Coverage Report

Created: 2025-06-22 08:04

/src/libjxl/lib/jxl/enc_huffman_tree.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
#include "lib/jxl/enc_huffman_tree.h"
7
8
// Suppress any -Wdeprecated-declarations warning that might be emitted by
9
// GCC or Clang by std::stable_sort in C++17 or later mode
10
#ifdef __clang__
11
#pragma clang diagnostic push
12
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
13
#elif defined(__GNUC__)
14
#pragma GCC push_options
15
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
16
#endif
17
18
#include <algorithm>
19
20
#ifdef __clang__
21
#pragma clang diagnostic pop
22
#elif defined(__GNUC__)
23
#pragma GCC pop_options
24
#endif
25
26
#include <limits>
27
#include <vector>
28
29
#include "lib/jxl/base/status.h"
30
31
namespace jxl {
32
33
void SetDepth(const HuffmanTree& p, HuffmanTree* pool, uint8_t* depth,
34
0
              uint8_t level) {
35
0
  if (p.index_left >= 0) {
36
0
    ++level;
37
0
    SetDepth(pool[p.index_left], pool, depth, level);
38
0
    SetDepth(pool[p.index_right_or_value], pool, depth, level);
39
0
  } else {
40
0
    depth[p.index_right_or_value] = level;
41
0
  }
42
0
}
43
44
// Sort the root nodes, least popular first.
45
0
static JXL_INLINE bool Compare(const HuffmanTree& v0, const HuffmanTree& v1) {
46
0
  return v0.total_count < v1.total_count;
47
0
}
48
49
// This function will create a Huffman tree.
50
//
51
// The catch here is that the tree cannot be arbitrarily deep.
52
// Brotli specifies a maximum depth of 15 bits for "code trees"
53
// and 7 bits for "code length code trees."
54
//
55
// count_limit is the value that is to be faked as the minimum value
56
// and this minimum value is raised until the tree matches the
57
// maximum length requirement.
58
//
59
// This algorithm is not of excellent performance for very long data blocks,
60
// especially when population counts are longer than 2**tree_limit, but
61
// we are not planning to use this with extremely long blocks.
62
//
63
// See http://en.wikipedia.org/wiki/Huffman_coding
64
void CreateHuffmanTree(const uint32_t* data, const size_t length,
65
0
                       const int tree_limit, uint8_t* depth) {
66
  // For block sizes below 64 kB, we never need to do a second iteration
67
  // of this loop. Probably all of our block sizes will be smaller than
68
  // that, so this loop is mostly of academic interest. If we actually
69
  // would need this, we would be better off with the Katajainen algorithm.
70
0
  for (uint32_t count_limit = 1;; count_limit *= 2) {
71
0
    std::vector<HuffmanTree> tree;
72
0
    tree.reserve(2 * length + 1);
73
74
0
    for (size_t i = length; i != 0;) {
75
0
      --i;
76
0
      if (data[i]) {
77
0
        const uint32_t count = std::max(data[i], count_limit - 1);
78
0
        tree.emplace_back(count, -1, static_cast<int16_t>(i));
79
0
      }
80
0
    }
81
82
0
    const size_t n = tree.size();
83
0
    if (n == 1) {
84
      // Fake value; will be fixed on upper level.
85
0
      depth[tree[0].index_right_or_value] = 1;
86
0
      break;
87
0
    }
88
89
0
    std::stable_sort(tree.begin(), tree.end(), Compare);
90
91
    // The nodes are:
92
    // [0, n): the sorted leaf nodes that we start with.
93
    // [n]: we add a sentinel here.
94
    // [n + 1, 2n): new parent nodes are added here, starting from
95
    //              (n+1). These are naturally in ascending order.
96
    // [2n]: we add a sentinel at the end as well.
97
    // There will be (2n+1) elements at the end.
98
0
    const HuffmanTree sentinel(std::numeric_limits<uint32_t>::max(), -1, -1);
99
0
    tree.push_back(sentinel);
100
0
    tree.push_back(sentinel);
101
102
0
    size_t i = 0;      // Points to the next leaf node.
103
0
    size_t j = n + 1;  // Points to the next non-leaf node.
104
0
    for (size_t k = n - 1; k != 0; --k) {
105
0
      size_t left;
106
0
      size_t right;
107
0
      if (tree[i].total_count <= tree[j].total_count) {
108
0
        left = i;
109
0
        ++i;
110
0
      } else {
111
0
        left = j;
112
0
        ++j;
113
0
      }
114
0
      if (tree[i].total_count <= tree[j].total_count) {
115
0
        right = i;
116
0
        ++i;
117
0
      } else {
118
0
        right = j;
119
0
        ++j;
120
0
      }
121
122
      // The sentinel node becomes the parent node.
123
0
      size_t j_end = tree.size() - 1;
124
0
      tree[j_end].total_count =
125
0
          tree[left].total_count + tree[right].total_count;
126
0
      tree[j_end].index_left = static_cast<int16_t>(left);
127
0
      tree[j_end].index_right_or_value = static_cast<int16_t>(right);
128
129
      // Add back the last sentinel node.
130
0
      tree.push_back(sentinel);
131
0
    }
132
0
    JXL_DASSERT(tree.size() == 2 * n + 1);
133
0
    SetDepth(tree[2 * n - 1], tree.data(), depth, 0);
134
135
    // We need to pack the Huffman tree in tree_limit bits.
136
    // If this was not successful, add fake entities to the lowest values
137
    // and retry.
138
0
    if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
139
0
      break;
140
0
    }
141
0
  }
142
0
}
143
144
0
void Reverse(uint8_t* v, size_t start, size_t end) {
145
0
  --end;
146
0
  while (start < end) {
147
0
    uint8_t tmp = v[start];
148
0
    v[start] = v[end];
149
0
    v[end] = tmp;
150
0
    ++start;
151
0
    --end;
152
0
  }
153
0
}
154
155
void WriteHuffmanTreeRepetitions(const uint8_t previous_value,
156
                                 const uint8_t value, size_t repetitions,
157
                                 size_t* tree_size, uint8_t* tree,
158
0
                                 uint8_t* extra_bits_data) {
159
0
  JXL_DASSERT(repetitions > 0);
160
0
  if (previous_value != value) {
161
0
    tree[*tree_size] = value;
162
0
    extra_bits_data[*tree_size] = 0;
163
0
    ++(*tree_size);
164
0
    --repetitions;
165
0
  }
166
0
  if (repetitions == 7) {
167
0
    tree[*tree_size] = value;
168
0
    extra_bits_data[*tree_size] = 0;
169
0
    ++(*tree_size);
170
0
    --repetitions;
171
0
  }
172
0
  if (repetitions < 3) {
173
0
    for (size_t i = 0; i < repetitions; ++i) {
174
0
      tree[*tree_size] = value;
175
0
      extra_bits_data[*tree_size] = 0;
176
0
      ++(*tree_size);
177
0
    }
178
0
  } else {
179
0
    repetitions -= 3;
180
0
    size_t start = *tree_size;
181
0
    while (true) {
182
0
      tree[*tree_size] = 16;
183
0
      extra_bits_data[*tree_size] = repetitions & 0x3;
184
0
      ++(*tree_size);
185
0
      repetitions >>= 2;
186
0
      if (repetitions == 0) {
187
0
        break;
188
0
      }
189
0
      --repetitions;
190
0
    }
191
0
    Reverse(tree, start, *tree_size);
192
0
    Reverse(extra_bits_data, start, *tree_size);
193
0
  }
194
0
}
195
196
void WriteHuffmanTreeRepetitionsZeros(size_t repetitions, size_t* tree_size,
197
0
                                      uint8_t* tree, uint8_t* extra_bits_data) {
198
0
  if (repetitions == 11) {
199
0
    tree[*tree_size] = 0;
200
0
    extra_bits_data[*tree_size] = 0;
201
0
    ++(*tree_size);
202
0
    --repetitions;
203
0
  }
204
0
  if (repetitions < 3) {
205
0
    for (size_t i = 0; i < repetitions; ++i) {
206
0
      tree[*tree_size] = 0;
207
0
      extra_bits_data[*tree_size] = 0;
208
0
      ++(*tree_size);
209
0
    }
210
0
  } else {
211
0
    repetitions -= 3;
212
0
    size_t start = *tree_size;
213
0
    while (true) {
214
0
      tree[*tree_size] = 17;
215
0
      extra_bits_data[*tree_size] = repetitions & 0x7;
216
0
      ++(*tree_size);
217
0
      repetitions >>= 3;
218
0
      if (repetitions == 0) {
219
0
        break;
220
0
      }
221
0
      --repetitions;
222
0
    }
223
0
    Reverse(tree, start, *tree_size);
224
0
    Reverse(extra_bits_data, start, *tree_size);
225
0
  }
226
0
}
227
228
static void DecideOverRleUse(const uint8_t* depth, const size_t length,
229
                             bool* use_rle_for_non_zero,
230
0
                             bool* use_rle_for_zero) {
231
0
  size_t total_reps_zero = 0;
232
0
  size_t total_reps_non_zero = 0;
233
0
  size_t count_reps_zero = 1;
234
0
  size_t count_reps_non_zero = 1;
235
0
  for (size_t i = 0; i < length;) {
236
0
    const uint8_t value = depth[i];
237
0
    size_t reps = 1;
238
0
    for (size_t k = i + 1; k < length && depth[k] == value; ++k) {
239
0
      ++reps;
240
0
    }
241
0
    if (reps >= 3 && value == 0) {
242
0
      total_reps_zero += reps;
243
0
      ++count_reps_zero;
244
0
    }
245
0
    if (reps >= 4 && value != 0) {
246
0
      total_reps_non_zero += reps;
247
0
      ++count_reps_non_zero;
248
0
    }
249
0
    i += reps;
250
0
  }
251
0
  *use_rle_for_non_zero = total_reps_non_zero > count_reps_non_zero * 2;
252
0
  *use_rle_for_zero = total_reps_zero > count_reps_zero * 2;
253
0
}
254
255
void WriteHuffmanTree(const uint8_t* depth, size_t length, size_t* tree_size,
256
0
                      uint8_t* tree, uint8_t* extra_bits_data) {
257
0
  uint8_t previous_value = 8;
258
259
  // Throw away trailing zeros.
260
0
  size_t new_length = length;
261
0
  for (size_t i = 0; i < length; ++i) {
262
0
    if (depth[length - i - 1] == 0) {
263
0
      --new_length;
264
0
    } else {
265
0
      break;
266
0
    }
267
0
  }
268
269
  // First gather statistics on if it is a good idea to do rle.
270
0
  bool use_rle_for_non_zero = false;
271
0
  bool use_rle_for_zero = false;
272
0
  if (length > 50) {
273
    // Find rle coding for longer codes.
274
    // Shorter codes seem not to benefit from rle.
275
0
    DecideOverRleUse(depth, new_length, &use_rle_for_non_zero,
276
0
                     &use_rle_for_zero);
277
0
  }
278
279
  // Actual rle coding.
280
0
  for (size_t i = 0; i < new_length;) {
281
0
    const uint8_t value = depth[i];
282
0
    size_t reps = 1;
283
0
    if ((value != 0 && use_rle_for_non_zero) ||
284
0
        (value == 0 && use_rle_for_zero)) {
285
0
      for (size_t k = i + 1; k < new_length && depth[k] == value; ++k) {
286
0
        ++reps;
287
0
      }
288
0
    }
289
0
    if (value == 0) {
290
0
      WriteHuffmanTreeRepetitionsZeros(reps, tree_size, tree, extra_bits_data);
291
0
    } else {
292
0
      WriteHuffmanTreeRepetitions(previous_value, value, reps, tree_size, tree,
293
0
                                  extra_bits_data);
294
0
      previous_value = value;
295
0
    }
296
0
    i += reps;
297
0
  }
298
0
}
299
300
namespace {
301
302
0
uint16_t ReverseBits(int num_bits, uint16_t bits) {
303
0
  static const size_t kLut[16] = {// Pre-reversed 4-bit values.
304
0
                                  0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
305
0
                                  0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf};
306
0
  size_t retval = kLut[bits & 0xf];
307
0
  for (int i = 4; i < num_bits; i += 4) {
308
0
    retval <<= 4;
309
0
    bits = static_cast<uint16_t>(bits >> 4);
310
0
    retval |= kLut[bits & 0xf];
311
0
  }
312
0
  retval >>= (-num_bits & 0x3);
313
0
  return static_cast<uint16_t>(retval);
314
0
}
315
316
}  // namespace
317
318
void ConvertBitDepthsToSymbols(const uint8_t* depth, size_t len,
319
0
                               uint16_t* bits) {
320
  // In Brotli, all bit depths are [1..15]
321
  // 0 bit depth means that the symbol does not exist.
322
0
  const int kMaxBits = 16;  // 0..15 are values for bits
323
0
  uint16_t bl_count[kMaxBits] = {0};
324
0
  {
325
0
    for (size_t i = 0; i < len; ++i) {
326
0
      ++bl_count[depth[i]];
327
0
    }
328
0
    bl_count[0] = 0;
329
0
  }
330
0
  uint16_t next_code[kMaxBits];
331
0
  next_code[0] = 0;
332
0
  {
333
0
    int code = 0;
334
0
    for (size_t i = 1; i < kMaxBits; ++i) {
335
0
      code = (code + bl_count[i - 1]) << 1;
336
0
      next_code[i] = static_cast<uint16_t>(code);
337
0
    }
338
0
  }
339
0
  for (size_t i = 0; i < len; ++i) {
340
0
    if (depth[i]) {
341
0
      bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
342
0
    }
343
0
  }
344
0
}
345
346
}  // namespace jxl