Coverage Report

Created: 2025-06-22 08:04

/src/libjxl/lib/jxl/cms/transfer_functions-inl.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
// Transfer functions for color encodings.
7
8
#if defined(LIB_JXL_CMS_TRANSFER_FUNCTIONS_INL_H_) == defined(HWY_TARGET_TOGGLE)
9
#ifdef LIB_JXL_CMS_TRANSFER_FUNCTIONS_INL_H_
10
#undef LIB_JXL_CMS_TRANSFER_FUNCTIONS_INL_H_
11
#else
12
#define LIB_JXL_CMS_TRANSFER_FUNCTIONS_INL_H_
13
#endif
14
15
#include <algorithm>
16
#include <cmath>
17
#include <hwy/highway.h>
18
19
#include "lib/jxl/base/compiler_specific.h"
20
#include "lib/jxl/base/fast_math-inl.h"
21
#include "lib/jxl/base/rational_polynomial-inl.h"
22
#include "lib/jxl/base/status.h"
23
#include "lib/jxl/cms/transfer_functions.h"
24
25
HWY_BEFORE_NAMESPACE();
26
namespace jxl {
27
namespace HWY_NAMESPACE {
28
29
// These templates are not found via ADL.
30
using hwy::HWY_NAMESPACE::And;
31
using hwy::HWY_NAMESPACE::AndNot;
32
using hwy::HWY_NAMESPACE::Gt;
33
using hwy::HWY_NAMESPACE::IfThenElse;
34
using hwy::HWY_NAMESPACE::Lt;
35
using hwy::HWY_NAMESPACE::Or;
36
using hwy::HWY_NAMESPACE::Sqrt;
37
using hwy::HWY_NAMESPACE::TableLookupBytes;
38
39
// Definitions for BT.2100-2 transfer functions (used inside/outside SIMD):
40
// "display" is linear light (nits) normalized to [0, 1].
41
// "encoded" is a nonlinear encoding (e.g. PQ) in [0, 1].
42
// "scene" is a linear function of photon counts, normalized to [0, 1].
43
44
// Despite the stated ranges, we need unbounded transfer functions: see
45
// http://www.littlecms.com/CIC18_UnboundedCMM.pdf. Inputs can be negative or
46
// above 1 due to chromatic adaptation. To avoid severe round-trip errors caused
47
// by clamping, we mirror negative inputs via copysign (f(-x) = -f(x), see
48
// https://developer.apple.com/documentation/coregraphics/cgcolorspace/1644735-extendedsrgb)
49
// and extend the function domains above 1.
50
51
// Hybrid Log-Gamma.
52
class TF_HLG : TF_HLG_Base {
53
 public:
54
  // Maximum error 5e-7.
55
  template <class D, class V>
56
0
  JXL_INLINE V EncodedFromDisplay(D d, V x) const {
57
0
    const hwy::HWY_NAMESPACE::Rebind<uint32_t, D> du;
58
0
    const V kSign = BitCast(d, Set(du, 0x80000000u));
59
0
    const V original_sign = And(x, kSign);
60
0
    x = AndNot(kSign, x);  // abs
61
0
    const V below_div12 = Sqrt(Mul(Set(d, 3.0f), x));
62
0
    const V e =
63
0
        MulAdd(Set(d, kA * 0.693147181f),
64
0
               FastLog2f(d, MulAdd(Set(d, 12), x, Set(d, -kB))), Set(d, kC));
65
0
    const V magnitude = IfThenElse(Le(x, Set(d, kDiv12)), below_div12, e);
66
0
    return Or(AndNot(kSign, magnitude), original_sign);
67
0
  }
68
};
69
70
class TF_709 {
71
 public:
72
0
  static JXL_INLINE double EncodedFromDisplay(const double d) {
73
0
    if (d < kThresh) return kMulLow * d;
74
0
    return kMulHi * std::pow(d, kPowHi) + kSub;
75
0
  }
76
77
  // Maximum error 1e-6.
78
  template <class D, class V>
79
0
  JXL_INLINE V EncodedFromDisplay(D d, V x) const {
80
0
    auto low = Mul(Set(d, kMulLow), x);
81
0
    auto hi =
82
0
        MulAdd(Set(d, kMulHi), FastPowf(d, x, Set(d, kPowHi)), Set(d, kSub));
83
0
    return IfThenElse(Le(x, Set(d, kThresh)), low, hi);
84
0
  }
85
86
  template <class D, class V>
87
0
  JXL_INLINE V DisplayFromEncoded(D d, V x) const {
88
0
    auto low = Mul(Set(d, kInvMulLow), x);
89
0
    auto hi = FastPowf(d, MulAdd(x, Set(d, kInvMulHi), Set(d, kInvAdd)),
90
0
                       Set(d, kInvPowHi));
91
0
    return IfThenElse(Lt(x, Set(d, kInvThresh)), low, hi);
92
0
  }
93
94
 private:
95
  static constexpr double kThresh = 0.018;
96
  static constexpr double kMulLow = 4.5;
97
  static constexpr double kMulHi = 1.099;
98
  static constexpr double kPowHi = 0.45;
99
  static constexpr double kSub = -0.099;
100
101
  static constexpr double kInvThresh = 0.081;
102
  static constexpr double kInvMulLow = 1 / 4.5;
103
  static constexpr double kInvMulHi = 1 / 1.099;
104
  static constexpr double kInvPowHi = 1 / 0.45;
105
  static constexpr double kInvAdd = 0.099 * kInvMulHi;
106
};
107
108
// Perceptual Quantization
109
class TF_PQ : TF_PQ_Base {
110
 public:
111
  explicit TF_PQ(float display_intensity_target = kDefaultIntensityTarget)
112
0
      : display_scaling_factor_to_10000_nits_(display_intensity_target *
113
0
                                              (1.0f / 10000.0f)),
114
0
        display_scaling_factor_from_10000_nits_(10000.0f /
115
0
                                                display_intensity_target) {}
116
117
  // Maximum error 3e-6
118
  template <class D, class V>
119
0
  JXL_INLINE V DisplayFromEncoded(D d, V x) const {
120
0
    const hwy::HWY_NAMESPACE::Rebind<uint32_t, D> du;
121
0
    const V kSign = BitCast(d, Set(du, 0x80000000u));
122
0
    const V original_sign = And(x, kSign);
123
0
    x = AndNot(kSign, x);  // abs
124
    // 4-over-4-degree rational polynomial approximation on x+x*x. This improves
125
    // the maximum error by about 5x over a rational polynomial for x.
126
0
    auto xpxx = MulAdd(x, x, x);
127
0
    HWY_ALIGN constexpr float p[(4 + 1) * 4] = {
128
0
        HWY_REP4(2.62975656e-04f), HWY_REP4(-6.23553089e-03f),
129
0
        HWY_REP4(7.38602301e-01f), HWY_REP4(2.64553172e+00f),
130
0
        HWY_REP4(5.50034862e-01f),
131
0
    };
132
0
    HWY_ALIGN constexpr float q[(4 + 1) * 4] = {
133
0
        HWY_REP4(4.21350107e+02f), HWY_REP4(-4.28736818e+02f),
134
0
        HWY_REP4(1.74364667e+02f), HWY_REP4(-3.39078883e+01f),
135
0
        HWY_REP4(2.67718770e+00f),
136
0
    };
137
0
    auto magnitude = EvalRationalPolynomial(d, xpxx, p, q);
138
0
    return Or(
139
0
        AndNot(kSign,
140
0
               Mul(magnitude, Set(d, display_scaling_factor_from_10000_nits_))),
141
0
        original_sign);
142
0
  }
143
144
  // Maximum error 7e-7.
145
  template <class D, class V>
146
0
  JXL_INLINE V EncodedFromDisplay(D d, V x) const {
147
0
    const hwy::HWY_NAMESPACE::Rebind<uint32_t, D> du;
148
0
    const V kSign = BitCast(d, Set(du, 0x80000000u));
149
0
    const V original_sign = And(x, kSign);
150
0
    x = AndNot(kSign, x);  // abs
151
    // 4-over-4-degree rational polynomial approximation on x**0.25, with two
152
    // different polynomials above and below 1e-4.
153
0
    auto xto025 =
154
0
        Sqrt(Sqrt(Mul(x, Set(d, display_scaling_factor_to_10000_nits_))));
155
0
    HWY_ALIGN constexpr float p[(4 + 1) * 4] = {
156
0
        HWY_REP4(1.351392e-02f), HWY_REP4(-1.095778e+00f),
157
0
        HWY_REP4(5.522776e+01f), HWY_REP4(1.492516e+02f),
158
0
        HWY_REP4(4.838434e+01f),
159
0
    };
160
0
    HWY_ALIGN constexpr float q[(4 + 1) * 4] = {
161
0
        HWY_REP4(1.012416e+00f), HWY_REP4(2.016708e+01f),
162
0
        HWY_REP4(9.263710e+01f), HWY_REP4(1.120607e+02f),
163
0
        HWY_REP4(2.590418e+01f),
164
0
    };
165
166
0
    HWY_ALIGN constexpr float plo[(4 + 1) * 4] = {
167
0
        HWY_REP4(9.863406e-06f),  HWY_REP4(3.881234e-01f),
168
0
        HWY_REP4(1.352821e+02f),  HWY_REP4(6.889862e+04f),
169
0
        HWY_REP4(-2.864824e+05f),
170
0
    };
171
0
    HWY_ALIGN constexpr float qlo[(4 + 1) * 4] = {
172
0
        HWY_REP4(3.371868e+01f),  HWY_REP4(1.477719e+03f),
173
0
        HWY_REP4(1.608477e+04f),  HWY_REP4(-4.389884e+04f),
174
0
        HWY_REP4(-2.072546e+05f),
175
0
    };
176
177
0
    auto magnitude = IfThenElse(Lt(x, Set(d, 1e-4f)),
178
0
                                EvalRationalPolynomial(d, xto025, plo, qlo),
179
0
                                EvalRationalPolynomial(d, xto025, p, q));
180
0
    return Or(AndNot(kSign, magnitude), original_sign);
181
0
  }
182
183
 private:
184
  const float display_scaling_factor_to_10000_nits_;
185
  const float display_scaling_factor_from_10000_nits_;
186
};
187
188
// sRGB
189
class TF_SRGB {
190
 public:
191
  template <typename V>
192
0
  JXL_INLINE V DisplayFromEncoded(V x) const {
193
0
    const HWY_FULL(float) d;
194
0
    const HWY_FULL(uint32_t) du;
195
0
    const V kSign = BitCast(d, Set(du, 0x80000000u));
196
0
    const V original_sign = And(x, kSign);
197
0
    x = AndNot(kSign, x);  // abs
198
199
    // TODO(janwas): range reduction
200
    // Computed via af_cheb_rational (k=100); replicated 4x.
201
0
    HWY_ALIGN constexpr float p[(4 + 1) * 4] = {
202
0
        HWY_REP4(2.200248328e-04f), HWY_REP4(1.043637593e-02f),
203
0
        HWY_REP4(1.624820318e-01f), HWY_REP4(7.961564959e-01f),
204
0
        HWY_REP4(8.210152774e-01f),
205
0
    };
206
0
    HWY_ALIGN constexpr float q[(4 + 1) * 4] = {
207
0
        HWY_REP4(2.631846970e-01f), HWY_REP4(1.076976492e+00f),
208
0
        HWY_REP4(4.987528350e-01f), HWY_REP4(-5.512498495e-02f),
209
0
        HWY_REP4(6.521209011e-03f),
210
0
    };
211
0
    const V linear = Mul(x, Set(d, kLowDivInv));
212
0
    const V poly = EvalRationalPolynomial(d, x, p, q);
213
0
    const V magnitude =
214
0
        IfThenElse(Gt(x, Set(d, kThreshSRGBToLinear)), poly, linear);
215
0
    return Or(AndNot(kSign, magnitude), original_sign);
216
0
  }
217
218
  // Error ~5e-07
219
  template <class D, class V>
220
922M
  JXL_INLINE V EncodedFromDisplay(D d, V x) const {
221
922M
    const hwy::HWY_NAMESPACE::Rebind<uint32_t, D> du;
222
922M
    const V kSign = BitCast(d, Set(du, 0x80000000u));
223
922M
    const V original_sign = And(x, kSign);
224
922M
    x = AndNot(kSign, x);  // abs
225
226
    // Computed via af_cheb_rational (k=100); replicated 4x.
227
922M
    HWY_ALIGN constexpr float p[(4 + 1) * 4] = {
228
922M
        HWY_REP4(-5.135152395e-04f), HWY_REP4(5.287254571e-03f),
229
922M
        HWY_REP4(3.903842876e-01f),  HWY_REP4(1.474205315e+00f),
230
922M
        HWY_REP4(7.352629620e-01f),
231
922M
    };
232
922M
    HWY_ALIGN constexpr float q[(4 + 1) * 4] = {
233
922M
        HWY_REP4(1.004519624e-02f), HWY_REP4(3.036675394e-01f),
234
922M
        HWY_REP4(1.340816930e+00f), HWY_REP4(9.258482155e-01f),
235
922M
        HWY_REP4(2.424867759e-02f),
236
922M
    };
237
922M
    const V linear = Mul(x, Set(d, kLowDiv));
238
922M
    const V poly = EvalRationalPolynomial(d, Sqrt(x), p, q);
239
922M
    const V magnitude =
240
922M
        IfThenElse(Gt(x, Set(d, kThreshLinearToSRGB)), poly, linear);
241
922M
    return Or(AndNot(kSign, magnitude), original_sign);
242
922M
  }
243
244
 private:
245
  static constexpr float kThreshSRGBToLinear = 0.04045f;
246
  static constexpr float kThreshLinearToSRGB = 0.0031308f;
247
  static constexpr float kLowDiv = 12.92f;
248
  static constexpr float kLowDivInv = 1.0f / kLowDiv;
249
};
250
251
// Linear to sRGB conversion with error of at most 1.2e-4.
252
template <typename D, typename V>
253
V FastLinearToSRGB(D d, V v) {
254
  const hwy::HWY_NAMESPACE::Rebind<uint32_t, D> du;
255
  const hwy::HWY_NAMESPACE::Rebind<int32_t, D> di;
256
  // Convert to 0.25 - 0.5 range.
257
  auto v025_05 = BitCast(
258
      d, And(Or(BitCast(du, v), Set(du, 0x3e800000)), Set(du, 0x3effffff)));
259
  // third degree polynomial approximation between 0.25 and 0.5
260
  // of 1.055/2^(7/2.4) * x^(1/2.4) * 0.5. A degree 4 polynomial only improves
261
  // accuracy by about 3x.
262
  auto d1 = MulAdd(v025_05, Set(d, 0.059914046f), Set(d, -0.108894556f));
263
  auto d2 = MulAdd(d1, v025_05, Set(d, 0.107963754f));
264
  auto pow = MulAdd(d2, v025_05, Set(d, 0.018092343f));
265
  // Compute extra multiplier depending on exponent. Valid exponent range for
266
  // [0.0031308f, 1.0) is 0...8 after subtracting 118.
267
  // The next three constants contain a representation of the powers of
268
  // 2**(1/2.4) = 2**(5/12) times two; in particular, bits from 26 to 31 are
269
  // always the same and in k2to512powers_basebits, and the two arrays contain
270
  // the next groups of 8 bits. This ends up being a 22-bit representation (with
271
  // a mantissa of 13 bits). The choice of polynomial to approximate is such
272
  // that the multiplication factor has the highest 5 bits constant, and that
273
  // the factor for the lowest possible exponent is a power of two (thus making
274
  // the additional bits 0, which is used to correctly merge back together the
275
  // floats).
276
  constexpr uint32_t k2to512powers_basebits = 0x40000000;
277
  HWY_ALIGN constexpr uint8_t k2to512powers_25to18bits[16] = {
278
      0x0,  0xa,  0x19, 0x26, 0x32, 0x41, 0x4d, 0x5c,
279
      0x68, 0x75, 0x83, 0x8f, 0xa0, 0xaa, 0xb9, 0xc6,
280
  };
281
  HWY_ALIGN constexpr uint8_t k2to512powers_17to10bits[16] = {
282
      0x0,  0xb7, 0x4,  0xd,  0xcb, 0xe7, 0x41, 0x68,
283
      0x51, 0xd1, 0xeb, 0xf2, 0x0,  0xb7, 0x4,  0xd,
284
  };
285
  // Note that vld1q_s8_x2 on ARM seems to actually be slower.
286
#if HWY_TARGET != HWY_SCALAR
287
  using hwy::HWY_NAMESPACE::ShiftLeft;
288
  using hwy::HWY_NAMESPACE::ShiftRight;
289
  // Every lane of exp is now (if cast to byte) {0, 0, 0, <index for lookup>}.
290
  auto exp = Sub(ShiftRight<23>(BitCast(di, v)), Set(di, 118));
291
  auto pow25to18bits = TableLookupBytes(
292
      LoadDup128(di,
293
                 reinterpret_cast<const int32_t*>(k2to512powers_25to18bits)),
294
      exp);
295
  auto pow17to10bits = TableLookupBytes(
296
      LoadDup128(di,
297
                 reinterpret_cast<const int32_t*>(k2to512powers_17to10bits)),
298
      exp);
299
  // Now, pow* contain {0, 0, 0, <part of float repr of multiplier>}. Here
300
  // we take advantage of the fact that each table has its position 0 equal to
301
  // 0.
302
  // We can now just reassemble the float.
303
  auto mul = BitCast(
304
      d, Or(Or(ShiftLeft<18>(pow25to18bits), ShiftLeft<10>(pow17to10bits)),
305
            Set(di, k2to512powers_basebits)));
306
#else
307
  // Fallback for scalar.
308
  uint32_t exp = ((BitCast(di, v).raw >> 23) - 118) & 0xf;
309
  auto mul = BitCast(d, Set(di, (k2to512powers_25to18bits[exp] << 18) |
310
                                    (k2to512powers_17to10bits[exp] << 10) |
311
                                    k2to512powers_basebits));
312
#endif
313
  return IfThenElse(Lt(v, Set(d, 0.0031308f)), Mul(v, Set(d, 12.92f)),
314
                    MulAdd(pow, mul, Set(d, -0.055)));
315
}
316
317
// NOLINTNEXTLINE(google-readability-namespace-comments)
318
}  // namespace HWY_NAMESPACE
319
}  // namespace jxl
320
HWY_AFTER_NAMESPACE();
321
322
#endif  // LIB_JXL_CMS_TRANSFER_FUNCTIONS_INL_H_