_temp));
1616
1617
  // continue accumulating ac diff image from HF and UHF images
1618
0
  const float hf_asymmetry = params.hf_asymmetry;
1619
0
  {
1620
0
    JXL_ASSIGN_OR_RETURN(ImageF diffs,
1621
0
                         ImageF::Create(memory_manager, xsize, ysize));
1622
0
    JXL_RETURN_IF_ERROR(MaltaDiffMap(uhf0[1], uhf1[1], wUhfMalta * hf_asymmetry,
1623
0
                                     wUhfMalta / hf_asymmetry, norm1Uhf, &diffs,
1624
0
                                     &block_diff_ac));
1625
0
    JXL_RETURN_IF_ERROR(MaltaDiffMap(
1626
0
        uhf0[0], uhf1[0], wUhfMaltaX * hf_asymmetry, wUhfMaltaX / hf_asymmetry,
1627
0
        norm1UhfX, &diffs, &block_diff_ac));
1628
0
    JXL_RETURN_IF_ERROR(MaltaDiffMapLF(
1629
0
        hf0[1], hf1[1], wHfMalta * std::sqrt(hf_asymmetry),
1630
0
        wHfMalta / std::sqrt(hf_asymmetry), norm1Hf, &diffs, &block_diff_ac));
1631
0
    JXL_RETURN_IF_ERROR(MaltaDiffMapLF(
1632
0
        hf0[0], hf1[0], wHfMaltaX * std::sqrt(hf_asymmetry),
1633
0
        wHfMaltaX / std::sqrt(hf_asymmetry), norm1HfX, &diffs, &block_diff_ac));
1634
0
  }
1635
0
  for (size_t c = 0; c < 2; ++c) {
1636
0
    L2DiffAsymmetric(hf0[c], hf1[c], wmul[c] * hf_asymmetry,
1637
0
                     wmul[c] / hf_asymmetry, &block_diff_ac);
1638
0
  }
1639
1640
  // compute mask image from HF and UHF X and Y images
1641
0
  JXL_ASSIGN_OR_RETURN(ImageF mask,
1642
0
                       ImageF::Create(memory_manager, xsize, ysize));
1643
0
  {
1644
0
    JXL_ASSIGN_OR_RETURN(ImageF mask0,
1645
0
                         ImageF::Create(memory_manager, xsize, ysize));
1646
0
    JXL_ASSIGN_OR_RETURN(ImageF mask1,
1647
0
                         ImageF::Create(memory_manager, xsize, ysize));
1648
0
    CombineChannelsForMasking(&hf0[0], &uhf0[0], &mask0);
1649
0
    CombineChannelsForMasking(&hf1[0], &uhf1[0], &mask1);
1650
0
    DeallocateHFAndUHF(&hf1[0], &uhf1[0]);
1651
0
    DeallocateHFAndUHF(&hf0[0], &uhf0[0]);
1652
0
    JXL_RETURN_IF_ERROR(
1653
0
        Mask(mask0, mask1, params, &blur_temp, &mask, &block_diff_ac));
1654
0
  }
1655
1656
  // compute final diffmap from mask image and ac and dc diff images
1657
0
  JXL_ASSIGN_OR_RETURN(diffmap, ImageF::Create(memory_manager, xsize, ysize));
1658
0
  for (size_t y = 0; y < ysize; ++y) {
1659
0
    const float* row_dc = block_diff_dc.Row(y);
1660
0
    const float* row_ac = block_diff_ac.Row(y);
1661
0
    float* row_out = diffmap.Row(y);
1662
0
    for (size_t x = 0; x < xsize; ++x) {
1663
0
      const float val = mask.Row(y)[x];
1664
0
      row_out[x] = sqrt(row_dc[x] * MaskDcY(val) + row_ac[x] * MaskY(val));
1665
0
    }
1666
0
  }
1667
0
  return true;
1668
0
}
1669
1670
// NOLINTNEXTLINE(google-readability-namespace-comments)
1671
}  // namespace HWY_NAMESPACE
1672
}  // namespace jxl
1673
HWY_AFTER_NAMESPACE();
1674
1675
#if HWY_ONCE
1676
namespace jxl {
1677
1678
HWY_EXPORT(SeparateFrequencies);       // Local function.
1679
HWY_EXPORT(MaskPsychoImage);           // Local function.
1680
HWY_EXPORT(L2DiffAsymmetric);          // Local function.
1681
HWY_EXPORT(L2Diff);                    // Local function.
1682
HWY_EXPORT(SetL2Diff);                 // Local function.
1683
HWY_EXPORT(CombineChannelsToDiffmap);  // Local function.
1684
HWY_EXPORT(MaltaDiffMap);              // Local function.
1685
HWY_EXPORT(MaltaDiffMapLF);            // Local function.
1686
HWY_EXPORT(OpsinDynamicsImage);        // Local function.
1687
HWY_EXPORT(ButteraugliDiffmapInPlace);  // Local function.
1688
1689
#if BUTTERAUGLI_ENABLE_CHECKS
1690
1691
static inline bool IsNan(const float x) {
1692
  uint32_t bits;
1693
  memcpy(&bits, &x, sizeof(bits));
1694
  const uint32_t bitmask_exp = 0x7F800000;
1695
  return (bits & bitmask_exp) == bitmask_exp && (bits & 0x7FFFFF);
1696
}
1697
1698
static inline bool IsNan(const double x) {
1699
  uint64_t bits;
1700
  memcpy(&bits, &x, sizeof(bits));
1701
  return (0x7ff0000000000001ULL <= bits && bits <= 0x7fffffffffffffffULL) ||
1702
         (0xfff0000000000001ULL <= bits && bits <= 0xffffffffffffffffULL);
1703
}
1704
1705
static inline void CheckImage(const ImageF& image, const char* name) {
1706
  for (size_t y = 0; y < image.ysize(); ++y) {
1707
    const float* BUTTERAUGLI_RESTRICT row = image.Row(y);
1708
    for (size_t x = 0; x < image.xsize(); ++x) {
1709
      if (IsNan(row[x])) {
1710
        printf("NAN: Image %s @ %" PRIuS ",%" PRIuS " (of %" PRIuS ",%" PRIuS
1711
               ")\n",
1712
               name, x, y, image.xsize(), image.ysize());
1713
        exit(1);
1714
      }
1715
    }
1716
  }
1717
}
1718
1719
#define CHECK_NAN(x, str)                \
1720
  do {                                   \
1721
    if (IsNan(x)) {                      \
1722
      printf("%d: %s\n", __LINE__, str); \
1723
      abort();                           \
1724
    }                                    \
1725
  } while (0)
1726
1727
#define CHECK_IMAGE(image, name) CheckImage(image, name)
1728
1729
#else  // BUTTERAUGLI_ENABLE_CHECKS
1730
1731
#define CHECK_NAN(x, str)
1732
#define CHECK_IMAGE(image, name)
1733
1734
#endif  // BUTTERAUGLI_ENABLE_CHECKS
1735
1736
// Calculate a 2x2 subsampled image for purposes of recursive butteraugli at
1737
// multiresolution.
1738
0
static StatusOr<Image3F> SubSample2x(const Image3F& in) {
1739
0
  size_t xs = (in.xsize() + 1) / 2;
1740
0
  size_t ys = (in.ysize() + 1) / 2;
1741
0
  JxlMemoryManager* memory_manager = in.memory_manager();
1742
0
  JXL_ASSIGN_OR_RETURN(Image3F retval, Image3F::Create(memory_manager, xs, ys));
1743
0
  for (size_t c = 0; c < 3; ++c) {
1744
0
    for (size_t y = 0; y < ys; ++y) {
1745
0
      for (size_t x = 0; x < xs; ++x) {
1746
0
        retval.PlaneRow(c, y)[x] = 0;
1747
0
      }
1748
0
    }
1749
0
  }
1750
0
  for (size_t c = 0; c < 3; ++c) {
1751
0
    for (size_t y = 0; y < in.ysize(); ++y) {
1752
0
      for (size_t x = 0; x < in.xsize(); ++x) {
1753
0
        retval.PlaneRow(c, y / 2)[x / 2] += 0.25f * in.PlaneRow(c, y)[x];
1754
0
      }
1755
0
    }
1756
0
    if ((in.xsize() & 1) != 0) {
1757
0
      for (size_t y = 0; y < retval.ysize(); ++y) {
1758
0
        size_t last_column = retval.xsize() - 1;
1759
0
        retval.PlaneRow(c, y)[last_column] *= 2.0f;
1760
0
      }
1761
0
    }
1762
0
    if ((in.ysize() & 1) != 0) {
1763
0
      for (size_t x = 0; x < retval.xsize(); ++x) {
1764
0
        size_t last_row = retval.ysize() - 1;
1765
0
        retval.PlaneRow(c, last_row)[x] *= 2.0f;
1766
0
      }
1767
0
    }
1768
0
  }
1769
0
  return retval;
1770
0
}
1771
1772
// Supersample src by 2x and add it to dest.
1773
0
static void AddSupersampled2x(const ImageF& src, float w, ImageF& dest) {
1774
0
  for (size_t y = 0; y < dest.ysize(); ++y) {
1775
0
    for (size_t x = 0; x < dest.xsize(); ++x) {
1776
      // There will be less errors from the more averaged images.
1777
      // We take it into account to some extent using a scaler.
1778
0
      static const double kHeuristicMixingValue = 0.3;
1779
0
      dest.Row(y)[x] *= 1.0 - kHeuristicMixingValue * w;
1780
0
      dest.Row(y)[x] += w * src.Row(y / 2)[x / 2];
1781
0
    }
1782
0
  }
1783
0
}
1784
1785
0
Image3F* ButteraugliComparator::Temp() const {
1786
0
  bool was_in_use = temp_in_use_.test_and_set(std::memory_order_acq_rel);
1787
0
  if (was_in_use) return nullptr;
1788
0
  return &temp_;
1789
0
}
1790
1791
0
void ButteraugliComparator::ReleaseTemp() const { temp_in_use_.clear(); }
1792
1793
ButteraugliComparator::ButteraugliComparator(size_t xsize, size_t ysize,
1794
                                             const ButteraugliParams& params)
1795
0
    : xsize_(xsize), ysize_(ysize), params_(params) {}
1796
1797
StatusOr<std::unique_ptr<ButteraugliComparator>> ButteraugliComparator::Make(
1798
0
    const Image3F& rgb0, const ButteraugliParams& params) {
1799
0
  size_t xsize = rgb0.xsize();
1800
0
  size_t ysize = rgb0.ysize();
1801
0
  JxlMemoryManager* memory_manager = rgb0.memory_manager();
1802
0
  std::unique_ptr<ButteraugliComparator> result =
1803
0
      std::unique_ptr<ButteraugliComparator>(
1804
0
          new ButteraugliComparator(xsize, ysize, params));
1805
0
  JXL_ASSIGN_OR_RETURN(result->temp_,
1806
0
                       Image3F::Create(memory_manager, xsize, ysize));
1807
1808
0
  if (xsize < 8 || ysize < 8) {
1809
0
    return result;
1810
0
  }
1811
1812
0
  JXL_ASSIGN_OR_RETURN(Image3F xyb0,
1813
0
                       Image3F::Create(memory_manager, xsize, ysize));
1814
0
  JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)(
1815
0
      rgb0, params, result->Temp(), &result->blur_temp_, &xyb0));
1816
0
  result->ReleaseTemp();
1817
0
  JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(SeparateFrequencies)(
1818
0
      xsize, ysize, params, &result->blur_temp_, xyb0, result->pi0_));
1819
1820
  // Awful recursive construction of samples of different resolution.
1821
  // This is an after-thought and possibly somewhat parallel in
1822
  // functionality with the PsychoImage multi-resolution approach.
1823
0
  JXL_ASSIGN_OR_RETURN(Image3F subsampledRgb0, SubSample2x(rgb0));
1824
0
  JXL_ASSIGN_OR_RETURN(result->sub_,
1825
0
                       ButteraugliComparator::Make(subsampledRgb0, params));
1826
0
  return result;
1827
0
}
1828
1829
0
Status ButteraugliComparator::Mask(ImageF* BUTTERAUGLI_RESTRICT mask) const {
1830
0
  return HWY_DYNAMIC_DISPATCH(MaskPsychoImage)(
1831
0
      pi0_, pi0_, xsize_, ysize_, params_, &blur_temp_, mask, nullptr);
1832
0
}
1833
1834
Status ButteraugliComparator::Diffmap(const Image3F& rgb1,
1835
0
                                      ImageF& result) const {
1836
0
  JxlMemoryManager* memory_manager = rgb1.memory_manager();
1837
0
  if (xsize_ < 8 || ysize_ < 8) {
1838
0
    ZeroFillImage(&result);
1839
0
    return true;
1840
0
  }
1841
0
  JXL_ASSIGN_OR_RETURN(Image3F xyb1,
1842
0
                       Image3F::Create(memory_manager, xsize_, ysize_));
1843
0
  JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)(
1844
0
      rgb1, params_, Temp(), &blur_temp_, &xyb1));
1845
0
  ReleaseTemp();
1846
0
  JXL_RETURN_IF_ERROR(DiffmapOpsinDynamicsImage(xyb1, result));
1847
0
  if (sub_) {
1848
0
    if (sub_->xsize_ < 8 || sub_->ysize_ < 8) {
1849
0
      return true;
1850
0
    }
1851
0
    JXL_ASSIGN_OR_RETURN(
1852
0
        Image3F sub_xyb,
1853
0
        Image3F::Create(memory_manager, sub_->xsize_, sub_->ysize_));
1854
0
    JXL_ASSIGN_OR_RETURN(Image3F subsampledRgb1, SubSample2x(rgb1));
1855
0
    JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)(
1856
0
        subsampledRgb1, params_, sub_->Temp(), &sub_->blur_temp_, &sub_xyb));
1857
0
    sub_->ReleaseTemp();
1858
0
    ImageF subresult;
1859
0
    JXL_RETURN_IF_ERROR(sub_->DiffmapOpsinDynamicsImage(sub_xyb, subresult));
1860
0
    AddSupersampled2x(subresult, 0.5, result);
1861
0
  }
1862
0
  return true;
1863
0
}
1864
1865
Status ButteraugliComparator::DiffmapOpsinDynamicsImage(const Image3F& xyb1,
1866
0
                                                        ImageF& result) const {
1867
0
  JxlMemoryManager* memory_manager = xyb1.memory_manager();
1868
0
  if (xsize_ < 8 || ysize_ < 8) {
1869
0
    ZeroFillImage(&result);
1870
0
    return true;
1871
0
  }
1872
0
  PsychoImage pi1;
1873
0
  JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(SeparateFrequencies)(
1874
0
      xsize_, ysize_, params_, &blur_temp_, xyb1, pi1));
1875
0
  JXL_ASSIGN_OR_RETURN(result, ImageF::Create(memory_manager, xsize_, ysize_));
1876
0
  return DiffmapPsychoImage(pi1, result);
1877
0
}
1878
1879
namespace {
1880
1881
Status MaltaDiffMap(const ImageF& lum0, const ImageF& lum1, const double w_0gt1,
1882
                    const double w_0lt1, const double norm1,
1883
                    ImageF* HWY_RESTRICT diffs,
1884
0
                    Image3F* HWY_RESTRICT block_diff_ac, size_t c) {
1885
0
  return HWY_DYNAMIC_DISPATCH(MaltaDiffMap)(lum0, lum1, w_0gt1, w_0lt1, norm1,
1886
0
                                            diffs, &block_diff_ac->Plane(c));
1887
0
}
1888
1889
Status MaltaDiffMapLF(const ImageF& lum0, const ImageF& lum1,
1890
                      const double w_0gt1, const double w_0lt1,
1891
                      const double norm1, ImageF* HWY_RESTRICT diffs,
1892
0
                      Image3F* HWY_RESTRICT block_diff_ac, size_t c) {
1893
0
  return HWY_DYNAMIC_DISPATCH(MaltaDiffMapLF)(lum0, lum1, w_0gt1, w_0lt1, norm1,
1894
0
                                              diffs, &block_diff_ac->Plane(c));
1895
0
}
1896
1897
}  // namespace
1898
1899
Status ButteraugliComparator::DiffmapPsychoImage(const PsychoImage& pi1,
1900
0
                                                 ImageF& diffmap) const {
1901
0
  JxlMemoryManager* memory_manager = diffmap.memory_manager();
1902
0
  if (xsize_ < 8 || ysize_ < 8) {
1903
0
    ZeroFillImage(&diffmap);
1904
0
    return true;
1905
0
  }
1906
1907
0
  const float hf_asymmetry_ = params_.hf_asymmetry;
1908
0
  const float xmul_ = params_.xmul;
1909
1910
0
  JXL_ASSIGN_OR_RETURN(ImageF diffs,
1911
0
                       ImageF::Create(memory_manager, xsize_, ysize_));
1912
0
  JXL_ASSIGN_OR_RETURN(Image3F block_diff_ac,
1913
0
                       Image3F::Create(memory_manager, xsize_, ysize_));
1914
0
  ZeroFillImage(&block_diff_ac);
1915
0
  JXL_RETURN_IF_ERROR(MaltaDiffMap(
1916
0
      pi0_.uhf[1], pi1.uhf[1], wUhfMalta * hf_asymmetry_,
1917
0
      wUhfMalta / hf_asymmetry_, norm1Uhf, &diffs, &block_diff_ac, 1));
1918
0
  JXL_RETURN_IF_ERROR(MaltaDiffMap(
1919
0
      pi0_.uhf[0], pi1.uhf[0], wUhfMaltaX * hf_asymmetry_,
1920
0
      wUhfMaltaX / hf_asymmetry_, norm1UhfX, &diffs, &block_diff_ac, 0));
1921
0
  JXL_RETURN_IF_ERROR(MaltaDiffMapLF(
1922
0
      pi0_.hf[1], pi1.hf[1], wHfMalta * std::sqrt(hf_asymmetry_),
1923
0
      wHfMalta / std::sqrt(hf_asymmetry_), norm1Hf, &diffs, &block_diff_ac, 1));
1924
0
  JXL_RETURN_IF_ERROR(MaltaDiffMapLF(pi0_.hf[0], pi1.hf[0],
1925
0
                                     wHfMaltaX * std::sqrt(hf_asymmetry_),
1926
0
                                     wHfMaltaX / std::sqrt(hf_asymmetry_),
1927
0
                                     norm1HfX, &diffs, &block_diff_ac, 0));
1928
0
  JXL_RETURN_IF_ERROR(MaltaDiffMapLF(pi0_.mf.Plane(1), pi1.mf.Plane(1),
1929
0
                                     wMfMalta, wMfMalta, norm1Mf, &diffs,
1930
0
                                     &block_diff_ac, 1));
1931
0
  JXL_RETURN_IF_ERROR(MaltaDiffMapLF(pi0_.mf.Plane(0), pi1.mf.Plane(0),
1932
0
                                     wMfMaltaX, wMfMaltaX, norm1MfX, &diffs,
1933
0
                                     &block_diff_ac, 0));
1934
1935
0
  JXL_ASSIGN_OR_RETURN(Image3F block_diff_dc,
1936
0
                       Image3F::Create(memory_manager, xsize_, ysize_));
1937
0
  for (size_t c = 0; c < 3; ++c) {
1938
0
    if (c < 2) {  // No blue channel error accumulated at HF.
1939
0
      HWY_DYNAMIC_DISPATCH(L2DiffAsymmetric)
1940
0
      (pi0_.hf[c], pi1.hf[c], wmul[c] * hf_asymmetry_, wmul[c] / hf_asymmetry_,
1941
0
       &block_diff_ac.Plane(c));
1942
0
    }
1943
0
    HWY_DYNAMIC_DISPATCH(L2Diff)
1944
0
    (pi0_.mf.Plane(c), pi1.mf.Plane(c), wmul[3 + c], &block_diff_ac.Plane(c));
1945
0
    HWY_DYNAMIC_DISPATCH(SetL2Diff)
1946
0
    (pi0_.lf.Plane(c), pi1.lf.Plane(c), wmul[6 + c], &block_diff_dc.Plane(c));
1947
0
  }
1948
1949
0
  ImageF mask;
1950
0
  JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(MaskPsychoImage)(
1951
0
      pi0_, pi1, xsize_, ysize_, params_, &blur_temp_, &mask,
1952
0
      &block_diff_ac.Plane(1)));
1953
1954
0
  JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(CombineChannelsToDiffmap)(
1955
0
      mask, block_diff_dc, block_diff_ac, xmul_, &diffmap));
1956
0
  return true;
1957
0
}
1958
1959
double ButteraugliScoreFromDiffmap(const ImageF& diffmap,
1960
0
                                   const ButteraugliParams* params) {
1961
0
  float retval = 0.0f;
1962
0
  for (size_t y = 0; y < diffmap.ysize(); ++y) {
1963
0
    const float* BUTTERAUGLI_RESTRICT row = diffmap.ConstRow(y);
1964
0
    for (size_t x = 0; x < diffmap.xsize(); ++x) {
1965
0
      retval = std::max(retval, row[x]);
1966
0
    }
1967
0
  }
1968
0
  return retval;
1969
0
}
1970
1971
Status ButteraugliDiffmap(const Image3F& rgb0, const Image3F& rgb1,
1972
0
                          double hf_asymmetry, double xmul, ImageF& diffmap) {
1973
0
  ButteraugliParams params;
1974
0
  params.hf_asymmetry = hf_asymmetry;
1975
0
  params.xmul = xmul;
1976
0
  return ButteraugliDiffmap(rgb0, rgb1, params, diffmap);
1977
0
}
1978
1979
template <size_t kMax>
1980
bool ButteraugliDiffmapSmall(const Image3F& rgb0, const Image3F& rgb1,
1981
0
                             const ButteraugliParams& params, ImageF& diffmap) {
1982
0
  const size_t xsize = rgb0.xsize();
1983
0
  const size_t ysize = rgb0.ysize();
1984
0
  JxlMemoryManager* memory_manager = rgb0.memory_manager();
1985
  // Butteraugli values for small (where xsize or ysize is smaller
1986
  // than 8 pixels) images are non-sensical, but most likely it is
1987
  // less disruptive to try to compute something than just give up.
1988
  // Temporarily extend the borders of the image to fit 8 x 8 size.
1989
0
  size_t xborder = xsize < kMax ? (kMax - xsize) / 2 : 0;
1990
0
  size_t yborder = ysize < kMax ? (kMax - ysize) / 2 : 0;
1991
0
  size_t xscaled = std::max<size_t>(kMax, xsize);
1992
0
  size_t yscaled = std::max<size_t>(kMax, ysize);
1993
0
  JXL_ASSIGN_OR_RETURN(Image3F scaled0,
1994
0
                       Image3F::Create(memory_manager, xscaled, yscaled));
1995
0
  JXL_ASSIGN_OR_RETURN(Image3F scaled1,
1996
0
                       Image3F::Create(memory_manager, xscaled, yscaled));
1997
0
  for (int i = 0; i < 3; ++i) {
1998
0
    for (size_t y = 0; y < yscaled; ++y) {
1999
0
      for (size_t x = 0; x < xscaled; ++x) {
2000
0
        size_t x2 = std::min<size_t>(xsize - 1, x > xborder ? x - xborder : 0);
2001
0
        size_t y2 = std::min<size_t>(ysize - 1, y > yborder ? y - yborder : 0);
2002
0
        scaled0.PlaneRow(i, y)[x] = rgb0.PlaneRow(i, y2)[x2];
2003
0
        scaled1.PlaneRow(i, y)[x] = rgb1.PlaneRow(i, y2)[x2];
2004
0
      }
2005
0
    }
2006
0
  }
2007
0
  ImageF diffmap_scaled;
2008
0
  const bool ok = ButteraugliDiffmap(scaled0, scaled1, params, diffmap_scaled);
2009
0
  JXL_ASSIGN_OR_RETURN(diffmap, ImageF::Create(memory_manager, xsize, ysize));
2010
0
  for (size_t y = 0; y < ysize; ++y) {
2011
0
    for (size_t x = 0; x < xsize; ++x) {
2012
0
      diffmap.Row(y)[x] = diffmap_scaled.Row(y + yborder)[x + xborder];
2013
0
    }
2014
0
  }
2015
0
  return ok;
2016
0
}
2017
2018
Status ButteraugliDiffmap(const Image3F& rgb0, const Image3F& rgb1,
2019
0
                          const ButteraugliParams& params, ImageF& diffmap) {
2020
0
  const size_t xsize = rgb0.xsize();
2021
0
  const size_t ysize = rgb0.ysize();
2022
0
  if (xsize < 1 || ysize < 1) {
2023
0
    return JXL_FAILURE("Zero-sized image");
2024
0
  }
2025
0
  if (!SameSize(rgb0, rgb1)) {
2026
0
    return JXL_FAILURE("Size mismatch");
2027
0
  }
2028
0
  static const int kMax = 8;
2029
0
  if (xsize < kMax || ysize < kMax) {
2030
0
    return ButteraugliDiffmapSmall<kMax>(rgb0, rgb1, params, diffmap);
2031
0
  }
2032
0
  JXL_ASSIGN_OR_RETURN(std::unique_ptr<ButteraugliComparator> butteraugli,
2033
0
                       ButteraugliComparator::Make(rgb0, params));
2034
0
  JXL_RETURN_IF_ERROR(butteraugli->Diffmap(rgb1, diffmap));
2035
0
  return true;
2036
0
}
2037
2038
bool ButteraugliInterface(const Image3F& rgb0, const Image3F& rgb1,
2039
                          float hf_asymmetry, float xmul, ImageF& diffmap,
2040
0
                          double& diffvalue) {
2041
0
  ButteraugliParams params;
2042
0
  params.hf_asymmetry = hf_asymmetry;
2043
0
  params.xmul = xmul;
2044
0
  return ButteraugliInterface(rgb0, rgb1, params, diffmap, diffvalue);
2045
0
}
2046
2047
bool ButteraugliInterface(const Image3F& rgb0, const Image3F& rgb1,
2048
                          const ButteraugliParams& params, ImageF& diffmap,
2049
0
                          double& diffvalue) {
2050
0
  if (!ButteraugliDiffmap(rgb0, rgb1, params, diffmap)) {
2051
0
    return false;
2052
0
  }
2053
0
  diffvalue = ButteraugliScoreFromDiffmap(diffmap, &params);
2054
0
  return true;
2055
0
}
2056
2057
Status ButteraugliInterfaceInPlace(Image3F&& rgb0, Image3F&& rgb1,
2058
                                   const ButteraugliParams& params,
2059
0
                                   ImageF& diffmap, double& diffvalue) {
2060
0
  const size_t xsize = rgb0.xsize();
2061
0
  const size_t ysize = rgb0.ysize();
2062
0
  if (xsize < 1 || ysize < 1) {
2063
0
    return JXL_FAILURE("Zero-sized image");
2064
0
  }
2065
0
  if (!SameSize(rgb0, rgb1)) {
2066
0
    return JXL_FAILURE("Size mismatch");
2067
0
  }
2068
0
  static const int kMax = 8;
2069
0
  if (xsize < kMax || ysize < kMax) {
2070
0
    bool ok = ButteraugliDiffmapSmall<kMax>(rgb0, rgb1, params, diffmap);
2071
0
    diffvalue = ButteraugliScoreFromDiffmap(diffmap, &params);
2072
0
    return ok;
2073
0
  }
2074
0
  ImageF subdiffmap;
2075
0
  if (xsize >= 15 && ysize >= 15) {
2076
0
    JXL_ASSIGN_OR_RETURN(Image3F rgb0_sub, SubSample2x(rgb0));
2077
0
    JXL_ASSIGN_OR_RETURN(Image3F rgb1_sub, SubSample2x(rgb1));
2078
0
    JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(ButteraugliDiffmapInPlace)(
2079
0
        rgb0_sub, rgb1_sub, params, subdiffmap));
2080
0
  }
2081
0
  JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(ButteraugliDiffmapInPlace)(
2082
0
      rgb0, rgb1, params, diffmap));
2083
0
  if (xsize >= 15 && ysize >= 15) {
2084
0
    AddSupersampled2x(subdiffmap, 0.5, diffmap);
2085
0
  }
2086
0
  diffvalue = ButteraugliScoreFromDiffmap(diffmap, &params);
2087
0
  return true;
2088
0
}
2089
2090
0
double ButteraugliFuzzyClass(double score) {
2091
0
  static const double fuzzy_width_up = 4.8;
2092
0
  static const double fuzzy_width_down = 4.8;
2093
0
  static const double m0 = 2.0;
2094
0
  static const double scaler = 0.7777;
2095
0
  double val;
2096
0
  if (score < 1.0) {
2097
    // val in [scaler .. 2.0]
2098
0
    val = m0 / (1.0 + exp((score - 1.0) * fuzzy_width_down));
2099
0
    val -= 1.0;           // from [1 .. 2] to [0 .. 1]
2100
0
    val *= 2.0 - scaler;  // from [0 .. 1] to [0 .. 2.0 - scaler]
2101
0
    val += scaler;        // from [0 .. 2.0 - scaler] to [scaler .. 2.0]
2102
0
  } else {
2103
    // val in [0 .. scaler]
2104
0
    val = m0 / (1.0 + exp((score - 1.0) * fuzzy_width_up));
2105
0
    val *= scaler;
2106
0
  }
2107
0
  return val;
2108
0
}
2109
2110
// #define PRINT_OUT_NORMALIZATION
2111
2112
0
double ButteraugliFuzzyInverse(double seek) {
2113
0
  double pos = 0;
2114
  // NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter)
2115
0
  for (double range = 1.0; range >= 1e-10; range *= 0.5) {
2116
0
    double cur = ButteraugliFuzzyClass(pos);
2117
0
    if (cur < seek) {
2118
0
      pos -= range;
2119
0
    } else {
2120
0
      pos += range;
2121
0
    }
2122
0
  }
2123
#ifdef PRINT_OUT_NORMALIZATION
2124
  if (seek == 1.0) {
2125
    fprintf(stderr, "Fuzzy inverse %g\n", pos);
2126
  }
2127
#endif
2128
0
  return pos;
2129
0
}
2130
2131
#ifdef PRINT_OUT_NORMALIZATION
2132
static double print_out_normalization = ButteraugliFuzzyInverse(1.0);
2133
#endif
2134
2135
namespace {
2136
2137
void ScoreToRgb(double score, double good_threshold, double bad_threshold,
2138
0
                float rgb[3]) {
2139
0
  double heatmap[12][3] = {
2140
0
      {0, 0, 0},       {0, 0, 1},
2141
0
      {0, 1, 1},       {0, 1, 0},  // Good level
2142
0
      {1, 1, 0},       {1, 0, 0},  // Bad level
2143
0
      {1, 0, 1},       {0.5, 0.5, 1.0},
2144
0
      {1.0, 0.5, 0.5},  // Pastel colors for the very bad quality range.
2145
0
      {1.0, 1.0, 0.5}, {1, 1, 1},
2146
0
      {1, 1, 1},  // Last color repeated to have a solid range of white.
2147
0
  };
2148
0
  if (score < good_threshold) {
2149
0
    score = (score / good_threshold) * 0.3;
2150
0
  } else if (score < bad_threshold) {
2151
0
    score = 0.3 +
2152
0
            (score - good_threshold) / (bad_threshold - good_threshold) * 0.15;
2153
0
  } else {
2154
0
    score = 0.45 + (score - bad_threshold) / (bad_threshold * 12) * 0.5;
2155
0
  }
2156
0
  static const int kTableSize = sizeof(heatmap) / sizeof(heatmap[0]);
2157
0
  score = std::min<double>(std::max<double>(score * (kTableSize - 1), 0.0),
2158
0
                           kTableSize - 2);
2159
0
  int ix = static_cast<int>(score);
2160
0
  ix = std::min(std::max(0, ix), kTableSize - 2);  // Handle NaN
2161
0
  double mix = score - ix;
2162
0
  for (int i = 0; i < 3; ++i) {
2163
0
    double v = mix * heatmap[ix + 1][i] + (1 - mix) * heatmap[ix][i];
2164
0
    rgb[i] = pow(v, 0.5);
2165
0
  }
2166
0
}
2167
2168
}  // namespace
2169
2170
StatusOr<Image3F> CreateHeatMapImage(const ImageF& distmap,
2171
                                     double good_threshold,
2172
0
                                     double bad_threshold) {
2173
0
  JxlMemoryManager* memory_manager = distmap.memory_manager();
2174
0
  JXL_ASSIGN_OR_RETURN(
2175
0
      Image3F heatmap,
2176
0
      Image3F::Create(memory_manager, distmap.xsize(), distmap.ysize()));
2177
0
  for (size_t y = 0; y < distmap.ysize(); ++y) {
2178
0
    const float* BUTTERAUGLI_RESTRICT row_distmap = distmap.ConstRow(y);
2179
0
    float* BUTTERAUGLI_RESTRICT row_h0 = heatmap.PlaneRow(0, y);
2180
0
    float* BUTTERAUGLI_RESTRICT row_h1 = heatmap.PlaneRow(1, y);
2181
0
    float* BUTTERAUGLI_RESTRICT row_h2 = heatmap.PlaneRow(2, y);
2182
0
    for (size_t x = 0; x < distmap.xsize(); ++x) {
2183
0
      const float d = row_distmap[x];
2184
0
      float rgb[3];
2185
0
      ScoreToRgb(d, good_threshold, bad_threshold, rgb);
2186
0
      row_h0[x] = rgb[0];
2187
0
      row_h1[x] = rgb[1];
2188
0
      row_h2[x] = rgb[2];
2189
0
    }
2190
0
  }
2191
0
  return heatmap;
2192
0
}
2193
2194
}  // namespace jxl
2195
#endif  // HWY_ONCE