/src/libjxl/lib/jxl/enc_modular.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) the JPEG XL Project Authors. All rights reserved. |
2 | | // |
3 | | // Use of this source code is governed by a BSD-style |
4 | | // license that can be found in the LICENSE file. |
5 | | |
6 | | #include "lib/jxl/enc_modular.h" |
7 | | |
8 | | #include <jxl/memory_manager.h> |
9 | | |
10 | | #include <array> |
11 | | #include <cstddef> |
12 | | #include <cstdint> |
13 | | #include <limits> |
14 | | #include <utility> |
15 | | #include <vector> |
16 | | |
17 | | #include "lib/jxl/base/compiler_specific.h" |
18 | | #include "lib/jxl/base/printf_macros.h" |
19 | | #include "lib/jxl/base/rect.h" |
20 | | #include "lib/jxl/base/status.h" |
21 | | #include "lib/jxl/chroma_from_luma.h" |
22 | | #include "lib/jxl/compressed_dc.h" |
23 | | #include "lib/jxl/dec_ans.h" |
24 | | #include "lib/jxl/dec_modular.h" |
25 | | #include "lib/jxl/enc_aux_out.h" |
26 | | #include "lib/jxl/enc_bit_writer.h" |
27 | | #include "lib/jxl/enc_cluster.h" |
28 | | #include "lib/jxl/enc_fields.h" |
29 | | #include "lib/jxl/enc_gaborish.h" |
30 | | #include "lib/jxl/enc_params.h" |
31 | | #include "lib/jxl/enc_patch_dictionary.h" |
32 | | #include "lib/jxl/enc_quant_weights.h" |
33 | | #include "lib/jxl/frame_dimensions.h" |
34 | | #include "lib/jxl/frame_header.h" |
35 | | #include "lib/jxl/modular/encoding/context_predict.h" |
36 | | #include "lib/jxl/modular/encoding/enc_encoding.h" |
37 | | #include "lib/jxl/modular/encoding/encoding.h" |
38 | | #include "lib/jxl/modular/encoding/ma_common.h" |
39 | | #include "lib/jxl/modular/modular_image.h" |
40 | | #include "lib/jxl/modular/options.h" |
41 | | #include "lib/jxl/modular/transform/enc_transform.h" |
42 | | #include "lib/jxl/pack_signed.h" |
43 | | #include "lib/jxl/quant_weights.h" |
44 | | #include "modular/options.h" |
45 | | |
46 | | namespace jxl { |
47 | | |
48 | | namespace { |
49 | | // constexpr bool kPrintTree = false; |
50 | | |
51 | | // Squeeze default quantization factors |
52 | | // these quantization factors are for -Q 50 (other qualities simply scale the |
53 | | // factors; things are rounded down and obviously cannot get below 1) |
54 | | const float squeeze_quality_factor = |
55 | | 0.35; // for easy tweaking of the quality range (decrease this number for |
56 | | // higher quality) |
57 | | const float squeeze_luma_factor = |
58 | | 1.1; // for easy tweaking of the balance between luma (or anything |
59 | | // non-chroma) and chroma (decrease this number for higher quality |
60 | | // luma) |
61 | | const float squeeze_quality_factor_xyb = 4.8f; |
62 | | const float squeeze_xyb_qtable[3][16] = { |
63 | | {163.84, 81.92, 40.96, 20.48, 10.24, 5.12, 2.56, 1.28, 0.64, 0.32, 0.16, |
64 | | 0.08, 0.04, 0.02, 0.01, 0.005}, // Y |
65 | | {1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5, |
66 | | 0.5}, // X |
67 | | {2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, |
68 | | 0.5}, // B-Y |
69 | | }; |
70 | | |
71 | | const float squeeze_luma_qtable[16] = {163.84, 81.92, 40.96, 20.48, 10.24, 5.12, |
72 | | 2.56, 1.28, 0.64, 0.32, 0.16, 0.08, |
73 | | 0.04, 0.02, 0.01, 0.005}; |
74 | | // for 8-bit input, the range of YCoCg chroma is -255..255 so basically this |
75 | | // does 4:2:0 subsampling (two most fine grained layers get quantized away) |
76 | | const float squeeze_chroma_qtable[16] = { |
77 | | 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5, 0.5}; |
78 | | |
79 | | // Merges the trees in `trees` using nodes that decide on stream_id, as defined |
80 | | // by `tree_splits`. |
81 | | Status MergeTrees(const std::vector<Tree>& trees, |
82 | | const std::vector<size_t>& tree_splits, size_t begin, |
83 | 0 | size_t end, Tree* tree) { |
84 | 0 | JXL_ENSURE(trees.size() + 1 == tree_splits.size()); |
85 | 0 | JXL_ENSURE(end > begin); |
86 | 0 | JXL_ENSURE(end <= trees.size()); |
87 | 0 | if (end == begin + 1) { |
88 | | // Insert the tree, adding the opportune offset to all child nodes. |
89 | | // This will make the leaf IDs wrong, but subsequent roundtripping will fix |
90 | | // them. |
91 | 0 | size_t sz = tree->size(); |
92 | 0 | tree->insert(tree->end(), trees[begin].begin(), trees[begin].end()); |
93 | 0 | for (size_t i = sz; i < tree->size(); i++) { |
94 | 0 | (*tree)[i].lchild += sz; |
95 | 0 | (*tree)[i].rchild += sz; |
96 | 0 | } |
97 | 0 | return true; |
98 | 0 | } |
99 | 0 | size_t mid = (begin + end) / 2; |
100 | 0 | size_t splitval = tree_splits[mid] - 1; |
101 | 0 | size_t cur = tree->size(); |
102 | 0 | tree->emplace_back(1 /*stream_id*/, splitval, 0, 0, Predictor::Zero, 0, 1); |
103 | 0 | (*tree)[cur].lchild = tree->size(); |
104 | 0 | JXL_RETURN_IF_ERROR(MergeTrees(trees, tree_splits, mid, end, tree)); |
105 | 0 | (*tree)[cur].rchild = tree->size(); |
106 | 0 | JXL_RETURN_IF_ERROR(MergeTrees(trees, tree_splits, begin, mid, tree)); |
107 | 0 | return true; |
108 | 0 | } |
109 | | |
110 | 0 | void QuantizeChannel(Channel& ch, const int q) { |
111 | 0 | if (q == 1) return; |
112 | 0 | for (size_t y = 0; y < ch.plane.ysize(); y++) { |
113 | 0 | pixel_type* row = ch.plane.Row(y); |
114 | 0 | for (size_t x = 0; x < ch.plane.xsize(); x++) { |
115 | 0 | if (row[x] < 0) { |
116 | 0 | row[x] = -((-row[x] + q / 2) / q) * q; |
117 | 0 | } else { |
118 | 0 | row[x] = ((row[x] + q / 2) / q) * q; |
119 | 0 | } |
120 | 0 | } |
121 | 0 | } |
122 | 0 | } |
123 | | |
124 | | // convert binary32 float that corresponds to custom [bits]-bit float (with |
125 | | // [exp_bits] exponent bits) to a [bits]-bit integer representation that should |
126 | | // fit in pixel_type |
127 | | Status float_to_int(const float* const row_in, pixel_type* const row_out, |
128 | | size_t xsize, unsigned int bits, unsigned int exp_bits, |
129 | 0 | bool fp, double dfactor) { |
130 | 0 | JXL_ENSURE(sizeof(pixel_type) * 8 >= bits); |
131 | 0 | if (!fp) { |
132 | 0 | if (bits > 22) { |
133 | 0 | for (size_t x = 0; x < xsize; ++x) { |
134 | 0 | row_out[x] = row_in[x] * dfactor + (row_in[x] < 0 ? -0.5 : 0.5); |
135 | 0 | } |
136 | 0 | } else { |
137 | 0 | float factor = dfactor; |
138 | 0 | for (size_t x = 0; x < xsize; ++x) { |
139 | 0 | row_out[x] = row_in[x] * factor + (row_in[x] < 0 ? -0.5f : 0.5f); |
140 | 0 | } |
141 | 0 | } |
142 | 0 | return true; |
143 | 0 | } |
144 | 0 | if (bits == 32 && fp) { |
145 | 0 | JXL_ENSURE(exp_bits == 8); |
146 | 0 | memcpy(static_cast<void*>(row_out), static_cast<const void*>(row_in), |
147 | 0 | 4 * xsize); |
148 | 0 | return true; |
149 | 0 | } |
150 | | |
151 | 0 | JXL_ENSURE(bits > 0); |
152 | 0 | int exp_bias = (1 << (exp_bits - 1)) - 1; |
153 | 0 | int max_exp = (1 << exp_bits) - 1; |
154 | 0 | uint32_t sign = (1u << (bits - 1)); |
155 | 0 | int mant_bits = bits - exp_bits - 1; |
156 | 0 | int mant_shift = 23 - mant_bits; |
157 | 0 | for (size_t x = 0; x < xsize; ++x) { |
158 | 0 | uint32_t f; |
159 | 0 | memcpy(&f, &row_in[x], 4); |
160 | 0 | int signbit = (f >> 31); |
161 | 0 | f &= 0x7fffffff; |
162 | 0 | if (f == 0) { |
163 | 0 | row_out[x] = (signbit ? sign : 0); |
164 | 0 | continue; |
165 | 0 | } |
166 | 0 | int exp = (f >> 23) - 127; |
167 | 0 | if (exp == 128) return JXL_FAILURE("Inf/NaN not allowed"); |
168 | 0 | int mantissa = (f & 0x007fffff); |
169 | | // broke up the binary32 into its parts, now reassemble into |
170 | | // arbitrary float |
171 | 0 | exp += exp_bias; |
172 | 0 | if (exp < 0) { // will become a subnormal number |
173 | | // add implicit leading 1 to mantissa |
174 | 0 | mantissa |= 0x00800000; |
175 | 0 | if (exp < -mant_bits) { |
176 | 0 | return JXL_FAILURE( |
177 | 0 | "Invalid float number: %g cannot be represented with %i " |
178 | 0 | "exp_bits and %i mant_bits (exp %i)", |
179 | 0 | row_in[x], exp_bits, mant_bits, exp); |
180 | 0 | } |
181 | 0 | mantissa >>= 1 - exp; |
182 | 0 | exp = 0; |
183 | 0 | } |
184 | | // exp should be representable in exp_bits, otherwise input was |
185 | | // invalid |
186 | 0 | if (exp > max_exp) return JXL_FAILURE("Invalid float exponent"); |
187 | 0 | if (mantissa & ((1 << mant_shift) - 1)) { |
188 | 0 | return JXL_FAILURE("%g is losing precision (mant: %x)", row_in[x], |
189 | 0 | mantissa); |
190 | 0 | } |
191 | 0 | mantissa >>= mant_shift; |
192 | 0 | f = (signbit ? sign : 0); |
193 | 0 | f |= (exp << mant_bits); |
194 | 0 | f |= mantissa; |
195 | 0 | row_out[x] = static_cast<pixel_type>(f); |
196 | 0 | } |
197 | 0 | return true; |
198 | 0 | } |
199 | | |
200 | 0 | float EstimateWPCost(const Image& img, size_t i) { |
201 | 0 | size_t extra_bits = 0; |
202 | 0 | float histo_cost = 0; |
203 | 0 | HybridUintConfig config; |
204 | 0 | int32_t cutoffs[] = {-500, -392, -255, -191, -127, -95, -63, -47, -31, |
205 | 0 | -23, -15, -11, -7, -4, -3, -1, 0, 1, |
206 | 0 | 3, 5, 7, 11, 15, 23, 31, 47, 63, |
207 | 0 | 95, 127, 191, 255, 392, 500}; |
208 | 0 | constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1; |
209 | 0 | Histogram histo[nc] = {}; |
210 | 0 | weighted::Header wp_header; |
211 | 0 | PredictorMode(i, &wp_header); |
212 | 0 | for (const Channel& ch : img.channel) { |
213 | 0 | const intptr_t onerow = ch.plane.PixelsPerRow(); |
214 | 0 | weighted::State wp_state(wp_header, ch.w, ch.h); |
215 | 0 | Properties properties(1); |
216 | 0 | for (size_t y = 0; y < ch.h; y++) { |
217 | 0 | const pixel_type* JXL_RESTRICT r = ch.Row(y); |
218 | 0 | for (size_t x = 0; x < ch.w; x++) { |
219 | 0 | size_t offset = 0; |
220 | 0 | pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0); |
221 | 0 | pixel_type_w top = (y ? *(r + x - onerow) : left); |
222 | 0 | pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left); |
223 | 0 | pixel_type_w topright = |
224 | 0 | (x + 1 < ch.w && y ? *(r + x + 1 - onerow) : top); |
225 | 0 | pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top); |
226 | 0 | pixel_type guess = wp_state.Predict</*compute_properties=*/true>( |
227 | 0 | x, y, ch.w, top, left, topright, topleft, toptop, &properties, |
228 | 0 | offset); |
229 | 0 | size_t ctx = 0; |
230 | 0 | for (int c : cutoffs) { |
231 | 0 | ctx += (c >= properties[0]) ? 1 : 0; |
232 | 0 | } |
233 | 0 | pixel_type res = r[x] - guess; |
234 | 0 | uint32_t token; |
235 | 0 | uint32_t nbits; |
236 | 0 | uint32_t bits; |
237 | 0 | config.Encode(PackSigned(res), &token, &nbits, &bits); |
238 | 0 | histo[ctx].Add(token); |
239 | 0 | extra_bits += nbits; |
240 | 0 | wp_state.UpdateErrors(r[x], x, y, ch.w); |
241 | 0 | } |
242 | 0 | } |
243 | 0 | for (auto& h : histo) { |
244 | 0 | histo_cost += h.ShannonEntropy(); |
245 | 0 | h.Clear(); |
246 | 0 | } |
247 | 0 | } |
248 | 0 | return histo_cost + extra_bits; |
249 | 0 | } |
250 | | |
251 | 0 | float EstimateCost(const Image& img) { |
252 | | // TODO(veluca): consider SIMDfication of this code. |
253 | 0 | size_t extra_bits = 0; |
254 | 0 | float histo_cost = 0; |
255 | 0 | HybridUintConfig config; |
256 | 0 | uint32_t cutoffs[] = {0, 1, 3, 5, 7, 11, 15, 23, 31, |
257 | 0 | 47, 63, 95, 127, 191, 255, 392, 500}; |
258 | 0 | constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1; |
259 | 0 | Histogram histo[nc] = {}; |
260 | 0 | for (const Channel& ch : img.channel) { |
261 | 0 | const intptr_t onerow = ch.plane.PixelsPerRow(); |
262 | 0 | for (size_t y = 0; y < ch.h; y++) { |
263 | 0 | const pixel_type* JXL_RESTRICT r = ch.Row(y); |
264 | 0 | for (size_t x = 0; x < ch.w; x++) { |
265 | 0 | pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0); |
266 | 0 | pixel_type_w top = (y ? *(r + x - onerow) : left); |
267 | 0 | pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left); |
268 | 0 | size_t maxdiff = std::max(std::max(left, top), topleft) - |
269 | 0 | std::min(std::min(left, top), topleft); |
270 | 0 | size_t ctx = 0; |
271 | 0 | for (uint32_t c : cutoffs) { |
272 | 0 | ctx += (c > maxdiff) ? 1 : 0; |
273 | 0 | } |
274 | 0 | pixel_type res = r[x] - ClampedGradient(top, left, topleft); |
275 | 0 | uint32_t token; |
276 | 0 | uint32_t nbits; |
277 | 0 | uint32_t bits; |
278 | 0 | config.Encode(PackSigned(res), &token, &nbits, &bits); |
279 | 0 | histo[ctx].Add(token); |
280 | 0 | extra_bits += nbits; |
281 | 0 | } |
282 | 0 | } |
283 | 0 | for (auto& h : histo) { |
284 | 0 | histo_cost += h.ShannonEntropy(); |
285 | 0 | h.Clear(); |
286 | 0 | } |
287 | 0 | } |
288 | 0 | return histo_cost + extra_bits; |
289 | 0 | } |
290 | | |
291 | | bool do_transform(Image& image, const Transform& tr, |
292 | | const weighted::Header& wp_header, |
293 | 0 | jxl::ThreadPool* pool = nullptr, bool force_jxlart = false) { |
294 | 0 | Transform t = tr; |
295 | 0 | bool did_it = true; |
296 | 0 | if (force_jxlart) { |
297 | 0 | if (!t.MetaApply(image)) return false; |
298 | 0 | } else { |
299 | 0 | did_it = TransformForward(t, image, wp_header, pool); |
300 | 0 | } |
301 | 0 | if (did_it) image.transform.push_back(t); |
302 | 0 | return did_it; |
303 | 0 | } |
304 | | |
305 | | bool maybe_do_transform(Image& image, const Transform& tr, |
306 | | const CompressParams& cparams, |
307 | | const weighted::Header& wp_header, float cost_before, |
308 | | jxl::ThreadPool* pool = nullptr, |
309 | 0 | bool force_jxlart = false) { |
310 | 0 | if (force_jxlart || cparams.speed_tier >= SpeedTier::kSquirrel) { |
311 | 0 | return do_transform(image, tr, wp_header, pool, force_jxlart); |
312 | 0 | } |
313 | 0 | bool did_it = do_transform(image, tr, wp_header, pool); |
314 | 0 | if (did_it) { |
315 | 0 | float cost_after = EstimateCost(image); |
316 | 0 | JXL_DEBUG_V(7, "Cost before: %f cost after: %f", cost_before, cost_after); |
317 | 0 | if (cost_after > cost_before) { |
318 | 0 | Transform t = image.transform.back(); |
319 | 0 | JXL_RETURN_IF_ERROR(t.Inverse(image, wp_header, pool)); |
320 | 0 | image.transform.pop_back(); |
321 | 0 | did_it = false; |
322 | 0 | } |
323 | 0 | } |
324 | 0 | return did_it; |
325 | 0 | } |
326 | | |
327 | | void try_palettes(Image& gi, int& max_bitdepth, int& maxval, |
328 | | const CompressParams& cparams_, float channel_colors_percent, |
329 | 0 | jxl::ThreadPool* pool = nullptr) { |
330 | 0 | float cost_before = 0.f; |
331 | 0 | size_t did_palette = 0; |
332 | 0 | float nb_pixels = gi.channel[0].w * gi.channel[0].h; |
333 | 0 | int nb_chans = gi.channel.size() - gi.nb_meta_channels; |
334 | | // arbitrary estimate: 4.8 bpp for 8-bit RGB |
335 | 0 | float arbitrary_bpp_estimate = 0.2f * gi.bitdepth * nb_chans; |
336 | |
|
337 | 0 | if (cparams_.palette_colors != 0 || cparams_.lossy_palette) { |
338 | | // when not estimating, assume some arbitrary bpp |
339 | 0 | cost_before = cparams_.speed_tier <= SpeedTier::kSquirrel |
340 | 0 | ? EstimateCost(gi) |
341 | 0 | : nb_pixels * arbitrary_bpp_estimate; |
342 | | // all-channel palette (e.g. RGBA) |
343 | 0 | if (nb_chans > 1) { |
344 | 0 | Transform maybe_palette(TransformId::kPalette); |
345 | 0 | maybe_palette.begin_c = gi.nb_meta_channels; |
346 | 0 | maybe_palette.num_c = nb_chans; |
347 | | // Heuristic choice of max colors for a palette: |
348 | | // max_colors = nb_pixels * estimated_bpp_without_palette * 0.0005 + |
349 | | // + nb_pixels / 128 + 128 |
350 | | // (estimated_bpp_without_palette = cost_before / nb_pixels) |
351 | | // Rationale: small image with large palette is not effective; |
352 | | // also if the entropy (estimated bpp) is low (e.g. mostly solid/gradient |
353 | | // areas), palette is less useful and may even be counterproductive. |
354 | 0 | maybe_palette.nb_colors = std::min( |
355 | 0 | static_cast<int>(cost_before * 0.0005f + nb_pixels / 128 + 128), |
356 | 0 | std::abs(cparams_.palette_colors)); |
357 | 0 | maybe_palette.ordered_palette = cparams_.palette_colors >= 0; |
358 | 0 | maybe_palette.lossy_palette = |
359 | 0 | (cparams_.lossy_palette && maybe_palette.num_c == 3); |
360 | 0 | if (maybe_palette.lossy_palette) { |
361 | 0 | maybe_palette.predictor = Predictor::Average4; |
362 | 0 | } |
363 | | // TODO(veluca): use a custom weighted header if using the weighted |
364 | | // predictor. |
365 | 0 | if (maybe_do_transform(gi, maybe_palette, cparams_, weighted::Header(), |
366 | 0 | cost_before, pool, cparams_.options.zero_tokens)) { |
367 | 0 | did_palette = 1; |
368 | 0 | }; |
369 | 0 | } |
370 | | // all-minus-one-channel palette (RGB with separate alpha, or CMY with |
371 | | // separate K) |
372 | 0 | if (!did_palette && nb_chans > 3) { |
373 | 0 | Transform maybe_palette_3(TransformId::kPalette); |
374 | 0 | maybe_palette_3.begin_c = gi.nb_meta_channels; |
375 | 0 | maybe_palette_3.num_c = nb_chans - 1; |
376 | 0 | maybe_palette_3.nb_colors = std::min( |
377 | 0 | static_cast<int>(cost_before * 0.0005f + nb_pixels / 128 + 128), |
378 | 0 | std::abs(cparams_.palette_colors)); |
379 | 0 | maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0; |
380 | 0 | maybe_palette_3.lossy_palette = cparams_.lossy_palette; |
381 | 0 | if (maybe_palette_3.lossy_palette) { |
382 | 0 | maybe_palette_3.predictor = Predictor::Average4; |
383 | 0 | } |
384 | 0 | if (maybe_do_transform(gi, maybe_palette_3, cparams_, weighted::Header(), |
385 | 0 | cost_before, pool, cparams_.options.zero_tokens)) { |
386 | 0 | did_palette = 1; |
387 | 0 | } |
388 | 0 | } |
389 | 0 | } |
390 | |
|
391 | 0 | if (channel_colors_percent > 0) { |
392 | | // single channel palette (like FLIF's ChannelCompact) |
393 | 0 | size_t nb_channels = gi.channel.size() - gi.nb_meta_channels - did_palette; |
394 | 0 | int orig_bitdepth = max_bitdepth; |
395 | 0 | max_bitdepth = 0; |
396 | 0 | if (nb_channels > 0 && (did_palette || cost_before == 0)) { |
397 | 0 | cost_before = |
398 | 0 | cparams_.speed_tier < SpeedTier::kSquirrel ? EstimateCost(gi) : 0; |
399 | 0 | } |
400 | 0 | for (size_t i = did_palette; i < nb_channels + did_palette; i++) { |
401 | 0 | int32_t min; |
402 | 0 | int32_t max; |
403 | 0 | compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max); |
404 | 0 | int64_t colors = static_cast<int64_t>(max) - min + 1; |
405 | 0 | JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max); |
406 | 0 | Transform maybe_palette_1(TransformId::kPalette); |
407 | 0 | maybe_palette_1.begin_c = i + gi.nb_meta_channels; |
408 | 0 | maybe_palette_1.num_c = 1; |
409 | | // simple heuristic: if less than X percent of the values in the range |
410 | | // actually occur, it is probably worth it to do a compaction |
411 | | // (but only if the channel palette is less than 6% the size of the |
412 | | // image itself) |
413 | 0 | maybe_palette_1.nb_colors = |
414 | 0 | std::min(static_cast<int>(nb_pixels / 16), |
415 | 0 | static_cast<int>(channel_colors_percent / 100. * colors)); |
416 | 0 | if (maybe_do_transform(gi, maybe_palette_1, cparams_, weighted::Header(), |
417 | 0 | cost_before, pool)) { |
418 | | // effective bit depth is lower, adjust quantization accordingly |
419 | 0 | compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max); |
420 | 0 | if (max < maxval) maxval = max; |
421 | 0 | int ch_bitdepth = |
422 | 0 | (max > 0 ? CeilLog2Nonzero(static_cast<uint32_t>(max)) : 0); |
423 | 0 | if (ch_bitdepth > max_bitdepth) max_bitdepth = ch_bitdepth; |
424 | 0 | } else { |
425 | 0 | max_bitdepth = orig_bitdepth; |
426 | 0 | } |
427 | 0 | } |
428 | 0 | } |
429 | 0 | } |
430 | | |
431 | | } // namespace |
432 | | |
433 | | StatusOr<ModularFrameEncoder> ModularFrameEncoder::Create( |
434 | | JxlMemoryManager* memory_manager, const FrameHeader& frame_header, |
435 | 0 | const CompressParams& cparams_orig, bool streaming_mode) { |
436 | 0 | ModularFrameEncoder self{memory_manager}; |
437 | 0 | JXL_RETURN_IF_ERROR(self.Init(frame_header, cparams_orig, streaming_mode)); |
438 | 0 | return self; |
439 | 0 | } |
440 | | |
441 | | ModularFrameEncoder::ModularFrameEncoder(JxlMemoryManager* memory_manager) |
442 | 0 | : memory_manager_(memory_manager) {} |
443 | | |
444 | | Status ModularFrameEncoder::Init(const FrameHeader& frame_header, |
445 | | const CompressParams& cparams_orig, |
446 | 0 | bool streaming_mode) { |
447 | 0 | frame_dim_ = frame_header.ToFrameDimensions(); |
448 | 0 | cparams_ = cparams_orig; |
449 | |
|
450 | 0 | size_t num_streams = |
451 | 0 | ModularStreamId::Num(frame_dim_, frame_header.passes.num_passes); |
452 | 0 | if (cparams_.ModularPartIsLossless()) { |
453 | 0 | switch (cparams_.decoding_speed_tier) { |
454 | 0 | case 0: |
455 | 0 | break; |
456 | 0 | case 1: |
457 | 0 | cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kWPOnly; |
458 | 0 | break; |
459 | 0 | case 2: { |
460 | 0 | cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kGradientOnly; |
461 | 0 | cparams_.options.predictor = Predictor::Gradient; |
462 | 0 | break; |
463 | 0 | } |
464 | 0 | case 3: { // LZ77, no Gradient. |
465 | 0 | cparams_.options.nb_repeats = 0; |
466 | 0 | cparams_.options.predictor = Predictor::Gradient; |
467 | 0 | break; |
468 | 0 | } |
469 | 0 | default: { // LZ77, no predictor. |
470 | 0 | cparams_.options.nb_repeats = 0; |
471 | 0 | cparams_.options.predictor = Predictor::Zero; |
472 | 0 | break; |
473 | 0 | } |
474 | 0 | } |
475 | 0 | } |
476 | 0 | if (cparams_.decoding_speed_tier >= 1 && cparams_.responsive && |
477 | 0 | cparams_.ModularPartIsLossless()) { |
478 | 0 | cparams_.options.tree_kind = |
479 | 0 | ModularOptions::TreeKind::kTrivialTreeNoPredictor; |
480 | 0 | cparams_.options.nb_repeats = 0; |
481 | 0 | } |
482 | 0 | for (size_t i = 0; i < num_streams; ++i) { |
483 | 0 | stream_images_.emplace_back(memory_manager_); |
484 | 0 | } |
485 | | |
486 | | // use a sensible default if nothing explicit is specified: |
487 | | // Squeeze for lossy, no squeeze for lossless |
488 | 0 | if (cparams_.responsive < 0) { |
489 | 0 | if (cparams_.ModularPartIsLossless()) { |
490 | 0 | cparams_.responsive = 0; |
491 | 0 | } else { |
492 | 0 | cparams_.responsive = 1; |
493 | 0 | } |
494 | 0 | } |
495 | |
|
496 | 0 | cparams_.options.splitting_heuristics_node_threshold = |
497 | 0 | 82 + 14 * static_cast<int>(cparams_.speed_tier); |
498 | |
|
499 | 0 | { |
500 | | // Set properties. |
501 | 0 | std::vector<uint32_t> prop_order; |
502 | 0 | if (cparams_.responsive) { |
503 | | // Properties in order of their likelihood of being useful for Squeeze |
504 | | // residuals. |
505 | 0 | prop_order = {0, 1, 4, 5, 6, 7, 8, 15, 9, 10, 11, 12, 13, 14, 2, 3}; |
506 | 0 | } else { |
507 | | // Same, but for the non-Squeeze case. |
508 | 0 | prop_order = {0, 1, 15, 9, 10, 11, 12, 13, 14, 2, 3, 4, 5, 6, 7, 8}; |
509 | | // if few groups, don't use group as a property |
510 | 0 | if (num_streams < 30 && cparams_.speed_tier > SpeedTier::kTortoise && |
511 | 0 | cparams_orig.ModularPartIsLossless()) { |
512 | 0 | prop_order.erase(prop_order.begin() + 1); |
513 | 0 | } |
514 | 0 | } |
515 | 0 | int max_properties = std::min<int>( |
516 | 0 | cparams_.options.max_properties, |
517 | 0 | static_cast<int>( |
518 | 0 | frame_header.nonserialized_metadata->m.num_extra_channels) + |
519 | 0 | (frame_header.encoding == FrameEncoding::kModular ? 2 : -1)); |
520 | 0 | switch (cparams_.speed_tier) { |
521 | 0 | case SpeedTier::kHare: |
522 | 0 | cparams_.options.splitting_heuristics_properties.assign( |
523 | 0 | prop_order.begin(), prop_order.begin() + 4); |
524 | 0 | cparams_.options.max_property_values = 24; |
525 | 0 | break; |
526 | 0 | case SpeedTier::kWombat: |
527 | 0 | cparams_.options.splitting_heuristics_properties.assign( |
528 | 0 | prop_order.begin(), prop_order.begin() + 5); |
529 | 0 | cparams_.options.max_property_values = 32; |
530 | 0 | break; |
531 | 0 | case SpeedTier::kSquirrel: |
532 | 0 | cparams_.options.splitting_heuristics_properties.assign( |
533 | 0 | prop_order.begin(), prop_order.begin() + 7); |
534 | 0 | cparams_.options.max_property_values = 48; |
535 | 0 | break; |
536 | 0 | case SpeedTier::kKitten: |
537 | 0 | cparams_.options.splitting_heuristics_properties.assign( |
538 | 0 | prop_order.begin(), prop_order.begin() + 10); |
539 | 0 | cparams_.options.max_property_values = 96; |
540 | 0 | break; |
541 | 0 | case SpeedTier::kGlacier: |
542 | 0 | case SpeedTier::kTortoise: |
543 | 0 | cparams_.options.splitting_heuristics_properties = prop_order; |
544 | 0 | cparams_.options.max_property_values = 256; |
545 | 0 | break; |
546 | 0 | default: |
547 | 0 | cparams_.options.splitting_heuristics_properties.assign( |
548 | 0 | prop_order.begin(), prop_order.begin() + 3); |
549 | 0 | cparams_.options.max_property_values = 16; |
550 | 0 | break; |
551 | 0 | } |
552 | 0 | if (cparams_.speed_tier > SpeedTier::kTortoise) { |
553 | | // Gradient in previous channels. |
554 | 0 | for (int i = 0; i < max_properties; i++) { |
555 | 0 | cparams_.options.splitting_heuristics_properties.push_back( |
556 | 0 | kNumNonrefProperties + i * 4 + 3); |
557 | 0 | } |
558 | 0 | } else { |
559 | | // All the extra properties in Tortoise mode. |
560 | 0 | for (int i = 0; i < max_properties * 4; i++) { |
561 | 0 | cparams_.options.splitting_heuristics_properties.push_back( |
562 | 0 | kNumNonrefProperties + i); |
563 | 0 | } |
564 | 0 | } |
565 | 0 | } |
566 | | |
567 | 0 | if ((cparams_.options.predictor == Predictor::Average0 || |
568 | 0 | cparams_.options.predictor == Predictor::Average1 || |
569 | 0 | cparams_.options.predictor == Predictor::Average2 || |
570 | 0 | cparams_.options.predictor == Predictor::Average3 || |
571 | 0 | cparams_.options.predictor == Predictor::Average4 || |
572 | 0 | cparams_.options.predictor == Predictor::Weighted) && |
573 | 0 | !cparams_.ModularPartIsLossless()) { |
574 | | // Lossy + Average/Weighted predictors does not work, so switch to default |
575 | | // predictors. |
576 | 0 | cparams_.options.predictor = kUndefinedPredictor; |
577 | 0 | } |
578 | |
|
579 | 0 | if (cparams_.options.predictor == kUndefinedPredictor) { |
580 | | // no explicit predictor(s) given, set a good default |
581 | 0 | if ((cparams_.speed_tier <= SpeedTier::kGlacier || |
582 | 0 | cparams_.modular_mode == false) && |
583 | 0 | cparams_.IsLossless() && cparams_.responsive == JXL_FALSE) { |
584 | | // TODO(veluca): allow all predictors that don't break residual |
585 | | // multipliers in lossy mode. |
586 | 0 | cparams_.options.predictor = Predictor::Variable; |
587 | 0 | } else if (cparams_.responsive || cparams_.lossy_palette) { |
588 | | // zero predictor for Squeeze residues and lossy palette |
589 | 0 | cparams_.options.predictor = Predictor::Zero; |
590 | 0 | } else if (!cparams_.IsLossless()) { |
591 | | // If not responsive and lossy. TODO(veluca): use near_lossless instead? |
592 | 0 | cparams_.options.predictor = Predictor::Gradient; |
593 | 0 | } else if (cparams_.speed_tier < SpeedTier::kFalcon) { |
594 | | // try median and weighted predictor for anything else |
595 | 0 | cparams_.options.predictor = Predictor::Best; |
596 | 0 | } else if (cparams_.speed_tier == SpeedTier::kFalcon) { |
597 | | // just weighted predictor in falcon mode |
598 | 0 | cparams_.options.predictor = Predictor::Weighted; |
599 | 0 | } else if (cparams_.speed_tier > SpeedTier::kFalcon) { |
600 | | // just gradient predictor in thunder mode |
601 | 0 | cparams_.options.predictor = Predictor::Gradient; |
602 | 0 | } |
603 | 0 | } else { |
604 | 0 | if (cparams_.lossy_palette) cparams_.options.predictor = Predictor::Zero; |
605 | 0 | } |
606 | 0 | if (!cparams_.ModularPartIsLossless()) { |
607 | 0 | if (cparams_.options.predictor == Predictor::Weighted || |
608 | 0 | cparams_.options.predictor == Predictor::Variable || |
609 | 0 | cparams_.options.predictor == Predictor::Best) |
610 | 0 | cparams_.options.predictor = Predictor::Zero; |
611 | 0 | } |
612 | 0 | tree_splits_.push_back(0); |
613 | 0 | if (cparams_.modular_mode == false) { |
614 | 0 | JXL_ASSIGN_OR_RETURN(ModularStreamId qt0, ModularStreamId::QuantTable(0)); |
615 | 0 | cparams_.options.fast_decode_multiplier = 1.0f; |
616 | 0 | tree_splits_.push_back(ModularStreamId::VarDCTDC(0).ID(frame_dim_)); |
617 | 0 | tree_splits_.push_back(ModularStreamId::ModularDC(0).ID(frame_dim_)); |
618 | 0 | tree_splits_.push_back(ModularStreamId::ACMetadata(0).ID(frame_dim_)); |
619 | 0 | tree_splits_.push_back(qt0.ID(frame_dim_)); |
620 | 0 | tree_splits_.push_back(ModularStreamId::ModularAC(0, 0).ID(frame_dim_)); |
621 | 0 | ac_metadata_size.resize(frame_dim_.num_dc_groups); |
622 | 0 | extra_dc_precision.resize(frame_dim_.num_dc_groups); |
623 | 0 | } |
624 | 0 | tree_splits_.push_back(num_streams); |
625 | 0 | cparams_.options.max_chan_size = frame_dim_.group_dim; |
626 | 0 | cparams_.options.group_dim = frame_dim_.group_dim; |
627 | | |
628 | | // TODO(veluca): figure out how to use different predictor sets per channel. |
629 | 0 | stream_options_.resize(num_streams, cparams_.options); |
630 | |
|
631 | 0 | stream_options_[0] = cparams_.options; |
632 | 0 | if (cparams_.speed_tier == SpeedTier::kFalcon) { |
633 | 0 | stream_options_[0].tree_kind = ModularOptions::TreeKind::kWPFixedDC; |
634 | 0 | } else if (cparams_.speed_tier == SpeedTier::kThunder) { |
635 | 0 | stream_options_[0].tree_kind = ModularOptions::TreeKind::kGradientFixedDC; |
636 | 0 | } |
637 | 0 | stream_options_[0].histogram_params = |
638 | 0 | HistogramParams::ForModular(cparams_, {}, streaming_mode); |
639 | 0 | return true; |
640 | 0 | } |
641 | | |
642 | | Status ModularFrameEncoder::ComputeEncodingData( |
643 | | const FrameHeader& frame_header, const ImageMetadata& metadata, |
644 | | Image3F* JXL_RESTRICT color, const std::vector<ImageF>& extra_channels, |
645 | | const Rect& group_rect, const FrameDimensions& patch_dim, |
646 | | const Rect& frame_area_rect, PassesEncoderState* JXL_RESTRICT enc_state, |
647 | | const JxlCmsInterface& cms, ThreadPool* pool, AuxOut* aux_out, |
648 | 0 | bool do_color) { |
649 | 0 | JxlMemoryManager* memory_manager = enc_state->memory_manager(); |
650 | 0 | JXL_DEBUG_V(6, "Computing modular encoding data for frame %s", |
651 | 0 | frame_header.DebugString().c_str()); |
652 | |
|
653 | 0 | bool groupwise = enc_state->streaming_mode; |
654 | |
|
655 | 0 | if (do_color && frame_header.loop_filter.gab && !groupwise) { |
656 | 0 | float w = 0.9908511000000001f; |
657 | 0 | float weights[3] = {w, w, w}; |
658 | 0 | JXL_RETURN_IF_ERROR(GaborishInverse(color, Rect(*color), weights, pool)); |
659 | 0 | } |
660 | | |
661 | 0 | if (do_color && metadata.bit_depth.bits_per_sample <= 16 && |
662 | 0 | cparams_.speed_tier < SpeedTier::kCheetah && |
663 | 0 | cparams_.decoding_speed_tier < 2 && !groupwise) { |
664 | 0 | JXL_RETURN_IF_ERROR(FindBestPatchDictionary( |
665 | 0 | *color, enc_state, cms, nullptr, aux_out, |
666 | 0 | cparams_.color_transform == ColorTransform::kXYB)); |
667 | 0 | JXL_RETURN_IF_ERROR(PatchDictionaryEncoder::SubtractFrom( |
668 | 0 | enc_state->shared.image_features.patches, color)); |
669 | 0 | } |
670 | | |
671 | 0 | if (cparams_.custom_splines.HasAny()) { |
672 | 0 | PassesSharedState& shared = enc_state->shared; |
673 | 0 | ImageFeatures& image_features = shared.image_features; |
674 | 0 | image_features.splines = cparams_.custom_splines; |
675 | 0 | } |
676 | | |
677 | | // Convert ImageBundle to modular Image object |
678 | 0 | const size_t xsize = patch_dim.xsize; |
679 | 0 | const size_t ysize = patch_dim.ysize; |
680 | |
|
681 | 0 | int nb_chans = 3; |
682 | 0 | if (metadata.color_encoding.IsGray() && |
683 | 0 | cparams_.color_transform == ColorTransform::kNone) { |
684 | 0 | nb_chans = 1; |
685 | 0 | } |
686 | 0 | if (!do_color) nb_chans = 0; |
687 | |
|
688 | 0 | nb_chans += extra_channels.size(); |
689 | |
|
690 | 0 | bool fp = metadata.bit_depth.floating_point_sample && |
691 | 0 | cparams_.color_transform != ColorTransform::kXYB; |
692 | | |
693 | | // bits_per_sample is just metadata for XYB images. |
694 | 0 | if (metadata.bit_depth.bits_per_sample >= 32 && do_color && |
695 | 0 | cparams_.color_transform != ColorTransform::kXYB) { |
696 | 0 | if (metadata.bit_depth.bits_per_sample == 32 && fp == false) { |
697 | 0 | return JXL_FAILURE("uint32_t not supported in enc_modular"); |
698 | 0 | } else if (metadata.bit_depth.bits_per_sample > 32) { |
699 | 0 | return JXL_FAILURE("bits_per_sample > 32 not supported"); |
700 | 0 | } |
701 | 0 | } |
702 | | |
703 | | // in the non-float case, there is an implicit 0 sign bit |
704 | 0 | int max_bitdepth = |
705 | 0 | do_color ? metadata.bit_depth.bits_per_sample + (fp ? 0 : 1) : 0; |
706 | 0 | Image& gi = stream_images_[0]; |
707 | 0 | JXL_ASSIGN_OR_RETURN( |
708 | 0 | gi, Image::Create(memory_manager, xsize, ysize, |
709 | 0 | metadata.bit_depth.bits_per_sample, nb_chans)); |
710 | 0 | int c = 0; |
711 | 0 | if (cparams_.color_transform == ColorTransform::kXYB && |
712 | 0 | cparams_.modular_mode == true) { |
713 | 0 | float enc_factors[3] = {65536.0f, 4096.0f, 4096.0f}; |
714 | 0 | if (cparams_.butteraugli_distance > 0 && !cparams_.responsive) { |
715 | | // quantize XYB here and then treat it as a lossless image |
716 | 0 | enc_factors[0] *= 1.f / (1.f + 23.f * cparams_.butteraugli_distance); |
717 | 0 | enc_factors[1] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance); |
718 | 0 | enc_factors[2] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance); |
719 | 0 | cparams_.butteraugli_distance = 0; |
720 | 0 | } |
721 | 0 | if (cparams_.manual_xyb_factors.size() == 3) { |
722 | 0 | JXL_RETURN_IF_ERROR(DequantMatricesSetCustomDC( |
723 | 0 | memory_manager, &enc_state->shared.matrices, |
724 | 0 | cparams_.manual_xyb_factors.data())); |
725 | | // TODO(jon): update max_bitdepth in this case |
726 | 0 | } else { |
727 | 0 | JXL_RETURN_IF_ERROR(DequantMatricesSetCustomDC( |
728 | 0 | memory_manager, &enc_state->shared.matrices, enc_factors)); |
729 | 0 | max_bitdepth = 12; |
730 | 0 | } |
731 | 0 | } |
732 | 0 | pixel_type maxval = gi.bitdepth < 32 ? (1u << gi.bitdepth) - 1 : 0; |
733 | 0 | if (do_color) { |
734 | 0 | for (; c < 3; c++) { |
735 | 0 | if (metadata.color_encoding.IsGray() && |
736 | 0 | cparams_.color_transform == ColorTransform::kNone && |
737 | 0 | c != (cparams_.color_transform == ColorTransform::kXYB ? 1 : 0)) |
738 | 0 | continue; |
739 | 0 | int c_out = c; |
740 | | // XYB is encoded as YX(B-Y) |
741 | 0 | if (cparams_.color_transform == ColorTransform::kXYB && c < 2) |
742 | 0 | c_out = 1 - c_out; |
743 | 0 | double factor = maxval; |
744 | 0 | if (cparams_.color_transform == ColorTransform::kXYB) |
745 | 0 | factor = enc_state->shared.matrices.InvDCQuant(c); |
746 | 0 | if (c == 2 && cparams_.color_transform == ColorTransform::kXYB) { |
747 | 0 | JXL_ENSURE(!fp); |
748 | 0 | for (size_t y = 0; y < ysize; ++y) { |
749 | 0 | const float* const JXL_RESTRICT row_in = color->PlaneRow(c, y); |
750 | 0 | pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y); |
751 | 0 | pixel_type* const JXL_RESTRICT row_Y = gi.channel[0].Row(y); |
752 | 0 | for (size_t x = 0; x < xsize; ++x) { |
753 | | // TODO(eustas): check if std::roundf is appropriate |
754 | 0 | row_out[x] = row_in[x] * factor + 0.5f; |
755 | 0 | row_out[x] -= row_Y[x]; |
756 | 0 | } |
757 | 0 | } |
758 | 0 | } else { |
759 | 0 | int bits = metadata.bit_depth.bits_per_sample; |
760 | 0 | int exp_bits = metadata.bit_depth.exponent_bits_per_sample; |
761 | 0 | gi.channel[c_out].hshift = frame_header.chroma_subsampling.HShift(c); |
762 | 0 | gi.channel[c_out].vshift = frame_header.chroma_subsampling.VShift(c); |
763 | 0 | size_t xsize_shifted = DivCeil(xsize, 1 << gi.channel[c_out].hshift); |
764 | 0 | size_t ysize_shifted = DivCeil(ysize, 1 << gi.channel[c_out].vshift); |
765 | 0 | JXL_RETURN_IF_ERROR( |
766 | 0 | gi.channel[c_out].shrink(xsize_shifted, ysize_shifted)); |
767 | 0 | const auto process_row = [&](const int task, |
768 | 0 | const int thread) -> Status { |
769 | 0 | const size_t y = task; |
770 | 0 | const float* const JXL_RESTRICT row_in = |
771 | 0 | color->PlaneRow(c, y + group_rect.y0()) + group_rect.x0(); |
772 | 0 | pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y); |
773 | 0 | JXL_RETURN_IF_ERROR(float_to_int(row_in, row_out, xsize_shifted, bits, |
774 | 0 | exp_bits, fp, factor)); |
775 | 0 | return true; |
776 | 0 | }; |
777 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, ysize_shifted, |
778 | 0 | ThreadPool::NoInit, process_row, |
779 | 0 | "float2int")); |
780 | 0 | } |
781 | 0 | } |
782 | 0 | if (metadata.color_encoding.IsGray() && |
783 | 0 | cparams_.color_transform == ColorTransform::kNone) |
784 | 0 | c = 1; |
785 | 0 | } |
786 | | |
787 | 0 | for (size_t ec = 0; ec < extra_channels.size(); ec++, c++) { |
788 | 0 | const ExtraChannelInfo& eci = metadata.extra_channel_info[ec]; |
789 | 0 | size_t ecups = frame_header.extra_channel_upsampling[ec]; |
790 | 0 | JXL_RETURN_IF_ERROR( |
791 | 0 | gi.channel[c].shrink(DivCeil(patch_dim.xsize_upsampled, ecups), |
792 | 0 | DivCeil(patch_dim.ysize_upsampled, ecups))); |
793 | 0 | gi.channel[c].hshift = gi.channel[c].vshift = |
794 | 0 | CeilLog2Nonzero(ecups) - CeilLog2Nonzero(frame_header.upsampling); |
795 | |
|
796 | 0 | int bits = eci.bit_depth.bits_per_sample; |
797 | 0 | int exp_bits = eci.bit_depth.exponent_bits_per_sample; |
798 | 0 | bool fp = eci.bit_depth.floating_point_sample; |
799 | 0 | double factor = (fp ? 1 : ((1u << eci.bit_depth.bits_per_sample) - 1)); |
800 | 0 | if (bits + (fp ? 0 : 1) > max_bitdepth) max_bitdepth = bits + (fp ? 0 : 1); |
801 | 0 | const auto process_row = [&](const int task, const int thread) -> Status { |
802 | 0 | const size_t y = task; |
803 | 0 | const float* const JXL_RESTRICT row_in = |
804 | 0 | extra_channels[ec].Row(y + group_rect.y0()) + group_rect.x0(); |
805 | 0 | pixel_type* const JXL_RESTRICT row_out = gi.channel[c].Row(y); |
806 | 0 | JXL_RETURN_IF_ERROR(float_to_int(row_in, row_out, |
807 | 0 | gi.channel[c].plane.xsize(), bits, |
808 | 0 | exp_bits, fp, factor)); |
809 | 0 | return true; |
810 | 0 | }; |
811 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, gi.channel[c].plane.ysize(), |
812 | 0 | ThreadPool::NoInit, process_row, |
813 | 0 | "float2int")); |
814 | 0 | } |
815 | 0 | JXL_ENSURE(c == nb_chans); |
816 | | |
817 | 0 | int level_max_bitdepth = (cparams_.level == 5 ? 16 : 32); |
818 | 0 | if (max_bitdepth > level_max_bitdepth) { |
819 | 0 | return JXL_FAILURE( |
820 | 0 | "Bitdepth too high for level %i (need %i bits, have only %i in this " |
821 | 0 | "level)", |
822 | 0 | cparams_.level, max_bitdepth, level_max_bitdepth); |
823 | 0 | } |
824 | | |
825 | | // Set options and apply transformations |
826 | 0 | if (!cparams_.ModularPartIsLossless()) { |
827 | 0 | if (cparams_.palette_colors != 0) { |
828 | 0 | JXL_DEBUG_V(3, "Lossy encode, not doing palette transforms"); |
829 | 0 | } |
830 | 0 | if (cparams_.color_transform == ColorTransform::kXYB) { |
831 | 0 | cparams_.channel_colors_pre_transform_percent = 0; |
832 | 0 | } |
833 | 0 | cparams_.channel_colors_percent = 0; |
834 | 0 | cparams_.palette_colors = 0; |
835 | 0 | cparams_.lossy_palette = false; |
836 | 0 | } |
837 | | |
838 | | // Global palette transforms |
839 | 0 | float channel_colors_percent = 0; |
840 | 0 | if (!cparams_.lossy_palette && |
841 | 0 | (cparams_.speed_tier <= SpeedTier::kThunder || |
842 | 0 | (do_color && metadata.bit_depth.bits_per_sample > 8))) { |
843 | 0 | channel_colors_percent = cparams_.channel_colors_pre_transform_percent; |
844 | 0 | } |
845 | 0 | if (!groupwise) { |
846 | 0 | try_palettes(gi, max_bitdepth, maxval, cparams_, channel_colors_percent, |
847 | 0 | pool); |
848 | 0 | } |
849 | | |
850 | | // don't do an RCT if we're short on bits |
851 | 0 | if (cparams_.color_transform == ColorTransform::kNone && do_color && |
852 | 0 | gi.channel.size() - gi.nb_meta_channels >= 3 && |
853 | 0 | max_bitdepth + 1 < level_max_bitdepth) { |
854 | 0 | if (cparams_.colorspace < 0 && (!cparams_.ModularPartIsLossless() || |
855 | 0 | cparams_.speed_tier > SpeedTier::kHare)) { |
856 | 0 | Transform ycocg{TransformId::kRCT}; |
857 | 0 | ycocg.rct_type = 6; |
858 | 0 | ycocg.begin_c = gi.nb_meta_channels; |
859 | 0 | do_transform(gi, ycocg, weighted::Header(), pool); |
860 | 0 | max_bitdepth++; |
861 | 0 | } else if (cparams_.colorspace > 0) { |
862 | 0 | Transform sg(TransformId::kRCT); |
863 | 0 | sg.begin_c = gi.nb_meta_channels; |
864 | 0 | sg.rct_type = cparams_.colorspace; |
865 | 0 | do_transform(gi, sg, weighted::Header(), pool); |
866 | 0 | max_bitdepth++; |
867 | 0 | } |
868 | 0 | } |
869 | |
|
870 | 0 | if (cparams_.move_to_front_from_channel > 0) { |
871 | 0 | for (size_t tgt = 0; |
872 | 0 | tgt + cparams_.move_to_front_from_channel < gi.channel.size(); tgt++) { |
873 | 0 | size_t pos = cparams_.move_to_front_from_channel; |
874 | 0 | while (pos > 0) { |
875 | 0 | Transform move(TransformId::kRCT); |
876 | 0 | if (pos == 1) { |
877 | 0 | move.begin_c = tgt; |
878 | 0 | move.rct_type = 28; // RGB -> GRB |
879 | 0 | pos -= 1; |
880 | 0 | } else { |
881 | 0 | move.begin_c = tgt + pos - 2; |
882 | 0 | move.rct_type = 14; // RGB -> BRG |
883 | 0 | pos -= 2; |
884 | 0 | } |
885 | 0 | do_transform(gi, move, weighted::Header(), pool); |
886 | 0 | } |
887 | 0 | } |
888 | 0 | } |
889 | | |
890 | | // don't do squeeze if we don't have some spare bits |
891 | 0 | if (!groupwise && cparams_.responsive && !gi.channel.empty() && |
892 | 0 | max_bitdepth + 2 < level_max_bitdepth) { |
893 | 0 | Transform t(TransformId::kSqueeze); |
894 | 0 | do_transform(gi, t, weighted::Header(), pool); |
895 | 0 | max_bitdepth += 2; |
896 | 0 | } |
897 | |
|
898 | 0 | if (max_bitdepth + 1 > level_max_bitdepth) { |
899 | | // force no group RCTs if we don't have a spare bit |
900 | 0 | cparams_.colorspace = 0; |
901 | 0 | } |
902 | 0 | JXL_ENSURE(max_bitdepth <= level_max_bitdepth); |
903 | | |
904 | 0 | if (!cparams_.ModularPartIsLossless()) { |
905 | 0 | quants_.resize(gi.channel.size(), 1); |
906 | 0 | float quantizer = 0.25f; |
907 | 0 | if (!cparams_.responsive) { |
908 | 0 | JXL_DEBUG_V(1, |
909 | 0 | "Warning: lossy compression without Squeeze " |
910 | 0 | "transform is just color quantization."); |
911 | 0 | quantizer *= 0.1f; |
912 | 0 | } |
913 | 0 | float bitdepth_correction = 1.f; |
914 | 0 | if (cparams_.color_transform != ColorTransform::kXYB) { |
915 | 0 | bitdepth_correction = maxval / 255.f; |
916 | 0 | } |
917 | 0 | std::vector<float> quantizers; |
918 | 0 | for (size_t i = 0; i < 3; i++) { |
919 | 0 | float dist = cparams_.butteraugli_distance; |
920 | 0 | quantizers.push_back(quantizer * dist * bitdepth_correction); |
921 | 0 | } |
922 | 0 | for (size_t i = 0; i < extra_channels.size(); i++) { |
923 | 0 | int ec_bitdepth = |
924 | 0 | metadata.extra_channel_info[i].bit_depth.bits_per_sample; |
925 | 0 | pixel_type ec_maxval = ec_bitdepth < 32 ? (1u << ec_bitdepth) - 1 : 0; |
926 | 0 | bitdepth_correction = ec_maxval / 255.f; |
927 | 0 | float dist = 0; |
928 | 0 | if (i < cparams_.ec_distance.size()) dist = cparams_.ec_distance[i]; |
929 | 0 | if (dist < 0) dist = cparams_.butteraugli_distance; |
930 | 0 | quantizers.push_back(quantizer * dist * bitdepth_correction); |
931 | 0 | } |
932 | 0 | if (cparams_.options.nb_repeats == 0) { |
933 | 0 | return JXL_FAILURE("nb_repeats = 0 not supported with modular lossy!"); |
934 | 0 | } |
935 | 0 | for (uint32_t i = gi.nb_meta_channels; i < gi.channel.size(); i++) { |
936 | 0 | Channel& ch = gi.channel[i]; |
937 | 0 | int shift = ch.hshift + ch.vshift; // number of pixel halvings |
938 | 0 | if (shift > 16) shift = 16; |
939 | 0 | if (shift > 0) shift--; |
940 | 0 | int q; |
941 | | // assuming default Squeeze here |
942 | 0 | int component = |
943 | 0 | (do_color ? 0 : 3) + ((i - gi.nb_meta_channels) % nb_chans); |
944 | | // last 4 channels are final chroma residuals |
945 | 0 | if (nb_chans > 2 && i >= gi.channel.size() - 4 && cparams_.responsive) { |
946 | 0 | component = 1; |
947 | 0 | } |
948 | 0 | if (cparams_.color_transform == ColorTransform::kXYB && component < 3) { |
949 | 0 | q = quantizers[component] * squeeze_quality_factor_xyb * |
950 | 0 | squeeze_xyb_qtable[component][shift]; |
951 | 0 | } else { |
952 | 0 | if (cparams_.colorspace != 0 && component > 0 && component < 3) { |
953 | 0 | q = quantizers[component] * squeeze_quality_factor * |
954 | 0 | squeeze_chroma_qtable[shift]; |
955 | 0 | } else { |
956 | 0 | q = quantizers[component] * squeeze_quality_factor * |
957 | 0 | squeeze_luma_factor * squeeze_luma_qtable[shift]; |
958 | 0 | } |
959 | 0 | } |
960 | 0 | if (q < 1) q = 1; |
961 | 0 | QuantizeChannel(gi.channel[i], q); |
962 | 0 | quants_[i] = q; |
963 | 0 | } |
964 | 0 | } |
965 | | |
966 | | // Fill other groups. |
967 | | // DC |
968 | 0 | for (size_t group_id = 0; group_id < patch_dim.num_dc_groups; group_id++) { |
969 | 0 | const size_t rgx = group_id % patch_dim.xsize_dc_groups; |
970 | 0 | const size_t rgy = group_id / patch_dim.xsize_dc_groups; |
971 | 0 | const Rect rect(rgx * patch_dim.dc_group_dim, rgy * patch_dim.dc_group_dim, |
972 | 0 | patch_dim.dc_group_dim, patch_dim.dc_group_dim); |
973 | 0 | size_t gx = rgx + frame_area_rect.x0() / 2048; |
974 | 0 | size_t gy = rgy + frame_area_rect.y0() / 2048; |
975 | 0 | size_t real_group_id = gy * frame_dim_.xsize_dc_groups + gx; |
976 | | // minShift==3 because (frame_dim.dc_group_dim >> 3) == frame_dim.group_dim |
977 | | // maxShift==1000 is infinity |
978 | 0 | stream_params_.push_back( |
979 | 0 | GroupParams{rect, 3, 1000, ModularStreamId::ModularDC(real_group_id)}); |
980 | 0 | } |
981 | | // AC global -> nothing. |
982 | | // AC |
983 | 0 | for (size_t group_id = 0; group_id < patch_dim.num_groups; group_id++) { |
984 | 0 | const size_t rgx = group_id % patch_dim.xsize_groups; |
985 | 0 | const size_t rgy = group_id / patch_dim.xsize_groups; |
986 | 0 | const Rect mrect(rgx * patch_dim.group_dim, rgy * patch_dim.group_dim, |
987 | 0 | patch_dim.group_dim, patch_dim.group_dim); |
988 | 0 | size_t gx = rgx + frame_area_rect.x0() / (frame_dim_.group_dim); |
989 | 0 | size_t gy = rgy + frame_area_rect.y0() / (frame_dim_.group_dim); |
990 | 0 | size_t real_group_id = gy * frame_dim_.xsize_groups + gx; |
991 | 0 | for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses(); |
992 | 0 | i++) { |
993 | 0 | int maxShift; |
994 | 0 | int minShift; |
995 | 0 | frame_header.passes.GetDownsamplingBracket(i, minShift, maxShift); |
996 | 0 | stream_params_.push_back( |
997 | 0 | GroupParams{mrect, minShift, maxShift, |
998 | 0 | ModularStreamId::ModularAC(real_group_id, i)}); |
999 | 0 | } |
1000 | 0 | } |
1001 | | // if there's only one group, everything ends up in GlobalModular |
1002 | | // in that case, also try RCTs/WP params for the one group |
1003 | 0 | if (stream_params_.size() == 2) { |
1004 | 0 | stream_params_.push_back(GroupParams{Rect(0, 0, xsize, ysize), 0, 1000, |
1005 | 0 | ModularStreamId::Global()}); |
1006 | 0 | } |
1007 | 0 | gi_channel_.resize(stream_images_.size()); |
1008 | |
|
1009 | 0 | const auto process_row = [&](const uint32_t i, |
1010 | 0 | size_t /* thread */) -> Status { |
1011 | 0 | size_t stream = stream_params_[i].id.ID(frame_dim_); |
1012 | 0 | if (stream != 0) { |
1013 | 0 | stream_options_[stream] = stream_options_[0]; |
1014 | 0 | } |
1015 | 0 | JXL_RETURN_IF_ERROR(PrepareStreamParams( |
1016 | 0 | stream_params_[i].rect, cparams_, stream_params_[i].minShift, |
1017 | 0 | stream_params_[i].maxShift, stream_params_[i].id, do_color, groupwise)); |
1018 | 0 | return true; |
1019 | 0 | }; |
1020 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, stream_params_.size(), |
1021 | 0 | ThreadPool::NoInit, process_row, |
1022 | 0 | "ChooseParams")); |
1023 | 0 | { |
1024 | | // Clear out channels that have been copied to groups. |
1025 | 0 | Image& full_image = stream_images_[0]; |
1026 | 0 | size_t c = full_image.nb_meta_channels; |
1027 | 0 | for (; c < full_image.channel.size(); c++) { |
1028 | 0 | Channel& fc = full_image.channel[c]; |
1029 | 0 | if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break; |
1030 | 0 | } |
1031 | 0 | for (; c < full_image.channel.size(); c++) { |
1032 | 0 | full_image.channel[c].plane = ImageI(); |
1033 | 0 | } |
1034 | 0 | } |
1035 | |
|
1036 | 0 | JXL_RETURN_IF_ERROR(ValidateChannelDimensions(gi, stream_options_[0])); |
1037 | 0 | return true; |
1038 | 0 | } |
1039 | | |
1040 | 0 | Status ModularFrameEncoder::ComputeTree(ThreadPool* pool) { |
1041 | 0 | std::vector<ModularMultiplierInfo> multiplier_info; |
1042 | 0 | if (!quants_.empty()) { |
1043 | 0 | for (uint32_t stream_id = 0; stream_id < stream_images_.size(); |
1044 | 0 | stream_id++) { |
1045 | | // skip non-modular stream_ids |
1046 | 0 | if (stream_id > 0 && gi_channel_[stream_id].empty()) continue; |
1047 | 0 | const Image& image = stream_images_[stream_id]; |
1048 | 0 | const ModularOptions& options = stream_options_[stream_id]; |
1049 | 0 | for (uint32_t i = image.nb_meta_channels; i < image.channel.size(); i++) { |
1050 | 0 | if (i >= image.nb_meta_channels && |
1051 | 0 | (image.channel[i].w > options.max_chan_size || |
1052 | 0 | image.channel[i].h > options.max_chan_size)) { |
1053 | 0 | continue; |
1054 | 0 | } |
1055 | 0 | if (stream_id > 0 && gi_channel_[stream_id].empty()) continue; |
1056 | 0 | size_t ch_id = stream_id == 0 |
1057 | 0 | ? i |
1058 | 0 | : gi_channel_[stream_id][i - image.nb_meta_channels]; |
1059 | 0 | uint32_t q = quants_[ch_id]; |
1060 | | // Inform the tree splitting heuristics that each channel in each group |
1061 | | // used this quantization factor. This will produce a tree with the |
1062 | | // given multipliers. |
1063 | 0 | if (multiplier_info.empty() || |
1064 | 0 | multiplier_info.back().range[1][0] != stream_id || |
1065 | 0 | multiplier_info.back().multiplier != q) { |
1066 | 0 | StaticPropRange range; |
1067 | 0 | range[0] = {{i, i + 1}}; |
1068 | 0 | range[1] = {{stream_id, stream_id + 1}}; |
1069 | 0 | multiplier_info.push_back({range, static_cast<uint32_t>(q)}); |
1070 | 0 | } else { |
1071 | | // Previous channel in the same group had the same quantization |
1072 | | // factor. Don't provide two different ranges, as that creates |
1073 | | // unnecessary nodes. |
1074 | 0 | multiplier_info.back().range[0][1] = i + 1; |
1075 | 0 | } |
1076 | 0 | } |
1077 | 0 | } |
1078 | | // Merge group+channel settings that have the same channels and quantization |
1079 | | // factors, to avoid unnecessary nodes. |
1080 | 0 | std::sort(multiplier_info.begin(), multiplier_info.end(), |
1081 | 0 | [](ModularMultiplierInfo a, ModularMultiplierInfo b) { |
1082 | 0 | return std::make_tuple(a.range, a.multiplier) < |
1083 | 0 | std::make_tuple(b.range, b.multiplier); |
1084 | 0 | }); |
1085 | 0 | size_t new_num = 1; |
1086 | 0 | for (size_t i = 1; i < multiplier_info.size(); i++) { |
1087 | 0 | ModularMultiplierInfo& prev = multiplier_info[new_num - 1]; |
1088 | 0 | ModularMultiplierInfo& cur = multiplier_info[i]; |
1089 | 0 | if (prev.range[0] == cur.range[0] && prev.multiplier == cur.multiplier && |
1090 | 0 | prev.range[1][1] == cur.range[1][0]) { |
1091 | 0 | prev.range[1][1] = cur.range[1][1]; |
1092 | 0 | } else { |
1093 | 0 | multiplier_info[new_num++] = multiplier_info[i]; |
1094 | 0 | } |
1095 | 0 | } |
1096 | 0 | multiplier_info.resize(new_num); |
1097 | 0 | } |
1098 | |
|
1099 | 0 | if (!cparams_.custom_fixed_tree.empty()) { |
1100 | 0 | tree_ = cparams_.custom_fixed_tree; |
1101 | 0 | } else if (cparams_.speed_tier < SpeedTier::kFalcon || |
1102 | 0 | !cparams_.modular_mode) { |
1103 | | // Avoid creating a tree with leaves that don't correspond to any pixels. |
1104 | 0 | std::vector<size_t> useful_splits; |
1105 | 0 | useful_splits.reserve(tree_splits_.size()); |
1106 | 0 | for (size_t chunk = 0; chunk < tree_splits_.size() - 1; chunk++) { |
1107 | 0 | bool has_pixels = false; |
1108 | 0 | size_t start = tree_splits_[chunk]; |
1109 | 0 | size_t stop = tree_splits_[chunk + 1]; |
1110 | 0 | for (size_t i = start; i < stop; i++) { |
1111 | 0 | if (!stream_images_[i].empty()) has_pixels = true; |
1112 | 0 | } |
1113 | 0 | if (has_pixels) { |
1114 | 0 | useful_splits.push_back(tree_splits_[chunk]); |
1115 | 0 | } |
1116 | 0 | } |
1117 | | // Don't do anything if modular mode does not have any pixels in this image |
1118 | 0 | if (useful_splits.empty()) return true; |
1119 | 0 | useful_splits.push_back(tree_splits_.back()); |
1120 | |
|
1121 | 0 | std::vector<Tree> trees(useful_splits.size() - 1); |
1122 | 0 | const auto process_chunk = [&](const uint32_t chunk, |
1123 | 0 | size_t /* thread */) -> Status { |
1124 | | // TODO(veluca): parallelize more. |
1125 | 0 | size_t total_pixels = 0; |
1126 | 0 | uint32_t start = useful_splits[chunk]; |
1127 | 0 | uint32_t stop = useful_splits[chunk + 1]; |
1128 | 0 | while (start < stop && stream_images_[start].empty()) ++start; |
1129 | 0 | while (start < stop && stream_images_[stop - 1].empty()) --stop; |
1130 | 0 | if (stream_options_[start].tree_kind != |
1131 | 0 | ModularOptions::TreeKind::kLearn) { |
1132 | 0 | for (size_t i = start; i < stop; i++) { |
1133 | 0 | for (const Channel& ch : stream_images_[i].channel) { |
1134 | 0 | total_pixels += ch.w * ch.h; |
1135 | 0 | } |
1136 | 0 | } |
1137 | 0 | trees[chunk] = PredefinedTree(stream_options_[start].tree_kind, |
1138 | 0 | total_pixels, 8, 0); |
1139 | 0 | return true; |
1140 | 0 | } |
1141 | 0 | TreeSamples tree_samples; |
1142 | 0 | JXL_RETURN_IF_ERROR( |
1143 | 0 | tree_samples.SetPredictor(stream_options_[start].predictor, |
1144 | 0 | stream_options_[start].wp_tree_mode)); |
1145 | 0 | JXL_RETURN_IF_ERROR(tree_samples.SetProperties( |
1146 | 0 | stream_options_[start].splitting_heuristics_properties, |
1147 | 0 | stream_options_[start].wp_tree_mode)); |
1148 | 0 | uint32_t max_c = 0; |
1149 | 0 | std::vector<pixel_type> pixel_samples; |
1150 | 0 | std::vector<pixel_type> diff_samples; |
1151 | 0 | std::vector<uint32_t> group_pixel_count; |
1152 | 0 | std::vector<uint32_t> channel_pixel_count; |
1153 | 0 | for (uint32_t i = start; i < stop; i++) { |
1154 | 0 | max_c = std::max<uint32_t>(stream_images_[i].channel.size(), max_c); |
1155 | 0 | CollectPixelSamples(stream_images_[i], stream_options_[i], i, |
1156 | 0 | group_pixel_count, channel_pixel_count, |
1157 | 0 | pixel_samples, diff_samples); |
1158 | 0 | } |
1159 | 0 | StaticPropRange range; |
1160 | 0 | range[0] = {{0, max_c}}; |
1161 | 0 | range[1] = {{start, stop}}; |
1162 | |
|
1163 | 0 | tree_samples.PreQuantizeProperties( |
1164 | 0 | range, multiplier_info, group_pixel_count, channel_pixel_count, |
1165 | 0 | pixel_samples, diff_samples, |
1166 | 0 | stream_options_[start].max_property_values); |
1167 | 0 | for (size_t i = start; i < stop; i++) { |
1168 | 0 | JXL_RETURN_IF_ERROR( |
1169 | 0 | ModularGenericCompress(stream_images_[i], stream_options_[i], |
1170 | 0 | /*writer=*/nullptr, |
1171 | 0 | /*aux_out=*/nullptr, LayerType::Header, i, |
1172 | 0 | &tree_samples, &total_pixels)); |
1173 | 0 | } |
1174 | | |
1175 | | // TODO(veluca): parallelize more. |
1176 | 0 | JXL_ASSIGN_OR_RETURN( |
1177 | 0 | trees[chunk], |
1178 | 0 | LearnTree(std::move(tree_samples), total_pixels, |
1179 | 0 | stream_options_[start], multiplier_info, range)); |
1180 | 0 | return true; |
1181 | 0 | }; |
1182 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, useful_splits.size() - 1, |
1183 | 0 | ThreadPool::NoInit, process_chunk, |
1184 | 0 | "LearnTrees")); |
1185 | 0 | tree_.clear(); |
1186 | 0 | JXL_RETURN_IF_ERROR( |
1187 | 0 | MergeTrees(trees, useful_splits, 0, useful_splits.size() - 1, &tree_)); |
1188 | 0 | } else { |
1189 | | // Fixed tree. |
1190 | 0 | size_t total_pixels = 0; |
1191 | 0 | int max_bitdepth = 0; |
1192 | 0 | for (const Image& img : stream_images_) { |
1193 | 0 | max_bitdepth = std::max(max_bitdepth, img.bitdepth); |
1194 | 0 | for (const Channel& ch : img.channel) { |
1195 | 0 | total_pixels += ch.w * ch.h; |
1196 | 0 | } |
1197 | 0 | } |
1198 | 0 | if (cparams_.speed_tier <= SpeedTier::kFalcon) { |
1199 | 0 | tree_ = PredefinedTree(ModularOptions::TreeKind::kWPFixedDC, total_pixels, |
1200 | 0 | max_bitdepth, stream_options_[0].max_properties); |
1201 | 0 | } else if (cparams_.speed_tier <= SpeedTier::kThunder) { |
1202 | 0 | tree_ = PredefinedTree(ModularOptions::TreeKind::kGradientFixedDC, |
1203 | 0 | total_pixels, max_bitdepth, |
1204 | 0 | stream_options_[0].max_properties); |
1205 | 0 | } else { |
1206 | 0 | tree_ = {PropertyDecisionNode::Leaf(Predictor::Gradient)}; |
1207 | 0 | } |
1208 | 0 | } |
1209 | 0 | tree_tokens_.resize(1); |
1210 | 0 | tree_tokens_[0].clear(); |
1211 | 0 | Tree decoded_tree; |
1212 | 0 | JXL_RETURN_IF_ERROR(TokenizeTree(tree_, tree_tokens_.data(), &decoded_tree)); |
1213 | 0 | JXL_ENSURE(tree_.size() == decoded_tree.size()); |
1214 | 0 | tree_ = std::move(decoded_tree); |
1215 | | |
1216 | | /* TODO(szabadka) Add text output callback to cparams |
1217 | | if (kPrintTree && WantDebugOutput(aux_out)) { |
1218 | | if (frame_header.dc_level > 0) { |
1219 | | PrintTree(tree_, aux_out->debug_prefix + "/dc_frame_level" + |
1220 | | std::to_string(frame_header.dc_level) + "_tree"); |
1221 | | } else { |
1222 | | PrintTree(tree_, aux_out->debug_prefix + "/global_tree"); |
1223 | | } |
1224 | | } */ |
1225 | 0 | return true; |
1226 | 0 | } |
1227 | | |
1228 | 0 | Status ModularFrameEncoder::ComputeTokens(ThreadPool* pool) { |
1229 | 0 | size_t num_streams = stream_images_.size(); |
1230 | 0 | stream_headers_.resize(num_streams); |
1231 | 0 | tokens_.resize(num_streams); |
1232 | 0 | image_widths_.resize(num_streams); |
1233 | 0 | const auto process_stream = [&](const uint32_t stream_id, |
1234 | 0 | size_t /* thread */) -> Status { |
1235 | 0 | AuxOut my_aux_out; |
1236 | 0 | tokens_[stream_id].clear(); |
1237 | 0 | JXL_RETURN_IF_ERROR(ModularGenericCompress( |
1238 | 0 | stream_images_[stream_id], stream_options_[stream_id], |
1239 | 0 | /*writer=*/nullptr, &my_aux_out, LayerType::Header, stream_id, |
1240 | 0 | /*tree_samples=*/nullptr, |
1241 | 0 | /*total_pixels=*/nullptr, |
1242 | 0 | /*tree=*/&tree_, /*header=*/&stream_headers_[stream_id], |
1243 | 0 | /*tokens=*/&tokens_[stream_id], |
1244 | 0 | /*widths=*/&image_widths_[stream_id])); |
1245 | 0 | return true; |
1246 | 0 | }; |
1247 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, num_streams, ThreadPool::NoInit, |
1248 | 0 | process_stream, "ComputeTokens")); |
1249 | 0 | return true; |
1250 | 0 | } |
1251 | | |
1252 | | Status ModularFrameEncoder::EncodeGlobalInfo(bool streaming_mode, |
1253 | | BitWriter* writer, |
1254 | 0 | AuxOut* aux_out) { |
1255 | 0 | JxlMemoryManager* memory_manager = writer->memory_manager(); |
1256 | 0 | bool skip_rest = false; |
1257 | 0 | JXL_RETURN_IF_ERROR( |
1258 | 0 | writer->WithMaxBits(1, LayerType::ModularTree, aux_out, [&] { |
1259 | | // If we are using brotli, or not using modular mode. |
1260 | 0 | if (tree_tokens_.empty() || tree_tokens_[0].empty()) { |
1261 | 0 | writer->Write(1, 0); |
1262 | 0 | skip_rest = true; |
1263 | 0 | } else { |
1264 | 0 | writer->Write(1, 1); |
1265 | 0 | } |
1266 | 0 | return true; |
1267 | 0 | })); |
1268 | 0 | if (skip_rest) return true; |
1269 | | |
1270 | | // Write tree |
1271 | 0 | HistogramParams params = |
1272 | 0 | HistogramParams::ForModular(cparams_, extra_dc_precision, streaming_mode); |
1273 | 0 | { |
1274 | 0 | EntropyEncodingData tree_code; |
1275 | 0 | std::vector<uint8_t> tree_context_map; |
1276 | 0 | JXL_ASSIGN_OR_RETURN( |
1277 | 0 | size_t cost, |
1278 | 0 | BuildAndEncodeHistograms(memory_manager, params, kNumTreeContexts, |
1279 | 0 | tree_tokens_, &tree_code, &tree_context_map, |
1280 | 0 | writer, LayerType::ModularTree, aux_out)); |
1281 | 0 | (void)cost; |
1282 | 0 | JXL_RETURN_IF_ERROR(WriteTokens(tree_tokens_[0], tree_code, |
1283 | 0 | tree_context_map, 0, writer, |
1284 | 0 | LayerType::ModularTree, aux_out)); |
1285 | 0 | } |
1286 | 0 | params.streaming_mode = streaming_mode; |
1287 | 0 | params.add_missing_symbols = streaming_mode; |
1288 | 0 | params.image_widths = image_widths_; |
1289 | | // Write histograms. |
1290 | 0 | JXL_ASSIGN_OR_RETURN( |
1291 | 0 | size_t cost, |
1292 | 0 | BuildAndEncodeHistograms(memory_manager, params, (tree_.size() + 1) / 2, |
1293 | 0 | tokens_, &code_, &context_map_, writer, |
1294 | 0 | LayerType::ModularGlobal, aux_out)); |
1295 | 0 | (void)cost; |
1296 | 0 | return true; |
1297 | 0 | } |
1298 | | |
1299 | | Status ModularFrameEncoder::EncodeStream(BitWriter* writer, AuxOut* aux_out, |
1300 | | LayerType layer, |
1301 | 0 | const ModularStreamId& stream) { |
1302 | 0 | size_t stream_id = stream.ID(frame_dim_); |
1303 | 0 | if (stream_images_[stream_id].channel.empty()) { |
1304 | 0 | JXL_DEBUG_V(10, "Modular stream %" PRIuS " is empty.", stream_id); |
1305 | 0 | return true; // Image with no channels, header never gets decoded. |
1306 | 0 | } |
1307 | 0 | if (tokens_.empty()) { |
1308 | 0 | JXL_RETURN_IF_ERROR(ModularGenericCompress( |
1309 | 0 | stream_images_[stream_id], stream_options_[stream_id], writer, aux_out, |
1310 | 0 | layer, stream_id)); |
1311 | 0 | } else { |
1312 | 0 | JXL_RETURN_IF_ERROR( |
1313 | 0 | Bundle::Write(stream_headers_[stream_id], writer, layer, aux_out)); |
1314 | 0 | JXL_RETURN_IF_ERROR(WriteTokens(tokens_[stream_id], code_, context_map_, 0, |
1315 | 0 | writer, layer, aux_out)); |
1316 | 0 | } |
1317 | 0 | return true; |
1318 | 0 | } |
1319 | | |
1320 | 0 | void ModularFrameEncoder::ClearStreamData(const ModularStreamId& stream) { |
1321 | 0 | size_t stream_id = stream.ID(frame_dim_); |
1322 | 0 | Image empty_image(stream_images_[stream_id].memory_manager()); |
1323 | 0 | std::swap(stream_images_[stream_id], empty_image); |
1324 | 0 | } |
1325 | | |
1326 | 0 | void ModularFrameEncoder::ClearModularStreamData() { |
1327 | 0 | for (const auto& group : stream_params_) { |
1328 | 0 | ClearStreamData(group.id); |
1329 | 0 | } |
1330 | 0 | stream_params_.clear(); |
1331 | 0 | } |
1332 | | |
1333 | | size_t ModularFrameEncoder::ComputeStreamingAbsoluteAcGroupId( |
1334 | | size_t dc_group_id, size_t ac_group_id, |
1335 | 0 | const FrameDimensions& patch_dim) const { |
1336 | 0 | size_t dc_group_x = dc_group_id % frame_dim_.xsize_dc_groups; |
1337 | 0 | size_t dc_group_y = dc_group_id / frame_dim_.xsize_dc_groups; |
1338 | 0 | size_t ac_group_x = ac_group_id % patch_dim.xsize_groups; |
1339 | 0 | size_t ac_group_y = ac_group_id / patch_dim.xsize_groups; |
1340 | 0 | return (dc_group_x * 8 + ac_group_x) + |
1341 | 0 | (dc_group_y * 8 + ac_group_y) * frame_dim_.xsize_groups; |
1342 | 0 | } |
1343 | | |
1344 | | Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect, |
1345 | | const CompressParams& cparams_, |
1346 | | int minShift, int maxShift, |
1347 | | const ModularStreamId& stream, |
1348 | 0 | bool do_color, bool groupwise) { |
1349 | 0 | size_t stream_id = stream.ID(frame_dim_); |
1350 | 0 | if (stream_id == 0 && frame_dim_.num_groups != 1) { |
1351 | | // If we have multiple groups, then the stream with ID 0 holds the full |
1352 | | // image and we do not want to apply transforms or in general change the |
1353 | | // pixel values. |
1354 | 0 | return true; |
1355 | 0 | } |
1356 | 0 | Image& full_image = stream_images_[0]; |
1357 | 0 | JxlMemoryManager* memory_manager = full_image.memory_manager(); |
1358 | 0 | const size_t xsize = rect.xsize(); |
1359 | 0 | const size_t ysize = rect.ysize(); |
1360 | 0 | Image& gi = stream_images_[stream_id]; |
1361 | 0 | if (stream_id > 0) { |
1362 | 0 | JXL_ASSIGN_OR_RETURN(gi, Image::Create(memory_manager, xsize, ysize, |
1363 | 0 | full_image.bitdepth, 0)); |
1364 | | // start at the first bigger-than-frame_dim.group_dim non-metachannel |
1365 | 0 | size_t c = full_image.nb_meta_channels; |
1366 | 0 | if (!groupwise) { |
1367 | 0 | for (; c < full_image.channel.size(); c++) { |
1368 | 0 | Channel& fc = full_image.channel[c]; |
1369 | 0 | if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break; |
1370 | 0 | } |
1371 | 0 | } |
1372 | 0 | for (; c < full_image.channel.size(); c++) { |
1373 | 0 | Channel& fc = full_image.channel[c]; |
1374 | 0 | int shift = std::min(fc.hshift, fc.vshift); |
1375 | 0 | if (shift > maxShift) continue; |
1376 | 0 | if (shift < minShift) continue; |
1377 | 0 | Rect r(rect.x0() >> fc.hshift, rect.y0() >> fc.vshift, |
1378 | 0 | rect.xsize() >> fc.hshift, rect.ysize() >> fc.vshift, fc.w, fc.h); |
1379 | 0 | if (r.xsize() == 0 || r.ysize() == 0) continue; |
1380 | 0 | gi_channel_[stream_id].push_back(c); |
1381 | 0 | JXL_ASSIGN_OR_RETURN( |
1382 | 0 | Channel gc, Channel::Create(memory_manager, r.xsize(), r.ysize())); |
1383 | 0 | gc.hshift = fc.hshift; |
1384 | 0 | gc.vshift = fc.vshift; |
1385 | 0 | for (size_t y = 0; y < r.ysize(); ++y) { |
1386 | 0 | memcpy(gc.Row(y), r.ConstRow(fc.plane, y), |
1387 | 0 | r.xsize() * sizeof(pixel_type)); |
1388 | 0 | } |
1389 | 0 | gi.channel.emplace_back(std::move(gc)); |
1390 | 0 | } |
1391 | | |
1392 | 0 | if (gi.channel.empty()) return true; |
1393 | | // Do some per-group transforms |
1394 | | |
1395 | | // Local palette transforms |
1396 | | // TODO(veluca): make this work with quantize-after-prediction in lossy |
1397 | | // mode. |
1398 | 0 | if (cparams_.butteraugli_distance == 0.f && !cparams_.lossy_palette && |
1399 | 0 | cparams_.speed_tier < SpeedTier::kCheetah) { |
1400 | 0 | int max_bitdepth = 0, maxval = 0; // don't care about that here |
1401 | 0 | float channel_color_percent = 0; |
1402 | 0 | if (!(cparams_.responsive && cparams_.decoding_speed_tier >= 1)) { |
1403 | 0 | channel_color_percent = cparams_.channel_colors_percent; |
1404 | 0 | } |
1405 | 0 | try_palettes(gi, max_bitdepth, maxval, cparams_, channel_color_percent); |
1406 | 0 | } |
1407 | 0 | } |
1408 | | |
1409 | | // lossless and no specific color transform specified: try Nothing, YCoCg, |
1410 | | // and 17 RCTs |
1411 | 0 | if (cparams_.color_transform == ColorTransform::kNone && |
1412 | 0 | cparams_.IsLossless() && cparams_.colorspace < 0 && |
1413 | 0 | gi.channel.size() - gi.nb_meta_channels >= 3 && |
1414 | 0 | cparams_.responsive == JXL_FALSE && do_color && |
1415 | 0 | cparams_.speed_tier <= SpeedTier::kHare) { |
1416 | 0 | Transform sg(TransformId::kRCT); |
1417 | 0 | sg.begin_c = gi.nb_meta_channels; |
1418 | 0 | size_t nb_rcts_to_try = 0; |
1419 | 0 | switch (cparams_.speed_tier) { |
1420 | 0 | case SpeedTier::kLightning: |
1421 | 0 | case SpeedTier::kThunder: |
1422 | 0 | case SpeedTier::kFalcon: |
1423 | 0 | case SpeedTier::kCheetah: |
1424 | 0 | nb_rcts_to_try = 0; // Just do global YCoCg |
1425 | 0 | break; |
1426 | 0 | case SpeedTier::kHare: |
1427 | 0 | nb_rcts_to_try = 4; |
1428 | 0 | break; |
1429 | 0 | case SpeedTier::kWombat: |
1430 | 0 | nb_rcts_to_try = 5; |
1431 | 0 | break; |
1432 | 0 | case SpeedTier::kSquirrel: |
1433 | 0 | nb_rcts_to_try = 7; |
1434 | 0 | break; |
1435 | 0 | case SpeedTier::kKitten: |
1436 | 0 | nb_rcts_to_try = 9; |
1437 | 0 | break; |
1438 | 0 | case SpeedTier::kTectonicPlate: |
1439 | 0 | case SpeedTier::kGlacier: |
1440 | 0 | case SpeedTier::kTortoise: |
1441 | 0 | nb_rcts_to_try = 19; |
1442 | 0 | break; |
1443 | 0 | } |
1444 | 0 | float best_cost = std::numeric_limits<float>::max(); |
1445 | 0 | size_t best_rct = 0; |
1446 | | // These should be 19 actually different transforms; the remaining ones |
1447 | | // are equivalent to one of these (note that the first two are do-nothing |
1448 | | // and YCoCg) modulo channel reordering (which only matters in the case of |
1449 | | // MA-with-prev-channels-properties) and/or sign (e.g. RmG vs GmR) |
1450 | 0 | for (int i : {0 * 7 + 0, 0 * 7 + 6, 0 * 7 + 5, 1 * 7 + 3, 3 * 7 + 5, |
1451 | 0 | 5 * 7 + 5, 1 * 7 + 5, 2 * 7 + 5, 1 * 7 + 1, 0 * 7 + 4, |
1452 | 0 | 1 * 7 + 2, 2 * 7 + 1, 2 * 7 + 2, 2 * 7 + 3, 4 * 7 + 4, |
1453 | 0 | 4 * 7 + 5, 0 * 7 + 2, 0 * 7 + 1, 0 * 7 + 3}) { |
1454 | 0 | if (nb_rcts_to_try == 0) break; |
1455 | 0 | sg.rct_type = i; |
1456 | 0 | nb_rcts_to_try--; |
1457 | 0 | if (do_transform(gi, sg, weighted::Header())) { |
1458 | 0 | float cost = EstimateCost(gi); |
1459 | 0 | if (cost < best_cost) { |
1460 | 0 | best_rct = i; |
1461 | 0 | best_cost = cost; |
1462 | 0 | } |
1463 | 0 | Transform t = gi.transform.back(); |
1464 | 0 | JXL_RETURN_IF_ERROR(t.Inverse(gi, weighted::Header(), nullptr)); |
1465 | 0 | gi.transform.pop_back(); |
1466 | 0 | } |
1467 | 0 | } |
1468 | | // Apply the best RCT to the image for future encoding. |
1469 | 0 | sg.rct_type = best_rct; |
1470 | 0 | do_transform(gi, sg, weighted::Header()); |
1471 | 0 | } else { |
1472 | | // No need to try anything, just use the default options. |
1473 | 0 | } |
1474 | 0 | size_t nb_wp_modes = 1; |
1475 | 0 | if (cparams_.speed_tier <= SpeedTier::kTortoise) { |
1476 | 0 | nb_wp_modes = 5; |
1477 | 0 | } else if (cparams_.speed_tier <= SpeedTier::kKitten) { |
1478 | 0 | nb_wp_modes = 2; |
1479 | 0 | } |
1480 | 0 | if (nb_wp_modes > 1 && |
1481 | 0 | (stream_options_[stream_id].predictor == Predictor::Weighted || |
1482 | 0 | stream_options_[stream_id].predictor == Predictor::Best || |
1483 | 0 | stream_options_[stream_id].predictor == Predictor::Variable)) { |
1484 | 0 | float best_cost = std::numeric_limits<float>::max(); |
1485 | 0 | stream_options_[stream_id].wp_mode = 0; |
1486 | 0 | for (size_t i = 0; i < nb_wp_modes; i++) { |
1487 | 0 | float cost = EstimateWPCost(gi, i); |
1488 | 0 | if (cost < best_cost) { |
1489 | 0 | best_cost = cost; |
1490 | 0 | stream_options_[stream_id].wp_mode = i; |
1491 | 0 | } |
1492 | 0 | } |
1493 | 0 | } |
1494 | 0 | return true; |
1495 | 0 | } |
1496 | | |
1497 | | constexpr float q_deadzone = 0.62f; |
1498 | | int QuantizeWP(const int32_t* qrow, size_t onerow, size_t c, size_t x, size_t y, |
1499 | | size_t w, weighted::State* wp_state, float value, |
1500 | 0 | float inv_factor) { |
1501 | 0 | float svalue = value * inv_factor; |
1502 | 0 | PredictionResult pred = |
1503 | 0 | PredictNoTreeWP(w, qrow + x, onerow, x, y, Predictor::Weighted, wp_state); |
1504 | 0 | svalue -= pred.guess; |
1505 | 0 | if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0; |
1506 | 0 | int residual = roundf(svalue); |
1507 | 0 | if (residual > 2 || residual < -2) residual = roundf(svalue * 0.5) * 2; |
1508 | 0 | return residual + pred.guess; |
1509 | 0 | } |
1510 | | |
1511 | | int QuantizeGradient(const int32_t* qrow, size_t onerow, size_t c, size_t x, |
1512 | 0 | size_t y, size_t w, float value, float inv_factor) { |
1513 | 0 | float svalue = value * inv_factor; |
1514 | 0 | PredictionResult pred = |
1515 | 0 | PredictNoTreeNoWP(w, qrow + x, onerow, x, y, Predictor::Gradient); |
1516 | 0 | svalue -= pred.guess; |
1517 | 0 | if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0; |
1518 | 0 | int residual = roundf(svalue); |
1519 | 0 | if (residual > 2 || residual < -2) residual = roundf(svalue * 0.5) * 2; |
1520 | 0 | return residual + pred.guess; |
1521 | 0 | } |
1522 | | |
1523 | | Status ModularFrameEncoder::AddVarDCTDC(const FrameHeader& frame_header, |
1524 | | const Image3F& dc, const Rect& r, |
1525 | | size_t group_index, bool nl_dc, |
1526 | | PassesEncoderState* enc_state, |
1527 | 0 | bool jpeg_transcode) { |
1528 | 0 | JxlMemoryManager* memory_manager = dc.memory_manager(); |
1529 | 0 | extra_dc_precision[group_index] = nl_dc ? 1 : 0; |
1530 | 0 | float mul = 1 << extra_dc_precision[group_index]; |
1531 | |
|
1532 | 0 | size_t stream_id = ModularStreamId::VarDCTDC(group_index).ID(frame_dim_); |
1533 | 0 | stream_options_[stream_id].max_chan_size = 0xFFFFFF; |
1534 | 0 | stream_options_[stream_id].predictor = Predictor::Weighted; |
1535 | 0 | stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kWPOnly; |
1536 | 0 | if (cparams_.speed_tier >= SpeedTier::kSquirrel) { |
1537 | 0 | stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kWPFixedDC; |
1538 | 0 | } |
1539 | 0 | if (cparams_.speed_tier < SpeedTier::kSquirrel && !nl_dc) { |
1540 | 0 | stream_options_[stream_id].predictor = |
1541 | 0 | (cparams_.speed_tier < SpeedTier::kKitten ? Predictor::Variable |
1542 | 0 | : Predictor::Best); |
1543 | 0 | stream_options_[stream_id].wp_tree_mode = |
1544 | 0 | ModularOptions::TreeMode::kDefault; |
1545 | 0 | stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn; |
1546 | 0 | } |
1547 | 0 | if (cparams_.decoding_speed_tier >= 1) { |
1548 | 0 | stream_options_[stream_id].tree_kind = |
1549 | 0 | ModularOptions::TreeKind::kGradientFixedDC; |
1550 | 0 | } |
1551 | 0 | stream_options_[stream_id].histogram_params = |
1552 | 0 | stream_options_[0].histogram_params; |
1553 | |
|
1554 | 0 | JXL_ASSIGN_OR_RETURN( |
1555 | 0 | stream_images_[stream_id], |
1556 | 0 | Image::Create(memory_manager, r.xsize(), r.ysize(), 8, 3)); |
1557 | 0 | const ColorCorrelation& color_correlation = enc_state->shared.cmap.base(); |
1558 | 0 | if (nl_dc && stream_options_[stream_id].tree_kind == |
1559 | 0 | ModularOptions::TreeKind::kGradientFixedDC) { |
1560 | 0 | JXL_ENSURE(frame_header.chroma_subsampling.Is444()); |
1561 | 0 | for (size_t c : {1, 0, 2}) { |
1562 | 0 | float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul; |
1563 | 0 | float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul; |
1564 | 0 | float cfl_factor = color_correlation.DCFactors()[c]; |
1565 | 0 | for (size_t y = 0; y < r.ysize(); y++) { |
1566 | 0 | int32_t* quant_row = |
1567 | 0 | stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y); |
1568 | 0 | size_t stride = stream_images_[stream_id] |
1569 | 0 | .channel[c < 2 ? c ^ 1 : c] |
1570 | 0 | .plane.PixelsPerRow(); |
1571 | 0 | const float* row = r.ConstPlaneRow(dc, c, y); |
1572 | 0 | if (c == 1) { |
1573 | 0 | for (size_t x = 0; x < r.xsize(); x++) { |
1574 | 0 | quant_row[x] = QuantizeGradient(quant_row, stride, c, x, y, |
1575 | 0 | r.xsize(), row[x], inv_factor); |
1576 | 0 | } |
1577 | 0 | } else { |
1578 | 0 | int32_t* quant_row_y = |
1579 | 0 | stream_images_[stream_id].channel[0].plane.Row(y); |
1580 | 0 | for (size_t x = 0; x < r.xsize(); x++) { |
1581 | 0 | quant_row[x] = QuantizeGradient( |
1582 | 0 | quant_row, stride, c, x, y, r.xsize(), |
1583 | 0 | row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor); |
1584 | 0 | } |
1585 | 0 | } |
1586 | 0 | } |
1587 | 0 | } |
1588 | 0 | } else if (nl_dc) { |
1589 | 0 | JXL_ENSURE(frame_header.chroma_subsampling.Is444()); |
1590 | 0 | for (size_t c : {1, 0, 2}) { |
1591 | 0 | float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul; |
1592 | 0 | float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul; |
1593 | 0 | float cfl_factor = color_correlation.DCFactors()[c]; |
1594 | 0 | weighted::Header header; |
1595 | 0 | weighted::State wp_state(header, r.xsize(), r.ysize()); |
1596 | 0 | for (size_t y = 0; y < r.ysize(); y++) { |
1597 | 0 | int32_t* quant_row = |
1598 | 0 | stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y); |
1599 | 0 | size_t stride = stream_images_[stream_id] |
1600 | 0 | .channel[c < 2 ? c ^ 1 : c] |
1601 | 0 | .plane.PixelsPerRow(); |
1602 | 0 | const float* row = r.ConstPlaneRow(dc, c, y); |
1603 | 0 | if (c == 1) { |
1604 | 0 | for (size_t x = 0; x < r.xsize(); x++) { |
1605 | 0 | quant_row[x] = QuantizeWP(quant_row, stride, c, x, y, r.xsize(), |
1606 | 0 | &wp_state, row[x], inv_factor); |
1607 | 0 | wp_state.UpdateErrors(quant_row[x], x, y, r.xsize()); |
1608 | 0 | } |
1609 | 0 | } else { |
1610 | 0 | int32_t* quant_row_y = |
1611 | 0 | stream_images_[stream_id].channel[0].plane.Row(y); |
1612 | 0 | for (size_t x = 0; x < r.xsize(); x++) { |
1613 | 0 | quant_row[x] = QuantizeWP( |
1614 | 0 | quant_row, stride, c, x, y, r.xsize(), &wp_state, |
1615 | 0 | row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor); |
1616 | 0 | wp_state.UpdateErrors(quant_row[x], x, y, r.xsize()); |
1617 | 0 | } |
1618 | 0 | } |
1619 | 0 | } |
1620 | 0 | } |
1621 | 0 | } else if (frame_header.chroma_subsampling.Is444()) { |
1622 | 0 | for (size_t c : {1, 0, 2}) { |
1623 | 0 | float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul; |
1624 | 0 | float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul; |
1625 | 0 | float cfl_factor = color_correlation.DCFactors()[c]; |
1626 | 0 | for (size_t y = 0; y < r.ysize(); y++) { |
1627 | 0 | int32_t* quant_row = |
1628 | 0 | stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y); |
1629 | 0 | const float* row = r.ConstPlaneRow(dc, c, y); |
1630 | 0 | if (c == 1) { |
1631 | 0 | for (size_t x = 0; x < r.xsize(); x++) { |
1632 | 0 | quant_row[x] = roundf(row[x] * inv_factor); |
1633 | 0 | } |
1634 | 0 | } else { |
1635 | 0 | int32_t* quant_row_y = |
1636 | 0 | stream_images_[stream_id].channel[0].plane.Row(y); |
1637 | 0 | for (size_t x = 0; x < r.xsize(); x++) { |
1638 | 0 | quant_row[x] = |
1639 | 0 | roundf((row[x] - quant_row_y[x] * (y_factor * cfl_factor)) * |
1640 | 0 | inv_factor); |
1641 | 0 | } |
1642 | 0 | } |
1643 | 0 | } |
1644 | 0 | } |
1645 | 0 | } else { |
1646 | 0 | for (size_t c : {1, 0, 2}) { |
1647 | 0 | Rect rect(r.x0() >> frame_header.chroma_subsampling.HShift(c), |
1648 | 0 | r.y0() >> frame_header.chroma_subsampling.VShift(c), |
1649 | 0 | r.xsize() >> frame_header.chroma_subsampling.HShift(c), |
1650 | 0 | r.ysize() >> frame_header.chroma_subsampling.VShift(c)); |
1651 | 0 | float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul; |
1652 | 0 | size_t ys = rect.ysize(); |
1653 | 0 | size_t xs = rect.xsize(); |
1654 | 0 | Channel& ch = stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c]; |
1655 | 0 | ch.w = xs; |
1656 | 0 | ch.h = ys; |
1657 | 0 | JXL_RETURN_IF_ERROR(ch.shrink()); |
1658 | 0 | for (size_t y = 0; y < ys; y++) { |
1659 | 0 | int32_t* quant_row = ch.plane.Row(y); |
1660 | 0 | const float* row = rect.ConstPlaneRow(dc, c, y); |
1661 | 0 | for (size_t x = 0; x < xs; x++) { |
1662 | 0 | quant_row[x] = roundf(row[x] * inv_factor); |
1663 | 0 | } |
1664 | 0 | } |
1665 | 0 | } |
1666 | 0 | } |
1667 | | |
1668 | 0 | DequantDC(r, &enc_state->shared.dc_storage, &enc_state->shared.quant_dc, |
1669 | 0 | stream_images_[stream_id], enc_state->shared.quantizer.MulDC(), |
1670 | 0 | 1.0 / mul, color_correlation.DCFactors(), |
1671 | 0 | frame_header.chroma_subsampling, enc_state->shared.block_ctx_map); |
1672 | 0 | return true; |
1673 | 0 | } |
1674 | | |
1675 | | Status ModularFrameEncoder::AddACMetadata(const Rect& r, size_t group_index, |
1676 | | bool jpeg_transcode, |
1677 | 0 | PassesEncoderState* enc_state) { |
1678 | 0 | JxlMemoryManager* memory_manager = enc_state->memory_manager(); |
1679 | 0 | size_t stream_id = ModularStreamId::ACMetadata(group_index).ID(frame_dim_); |
1680 | 0 | stream_options_[stream_id].max_chan_size = 0xFFFFFF; |
1681 | 0 | if (stream_options_[stream_id].predictor != Predictor::Weighted) { |
1682 | 0 | stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kNoWP; |
1683 | 0 | } |
1684 | 0 | if (jpeg_transcode) { |
1685 | 0 | stream_options_[stream_id].tree_kind = |
1686 | 0 | ModularOptions::TreeKind::kJpegTranscodeACMeta; |
1687 | 0 | } else if (cparams_.speed_tier >= SpeedTier::kFalcon) { |
1688 | 0 | stream_options_[stream_id].tree_kind = |
1689 | 0 | ModularOptions::TreeKind::kFalconACMeta; |
1690 | 0 | } else if (cparams_.speed_tier > SpeedTier::kKitten) { |
1691 | 0 | stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kACMeta; |
1692 | 0 | } |
1693 | | // If we are using a non-constant CfL field, and are in a slow enough mode, |
1694 | | // re-enable tree computation for it. |
1695 | 0 | if (cparams_.speed_tier < SpeedTier::kSquirrel && |
1696 | 0 | cparams_.force_cfl_jpeg_recompression) { |
1697 | 0 | stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn; |
1698 | 0 | } |
1699 | 0 | stream_options_[stream_id].histogram_params = |
1700 | 0 | stream_options_[0].histogram_params; |
1701 | | // YToX, YToB, ACS + QF, EPF |
1702 | 0 | Image& image = stream_images_[stream_id]; |
1703 | 0 | JXL_ASSIGN_OR_RETURN( |
1704 | 0 | image, Image::Create(memory_manager, r.xsize(), r.ysize(), 8, 4)); |
1705 | 0 | static_assert(kColorTileDimInBlocks == 8, "Color tile size changed"); |
1706 | 0 | Rect cr(r.x0() >> 3, r.y0() >> 3, (r.xsize() + 7) >> 3, (r.ysize() + 7) >> 3); |
1707 | 0 | JXL_ASSIGN_OR_RETURN( |
1708 | 0 | image.channel[0], |
1709 | 0 | Channel::Create(memory_manager, cr.xsize(), cr.ysize(), 3, 3)); |
1710 | 0 | JXL_ASSIGN_OR_RETURN( |
1711 | 0 | image.channel[1], |
1712 | 0 | Channel::Create(memory_manager, cr.xsize(), cr.ysize(), 3, 3)); |
1713 | 0 | JXL_ASSIGN_OR_RETURN( |
1714 | 0 | image.channel[2], |
1715 | 0 | Channel::Create(memory_manager, r.xsize() * r.ysize(), 2, 0, 0)); |
1716 | 0 | JXL_RETURN_IF_ERROR(ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytox_map, |
1717 | 0 | Rect(image.channel[0].plane), |
1718 | 0 | &image.channel[0].plane)); |
1719 | 0 | JXL_RETURN_IF_ERROR(ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytob_map, |
1720 | 0 | Rect(image.channel[1].plane), |
1721 | 0 | &image.channel[1].plane)); |
1722 | 0 | size_t num = 0; |
1723 | 0 | for (size_t y = 0; y < r.ysize(); y++) { |
1724 | 0 | AcStrategyRow row_acs = enc_state->shared.ac_strategy.ConstRow(r, y); |
1725 | 0 | const int32_t* row_qf = r.ConstRow(enc_state->shared.raw_quant_field, y); |
1726 | 0 | const uint8_t* row_epf = r.ConstRow(enc_state->shared.epf_sharpness, y); |
1727 | 0 | int32_t* out_acs = image.channel[2].plane.Row(0); |
1728 | 0 | int32_t* out_qf = image.channel[2].plane.Row(1); |
1729 | 0 | int32_t* row_out_epf = image.channel[3].plane.Row(y); |
1730 | 0 | for (size_t x = 0; x < r.xsize(); x++) { |
1731 | 0 | row_out_epf[x] = row_epf[x]; |
1732 | 0 | if (!row_acs[x].IsFirstBlock()) continue; |
1733 | 0 | out_acs[num] = row_acs[x].RawStrategy(); |
1734 | 0 | out_qf[num] = row_qf[x] - 1; |
1735 | 0 | num++; |
1736 | 0 | } |
1737 | 0 | } |
1738 | 0 | image.channel[2].w = num; |
1739 | 0 | ac_metadata_size[group_index] = num; |
1740 | 0 | return true; |
1741 | 0 | } |
1742 | | |
1743 | | Status ModularFrameEncoder::EncodeQuantTable( |
1744 | | JxlMemoryManager* memory_manager, size_t size_x, size_t size_y, |
1745 | | BitWriter* writer, const QuantEncoding& encoding, size_t idx, |
1746 | 0 | ModularFrameEncoder* modular_frame_encoder) { |
1747 | 0 | JXL_ENSURE(encoding.qraw.qtable); |
1748 | 0 | JXL_ENSURE(size_x * size_y * 3 == encoding.qraw.qtable->size()); |
1749 | 0 | JXL_ENSURE(idx < kNumQuantTables); |
1750 | 0 | int* qtable = encoding.qraw.qtable->data(); |
1751 | 0 | JXL_RETURN_IF_ERROR(F16Coder::Write(encoding.qraw.qtable_den, writer)); |
1752 | 0 | if (modular_frame_encoder) { |
1753 | 0 | JXL_ASSIGN_OR_RETURN(ModularStreamId qt, ModularStreamId::QuantTable(idx)); |
1754 | 0 | JXL_RETURN_IF_ERROR(modular_frame_encoder->EncodeStream( |
1755 | 0 | writer, nullptr, LayerType::Header, qt)); |
1756 | 0 | return true; |
1757 | 0 | } |
1758 | 0 | JXL_ASSIGN_OR_RETURN(Image image, |
1759 | 0 | Image::Create(memory_manager, size_x, size_y, 8, 3)); |
1760 | 0 | for (size_t c = 0; c < 3; c++) { |
1761 | 0 | for (size_t y = 0; y < size_y; y++) { |
1762 | 0 | int32_t* JXL_RESTRICT row = image.channel[c].Row(y); |
1763 | 0 | for (size_t x = 0; x < size_x; x++) { |
1764 | 0 | row[x] = qtable[c * size_x * size_y + y * size_x + x]; |
1765 | 0 | } |
1766 | 0 | } |
1767 | 0 | } |
1768 | 0 | ModularOptions cfopts; |
1769 | 0 | JXL_RETURN_IF_ERROR(ModularGenericCompress(image, cfopts, writer)); |
1770 | 0 | return true; |
1771 | 0 | } |
1772 | | |
1773 | | Status ModularFrameEncoder::AddQuantTable(size_t size_x, size_t size_y, |
1774 | | const QuantEncoding& encoding, |
1775 | 0 | size_t idx) { |
1776 | 0 | JXL_ENSURE(idx < kNumQuantTables); |
1777 | 0 | JXL_ASSIGN_OR_RETURN(ModularStreamId qt, ModularStreamId::QuantTable(idx)); |
1778 | 0 | size_t stream_id = qt.ID(frame_dim_); |
1779 | 0 | JXL_ENSURE(encoding.qraw.qtable); |
1780 | 0 | JXL_ENSURE(size_x * size_y * 3 == encoding.qraw.qtable->size()); |
1781 | 0 | int* qtable = encoding.qraw.qtable->data(); |
1782 | 0 | Image& image = stream_images_[stream_id]; |
1783 | 0 | JxlMemoryManager* memory_manager = image.memory_manager(); |
1784 | 0 | JXL_ASSIGN_OR_RETURN(image, |
1785 | 0 | Image::Create(memory_manager, size_x, size_y, 8, 3)); |
1786 | 0 | for (size_t c = 0; c < 3; c++) { |
1787 | 0 | for (size_t y = 0; y < size_y; y++) { |
1788 | 0 | int32_t* JXL_RESTRICT row = image.channel[c].Row(y); |
1789 | 0 | for (size_t x = 0; x < size_x; x++) { |
1790 | 0 | row[x] = qtable[c * size_x * size_y + y * size_x + x]; |
1791 | 0 | } |
1792 | 0 | } |
1793 | 0 | } |
1794 | 0 | return true; |
1795 | 0 | } |
1796 | | } // namespace jxl |