/src/libjxl/lib/jxl/enc_heuristics.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) the JPEG XL Project Authors. All rights reserved. |
2 | | // |
3 | | // Use of this source code is governed by a BSD-style |
4 | | // license that can be found in the LICENSE file. |
5 | | |
6 | | #include "lib/jxl/enc_heuristics.h" |
7 | | |
8 | | #include <jxl/cms_interface.h> |
9 | | #include <jxl/memory_manager.h> |
10 | | |
11 | | #include <algorithm> |
12 | | #include <cstddef> |
13 | | #include <cstdint> |
14 | | #include <cstdlib> |
15 | | #include <limits> |
16 | | #include <memory> |
17 | | #include <numeric> |
18 | | #include <string> |
19 | | #include <utility> |
20 | | #include <vector> |
21 | | |
22 | | #include "lib/jxl/ac_context.h" |
23 | | #include "lib/jxl/ac_strategy.h" |
24 | | #include "lib/jxl/base/common.h" |
25 | | #include "lib/jxl/base/compiler_specific.h" |
26 | | #include "lib/jxl/base/data_parallel.h" |
27 | | #include "lib/jxl/base/override.h" |
28 | | #include "lib/jxl/base/rect.h" |
29 | | #include "lib/jxl/base/status.h" |
30 | | #include "lib/jxl/butteraugli/butteraugli.h" |
31 | | #include "lib/jxl/chroma_from_luma.h" |
32 | | #include "lib/jxl/coeff_order.h" |
33 | | #include "lib/jxl/coeff_order_fwd.h" |
34 | | #include "lib/jxl/common.h" |
35 | | #include "lib/jxl/dec_cache.h" |
36 | | #include "lib/jxl/dec_group.h" |
37 | | #include "lib/jxl/dec_noise.h" |
38 | | #include "lib/jxl/dec_xyb.h" |
39 | | #include "lib/jxl/enc_ac_strategy.h" |
40 | | #include "lib/jxl/enc_adaptive_quantization.h" |
41 | | #include "lib/jxl/enc_cache.h" |
42 | | #include "lib/jxl/enc_chroma_from_luma.h" |
43 | | #include "lib/jxl/enc_gaborish.h" |
44 | | #include "lib/jxl/enc_modular.h" |
45 | | #include "lib/jxl/enc_noise.h" |
46 | | #include "lib/jxl/enc_params.h" |
47 | | #include "lib/jxl/enc_patch_dictionary.h" |
48 | | #include "lib/jxl/enc_quant_weights.h" |
49 | | #include "lib/jxl/enc_splines.h" |
50 | | #include "lib/jxl/epf.h" |
51 | | #include "lib/jxl/frame_dimensions.h" |
52 | | #include "lib/jxl/frame_header.h" |
53 | | #include "lib/jxl/image.h" |
54 | | #include "lib/jxl/image_metadata.h" |
55 | | #include "lib/jxl/image_ops.h" |
56 | | #include "lib/jxl/memory_manager_internal.h" |
57 | | #include "lib/jxl/passes_state.h" |
58 | | #include "lib/jxl/quant_weights.h" |
59 | | |
60 | | namespace jxl { |
61 | | |
62 | | struct AuxOut; |
63 | | |
64 | | void FindBestBlockEntropyModel(const CompressParams& cparams, const ImageI& rqf, |
65 | | const AcStrategyImage& ac_strategy, |
66 | 0 | BlockCtxMap* block_ctx_map) { |
67 | 0 | if (cparams.decoding_speed_tier >= 1) { |
68 | 0 | static constexpr uint8_t kSimpleCtxMap[] = { |
69 | | // Cluster all blocks together |
70 | 0 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // |
71 | 0 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // |
72 | 0 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // |
73 | 0 | }; |
74 | 0 | static_assert( |
75 | 0 | 3 * kNumOrders == sizeof(kSimpleCtxMap) / sizeof *kSimpleCtxMap, |
76 | 0 | "Update simple context map"); |
77 | |
|
78 | 0 | auto bcm = *block_ctx_map; |
79 | 0 | bcm.ctx_map.assign(std::begin(kSimpleCtxMap), std::end(kSimpleCtxMap)); |
80 | 0 | bcm.num_ctxs = 2; |
81 | 0 | bcm.num_dc_ctxs = 1; |
82 | 0 | return; |
83 | 0 | } |
84 | 0 | if (cparams.speed_tier >= SpeedTier::kFalcon) { |
85 | 0 | return; |
86 | 0 | } |
87 | | // No need to change context modeling for small images. |
88 | 0 | size_t tot = rqf.xsize() * rqf.ysize(); |
89 | 0 | size_t size_for_ctx_model = (1 << 10) * cparams.butteraugli_distance; |
90 | 0 | if (tot < size_for_ctx_model) return; |
91 | | |
92 | 0 | struct OccCounters { |
93 | | // count the occurrences of each qf value and each strategy type. |
94 | 0 | OccCounters(const ImageI& rqf, const AcStrategyImage& ac_strategy) { |
95 | 0 | for (size_t y = 0; y < rqf.ysize(); y++) { |
96 | 0 | const int32_t* qf_row = rqf.Row(y); |
97 | 0 | AcStrategyRow acs_row = ac_strategy.ConstRow(y); |
98 | 0 | for (size_t x = 0; x < rqf.xsize(); x++) { |
99 | 0 | int ord = kStrategyOrder[acs_row[x].RawStrategy()]; |
100 | 0 | int qf = qf_row[x] - 1; |
101 | 0 | qf_counts[qf]++; |
102 | 0 | qf_ord_counts[ord][qf]++; |
103 | 0 | ord_counts[ord]++; |
104 | 0 | } |
105 | 0 | } |
106 | 0 | } |
107 | |
|
108 | 0 | size_t qf_counts[256] = {}; |
109 | 0 | size_t qf_ord_counts[kNumOrders][256] = {}; |
110 | 0 | size_t ord_counts[kNumOrders] = {}; |
111 | 0 | }; |
112 | | // The OccCounters struct is too big to allocate on the stack. |
113 | 0 | std::unique_ptr<OccCounters> counters(new OccCounters(rqf, ac_strategy)); |
114 | | |
115 | | // Splitting the context model according to the quantization field seems to |
116 | | // mostly benefit only large images. |
117 | 0 | size_t size_for_qf_split = (1 << 13) * cparams.butteraugli_distance; |
118 | 0 | size_t num_qf_segments = tot < size_for_qf_split ? 1 : 2; |
119 | 0 | std::vector<uint32_t>& qft = block_ctx_map->qf_thresholds; |
120 | 0 | qft.clear(); |
121 | | // Divide the quant field in up to num_qf_segments segments. |
122 | 0 | size_t cumsum = 0; |
123 | 0 | size_t next = 1; |
124 | 0 | size_t last_cut = 256; |
125 | 0 | size_t cut = tot * next / num_qf_segments; |
126 | 0 | for (uint32_t j = 0; j < 256; j++) { |
127 | 0 | cumsum += counters->qf_counts[j]; |
128 | 0 | if (cumsum > cut) { |
129 | 0 | if (j != 0) { |
130 | 0 | qft.push_back(j); |
131 | 0 | } |
132 | 0 | last_cut = j; |
133 | 0 | while (cumsum > cut) { |
134 | 0 | next++; |
135 | 0 | cut = tot * next / num_qf_segments; |
136 | 0 | } |
137 | 0 | } else if (next > qft.size() + 1) { |
138 | 0 | if (j - 1 == last_cut && j != 0) { |
139 | 0 | qft.push_back(j); |
140 | 0 | } |
141 | 0 | } |
142 | 0 | } |
143 | | |
144 | | // Count the occurrences of each segment. |
145 | 0 | std::vector<size_t> counts(kNumOrders * (qft.size() + 1)); |
146 | 0 | size_t qft_pos = 0; |
147 | 0 | for (size_t j = 0; j < 256; j++) { |
148 | 0 | if (qft_pos < qft.size() && j == qft[qft_pos]) { |
149 | 0 | qft_pos++; |
150 | 0 | } |
151 | 0 | for (size_t i = 0; i < kNumOrders; i++) { |
152 | 0 | counts[qft_pos + i * (qft.size() + 1)] += counters->qf_ord_counts[i][j]; |
153 | 0 | } |
154 | 0 | } |
155 | | |
156 | | // Repeatedly merge the lowest-count pair. |
157 | 0 | std::vector<uint8_t> remap((qft.size() + 1) * kNumOrders); |
158 | 0 | std::iota(remap.begin(), remap.end(), 0); |
159 | 0 | std::vector<uint8_t> clusters(remap); |
160 | 0 | size_t nb_clusters = |
161 | 0 | Clamp1(static_cast<int>(tot / size_for_ctx_model / 2), 2, 9); |
162 | 0 | size_t nb_clusters_chroma = |
163 | 0 | Clamp1(static_cast<int>(tot / size_for_ctx_model / 3), 1, 5); |
164 | | // This is O(n^2 log n), but n is small. |
165 | 0 | while (clusters.size() > nb_clusters) { |
166 | 0 | std::sort(clusters.begin(), clusters.end(), |
167 | 0 | [&](int a, int b) { return counts[a] > counts[b]; }); |
168 | 0 | counts[clusters[clusters.size() - 2]] += counts[clusters.back()]; |
169 | 0 | counts[clusters.back()] = 0; |
170 | 0 | remap[clusters.back()] = clusters[clusters.size() - 2]; |
171 | 0 | clusters.pop_back(); |
172 | 0 | } |
173 | 0 | for (size_t i = 0; i < remap.size(); i++) { |
174 | 0 | while (remap[remap[i]] != remap[i]) { |
175 | 0 | remap[i] = remap[remap[i]]; |
176 | 0 | } |
177 | 0 | } |
178 | | // Relabel starting from 0. |
179 | 0 | std::vector<uint8_t> remap_remap(remap.size(), remap.size()); |
180 | 0 | size_t num = 0; |
181 | 0 | for (size_t i = 0; i < remap.size(); i++) { |
182 | 0 | if (remap_remap[remap[i]] == remap.size()) { |
183 | 0 | remap_remap[remap[i]] = num++; |
184 | 0 | } |
185 | 0 | remap[i] = remap_remap[remap[i]]; |
186 | 0 | } |
187 | | // Write the block context map. |
188 | 0 | auto& ctx_map = block_ctx_map->ctx_map; |
189 | 0 | ctx_map = remap; |
190 | 0 | ctx_map.resize(remap.size() * 3); |
191 | | // for chroma, only use up to nb_clusters_chroma separate block contexts |
192 | | // (those for the biggest clusters) |
193 | 0 | for (size_t i = remap.size(); i < remap.size() * 3; i++) { |
194 | 0 | ctx_map[i] = num + Clamp1(static_cast<int>(remap[i % remap.size()]), 0, |
195 | 0 | static_cast<int>(nb_clusters_chroma) - 1); |
196 | 0 | } |
197 | 0 | block_ctx_map->num_ctxs = |
198 | 0 | *std::max_element(ctx_map.begin(), ctx_map.end()) + 1; |
199 | 0 | } |
200 | | |
201 | | namespace { |
202 | | |
203 | | Status FindBestDequantMatrices(JxlMemoryManager* memory_manager, |
204 | | const CompressParams& cparams, |
205 | | ModularFrameEncoder* modular_frame_encoder, |
206 | 0 | DequantMatrices* dequant_matrices) { |
207 | | // TODO(veluca): quant matrices for no-gaborish. |
208 | | // TODO(veluca): heuristics for in-bitstream quant tables. |
209 | 0 | *dequant_matrices = DequantMatrices(); |
210 | 0 | if (cparams.max_error_mode || cparams.disable_perceptual_optimizations) { |
211 | 0 | constexpr float kMSEWeights[3] = {0.001, 0.001, 0.001}; |
212 | 0 | const float* wp = cparams.disable_perceptual_optimizations |
213 | 0 | ? kMSEWeights |
214 | 0 | : cparams.max_error; |
215 | | // Set numerators of all quantization matrices to constant values. |
216 | 0 | float weights[3][1] = {{1.0f / wp[0]}, {1.0f / wp[1]}, {1.0f / wp[2]}}; |
217 | 0 | DctQuantWeightParams dct_params(weights); |
218 | 0 | std::vector<QuantEncoding> encodings(kNumQuantTables, |
219 | 0 | QuantEncoding::DCT(dct_params)); |
220 | 0 | JXL_RETURN_IF_ERROR(DequantMatricesSetCustom(dequant_matrices, encodings, |
221 | 0 | modular_frame_encoder)); |
222 | 0 | float dc_weights[3] = {1.0f / wp[0], 1.0f / wp[1], 1.0f / wp[2]}; |
223 | 0 | JXL_RETURN_IF_ERROR(DequantMatricesSetCustomDC( |
224 | 0 | memory_manager, dequant_matrices, dc_weights)); |
225 | 0 | } |
226 | 0 | return true; |
227 | 0 | } |
228 | | |
229 | 0 | void StoreMin2(const float v, float& min1, float& min2) { |
230 | 0 | if (v < min2) { |
231 | 0 | if (v < min1) { |
232 | 0 | min2 = min1; |
233 | 0 | min1 = v; |
234 | 0 | } else { |
235 | 0 | min2 = v; |
236 | 0 | } |
237 | 0 | } |
238 | 0 | } |
239 | | |
240 | 0 | void CreateMask(const ImageF& image, ImageF& mask) { |
241 | 0 | for (size_t y = 0; y < image.ysize(); y++) { |
242 | 0 | const auto* row_n = y > 0 ? image.Row(y - 1) : image.Row(y); |
243 | 0 | const auto* row_in = image.Row(y); |
244 | 0 | const auto* row_s = y + 1 < image.ysize() ? image.Row(y + 1) : image.Row(y); |
245 | 0 | auto* row_out = mask.Row(y); |
246 | 0 | for (size_t x = 0; x < image.xsize(); x++) { |
247 | | // Center, west, east, north, south values and their absolute difference |
248 | 0 | float c = row_in[x]; |
249 | 0 | float w = x > 0 ? row_in[x - 1] : row_in[x]; |
250 | 0 | float e = x + 1 < image.xsize() ? row_in[x + 1] : row_in[x]; |
251 | 0 | float n = row_n[x]; |
252 | 0 | float s = row_s[x]; |
253 | 0 | float dw = std::abs(c - w); |
254 | 0 | float de = std::abs(c - e); |
255 | 0 | float dn = std::abs(c - n); |
256 | 0 | float ds = std::abs(c - s); |
257 | 0 | float min = std::numeric_limits<float>::max(); |
258 | 0 | float min2 = std::numeric_limits<float>::max(); |
259 | 0 | StoreMin2(dw, min, min2); |
260 | 0 | StoreMin2(de, min, min2); |
261 | 0 | StoreMin2(dn, min, min2); |
262 | 0 | StoreMin2(ds, min, min2); |
263 | 0 | row_out[x] = min2; |
264 | 0 | } |
265 | 0 | } |
266 | 0 | } |
267 | | |
268 | | // Downsamples the image by a factor of 2 with a kernel that's sharper than |
269 | | // the standard 2x2 box kernel used by DownsampleImage. |
270 | | // The kernel is optimized against the result of the 2x2 upsampling kernel used |
271 | | // by the decoder. Ringing is slightly reduced by clamping the values of the |
272 | | // resulting pixels within certain bounds of a small region in the original |
273 | | // image. |
274 | 0 | Status DownsampleImage2_Sharper(const ImageF& input, ImageF* output) { |
275 | 0 | const int64_t kernelx = 12; |
276 | 0 | const int64_t kernely = 12; |
277 | 0 | JxlMemoryManager* memory_manager = input.memory_manager(); |
278 | |
|
279 | 0 | static const float kernel[144] = { |
280 | 0 | -0.000314256996835, -0.000314256996835, -0.000897597057705, |
281 | 0 | -0.000562751488849, -0.000176807273646, 0.001864627368902, |
282 | 0 | 0.001864627368902, -0.000176807273646, -0.000562751488849, |
283 | 0 | -0.000897597057705, -0.000314256996835, -0.000314256996835, |
284 | 0 | -0.000314256996835, -0.001527942804748, -0.000121760530512, |
285 | 0 | 0.000191123989093, 0.010193185932466, 0.058637519197110, |
286 | 0 | 0.058637519197110, 0.010193185932466, 0.000191123989093, |
287 | 0 | -0.000121760530512, -0.001527942804748, -0.000314256996835, |
288 | 0 | -0.000897597057705, -0.000121760530512, 0.000946363683751, |
289 | 0 | 0.007113577630288, 0.000437956841058, -0.000372823835211, |
290 | 0 | -0.000372823835211, 0.000437956841058, 0.007113577630288, |
291 | 0 | 0.000946363683751, -0.000121760530512, -0.000897597057705, |
292 | 0 | -0.000562751488849, 0.000191123989093, 0.007113577630288, |
293 | 0 | 0.044592622228814, 0.000222278879007, -0.162864473015945, |
294 | 0 | -0.162864473015945, 0.000222278879007, 0.044592622228814, |
295 | 0 | 0.007113577630288, 0.000191123989093, -0.000562751488849, |
296 | 0 | -0.000176807273646, 0.010193185932466, 0.000437956841058, |
297 | 0 | 0.000222278879007, -0.000913092543974, -0.017071696107902, |
298 | 0 | -0.017071696107902, -0.000913092543974, 0.000222278879007, |
299 | 0 | 0.000437956841058, 0.010193185932466, -0.000176807273646, |
300 | 0 | 0.001864627368902, 0.058637519197110, -0.000372823835211, |
301 | 0 | -0.162864473015945, -0.017071696107902, 0.414660099370354, |
302 | 0 | 0.414660099370354, -0.017071696107902, -0.162864473015945, |
303 | 0 | -0.000372823835211, 0.058637519197110, 0.001864627368902, |
304 | 0 | 0.001864627368902, 0.058637519197110, -0.000372823835211, |
305 | 0 | -0.162864473015945, -0.017071696107902, 0.414660099370354, |
306 | 0 | 0.414660099370354, -0.017071696107902, -0.162864473015945, |
307 | 0 | -0.000372823835211, 0.058637519197110, 0.001864627368902, |
308 | 0 | -0.000176807273646, 0.010193185932466, 0.000437956841058, |
309 | 0 | 0.000222278879007, -0.000913092543974, -0.017071696107902, |
310 | 0 | -0.017071696107902, -0.000913092543974, 0.000222278879007, |
311 | 0 | 0.000437956841058, 0.010193185932466, -0.000176807273646, |
312 | 0 | -0.000562751488849, 0.000191123989093, 0.007113577630288, |
313 | 0 | 0.044592622228814, 0.000222278879007, -0.162864473015945, |
314 | 0 | -0.162864473015945, 0.000222278879007, 0.044592622228814, |
315 | 0 | 0.007113577630288, 0.000191123989093, -0.000562751488849, |
316 | 0 | -0.000897597057705, -0.000121760530512, 0.000946363683751, |
317 | 0 | 0.007113577630288, 0.000437956841058, -0.000372823835211, |
318 | 0 | -0.000372823835211, 0.000437956841058, 0.007113577630288, |
319 | 0 | 0.000946363683751, -0.000121760530512, -0.000897597057705, |
320 | 0 | -0.000314256996835, -0.001527942804748, -0.000121760530512, |
321 | 0 | 0.000191123989093, 0.010193185932466, 0.058637519197110, |
322 | 0 | 0.058637519197110, 0.010193185932466, 0.000191123989093, |
323 | 0 | -0.000121760530512, -0.001527942804748, -0.000314256996835, |
324 | 0 | -0.000314256996835, -0.000314256996835, -0.000897597057705, |
325 | 0 | -0.000562751488849, -0.000176807273646, 0.001864627368902, |
326 | 0 | 0.001864627368902, -0.000176807273646, -0.000562751488849, |
327 | 0 | -0.000897597057705, -0.000314256996835, -0.000314256996835}; |
328 | |
|
329 | 0 | int64_t xsize = input.xsize(); |
330 | 0 | int64_t ysize = input.ysize(); |
331 | |
|
332 | 0 | JXL_ASSIGN_OR_RETURN(ImageF box_downsample, |
333 | 0 | ImageF::Create(memory_manager, xsize, ysize)); |
334 | 0 | JXL_RETURN_IF_ERROR(CopyImageTo(input, &box_downsample)); |
335 | 0 | JXL_ASSIGN_OR_RETURN(box_downsample, DownsampleImage(box_downsample, 2)); |
336 | |
|
337 | 0 | JXL_ASSIGN_OR_RETURN(ImageF mask, |
338 | 0 | ImageF::Create(memory_manager, box_downsample.xsize(), |
339 | 0 | box_downsample.ysize())); |
340 | 0 | CreateMask(box_downsample, mask); |
341 | |
|
342 | 0 | for (size_t y = 0; y < output->ysize(); y++) { |
343 | 0 | float* row_out = output->Row(y); |
344 | 0 | const float* row_in[kernely]; |
345 | 0 | const float* row_mask = mask.Row(y); |
346 | | // get the rows in the support |
347 | 0 | for (size_t ky = 0; ky < kernely; ky++) { |
348 | 0 | int64_t iy = y * 2 + ky - (kernely - 1) / 2; |
349 | 0 | if (iy < 0) iy = 0; |
350 | 0 | if (iy >= ysize) iy = ysize - 1; |
351 | 0 | row_in[ky] = input.Row(iy); |
352 | 0 | } |
353 | |
|
354 | 0 | for (size_t x = 0; x < output->xsize(); x++) { |
355 | | // get min and max values of the original image in the support |
356 | 0 | float min = std::numeric_limits<float>::max(); |
357 | 0 | float max = std::numeric_limits<float>::min(); |
358 | | // kernelx - R and kernely - R are the radius of a rectangular region in |
359 | | // which the values of a pixel are bounded to reduce ringing. |
360 | 0 | static constexpr int64_t R = 5; |
361 | 0 | for (int64_t ky = R; ky + R < kernely; ky++) { |
362 | 0 | for (int64_t kx = R; kx + R < kernelx; kx++) { |
363 | 0 | int64_t ix = x * 2 + kx - (kernelx - 1) / 2; |
364 | 0 | if (ix < 0) ix = 0; |
365 | 0 | if (ix >= xsize) ix = xsize - 1; |
366 | 0 | min = std::min<float>(min, row_in[ky][ix]); |
367 | 0 | max = std::max<float>(max, row_in[ky][ix]); |
368 | 0 | } |
369 | 0 | } |
370 | |
|
371 | 0 | float sum = 0; |
372 | 0 | for (int64_t ky = 0; ky < kernely; ky++) { |
373 | 0 | for (int64_t kx = 0; kx < kernelx; kx++) { |
374 | 0 | int64_t ix = x * 2 + kx - (kernelx - 1) / 2; |
375 | 0 | if (ix < 0) ix = 0; |
376 | 0 | if (ix >= xsize) ix = xsize - 1; |
377 | 0 | sum += row_in[ky][ix] * kernel[ky * kernelx + kx]; |
378 | 0 | } |
379 | 0 | } |
380 | |
|
381 | 0 | row_out[x] = sum; |
382 | | |
383 | | // Clamp the pixel within the value of a small area to prevent ringning. |
384 | | // The mask determines how much to clamp, clamp more to reduce more |
385 | | // ringing in smooth areas, clamp less in noisy areas to get more |
386 | | // sharpness. Higher mask_multiplier gives less clamping, so less |
387 | | // ringing reduction. |
388 | 0 | const constexpr float mask_multiplier = 1; |
389 | 0 | float a = row_mask[x] * mask_multiplier; |
390 | 0 | float clip_min = min - a; |
391 | 0 | float clip_max = max + a; |
392 | 0 | if (row_out[x] < clip_min) { |
393 | 0 | row_out[x] = clip_min; |
394 | 0 | } else if (row_out[x] > clip_max) { |
395 | 0 | row_out[x] = clip_max; |
396 | 0 | } |
397 | 0 | } |
398 | 0 | } |
399 | 0 | return true; |
400 | 0 | } |
401 | | |
402 | | } // namespace |
403 | | |
404 | 0 | Status DownsampleImage2_Sharper(Image3F* opsin) { |
405 | | // Allocate extra space to avoid a reallocation when padding. |
406 | 0 | JxlMemoryManager* memory_manager = opsin->memory_manager(); |
407 | 0 | JXL_ASSIGN_OR_RETURN( |
408 | 0 | Image3F downsampled, |
409 | 0 | Image3F::Create(memory_manager, DivCeil(opsin->xsize(), 2) + kBlockDim, |
410 | 0 | DivCeil(opsin->ysize(), 2) + kBlockDim)); |
411 | 0 | JXL_RETURN_IF_ERROR(downsampled.ShrinkTo(downsampled.xsize() - kBlockDim, |
412 | 0 | downsampled.ysize() - kBlockDim)); |
413 | | |
414 | 0 | for (size_t c = 0; c < 3; c++) { |
415 | 0 | JXL_RETURN_IF_ERROR( |
416 | 0 | DownsampleImage2_Sharper(opsin->Plane(c), &downsampled.Plane(c))); |
417 | 0 | } |
418 | 0 | *opsin = std::move(downsampled); |
419 | 0 | return true; |
420 | 0 | } |
421 | | |
422 | | namespace { |
423 | | |
424 | | // The default upsampling kernels used by Upsampler in the decoder. |
425 | | const constexpr int64_t kSize = 5; |
426 | | |
427 | | const float kernel00[25] = { |
428 | | -0.01716200f, -0.03452303f, -0.04022174f, -0.02921014f, -0.00624645f, |
429 | | -0.03452303f, 0.14111091f, 0.28896755f, 0.00278718f, -0.01610267f, |
430 | | -0.04022174f, 0.28896755f, 0.56661550f, 0.03777607f, -0.01986694f, |
431 | | -0.02921014f, 0.00278718f, 0.03777607f, -0.03144731f, -0.01185068f, |
432 | | -0.00624645f, -0.01610267f, -0.01986694f, -0.01185068f, -0.00213539f, |
433 | | }; |
434 | | const float kernel01[25] = { |
435 | | -0.00624645f, -0.01610267f, -0.01986694f, -0.01185068f, -0.00213539f, |
436 | | -0.02921014f, 0.00278718f, 0.03777607f, -0.03144731f, -0.01185068f, |
437 | | -0.04022174f, 0.28896755f, 0.56661550f, 0.03777607f, -0.01986694f, |
438 | | -0.03452303f, 0.14111091f, 0.28896755f, 0.00278718f, -0.01610267f, |
439 | | -0.01716200f, -0.03452303f, -0.04022174f, -0.02921014f, -0.00624645f, |
440 | | }; |
441 | | const float kernel10[25] = { |
442 | | -0.00624645f, -0.02921014f, -0.04022174f, -0.03452303f, -0.01716200f, |
443 | | -0.01610267f, 0.00278718f, 0.28896755f, 0.14111091f, -0.03452303f, |
444 | | -0.01986694f, 0.03777607f, 0.56661550f, 0.28896755f, -0.04022174f, |
445 | | -0.01185068f, -0.03144731f, 0.03777607f, 0.00278718f, -0.02921014f, |
446 | | -0.00213539f, -0.01185068f, -0.01986694f, -0.01610267f, -0.00624645f, |
447 | | }; |
448 | | const float kernel11[25] = { |
449 | | -0.00213539f, -0.01185068f, -0.01986694f, -0.01610267f, -0.00624645f, |
450 | | -0.01185068f, -0.03144731f, 0.03777607f, 0.00278718f, -0.02921014f, |
451 | | -0.01986694f, 0.03777607f, 0.56661550f, 0.28896755f, -0.04022174f, |
452 | | -0.01610267f, 0.00278718f, 0.28896755f, 0.14111091f, -0.03452303f, |
453 | | -0.00624645f, -0.02921014f, -0.04022174f, -0.03452303f, -0.01716200f, |
454 | | }; |
455 | | |
456 | | // Does exactly the same as the Upsampler in dec_upsampler for 2x2 pixels, with |
457 | | // default CustomTransformData. |
458 | | // TODO(lode): use Upsampler instead. However, it requires pre-initialization |
459 | | // and padding on the left side of the image which requires refactoring the |
460 | | // other code using this. |
461 | 0 | void UpsampleImage(const ImageF& input, ImageF* output) { |
462 | 0 | int64_t xsize = input.xsize(); |
463 | 0 | int64_t ysize = input.ysize(); |
464 | 0 | int64_t xsize2 = output->xsize(); |
465 | 0 | int64_t ysize2 = output->ysize(); |
466 | 0 | for (int64_t y = 0; y < ysize2; y++) { |
467 | 0 | for (int64_t x = 0; x < xsize2; x++) { |
468 | 0 | const auto* kernel = kernel00; |
469 | 0 | if ((x & 1) && (y & 1)) { |
470 | 0 | kernel = kernel11; |
471 | 0 | } else if (x & 1) { |
472 | 0 | kernel = kernel10; |
473 | 0 | } else if (y & 1) { |
474 | 0 | kernel = kernel01; |
475 | 0 | } |
476 | 0 | float sum = 0; |
477 | 0 | int64_t x2 = x / 2; |
478 | 0 | int64_t y2 = y / 2; |
479 | | |
480 | | // get min and max values of the original image in the support |
481 | 0 | float min = std::numeric_limits<float>::max(); |
482 | 0 | float max = std::numeric_limits<float>::min(); |
483 | |
|
484 | 0 | for (int64_t ky = 0; ky < kSize; ky++) { |
485 | 0 | for (int64_t kx = 0; kx < kSize; kx++) { |
486 | 0 | int64_t xi = x2 - kSize / 2 + kx; |
487 | 0 | int64_t yi = y2 - kSize / 2 + ky; |
488 | 0 | if (xi < 0) xi = 0; |
489 | 0 | if (xi >= xsize) xi = input.xsize() - 1; |
490 | 0 | if (yi < 0) yi = 0; |
491 | 0 | if (yi >= ysize) yi = input.ysize() - 1; |
492 | 0 | min = std::min<float>(min, input.Row(yi)[xi]); |
493 | 0 | max = std::max<float>(max, input.Row(yi)[xi]); |
494 | 0 | } |
495 | 0 | } |
496 | |
|
497 | 0 | for (int64_t ky = 0; ky < kSize; ky++) { |
498 | 0 | for (int64_t kx = 0; kx < kSize; kx++) { |
499 | 0 | int64_t xi = x2 - kSize / 2 + kx; |
500 | 0 | int64_t yi = y2 - kSize / 2 + ky; |
501 | 0 | if (xi < 0) xi = 0; |
502 | 0 | if (xi >= xsize) xi = input.xsize() - 1; |
503 | 0 | if (yi < 0) yi = 0; |
504 | 0 | if (yi >= ysize) yi = input.ysize() - 1; |
505 | 0 | sum += input.Row(yi)[xi] * kernel[ky * kSize + kx]; |
506 | 0 | } |
507 | 0 | } |
508 | 0 | output->Row(y)[x] = sum; |
509 | 0 | if (output->Row(y)[x] < min) output->Row(y)[x] = min; |
510 | 0 | if (output->Row(y)[x] > max) output->Row(y)[x] = max; |
511 | 0 | } |
512 | 0 | } |
513 | 0 | } |
514 | | |
515 | | // Returns the derivative of Upsampler, with respect to input pixel x2, y2, to |
516 | | // output pixel x, y (ignoring the clamping). |
517 | 0 | float UpsamplerDeriv(int64_t x2, int64_t y2, int64_t x, int64_t y) { |
518 | 0 | const auto* kernel = kernel00; |
519 | 0 | if ((x & 1) && (y & 1)) { |
520 | 0 | kernel = kernel11; |
521 | 0 | } else if (x & 1) { |
522 | 0 | kernel = kernel10; |
523 | 0 | } else if (y & 1) { |
524 | 0 | kernel = kernel01; |
525 | 0 | } |
526 | |
|
527 | 0 | int64_t ix = x / 2; |
528 | 0 | int64_t iy = y / 2; |
529 | 0 | int64_t kx = x2 - ix + kSize / 2; |
530 | 0 | int64_t ky = y2 - iy + kSize / 2; |
531 | | |
532 | | // This should not happen. |
533 | 0 | if (kx < 0 || kx >= kSize || ky < 0 || ky >= kSize) return 0; |
534 | | |
535 | 0 | return kernel[ky * kSize + kx]; |
536 | 0 | } |
537 | | |
538 | | // Apply the derivative of the Upsampler to the input, reversing the effect of |
539 | | // its coefficients. The output image is 2x2 times smaller than the input. |
540 | 0 | void AntiUpsample(const ImageF& input, ImageF* d) { |
541 | 0 | int64_t xsize = input.xsize(); |
542 | 0 | int64_t ysize = input.ysize(); |
543 | 0 | int64_t xsize2 = d->xsize(); |
544 | 0 | int64_t ysize2 = d->ysize(); |
545 | 0 | int64_t k0 = kSize - 1; |
546 | 0 | int64_t k1 = kSize; |
547 | 0 | for (int64_t y2 = 0; y2 < ysize2; ++y2) { |
548 | 0 | auto* row = d->Row(y2); |
549 | 0 | for (int64_t x2 = 0; x2 < xsize2; ++x2) { |
550 | 0 | int64_t x0 = x2 * 2 - k0; |
551 | 0 | if (x0 < 0) x0 = 0; |
552 | 0 | int64_t x1 = x2 * 2 + k1 + 1; |
553 | 0 | if (x1 > xsize) x1 = xsize; |
554 | 0 | int64_t y0 = y2 * 2 - k0; |
555 | 0 | if (y0 < 0) y0 = 0; |
556 | 0 | int64_t y1 = y2 * 2 + k1 + 1; |
557 | 0 | if (y1 > ysize) y1 = ysize; |
558 | |
|
559 | 0 | float sum = 0; |
560 | 0 | for (int64_t y = y0; y < y1; ++y) { |
561 | 0 | const auto* row_in = input.Row(y); |
562 | 0 | for (int64_t x = x0; x < x1; ++x) { |
563 | 0 | double deriv = UpsamplerDeriv(x2, y2, x, y); |
564 | 0 | sum += deriv * row_in[x]; |
565 | 0 | } |
566 | 0 | } |
567 | 0 | row[x2] = sum; |
568 | 0 | } |
569 | 0 | } |
570 | 0 | } |
571 | | |
572 | | // Element-wise multiplies two images. |
573 | | template <typename T> |
574 | | Status ElwiseMul(const Plane<T>& image1, const Plane<T>& image2, |
575 | 0 | Plane<T>* out) { |
576 | 0 | const size_t xsize = image1.xsize(); |
577 | 0 | const size_t ysize = image1.ysize(); |
578 | 0 | JXL_ENSURE(xsize == image2.xsize()); |
579 | 0 | JXL_ENSURE(ysize == image2.ysize()); |
580 | 0 | JXL_ENSURE(xsize == out->xsize()); |
581 | 0 | JXL_ENSURE(ysize == out->ysize()); |
582 | 0 | for (size_t y = 0; y < ysize; ++y) { |
583 | 0 | const T* const JXL_RESTRICT row1 = image1.Row(y); |
584 | 0 | const T* const JXL_RESTRICT row2 = image2.Row(y); |
585 | 0 | T* const JXL_RESTRICT row_out = out->Row(y); |
586 | 0 | for (size_t x = 0; x < xsize; ++x) { |
587 | 0 | row_out[x] = row1[x] * row2[x]; |
588 | 0 | } |
589 | 0 | } |
590 | 0 | return true; |
591 | 0 | } |
592 | | |
593 | | // Element-wise divides two images. |
594 | | template <typename T> |
595 | | Status ElwiseDiv(const Plane<T>& image1, const Plane<T>& image2, |
596 | 0 | Plane<T>* out) { |
597 | 0 | const size_t xsize = image1.xsize(); |
598 | 0 | const size_t ysize = image1.ysize(); |
599 | 0 | JXL_ENSURE(xsize == image2.xsize()); |
600 | 0 | JXL_ENSURE(ysize == image2.ysize()); |
601 | 0 | JXL_ENSURE(xsize == out->xsize()); |
602 | 0 | JXL_ENSURE(ysize == out->ysize()); |
603 | 0 | for (size_t y = 0; y < ysize; ++y) { |
604 | 0 | const T* const JXL_RESTRICT row1 = image1.Row(y); |
605 | 0 | const T* const JXL_RESTRICT row2 = image2.Row(y); |
606 | 0 | T* const JXL_RESTRICT row_out = out->Row(y); |
607 | 0 | for (size_t x = 0; x < xsize; ++x) { |
608 | 0 | row_out[x] = row1[x] / row2[x]; |
609 | 0 | } |
610 | 0 | } |
611 | 0 | return true; |
612 | 0 | } |
613 | | |
614 | 0 | void ReduceRinging(const ImageF& initial, const ImageF& mask, ImageF& down) { |
615 | 0 | int64_t xsize2 = down.xsize(); |
616 | 0 | int64_t ysize2 = down.ysize(); |
617 | |
|
618 | 0 | for (size_t y = 0; y < down.ysize(); y++) { |
619 | 0 | const float* row_mask = mask.Row(y); |
620 | 0 | float* row_out = down.Row(y); |
621 | 0 | for (size_t x = 0; x < down.xsize(); x++) { |
622 | 0 | float v = down.Row(y)[x]; |
623 | 0 | float min = initial.Row(y)[x]; |
624 | 0 | float max = initial.Row(y)[x]; |
625 | 0 | for (int64_t yi = -1; yi < 2; yi++) { |
626 | 0 | for (int64_t xi = -1; xi < 2; xi++) { |
627 | 0 | int64_t x2 = static_cast<int64_t>(x) + xi; |
628 | 0 | int64_t y2 = static_cast<int64_t>(y) + yi; |
629 | 0 | if (x2 < 0 || y2 < 0 || x2 >= xsize2 || y2 >= ysize2) continue; |
630 | 0 | min = std::min<float>(min, initial.Row(y2)[x2]); |
631 | 0 | max = std::max<float>(max, initial.Row(y2)[x2]); |
632 | 0 | } |
633 | 0 | } |
634 | |
|
635 | 0 | row_out[x] = v; |
636 | | |
637 | | // Clamp the pixel within the value of a small area to prevent ringning. |
638 | | // The mask determines how much to clamp, clamp more to reduce more |
639 | | // ringing in smooth areas, clamp less in noisy areas to get more |
640 | | // sharpness. Higher mask_multiplier gives less clamping, so less |
641 | | // ringing reduction. |
642 | 0 | const constexpr float mask_multiplier = 2; |
643 | 0 | float a = row_mask[x] * mask_multiplier; |
644 | 0 | float clip_min = min - a; |
645 | 0 | float clip_max = max + a; |
646 | 0 | if (row_out[x] < clip_min) row_out[x] = clip_min; |
647 | 0 | if (row_out[x] > clip_max) row_out[x] = clip_max; |
648 | 0 | } |
649 | 0 | } |
650 | 0 | } |
651 | | |
652 | | // TODO(lode): move this to a separate file enc_downsample.cc |
653 | 0 | Status DownsampleImage2_Iterative(const ImageF& orig, ImageF* output) { |
654 | 0 | int64_t xsize = orig.xsize(); |
655 | 0 | int64_t ysize = orig.ysize(); |
656 | 0 | int64_t xsize2 = DivCeil(orig.xsize(), 2); |
657 | 0 | int64_t ysize2 = DivCeil(orig.ysize(), 2); |
658 | 0 | JxlMemoryManager* memory_manager = orig.memory_manager(); |
659 | |
|
660 | 0 | JXL_ASSIGN_OR_RETURN(ImageF box_downsample, |
661 | 0 | ImageF::Create(memory_manager, xsize, ysize)); |
662 | 0 | JXL_RETURN_IF_ERROR(CopyImageTo(orig, &box_downsample)); |
663 | 0 | JXL_ASSIGN_OR_RETURN(box_downsample, DownsampleImage(box_downsample, 2)); |
664 | 0 | JXL_ASSIGN_OR_RETURN(ImageF mask, |
665 | 0 | ImageF::Create(memory_manager, box_downsample.xsize(), |
666 | 0 | box_downsample.ysize())); |
667 | 0 | CreateMask(box_downsample, mask); |
668 | |
|
669 | 0 | JXL_RETURN_IF_ERROR(output->ShrinkTo(xsize2, ysize2)); |
670 | | |
671 | | // Initial result image using the sharper downsampling. |
672 | | // Allocate extra space to avoid a reallocation when padding. |
673 | 0 | JXL_ASSIGN_OR_RETURN( |
674 | 0 | ImageF initial, |
675 | 0 | ImageF::Create(memory_manager, DivCeil(orig.xsize(), 2) + kBlockDim, |
676 | 0 | DivCeil(orig.ysize(), 2) + kBlockDim)); |
677 | 0 | JXL_RETURN_IF_ERROR(initial.ShrinkTo(initial.xsize() - kBlockDim, |
678 | 0 | initial.ysize() - kBlockDim)); |
679 | 0 | JXL_RETURN_IF_ERROR(DownsampleImage2_Sharper(orig, &initial)); |
680 | | |
681 | 0 | JXL_ASSIGN_OR_RETURN( |
682 | 0 | ImageF down, |
683 | 0 | ImageF::Create(memory_manager, initial.xsize(), initial.ysize())); |
684 | 0 | JXL_RETURN_IF_ERROR(CopyImageTo(initial, &down)); |
685 | 0 | JXL_ASSIGN_OR_RETURN(ImageF up, ImageF::Create(memory_manager, xsize, ysize)); |
686 | 0 | JXL_ASSIGN_OR_RETURN(ImageF corr, |
687 | 0 | ImageF::Create(memory_manager, xsize, ysize)); |
688 | 0 | JXL_ASSIGN_OR_RETURN(ImageF corr2, |
689 | 0 | ImageF::Create(memory_manager, xsize2, ysize2)); |
690 | | |
691 | | // In the weights map, relatively higher values will allow less ringing but |
692 | | // also less sharpness. With all constant values, it optimizes equally |
693 | | // everywhere. Even in this case, the weights2 computed from |
694 | | // this is still used and differs at the borders of the image. |
695 | | // TODO(lode): Make use of the weights field for anti-ringing and clamping, |
696 | | // the values are all set to 1 for now, but it is intended to be used for |
697 | | // reducing ringing based on the mask, and taking clamping into account. |
698 | 0 | JXL_ASSIGN_OR_RETURN(ImageF weights, |
699 | 0 | ImageF::Create(memory_manager, xsize, ysize)); |
700 | 0 | for (size_t y = 0; y < weights.ysize(); y++) { |
701 | 0 | auto* row = weights.Row(y); |
702 | 0 | for (size_t x = 0; x < weights.xsize(); x++) { |
703 | 0 | row[x] = 1; |
704 | 0 | } |
705 | 0 | } |
706 | 0 | JXL_ASSIGN_OR_RETURN(ImageF weights2, |
707 | 0 | ImageF::Create(memory_manager, xsize2, ysize2)); |
708 | 0 | AntiUpsample(weights, &weights2); |
709 | |
|
710 | 0 | const size_t num_it = 3; |
711 | 0 | for (size_t it = 0; it < num_it; ++it) { |
712 | 0 | UpsampleImage(down, &up); |
713 | 0 | JXL_ASSIGN_OR_RETURN(corr, LinComb<float>(1, orig, -1, up)); |
714 | 0 | JXL_RETURN_IF_ERROR(ElwiseMul(corr, weights, &corr)); |
715 | 0 | AntiUpsample(corr, &corr2); |
716 | 0 | JXL_RETURN_IF_ERROR(ElwiseDiv(corr2, weights2, &corr2)); |
717 | | |
718 | 0 | JXL_ASSIGN_OR_RETURN(down, LinComb<float>(1, down, 1, corr2)); |
719 | 0 | } |
720 | | |
721 | 0 | ReduceRinging(initial, mask, down); |
722 | | |
723 | | // can't just use CopyImage, because the output image was prepared with |
724 | | // padding. |
725 | 0 | for (size_t y = 0; y < down.ysize(); y++) { |
726 | 0 | for (size_t x = 0; x < down.xsize(); x++) { |
727 | 0 | float v = down.Row(y)[x]; |
728 | 0 | output->Row(y)[x] = v; |
729 | 0 | } |
730 | 0 | } |
731 | 0 | return true; |
732 | 0 | } |
733 | | |
734 | | } // namespace |
735 | | |
736 | 0 | Status DownsampleImage2_Iterative(Image3F* opsin) { |
737 | 0 | JxlMemoryManager* memory_manager = opsin->memory_manager(); |
738 | | // Allocate extra space to avoid a reallocation when padding. |
739 | 0 | JXL_ASSIGN_OR_RETURN( |
740 | 0 | Image3F downsampled, |
741 | 0 | Image3F::Create(memory_manager, DivCeil(opsin->xsize(), 2) + kBlockDim, |
742 | 0 | DivCeil(opsin->ysize(), 2) + kBlockDim)); |
743 | 0 | JXL_RETURN_IF_ERROR(downsampled.ShrinkTo(downsampled.xsize() - kBlockDim, |
744 | 0 | downsampled.ysize() - kBlockDim)); |
745 | | |
746 | 0 | JXL_ASSIGN_OR_RETURN( |
747 | 0 | Image3F rgb, |
748 | 0 | Image3F::Create(memory_manager, opsin->xsize(), opsin->ysize())); |
749 | 0 | OpsinParams opsin_params; // TODO(user): use the ones that are actually used |
750 | 0 | opsin_params.Init(kDefaultIntensityTarget); |
751 | 0 | JXL_RETURN_IF_ERROR( |
752 | 0 | OpsinToLinear(*opsin, Rect(rgb), nullptr, &rgb, opsin_params)); |
753 | | |
754 | 0 | JXL_ASSIGN_OR_RETURN( |
755 | 0 | ImageF mask, |
756 | 0 | ImageF::Create(memory_manager, opsin->xsize(), opsin->ysize())); |
757 | 0 | ButteraugliParams butter_params; |
758 | 0 | JXL_ASSIGN_OR_RETURN(std::unique_ptr<ButteraugliComparator> butter, |
759 | 0 | ButteraugliComparator::Make(rgb, butter_params)); |
760 | 0 | JXL_RETURN_IF_ERROR(butter->Mask(&mask)); |
761 | 0 | JXL_ASSIGN_OR_RETURN( |
762 | 0 | ImageF mask_fuzzy, |
763 | 0 | ImageF::Create(memory_manager, opsin->xsize(), opsin->ysize())); |
764 | |
|
765 | 0 | for (size_t c = 0; c < 3; c++) { |
766 | 0 | JXL_RETURN_IF_ERROR( |
767 | 0 | DownsampleImage2_Iterative(opsin->Plane(c), &downsampled.Plane(c))); |
768 | 0 | } |
769 | 0 | *opsin = std::move(downsampled); |
770 | 0 | return true; |
771 | 0 | } |
772 | | |
773 | | StatusOr<Image3F> ReconstructImage( |
774 | | const FrameHeader& orig_frame_header, const PassesSharedState& shared, |
775 | 0 | const std::vector<std::unique_ptr<ACImage>>& coeffs, ThreadPool* pool) { |
776 | 0 | const FrameDimensions& frame_dim = shared.frame_dim; |
777 | 0 | JxlMemoryManager* memory_manager = shared.memory_manager; |
778 | |
|
779 | 0 | FrameHeader frame_header = orig_frame_header; |
780 | 0 | frame_header.UpdateFlag(shared.image_features.patches.HasAny(), |
781 | 0 | FrameHeader::kPatches); |
782 | 0 | frame_header.UpdateFlag(shared.image_features.splines.HasAny(), |
783 | 0 | FrameHeader::kSplines); |
784 | 0 | frame_header.color_transform = ColorTransform::kNone; |
785 | |
|
786 | 0 | CodecMetadata metadata = *frame_header.nonserialized_metadata; |
787 | 0 | metadata.m.extra_channel_info.clear(); |
788 | 0 | metadata.m.num_extra_channels = metadata.m.extra_channel_info.size(); |
789 | 0 | frame_header.nonserialized_metadata = &metadata; |
790 | 0 | frame_header.extra_channel_upsampling.clear(); |
791 | |
|
792 | 0 | const bool is_gray = shared.metadata->m.color_encoding.IsGray(); |
793 | 0 | PassesDecoderState dec_state(memory_manager); |
794 | 0 | JXL_RETURN_IF_ERROR( |
795 | 0 | dec_state.output_encoding_info.SetFromMetadata(*shared.metadata)); |
796 | 0 | JXL_RETURN_IF_ERROR(dec_state.output_encoding_info.MaybeSetColorEncoding( |
797 | 0 | ColorEncoding::LinearSRGB(is_gray))); |
798 | 0 | dec_state.shared = &shared; |
799 | 0 | JXL_RETURN_IF_ERROR(dec_state.Init(frame_header)); |
800 | | |
801 | 0 | ImageBundle decoded(memory_manager, &shared.metadata->m); |
802 | 0 | decoded.origin = frame_header.frame_origin; |
803 | 0 | JXL_ASSIGN_OR_RETURN( |
804 | 0 | Image3F tmp, |
805 | 0 | Image3F::Create(memory_manager, frame_dim.xsize, frame_dim.ysize)); |
806 | 0 | JXL_RETURN_IF_ERROR(decoded.SetFromImage( |
807 | 0 | std::move(tmp), dec_state.output_encoding_info.color_encoding)); |
808 | | |
809 | 0 | PassesDecoderState::PipelineOptions options; |
810 | 0 | options.use_slow_render_pipeline = false; |
811 | 0 | options.coalescing = false; |
812 | 0 | options.render_spotcolors = false; |
813 | 0 | options.render_noise = true; |
814 | |
|
815 | 0 | JXL_RETURN_IF_ERROR(dec_state.PreparePipeline( |
816 | 0 | frame_header, &shared.metadata->m, &decoded, options)); |
817 | | |
818 | 0 | AlignedArray<GroupDecCache> group_dec_caches; |
819 | 0 | const auto allocate_storage = [&](const size_t num_threads) -> Status { |
820 | 0 | JXL_RETURN_IF_ERROR( |
821 | 0 | dec_state.render_pipeline->PrepareForThreads(num_threads, |
822 | 0 | /*use_group_ids=*/false)); |
823 | 0 | JXL_ASSIGN_OR_RETURN(group_dec_caches, AlignedArray<GroupDecCache>::Create( |
824 | 0 | memory_manager, num_threads)); |
825 | 0 | return true; |
826 | 0 | }; |
827 | 0 | const auto process_group = [&](const uint32_t group_index, |
828 | 0 | const size_t thread) -> Status { |
829 | 0 | if (frame_header.loop_filter.epf_iters > 0) { |
830 | 0 | JXL_RETURN_IF_ERROR(ComputeSigma(frame_header.loop_filter, |
831 | 0 | frame_dim.BlockGroupRect(group_index), |
832 | 0 | &dec_state)); |
833 | 0 | } |
834 | 0 | RenderPipelineInput input = |
835 | 0 | dec_state.render_pipeline->GetInputBuffers(group_index, thread); |
836 | 0 | JXL_RETURN_IF_ERROR(DecodeGroupForRoundtrip( |
837 | 0 | frame_header, coeffs, group_index, &dec_state, |
838 | 0 | &group_dec_caches[thread], thread, input, nullptr, nullptr)); |
839 | 0 | if ((frame_header.flags & FrameHeader::kNoise) != 0) { |
840 | 0 | PrepareNoiseInput(dec_state, shared.frame_dim, frame_header, group_index, |
841 | 0 | thread); |
842 | 0 | } |
843 | 0 | JXL_RETURN_IF_ERROR(input.Done()); |
844 | 0 | return true; |
845 | 0 | }; |
846 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, frame_dim.num_groups, allocate_storage, |
847 | 0 | process_group, "ReconstructImage")); |
848 | 0 | return std::move(*decoded.color()); |
849 | 0 | } |
850 | | |
851 | | float ComputeBlockL2Distance(const Image3F& a, const Image3F& b, |
852 | 0 | const ImageF& mask1x1, size_t by, size_t bx) { |
853 | 0 | Rect rect(bx * kBlockDim, by * kBlockDim, kBlockDim, kBlockDim, a.xsize(), |
854 | 0 | a.ysize()); |
855 | 0 | float err2[3] = {0.0f}; |
856 | 0 | for (size_t y = 0; y < rect.ysize(); ++y) { |
857 | 0 | const float* row_a[3] = { |
858 | 0 | rect.ConstPlaneRow(a, 0, y), |
859 | 0 | rect.ConstPlaneRow(a, 1, y), |
860 | 0 | rect.ConstPlaneRow(a, 2, y), |
861 | 0 | }; |
862 | 0 | const float* row_b[3] = { |
863 | 0 | rect.ConstPlaneRow(b, 0, y), |
864 | 0 | rect.ConstPlaneRow(b, 1, y), |
865 | 0 | rect.ConstPlaneRow(b, 2, y), |
866 | 0 | }; |
867 | 0 | const float* row_mask = rect.ConstRow(mask1x1, y); |
868 | 0 | for (size_t x = 0; x < rect.xsize(); ++x) { |
869 | 0 | float mask = row_mask[x]; |
870 | 0 | float mask2 = mask * mask; |
871 | 0 | for (int i = 0; i < 3; ++i) { |
872 | 0 | float diff = row_a[i][x] - row_b[i][x]; |
873 | 0 | err2[i] += mask2 * diff * diff; |
874 | 0 | } |
875 | 0 | } |
876 | 0 | } |
877 | 0 | static const double kW[] = { |
878 | 0 | 12.339445295782363, |
879 | 0 | 1.0, |
880 | 0 | 0.2, |
881 | 0 | }; |
882 | 0 | float retval = kW[0] * err2[0] + kW[1] * err2[1] + kW[2] * err2[2]; |
883 | 0 | return retval; |
884 | 0 | } |
885 | | |
886 | | Status ComputeARHeuristics(const FrameHeader& frame_header, |
887 | | PassesEncoderState* enc_state, |
888 | | const Image3F& orig_opsin, const Rect& rect, |
889 | 0 | ThreadPool* pool) { |
890 | 0 | const CompressParams& cparams = enc_state->cparams; |
891 | 0 | PassesSharedState& shared = enc_state->shared; |
892 | 0 | const FrameDimensions& frame_dim = shared.frame_dim; |
893 | 0 | const ImageF& initial_quant_masking1x1 = enc_state->initial_quant_masking1x1; |
894 | 0 | ImageB& epf_sharpness = shared.epf_sharpness; |
895 | 0 | JxlMemoryManager* memory_manager = enc_state->memory_manager(); |
896 | |
|
897 | 0 | float clamped_butteraugli = std::min(5.0f, cparams.butteraugli_distance); |
898 | 0 | if (cparams.butteraugli_distance < kMinButteraugliForDynamicAR || |
899 | 0 | cparams.speed_tier > SpeedTier::kWombat || |
900 | 0 | frame_header.loop_filter.epf_iters == 0) { |
901 | 0 | FillPlane(static_cast<uint8_t>(4), &epf_sharpness, Rect(epf_sharpness)); |
902 | 0 | return true; |
903 | 0 | } |
904 | | |
905 | 0 | std::vector<uint8_t> epf_steps; |
906 | 0 | if (cparams.butteraugli_distance > 4.5f) { |
907 | 0 | epf_steps.push_back(0); |
908 | 0 | epf_steps.push_back(4); |
909 | 0 | } else { |
910 | 0 | epf_steps.push_back(0); |
911 | 0 | epf_steps.push_back(2); |
912 | 0 | epf_steps.push_back(7); |
913 | 0 | } |
914 | 0 | static const int kNumEPFVals = 8; |
915 | 0 | size_t epf_steps_lut[kNumEPFVals] = {0}; |
916 | 0 | { |
917 | 0 | for (size_t i = 0; i < epf_steps.size(); ++i) { |
918 | 0 | epf_steps_lut[epf_steps[i]] = i; |
919 | 0 | } |
920 | 0 | } |
921 | 0 | std::array<ImageF, kNumEPFVals> error_images; |
922 | 0 | for (uint8_t val : epf_steps) { |
923 | 0 | FillPlane(val, &epf_sharpness, Rect(epf_sharpness)); |
924 | 0 | JXL_ASSIGN_OR_RETURN( |
925 | 0 | Image3F decoded, |
926 | 0 | ReconstructImage(frame_header, shared, enc_state->coeffs, pool)); |
927 | 0 | JXL_ASSIGN_OR_RETURN(error_images[val], |
928 | 0 | ImageF::Create(memory_manager, frame_dim.xsize_blocks, |
929 | 0 | frame_dim.ysize_blocks)); |
930 | 0 | for (size_t by = 0; by < frame_dim.ysize_blocks; by++) { |
931 | 0 | float* error_row = error_images[val].Row(by); |
932 | 0 | for (size_t bx = 0; bx < frame_dim.xsize_blocks; bx++) { |
933 | 0 | error_row[bx] = ComputeBlockL2Distance( |
934 | 0 | orig_opsin, decoded, initial_quant_masking1x1, by, bx); |
935 | 0 | } |
936 | 0 | } |
937 | 0 | } |
938 | 0 | std::vector<std::vector<size_t>> histo(9, std::vector<size_t>(kNumEPFVals)); |
939 | 0 | std::vector<size_t> totals(9, 1); |
940 | 0 | const float c5 = 0.007620386618483585f; |
941 | 0 | const float c6 = 0.0083224805679680686f; |
942 | 0 | const float c7 = 0.99663939685686753; |
943 | 0 | for (size_t by = 0; by < frame_dim.ysize_blocks; by++) { |
944 | 0 | uint8_t* JXL_RESTRICT out_row = epf_sharpness.Row(by); |
945 | 0 | uint8_t* JXL_RESTRICT prev_row = epf_sharpness.Row(by > 0 ? by - 1 : 0); |
946 | 0 | for (size_t bx = 0; bx < frame_dim.xsize_blocks; bx++) { |
947 | 0 | uint8_t best_val = 0; |
948 | 0 | float best_error = std::numeric_limits<float>::max(); |
949 | 0 | uint8_t top_val = by > 0 ? prev_row[bx] : 0; |
950 | 0 | uint8_t left_val = bx > 0 ? out_row[bx - 1] : 0; |
951 | 0 | float top_error = error_images[top_val].Row(by)[bx]; |
952 | 0 | float left_error = error_images[left_val].Row(by)[bx]; |
953 | 0 | for (uint8_t val : epf_steps) { |
954 | 0 | float error = error_images[val].Row(by)[bx]; |
955 | 0 | if (val == 0) { |
956 | 0 | error *= c7 - c5 * clamped_butteraugli; |
957 | 0 | } |
958 | 0 | if (error < best_error) { |
959 | 0 | best_val = val; |
960 | 0 | best_error = error; |
961 | 0 | } |
962 | 0 | } |
963 | 0 | if (best_error < |
964 | 0 | (1.0 - c6 * clamped_butteraugli) * std::min(top_error, left_error)) { |
965 | 0 | out_row[bx] = best_val; |
966 | 0 | } else if (top_error < left_error) { |
967 | 0 | out_row[bx] = top_val; |
968 | 0 | } else { |
969 | 0 | out_row[bx] = left_val; |
970 | 0 | } |
971 | 0 | int context = epf_steps_lut[top_val] * 3 + epf_steps_lut[left_val]; |
972 | 0 | ++histo[context][out_row[bx]]; |
973 | 0 | ++totals[context]; |
974 | 0 | } |
975 | 0 | } |
976 | 0 | const float c1 = 0.059588212153340203f; |
977 | 0 | const float c2 = 0.10599497107315753f; |
978 | 0 | const float c3base = 0.97; |
979 | 0 | const float c3 = pow(c3base, clamped_butteraugli); |
980 | 0 | const float c4 = 1.247544678665836f; |
981 | 0 | const float context_weight = c1 + c2 * clamped_butteraugli; |
982 | 0 | for (size_t by = 0; by < frame_dim.ysize_blocks; by++) { |
983 | 0 | uint8_t* JXL_RESTRICT out_row = epf_sharpness.Row(by); |
984 | 0 | uint8_t* JXL_RESTRICT prev_row = epf_sharpness.Row(by > 0 ? by - 1 : 0); |
985 | 0 | for (size_t bx = 0; bx < frame_dim.xsize_blocks; bx++) { |
986 | 0 | uint8_t best_val = 0; |
987 | 0 | float best_error = std::numeric_limits<float>::max(); |
988 | 0 | uint8_t top_val = by > 0 ? prev_row[bx] : 0; |
989 | 0 | uint8_t left_val = bx > 0 ? out_row[bx - 1] : 0; |
990 | 0 | int context = epf_steps_lut[top_val] * 3 + epf_steps_lut[left_val]; |
991 | 0 | const auto& ctx_histo = histo[context]; |
992 | 0 | for (uint8_t val : epf_steps) { |
993 | 0 | float error = error_images[val].Row(by)[bx] / |
994 | 0 | (c4 + std::log1p(ctx_histo[val] * context_weight / |
995 | 0 | totals[context])); |
996 | 0 | if (val == 0) { |
997 | 0 | error *= c3; |
998 | 0 | } |
999 | 0 | if (error < best_error) { |
1000 | 0 | best_val = val; |
1001 | 0 | best_error = error; |
1002 | 0 | } |
1003 | 0 | } |
1004 | 0 | out_row[bx] = best_val; |
1005 | 0 | } |
1006 | 0 | } |
1007 | |
|
1008 | 0 | return true; |
1009 | 0 | } |
1010 | | |
1011 | | Status LossyFrameHeuristics(const FrameHeader& frame_header, |
1012 | | PassesEncoderState* enc_state, |
1013 | | ModularFrameEncoder* modular_frame_encoder, |
1014 | | const Image3F* linear, Image3F* opsin, |
1015 | | const Rect& rect, const JxlCmsInterface& cms, |
1016 | 0 | ThreadPool* pool, AuxOut* aux_out) { |
1017 | 0 | const CompressParams& cparams = enc_state->cparams; |
1018 | 0 | const bool streaming_mode = enc_state->streaming_mode; |
1019 | 0 | const bool initialize_global_state = enc_state->initialize_global_state; |
1020 | 0 | PassesSharedState& shared = enc_state->shared; |
1021 | 0 | const FrameDimensions& frame_dim = shared.frame_dim; |
1022 | 0 | ImageFeatures& image_features = shared.image_features; |
1023 | 0 | DequantMatrices& matrices = shared.matrices; |
1024 | 0 | Quantizer& quantizer = shared.quantizer; |
1025 | 0 | ImageF& initial_quant_masking1x1 = enc_state->initial_quant_masking1x1; |
1026 | 0 | ImageI& raw_quant_field = shared.raw_quant_field; |
1027 | 0 | ColorCorrelationMap& cmap = shared.cmap; |
1028 | 0 | AcStrategyImage& ac_strategy = shared.ac_strategy; |
1029 | 0 | BlockCtxMap& block_ctx_map = shared.block_ctx_map; |
1030 | 0 | JxlMemoryManager* memory_manager = enc_state->memory_manager(); |
1031 | | |
1032 | | // Find and subtract splines. |
1033 | 0 | if (cparams.custom_splines.HasAny()) { |
1034 | 0 | image_features.splines = cparams.custom_splines; |
1035 | 0 | } |
1036 | 0 | if (!streaming_mode && cparams.speed_tier <= SpeedTier::kSquirrel) { |
1037 | 0 | if (!cparams.custom_splines.HasAny()) { |
1038 | 0 | image_features.splines = FindSplines(*opsin); |
1039 | 0 | } |
1040 | 0 | JXL_RETURN_IF_ERROR(image_features.splines.InitializeDrawCache( |
1041 | 0 | opsin->xsize(), opsin->ysize(), cmap.base())); |
1042 | 0 | image_features.splines.SubtractFrom(opsin); |
1043 | 0 | } |
1044 | | |
1045 | | // Find and subtract patches/dots. |
1046 | 0 | if (!streaming_mode && |
1047 | 0 | ApplyOverride(cparams.patches, |
1048 | 0 | cparams.speed_tier <= SpeedTier::kSquirrel)) { |
1049 | 0 | JXL_RETURN_IF_ERROR( |
1050 | 0 | FindBestPatchDictionary(*opsin, enc_state, cms, pool, aux_out)); |
1051 | 0 | JXL_RETURN_IF_ERROR( |
1052 | 0 | PatchDictionaryEncoder::SubtractFrom(image_features.patches, opsin)); |
1053 | 0 | } |
1054 | | |
1055 | 0 | const float quant_dc = InitialQuantDC(cparams.butteraugli_distance); |
1056 | | |
1057 | | // TODO(veluca): we can now run all the code from here to FindBestQuantizer |
1058 | | // (excluded) one rect at a time. Do that. |
1059 | | |
1060 | | // Dependency graph: |
1061 | | // |
1062 | | // input: either XYB or input image |
1063 | | // |
1064 | | // input image -> XYB [optional] |
1065 | | // XYB -> initial quant field |
1066 | | // XYB -> Gaborished XYB |
1067 | | // Gaborished XYB -> CfL1 |
1068 | | // initial quant field, Gaborished XYB, CfL1 -> ACS |
1069 | | // initial quant field, ACS, Gaborished XYB -> EPF control field |
1070 | | // initial quant field -> adjusted initial quant field |
1071 | | // adjusted initial quant field, ACS -> raw quant field |
1072 | | // raw quant field, ACS, Gaborished XYB -> CfL2 |
1073 | | // |
1074 | | // output: Gaborished XYB, CfL, ACS, raw quant field, EPF control field. |
1075 | |
|
1076 | 0 | AcStrategyHeuristics acs_heuristics(memory_manager, cparams); |
1077 | 0 | CfLHeuristics cfl_heuristics(memory_manager); |
1078 | 0 | ImageF initial_quant_field; |
1079 | 0 | ImageF initial_quant_masking; |
1080 | | |
1081 | | // Compute an initial estimate of the quantization field. |
1082 | | // Call InitialQuantField only in Hare mode or slower. Otherwise, rely |
1083 | | // on simple heuristics in FindBestAcStrategy, or set a constant for Falcon |
1084 | | // mode. |
1085 | 0 | if (cparams.speed_tier > SpeedTier::kHare || |
1086 | 0 | cparams.disable_perceptual_optimizations) { |
1087 | 0 | JXL_ASSIGN_OR_RETURN(initial_quant_field, |
1088 | 0 | ImageF::Create(memory_manager, frame_dim.xsize_blocks, |
1089 | 0 | frame_dim.ysize_blocks)); |
1090 | 0 | JXL_ASSIGN_OR_RETURN(initial_quant_masking, |
1091 | 0 | ImageF::Create(memory_manager, frame_dim.xsize_blocks, |
1092 | 0 | frame_dim.ysize_blocks)); |
1093 | 0 | float q = 0.79 / cparams.butteraugli_distance; |
1094 | 0 | FillImage(q, &initial_quant_field); |
1095 | 0 | float masking = 1.0f / (q + 0.001f); |
1096 | 0 | FillImage(masking, &initial_quant_masking); |
1097 | 0 | if (cparams.disable_perceptual_optimizations) { |
1098 | 0 | JXL_ASSIGN_OR_RETURN( |
1099 | 0 | initial_quant_masking1x1, |
1100 | 0 | ImageF::Create(memory_manager, frame_dim.xsize, frame_dim.ysize)); |
1101 | 0 | FillImage(masking, &initial_quant_masking1x1); |
1102 | 0 | } |
1103 | 0 | quantizer.ComputeGlobalScaleAndQuant(quant_dc, q, 0); |
1104 | 0 | } else { |
1105 | | // Call this here, as it relies on pre-gaborish values. |
1106 | 0 | float butteraugli_distance_for_iqf = cparams.butteraugli_distance; |
1107 | 0 | if (!frame_header.loop_filter.gab) { |
1108 | 0 | butteraugli_distance_for_iqf *= 0.62f; |
1109 | 0 | } |
1110 | 0 | JXL_ASSIGN_OR_RETURN( |
1111 | 0 | initial_quant_field, |
1112 | 0 | InitialQuantField(butteraugli_distance_for_iqf, *opsin, rect, pool, |
1113 | 0 | 1.0f, &initial_quant_masking, |
1114 | 0 | &initial_quant_masking1x1)); |
1115 | 0 | float q = 0.39 / cparams.butteraugli_distance; |
1116 | 0 | quantizer.ComputeGlobalScaleAndQuant(quant_dc, q, 0); |
1117 | 0 | } |
1118 | | |
1119 | | // TODO(veluca): do something about animations. |
1120 | | |
1121 | | // Apply inverse-gaborish. |
1122 | 0 | if (frame_header.loop_filter.gab) { |
1123 | | // Changing the weight here to 0.99f would help to reduce ringing in |
1124 | | // generation loss. |
1125 | 0 | float weight[3] = { |
1126 | 0 | 1.0f, |
1127 | 0 | 1.0f, |
1128 | 0 | 1.0f, |
1129 | 0 | }; |
1130 | 0 | JXL_RETURN_IF_ERROR(GaborishInverse(opsin, rect, weight, pool)); |
1131 | 0 | } |
1132 | | |
1133 | 0 | if (initialize_global_state) { |
1134 | 0 | JXL_RETURN_IF_ERROR(FindBestDequantMatrices( |
1135 | 0 | memory_manager, cparams, modular_frame_encoder, &matrices)); |
1136 | 0 | } |
1137 | | |
1138 | 0 | JXL_RETURN_IF_ERROR(cfl_heuristics.Init(rect)); |
1139 | 0 | JXL_RETURN_IF_ERROR(acs_heuristics.Init(*opsin, rect, initial_quant_field, |
1140 | 0 | initial_quant_masking, |
1141 | 0 | initial_quant_masking1x1, &matrices)); |
1142 | | |
1143 | 0 | auto process_tile = [&](const uint32_t tid, const size_t thread) -> Status { |
1144 | 0 | size_t n_enc_tiles = DivCeil(frame_dim.xsize_blocks, kEncTileDimInBlocks); |
1145 | 0 | size_t tx = tid % n_enc_tiles; |
1146 | 0 | size_t ty = tid / n_enc_tiles; |
1147 | 0 | size_t by0 = ty * kEncTileDimInBlocks; |
1148 | 0 | size_t by1 = |
1149 | 0 | std::min((ty + 1) * kEncTileDimInBlocks, frame_dim.ysize_blocks); |
1150 | 0 | size_t bx0 = tx * kEncTileDimInBlocks; |
1151 | 0 | size_t bx1 = |
1152 | 0 | std::min((tx + 1) * kEncTileDimInBlocks, frame_dim.xsize_blocks); |
1153 | 0 | Rect r(bx0, by0, bx1 - bx0, by1 - by0); |
1154 | | |
1155 | | // For speeds up to Wombat, we only compute the color correlation map |
1156 | | // once we know the transform type and the quantization map. |
1157 | 0 | if (cparams.speed_tier <= SpeedTier::kSquirrel) { |
1158 | 0 | JXL_RETURN_IF_ERROR(cfl_heuristics.ComputeTile( |
1159 | 0 | r, *opsin, rect, matrices, |
1160 | 0 | /*ac_strategy=*/nullptr, |
1161 | 0 | /*raw_quant_field=*/nullptr, |
1162 | 0 | /*quantizer=*/nullptr, /*fast=*/false, thread, &cmap)); |
1163 | 0 | } |
1164 | | |
1165 | | // Choose block sizes. |
1166 | 0 | JXL_RETURN_IF_ERROR( |
1167 | 0 | acs_heuristics.ProcessRect(r, cmap, &ac_strategy, thread)); |
1168 | | |
1169 | | // Always set the initial quant field, so we can compute the CfL map with |
1170 | | // more accuracy. The initial quant field might change in slower modes, but |
1171 | | // adjusting the quant field with butteraugli when all the other encoding |
1172 | | // parameters are fixed is likely a more reliable choice anyway. |
1173 | 0 | JXL_RETURN_IF_ERROR(AdjustQuantField( |
1174 | 0 | ac_strategy, r, cparams.butteraugli_distance, &initial_quant_field)); |
1175 | 0 | quantizer.SetQuantFieldRect(initial_quant_field, r, &raw_quant_field); |
1176 | | |
1177 | | // Compute a non-default CfL map if we are at Hare speed, or slower. |
1178 | 0 | if (cparams.speed_tier <= SpeedTier::kHare) { |
1179 | 0 | JXL_RETURN_IF_ERROR(cfl_heuristics.ComputeTile( |
1180 | 0 | r, *opsin, rect, matrices, &ac_strategy, &raw_quant_field, &quantizer, |
1181 | 0 | /*fast=*/cparams.speed_tier >= SpeedTier::kWombat, thread, &cmap)); |
1182 | 0 | } |
1183 | 0 | return true; |
1184 | 0 | }; |
1185 | 0 | size_t num_tiles = DivCeil(frame_dim.xsize_blocks, kEncTileDimInBlocks) * |
1186 | 0 | DivCeil(frame_dim.ysize_blocks, kEncTileDimInBlocks); |
1187 | 0 | const auto prepare = [&](const size_t num_threads) -> Status { |
1188 | 0 | JXL_RETURN_IF_ERROR(acs_heuristics.PrepareForThreads(num_threads)); |
1189 | 0 | JXL_RETURN_IF_ERROR(cfl_heuristics.PrepareForThreads(num_threads)); |
1190 | 0 | return true; |
1191 | 0 | }; |
1192 | 0 | JXL_RETURN_IF_ERROR( |
1193 | 0 | RunOnPool(pool, 0, num_tiles, prepare, process_tile, "Enc Heuristics")); |
1194 | | |
1195 | 0 | JXL_RETURN_IF_ERROR(acs_heuristics.Finalize(frame_dim, ac_strategy, aux_out)); |
1196 | | |
1197 | | // Refine quantization levels. |
1198 | 0 | if (!streaming_mode && !cparams.disable_perceptual_optimizations) { |
1199 | 0 | ImageB& epf_sharpness = shared.epf_sharpness; |
1200 | 0 | FillPlane(static_cast<uint8_t>(4), &epf_sharpness, Rect(epf_sharpness)); |
1201 | 0 | JXL_RETURN_IF_ERROR(FindBestQuantizer(frame_header, linear, *opsin, |
1202 | 0 | initial_quant_field, enc_state, cms, |
1203 | 0 | pool, aux_out)); |
1204 | 0 | } |
1205 | | |
1206 | | // Choose a context model that depends on the amount of quantization for AC. |
1207 | 0 | if (cparams.speed_tier < SpeedTier::kFalcon && initialize_global_state) { |
1208 | 0 | FindBestBlockEntropyModel(cparams, raw_quant_field, ac_strategy, |
1209 | 0 | &block_ctx_map); |
1210 | 0 | } |
1211 | 0 | return true; |
1212 | 0 | } |
1213 | | |
1214 | | } // namespace jxl |