/src/libjxl/third_party/skcms/skcms.cc
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2018 Google Inc. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license that can be |
5 | | * found in the LICENSE file. |
6 | | */ |
7 | | |
8 | | #include "skcms.h" // NO_G3_REWRITE |
9 | | #include "src/skcms_internals.h" // NO_G3_REWRITE |
10 | | #include "src/skcms_Transform.h" // NO_G3_REWRITE |
11 | | #include <assert.h> |
12 | | #include <float.h> |
13 | | #include <limits.h> |
14 | | #include <stdlib.h> |
15 | | #include <string.h> |
16 | | |
17 | | #if defined(__ARM_NEON) |
18 | | #include <arm_neon.h> |
19 | | #elif defined(__SSE__) |
20 | | #include <immintrin.h> |
21 | | |
22 | | #if defined(__clang__) |
23 | | // That #include <immintrin.h> is usually enough, but Clang's headers |
24 | | // "helpfully" skip including the whole kitchen sink when _MSC_VER is |
25 | | // defined, because lots of programs on Windows would include that and |
26 | | // it'd be a lot slower. But we want all those headers included so we |
27 | | // can use their features after runtime checks later. |
28 | | #include <smmintrin.h> |
29 | | #include <avxintrin.h> |
30 | | #include <avx2intrin.h> |
31 | | #include <avx512fintrin.h> |
32 | | #include <avx512dqintrin.h> |
33 | | #endif |
34 | | #endif |
35 | | |
36 | | using namespace skcms_private; |
37 | | |
38 | | static bool runtime_cpu_detection = true; |
39 | 0 | void skcms_DisableRuntimeCPUDetection() { |
40 | 0 | runtime_cpu_detection = false; |
41 | 0 | } |
42 | | |
43 | 0 | static float log2f_(float x) { |
44 | | // The first approximation of log2(x) is its exponent 'e', minus 127. |
45 | 0 | int32_t bits; |
46 | 0 | memcpy(&bits, &x, sizeof(bits)); |
47 | |
|
48 | 0 | float e = (float)bits * (1.0f / (1<<23)); |
49 | | |
50 | | // If we use the mantissa too we can refine the error signficantly. |
51 | 0 | int32_t m_bits = (bits & 0x007fffff) | 0x3f000000; |
52 | 0 | float m; |
53 | 0 | memcpy(&m, &m_bits, sizeof(m)); |
54 | |
|
55 | 0 | return (e - 124.225514990f |
56 | 0 | - 1.498030302f*m |
57 | 0 | - 1.725879990f/(0.3520887068f + m)); |
58 | 0 | } |
59 | 0 | static float logf_(float x) { |
60 | 0 | const float ln2 = 0.69314718f; |
61 | 0 | return ln2*log2f_(x); |
62 | 0 | } |
63 | | |
64 | 0 | static float exp2f_(float x) { |
65 | 0 | if (x > 128.0f) { |
66 | 0 | return INFINITY_; |
67 | 0 | } else if (x < -127.0f) { |
68 | 0 | return 0.0f; |
69 | 0 | } |
70 | 0 | float fract = x - floorf_(x); |
71 | |
|
72 | 0 | float fbits = (1.0f * (1<<23)) * (x + 121.274057500f |
73 | 0 | - 1.490129070f*fract |
74 | 0 | + 27.728023300f/(4.84252568f - fract)); |
75 | | |
76 | | // Before we cast fbits to int32_t, check for out of range values to pacify UBSAN. |
77 | | // INT_MAX is not exactly representable as a float, so exclude it as effectively infinite. |
78 | | // Negative values are effectively underflow - we'll end up returning a (different) negative |
79 | | // value, which makes no sense. So clamp to zero. |
80 | 0 | if (fbits >= (float)INT_MAX) { |
81 | 0 | return INFINITY_; |
82 | 0 | } else if (fbits < 0) { |
83 | 0 | return 0; |
84 | 0 | } |
85 | | |
86 | 0 | int32_t bits = (int32_t)fbits; |
87 | 0 | memcpy(&x, &bits, sizeof(x)); |
88 | 0 | return x; |
89 | 0 | } |
90 | | |
91 | | // Not static, as it's used by some test tools. |
92 | 511k | float powf_(float x, float y) { |
93 | 511k | assert (x >= 0); |
94 | 511k | return (x == 0) || (x == 1) ? x |
95 | 511k | : exp2f_(log2f_(x) * y); |
96 | 511k | } |
97 | | |
98 | 0 | static float expf_(float x) { |
99 | 0 | const float log2_e = 1.4426950408889634074f; |
100 | 0 | return exp2f_(log2_e * x); |
101 | 0 | } |
102 | | |
103 | 0 | static float fmaxf_(float x, float y) { return x > y ? x : y; } |
104 | 0 | static float fminf_(float x, float y) { return x < y ? x : y; } |
105 | | |
106 | 1.26M | static bool isfinitef_(float x) { return 0 == x*0; } |
107 | | |
108 | 0 | static float minus_1_ulp(float x) { |
109 | 0 | int32_t bits; |
110 | 0 | memcpy(&bits, &x, sizeof(bits)); |
111 | 0 | bits = bits - 1; |
112 | 0 | memcpy(&x, &bits, sizeof(bits)); |
113 | 0 | return x; |
114 | 0 | } |
115 | | |
116 | | // Most transfer functions we work with are sRGBish. |
117 | | // For exotic HDR transfer functions, we encode them using a tf.g that makes no sense, |
118 | | // and repurpose the other fields to hold the parameters of the HDR functions. |
119 | | struct TF_PQish { float A,B,C,D,E,F; }; |
120 | | struct TF_HLGish { float R,G,a,b,c,K_minus_1; }; |
121 | | // We didn't originally support a scale factor K for HLG, and instead just stored 0 in |
122 | | // the unused `f` field of skcms_TransferFunction for HLGish and HLGInvish transfer functions. |
123 | | // By storing f=K-1, those old unusued f=0 values now mean K=1, a noop scale factor. |
124 | | |
125 | 0 | static float TFKind_marker(skcms_TFType kind) { |
126 | | // We'd use different NaNs, but those aren't guaranteed to be preserved by WASM. |
127 | 0 | return -(float)kind; |
128 | 0 | } |
129 | | |
130 | | static skcms_TFType classify(const skcms_TransferFunction& tf, TF_PQish* pq = nullptr |
131 | 711k | , TF_HLGish* hlg = nullptr) { |
132 | 711k | if (tf.g < 0) { |
133 | | // Negative "g" is mapped to enum values; large negative are for sure invalid. |
134 | 0 | if (tf.g < -128) { |
135 | 0 | return skcms_TFType_Invalid; |
136 | 0 | } |
137 | 0 | int enum_g = -static_cast<int>(tf.g); |
138 | | // Non-whole "g" values are invalid as well. |
139 | 0 | if (static_cast<float>(-enum_g) != tf.g) { |
140 | 0 | return skcms_TFType_Invalid; |
141 | 0 | } |
142 | | // TODO: soundness checks for PQ/HLG like we do for sRGBish? |
143 | 0 | switch (enum_g) { |
144 | 0 | case skcms_TFType_PQish: |
145 | 0 | if (pq) { |
146 | 0 | memcpy(pq , &tf.a, sizeof(*pq )); |
147 | 0 | } |
148 | 0 | return skcms_TFType_PQish; |
149 | 0 | case skcms_TFType_HLGish: |
150 | 0 | if (hlg) { |
151 | 0 | memcpy(hlg, &tf.a, sizeof(*hlg)); |
152 | 0 | } |
153 | 0 | return skcms_TFType_HLGish; |
154 | 0 | case skcms_TFType_HLGinvish: |
155 | 0 | if (hlg) { |
156 | 0 | memcpy(hlg, &tf.a, sizeof(*hlg)); |
157 | 0 | } |
158 | 0 | return skcms_TFType_HLGinvish; |
159 | 0 | } |
160 | 0 | return skcms_TFType_Invalid; |
161 | 0 | } |
162 | | |
163 | | // Basic soundness checks for sRGBish transfer functions. |
164 | 711k | if (isfinitef_(tf.a + tf.b + tf.c + tf.d + tf.e + tf.f + tf.g) |
165 | | // a,c,d,g should be non-negative to make any sense. |
166 | 711k | && tf.a >= 0 |
167 | 711k | && tf.c >= 0 |
168 | 711k | && tf.d >= 0 |
169 | 711k | && tf.g >= 0 |
170 | | // Raising a negative value to a fractional tf->g produces complex numbers. |
171 | 711k | && tf.a * tf.d + tf.b >= 0) { |
172 | 711k | return skcms_TFType_sRGBish; |
173 | 711k | } |
174 | | |
175 | 0 | return skcms_TFType_Invalid; |
176 | 711k | } |
177 | | |
178 | 0 | skcms_TFType skcms_TransferFunction_getType(const skcms_TransferFunction* tf) { |
179 | 0 | return classify(*tf); |
180 | 0 | } |
181 | 97.0k | bool skcms_TransferFunction_isSRGBish(const skcms_TransferFunction* tf) { |
182 | 97.0k | return classify(*tf) == skcms_TFType_sRGBish; |
183 | 97.0k | } |
184 | 0 | bool skcms_TransferFunction_isPQish(const skcms_TransferFunction* tf) { |
185 | 0 | return classify(*tf) == skcms_TFType_PQish; |
186 | 0 | } |
187 | 0 | bool skcms_TransferFunction_isHLGish(const skcms_TransferFunction* tf) { |
188 | 0 | return classify(*tf) == skcms_TFType_HLGish; |
189 | 0 | } |
190 | | |
191 | | bool skcms_TransferFunction_makePQish(skcms_TransferFunction* tf, |
192 | | float A, float B, float C, |
193 | 0 | float D, float E, float F) { |
194 | 0 | *tf = { TFKind_marker(skcms_TFType_PQish), A,B,C,D,E,F }; |
195 | 0 | assert(skcms_TransferFunction_isPQish(tf)); |
196 | 0 | return true; |
197 | 0 | } |
198 | | |
199 | | bool skcms_TransferFunction_makeScaledHLGish(skcms_TransferFunction* tf, |
200 | | float K, float R, float G, |
201 | 0 | float a, float b, float c) { |
202 | 0 | *tf = { TFKind_marker(skcms_TFType_HLGish), R,G, a,b,c, K-1.0f }; |
203 | 0 | assert(skcms_TransferFunction_isHLGish(tf)); |
204 | 0 | return true; |
205 | 0 | } |
206 | | |
207 | 127k | float skcms_TransferFunction_eval(const skcms_TransferFunction* tf, float x) { |
208 | 127k | float sign = x < 0 ? -1.0f : 1.0f; |
209 | 127k | x *= sign; |
210 | | |
211 | 127k | TF_PQish pq; |
212 | 127k | TF_HLGish hlg; |
213 | 127k | switch (classify(*tf, &pq, &hlg)) { |
214 | 0 | case skcms_TFType_Invalid: break; |
215 | | |
216 | 0 | case skcms_TFType_HLGish: { |
217 | 0 | const float K = hlg.K_minus_1 + 1.0f; |
218 | 0 | return K * sign * (x*hlg.R <= 1 ? powf_(x*hlg.R, hlg.G) |
219 | 0 | : expf_((x-hlg.c)*hlg.a) + hlg.b); |
220 | 0 | } |
221 | | |
222 | | // skcms_TransferFunction_invert() inverts R, G, and a for HLGinvish so this math is fast. |
223 | 0 | case skcms_TFType_HLGinvish: { |
224 | 0 | const float K = hlg.K_minus_1 + 1.0f; |
225 | 0 | x /= K; |
226 | 0 | return sign * (x <= 1 ? hlg.R * powf_(x, hlg.G) |
227 | 0 | : hlg.a * logf_(x - hlg.b) + hlg.c); |
228 | 0 | } |
229 | | |
230 | 127k | case skcms_TFType_sRGBish: |
231 | 127k | return sign * (x < tf->d ? tf->c * x + tf->f |
232 | 127k | : powf_(tf->a * x + tf->b, tf->g) + tf->e); |
233 | | |
234 | 0 | case skcms_TFType_PQish: return sign * powf_(fmaxf_(pq.A + pq.B * powf_(x, pq.C), 0) |
235 | 0 | / (pq.D + pq.E * powf_(x, pq.C)), |
236 | 0 | pq.F); |
237 | 127k | } |
238 | 0 | return 0; |
239 | 127k | } |
240 | | |
241 | | |
242 | 0 | static float eval_curve(const skcms_Curve* curve, float x) { |
243 | 0 | if (curve->table_entries == 0) { |
244 | 0 | return skcms_TransferFunction_eval(&curve->parametric, x); |
245 | 0 | } |
246 | | |
247 | 0 | float ix = fmaxf_(0, fminf_(x, 1)) * static_cast<float>(curve->table_entries - 1); |
248 | 0 | int lo = (int) ix , |
249 | 0 | hi = (int)(float)minus_1_ulp(ix + 1.0f); |
250 | 0 | float t = ix - (float)lo; |
251 | |
|
252 | 0 | float l, h; |
253 | 0 | if (curve->table_8) { |
254 | 0 | l = curve->table_8[lo] * (1/255.0f); |
255 | 0 | h = curve->table_8[hi] * (1/255.0f); |
256 | 0 | } else { |
257 | 0 | uint16_t be_l, be_h; |
258 | 0 | memcpy(&be_l, curve->table_16 + 2*lo, 2); |
259 | 0 | memcpy(&be_h, curve->table_16 + 2*hi, 2); |
260 | 0 | uint16_t le_l = ((be_l << 8) | (be_l >> 8)) & 0xffff; |
261 | 0 | uint16_t le_h = ((be_h << 8) | (be_h >> 8)) & 0xffff; |
262 | 0 | l = le_l * (1/65535.0f); |
263 | 0 | h = le_h * (1/65535.0f); |
264 | 0 | } |
265 | 0 | return l + (h-l)*t; |
266 | 0 | } |
267 | | |
268 | 0 | float skcms_MaxRoundtripError(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) { |
269 | 0 | uint32_t N = curve->table_entries > 256 ? curve->table_entries : 256; |
270 | 0 | const float dx = 1.0f / static_cast<float>(N - 1); |
271 | 0 | float err = 0; |
272 | 0 | for (uint32_t i = 0; i < N; i++) { |
273 | 0 | float x = static_cast<float>(i) * dx, |
274 | 0 | y = eval_curve(curve, x); |
275 | 0 | err = fmaxf_(err, fabsf_(x - skcms_TransferFunction_eval(inv_tf, y))); |
276 | 0 | } |
277 | 0 | return err; |
278 | 0 | } |
279 | | |
280 | 0 | bool skcms_AreApproximateInverses(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) { |
281 | 0 | return skcms_MaxRoundtripError(curve, inv_tf) < (1/512.0f); |
282 | 0 | } |
283 | | |
284 | | // Additional ICC signature values that are only used internally |
285 | | enum { |
286 | | // File signature |
287 | | skcms_Signature_acsp = 0x61637370, |
288 | | |
289 | | // Tag signatures |
290 | | skcms_Signature_rTRC = 0x72545243, |
291 | | skcms_Signature_gTRC = 0x67545243, |
292 | | skcms_Signature_bTRC = 0x62545243, |
293 | | skcms_Signature_kTRC = 0x6B545243, |
294 | | |
295 | | skcms_Signature_rXYZ = 0x7258595A, |
296 | | skcms_Signature_gXYZ = 0x6758595A, |
297 | | skcms_Signature_bXYZ = 0x6258595A, |
298 | | |
299 | | skcms_Signature_A2B0 = 0x41324230, |
300 | | skcms_Signature_B2A0 = 0x42324130, |
301 | | |
302 | | skcms_Signature_CHAD = 0x63686164, |
303 | | skcms_Signature_WTPT = 0x77747074, |
304 | | |
305 | | skcms_Signature_CICP = 0x63696370, |
306 | | |
307 | | // Type signatures |
308 | | skcms_Signature_curv = 0x63757276, |
309 | | skcms_Signature_mft1 = 0x6D667431, |
310 | | skcms_Signature_mft2 = 0x6D667432, |
311 | | skcms_Signature_mAB = 0x6D414220, |
312 | | skcms_Signature_mBA = 0x6D424120, |
313 | | skcms_Signature_para = 0x70617261, |
314 | | skcms_Signature_sf32 = 0x73663332, |
315 | | // XYZ is also a PCS signature, so it's defined in skcms.h |
316 | | // skcms_Signature_XYZ = 0x58595A20, |
317 | | }; |
318 | | |
319 | 97.0k | static uint16_t read_big_u16(const uint8_t* ptr) { |
320 | 97.0k | uint16_t be; |
321 | 97.0k | memcpy(&be, ptr, sizeof(be)); |
322 | | #if defined(_MSC_VER) |
323 | | return _byteswap_ushort(be); |
324 | | #else |
325 | 97.0k | return __builtin_bswap16(be); |
326 | 97.0k | #endif |
327 | 97.0k | } |
328 | | |
329 | 5.52M | static uint32_t read_big_u32(const uint8_t* ptr) { |
330 | 5.52M | uint32_t be; |
331 | 5.52M | memcpy(&be, ptr, sizeof(be)); |
332 | | #if defined(_MSC_VER) |
333 | | return _byteswap_ulong(be); |
334 | | #else |
335 | 5.52M | return __builtin_bswap32(be); |
336 | 5.52M | #endif |
337 | 5.52M | } |
338 | | |
339 | 860k | static int32_t read_big_i32(const uint8_t* ptr) { |
340 | 860k | return (int32_t)read_big_u32(ptr); |
341 | 860k | } |
342 | | |
343 | 860k | static float read_big_fixed(const uint8_t* ptr) { |
344 | 860k | return static_cast<float>(read_big_i32(ptr)) * (1.0f / 65536.0f); |
345 | 860k | } |
346 | | |
347 | | // Maps to an in-memory profile so that fields line up to the locations specified |
348 | | // in ICC.1:2010, section 7.2 |
349 | | typedef struct { |
350 | | uint8_t size [ 4]; |
351 | | uint8_t cmm_type [ 4]; |
352 | | uint8_t version [ 4]; |
353 | | uint8_t profile_class [ 4]; |
354 | | uint8_t data_color_space [ 4]; |
355 | | uint8_t pcs [ 4]; |
356 | | uint8_t creation_date_time [12]; |
357 | | uint8_t signature [ 4]; |
358 | | uint8_t platform [ 4]; |
359 | | uint8_t flags [ 4]; |
360 | | uint8_t device_manufacturer [ 4]; |
361 | | uint8_t device_model [ 4]; |
362 | | uint8_t device_attributes [ 8]; |
363 | | uint8_t rendering_intent [ 4]; |
364 | | uint8_t illuminant_X [ 4]; |
365 | | uint8_t illuminant_Y [ 4]; |
366 | | uint8_t illuminant_Z [ 4]; |
367 | | uint8_t creator [ 4]; |
368 | | uint8_t profile_id [16]; |
369 | | uint8_t reserved [28]; |
370 | | uint8_t tag_count [ 4]; // Technically not part of header, but required |
371 | | } header_Layout; |
372 | | |
373 | | typedef struct { |
374 | | uint8_t signature [4]; |
375 | | uint8_t offset [4]; |
376 | | uint8_t size [4]; |
377 | | } tag_Layout; |
378 | | |
379 | 521k | static const tag_Layout* get_tag_table(const skcms_ICCProfile* profile) { |
380 | 521k | return (const tag_Layout*)(profile->buffer + SAFE_SIZEOF(header_Layout)); |
381 | 521k | } |
382 | | |
383 | | // s15Fixed16ArrayType is technically variable sized, holding N values. However, the only valid |
384 | | // use of the type is for the CHAD tag that stores exactly nine values. |
385 | | typedef struct { |
386 | | uint8_t type [ 4]; |
387 | | uint8_t reserved [ 4]; |
388 | | uint8_t values [36]; |
389 | | } sf32_Layout; |
390 | | |
391 | 8.60k | bool skcms_GetCHAD(const skcms_ICCProfile* profile, skcms_Matrix3x3* m) { |
392 | 8.60k | skcms_ICCTag tag; |
393 | 8.60k | if (!skcms_GetTagBySignature(profile, skcms_Signature_CHAD, &tag)) { |
394 | 8.60k | return false; |
395 | 8.60k | } |
396 | | |
397 | 0 | if (tag.type != skcms_Signature_sf32 || tag.size < SAFE_SIZEOF(sf32_Layout)) { |
398 | 0 | return false; |
399 | 0 | } |
400 | | |
401 | 0 | const sf32_Layout* sf32Tag = (const sf32_Layout*)tag.buf; |
402 | 0 | const uint8_t* values = sf32Tag->values; |
403 | 0 | for (int r = 0; r < 3; ++r) |
404 | 0 | for (int c = 0; c < 3; ++c, values += 4) { |
405 | 0 | m->vals[r][c] = read_big_fixed(values); |
406 | 0 | } |
407 | 0 | return true; |
408 | 0 | } |
409 | | |
410 | | // XYZType is technically variable sized, holding N XYZ triples. However, the only valid uses of |
411 | | // the type are for tags/data that store exactly one triple. |
412 | | typedef struct { |
413 | | uint8_t type [4]; |
414 | | uint8_t reserved [4]; |
415 | | uint8_t X [4]; |
416 | | uint8_t Y [4]; |
417 | | uint8_t Z [4]; |
418 | | } XYZ_Layout; |
419 | | |
420 | 66.9k | static bool read_tag_xyz(const skcms_ICCTag* tag, float* x, float* y, float* z) { |
421 | 66.9k | if (tag->type != skcms_Signature_XYZ || tag->size < SAFE_SIZEOF(XYZ_Layout)) { |
422 | 0 | return false; |
423 | 0 | } |
424 | | |
425 | 66.9k | const XYZ_Layout* xyzTag = (const XYZ_Layout*)tag->buf; |
426 | | |
427 | 66.9k | *x = read_big_fixed(xyzTag->X); |
428 | 66.9k | *y = read_big_fixed(xyzTag->Y); |
429 | 66.9k | *z = read_big_fixed(xyzTag->Z); |
430 | 66.9k | return true; |
431 | 66.9k | } |
432 | | |
433 | 8.60k | bool skcms_GetWTPT(const skcms_ICCProfile* profile, float xyz[3]) { |
434 | 8.60k | skcms_ICCTag tag; |
435 | 8.60k | return skcms_GetTagBySignature(profile, skcms_Signature_WTPT, &tag) && |
436 | 8.60k | read_tag_xyz(&tag, &xyz[0], &xyz[1], &xyz[2]); |
437 | 8.60k | } |
438 | | |
439 | | static bool read_to_XYZD50(const skcms_ICCTag* rXYZ, const skcms_ICCTag* gXYZ, |
440 | 19.4k | const skcms_ICCTag* bXYZ, skcms_Matrix3x3* toXYZ) { |
441 | 19.4k | return read_tag_xyz(rXYZ, &toXYZ->vals[0][0], &toXYZ->vals[1][0], &toXYZ->vals[2][0]) && |
442 | 19.4k | read_tag_xyz(gXYZ, &toXYZ->vals[0][1], &toXYZ->vals[1][1], &toXYZ->vals[2][1]) && |
443 | 19.4k | read_tag_xyz(bXYZ, &toXYZ->vals[0][2], &toXYZ->vals[1][2], &toXYZ->vals[2][2]); |
444 | 19.4k | } |
445 | | |
446 | | typedef struct { |
447 | | uint8_t type [4]; |
448 | | uint8_t reserved_a [4]; |
449 | | uint8_t function_type [2]; |
450 | | uint8_t reserved_b [2]; |
451 | | uint8_t variable [1/*variable*/]; // 1, 3, 4, 5, or 7 s15.16, depending on function_type |
452 | | } para_Layout; |
453 | | |
454 | | static bool read_curve_para(const uint8_t* buf, uint32_t size, |
455 | 97.0k | skcms_Curve* curve, uint32_t* curve_size) { |
456 | 97.0k | if (size < SAFE_FIXED_SIZE(para_Layout)) { |
457 | 0 | return false; |
458 | 0 | } |
459 | | |
460 | 97.0k | const para_Layout* paraTag = (const para_Layout*)buf; |
461 | | |
462 | 97.0k | enum { kG = 0, kGAB = 1, kGABC = 2, kGABCD = 3, kGABCDEF = 4 }; |
463 | 97.0k | uint16_t function_type = read_big_u16(paraTag->function_type); |
464 | 97.0k | if (function_type > kGABCDEF) { |
465 | 0 | return false; |
466 | 0 | } |
467 | | |
468 | 97.0k | static const uint32_t curve_bytes[] = { 4, 12, 16, 20, 28 }; |
469 | 97.0k | if (size < SAFE_FIXED_SIZE(para_Layout) + curve_bytes[function_type]) { |
470 | 0 | return false; |
471 | 0 | } |
472 | | |
473 | 97.0k | if (curve_size) { |
474 | 0 | *curve_size = SAFE_FIXED_SIZE(para_Layout) + curve_bytes[function_type]; |
475 | 0 | } |
476 | | |
477 | 97.0k | curve->table_entries = 0; |
478 | 97.0k | curve->parametric.a = 1.0f; |
479 | 97.0k | curve->parametric.b = 0.0f; |
480 | 97.0k | curve->parametric.c = 0.0f; |
481 | 97.0k | curve->parametric.d = 0.0f; |
482 | 97.0k | curve->parametric.e = 0.0f; |
483 | 97.0k | curve->parametric.f = 0.0f; |
484 | 97.0k | curve->parametric.g = read_big_fixed(paraTag->variable); |
485 | | |
486 | 97.0k | switch (function_type) { |
487 | 0 | case kGAB: |
488 | 0 | curve->parametric.a = read_big_fixed(paraTag->variable + 4); |
489 | 0 | curve->parametric.b = read_big_fixed(paraTag->variable + 8); |
490 | 0 | if (curve->parametric.a == 0) { |
491 | 0 | return false; |
492 | 0 | } |
493 | 0 | curve->parametric.d = -curve->parametric.b / curve->parametric.a; |
494 | 0 | break; |
495 | 0 | case kGABC: |
496 | 0 | curve->parametric.a = read_big_fixed(paraTag->variable + 4); |
497 | 0 | curve->parametric.b = read_big_fixed(paraTag->variable + 8); |
498 | 0 | curve->parametric.e = read_big_fixed(paraTag->variable + 12); |
499 | 0 | if (curve->parametric.a == 0) { |
500 | 0 | return false; |
501 | 0 | } |
502 | 0 | curve->parametric.d = -curve->parametric.b / curve->parametric.a; |
503 | 0 | curve->parametric.f = curve->parametric.e; |
504 | 0 | break; |
505 | 97.0k | case kGABCD: |
506 | 97.0k | curve->parametric.a = read_big_fixed(paraTag->variable + 4); |
507 | 97.0k | curve->parametric.b = read_big_fixed(paraTag->variable + 8); |
508 | 97.0k | curve->parametric.c = read_big_fixed(paraTag->variable + 12); |
509 | 97.0k | curve->parametric.d = read_big_fixed(paraTag->variable + 16); |
510 | 97.0k | break; |
511 | 0 | case kGABCDEF: |
512 | 0 | curve->parametric.a = read_big_fixed(paraTag->variable + 4); |
513 | 0 | curve->parametric.b = read_big_fixed(paraTag->variable + 8); |
514 | 0 | curve->parametric.c = read_big_fixed(paraTag->variable + 12); |
515 | 0 | curve->parametric.d = read_big_fixed(paraTag->variable + 16); |
516 | 0 | curve->parametric.e = read_big_fixed(paraTag->variable + 20); |
517 | 0 | curve->parametric.f = read_big_fixed(paraTag->variable + 24); |
518 | 0 | break; |
519 | 97.0k | } |
520 | 97.0k | return skcms_TransferFunction_isSRGBish(&curve->parametric); |
521 | 97.0k | } |
522 | | |
523 | | typedef struct { |
524 | | uint8_t type [4]; |
525 | | uint8_t reserved [4]; |
526 | | uint8_t value_count [4]; |
527 | | uint8_t variable [1/*variable*/]; // value_count, 8.8 if 1, uint16 (n*65535) if > 1 |
528 | | } curv_Layout; |
529 | | |
530 | | static bool read_curve_curv(const uint8_t* buf, uint32_t size, |
531 | 0 | skcms_Curve* curve, uint32_t* curve_size) { |
532 | 0 | if (size < SAFE_FIXED_SIZE(curv_Layout)) { |
533 | 0 | return false; |
534 | 0 | } |
535 | | |
536 | 0 | const curv_Layout* curvTag = (const curv_Layout*)buf; |
537 | |
|
538 | 0 | uint32_t value_count = read_big_u32(curvTag->value_count); |
539 | 0 | if (size < SAFE_FIXED_SIZE(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t)) { |
540 | 0 | return false; |
541 | 0 | } |
542 | | |
543 | 0 | if (curve_size) { |
544 | 0 | *curve_size = SAFE_FIXED_SIZE(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t); |
545 | 0 | } |
546 | |
|
547 | 0 | if (value_count < 2) { |
548 | 0 | curve->table_entries = 0; |
549 | 0 | curve->parametric.a = 1.0f; |
550 | 0 | curve->parametric.b = 0.0f; |
551 | 0 | curve->parametric.c = 0.0f; |
552 | 0 | curve->parametric.d = 0.0f; |
553 | 0 | curve->parametric.e = 0.0f; |
554 | 0 | curve->parametric.f = 0.0f; |
555 | 0 | if (value_count == 0) { |
556 | | // Empty tables are a shorthand for an identity curve |
557 | 0 | curve->parametric.g = 1.0f; |
558 | 0 | } else { |
559 | | // Single entry tables are a shorthand for simple gamma |
560 | 0 | curve->parametric.g = read_big_u16(curvTag->variable) * (1.0f / 256.0f); |
561 | 0 | } |
562 | 0 | } else { |
563 | 0 | curve->table_8 = nullptr; |
564 | 0 | curve->table_16 = curvTag->variable; |
565 | 0 | curve->table_entries = value_count; |
566 | 0 | } |
567 | |
|
568 | 0 | return true; |
569 | 0 | } |
570 | | |
571 | | // Parses both curveType and parametricCurveType data. Ensures that at most 'size' bytes are read. |
572 | | // If curve_size is not nullptr, writes the number of bytes used by the curve in (*curve_size). |
573 | | static bool read_curve(const uint8_t* buf, uint32_t size, |
574 | 97.0k | skcms_Curve* curve, uint32_t* curve_size) { |
575 | 97.0k | if (!buf || size < 4 || !curve) { |
576 | 0 | return false; |
577 | 0 | } |
578 | | |
579 | 97.0k | uint32_t type = read_big_u32(buf); |
580 | 97.0k | if (type == skcms_Signature_para) { |
581 | 97.0k | return read_curve_para(buf, size, curve, curve_size); |
582 | 97.0k | } else if (type == skcms_Signature_curv) { |
583 | 0 | return read_curve_curv(buf, size, curve, curve_size); |
584 | 0 | } |
585 | | |
586 | 0 | return false; |
587 | 97.0k | } |
588 | | |
589 | | // mft1 and mft2 share a large chunk of data |
590 | | typedef struct { |
591 | | uint8_t type [ 4]; |
592 | | uint8_t reserved_a [ 4]; |
593 | | uint8_t input_channels [ 1]; |
594 | | uint8_t output_channels [ 1]; |
595 | | uint8_t grid_points [ 1]; |
596 | | uint8_t reserved_b [ 1]; |
597 | | uint8_t matrix [36]; |
598 | | } mft_CommonLayout; |
599 | | |
600 | | typedef struct { |
601 | | mft_CommonLayout common [1]; |
602 | | |
603 | | uint8_t variable [1/*variable*/]; |
604 | | } mft1_Layout; |
605 | | |
606 | | typedef struct { |
607 | | mft_CommonLayout common [1]; |
608 | | |
609 | | uint8_t input_table_entries [2]; |
610 | | uint8_t output_table_entries [2]; |
611 | | uint8_t variable [1/*variable*/]; |
612 | | } mft2_Layout; |
613 | | |
614 | 0 | static bool read_mft_common(const mft_CommonLayout* mftTag, skcms_A2B* a2b) { |
615 | | // MFT matrices are applied before the first set of curves, but must be identity unless the |
616 | | // input is PCSXYZ. We don't support PCSXYZ profiles, so we ignore this matrix. Note that the |
617 | | // matrix in skcms_A2B is applied later in the pipe, so supporting this would require another |
618 | | // field/flag. |
619 | 0 | a2b->matrix_channels = 0; |
620 | 0 | a2b-> input_channels = mftTag-> input_channels[0]; |
621 | 0 | a2b->output_channels = mftTag->output_channels[0]; |
622 | | |
623 | | // We require exactly three (ie XYZ/Lab/RGB) output channels |
624 | 0 | if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) { |
625 | 0 | return false; |
626 | 0 | } |
627 | | // We require at least one, and no more than four (ie CMYK) input channels |
628 | 0 | if (a2b->input_channels < 1 || a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) { |
629 | 0 | return false; |
630 | 0 | } |
631 | | |
632 | 0 | for (uint32_t i = 0; i < a2b->input_channels; ++i) { |
633 | 0 | a2b->grid_points[i] = mftTag->grid_points[0]; |
634 | 0 | } |
635 | | // The grid only makes sense with at least two points along each axis |
636 | 0 | if (a2b->grid_points[0] < 2) { |
637 | 0 | return false; |
638 | 0 | } |
639 | 0 | return true; |
640 | 0 | } |
641 | | |
642 | | // All as the A2B version above, except where noted. |
643 | 0 | static bool read_mft_common(const mft_CommonLayout* mftTag, skcms_B2A* b2a) { |
644 | | // Same as A2B. |
645 | 0 | b2a->matrix_channels = 0; |
646 | 0 | b2a-> input_channels = mftTag-> input_channels[0]; |
647 | 0 | b2a->output_channels = mftTag->output_channels[0]; |
648 | | |
649 | | |
650 | | // For B2A, exactly 3 input channels (XYZ) and 3 (RGB) or 4 (CMYK) output channels. |
651 | 0 | if (b2a->input_channels != ARRAY_COUNT(b2a->input_curves)) { |
652 | 0 | return false; |
653 | 0 | } |
654 | 0 | if (b2a->output_channels < 3 || b2a->output_channels > ARRAY_COUNT(b2a->output_curves)) { |
655 | 0 | return false; |
656 | 0 | } |
657 | | |
658 | | // Same as A2B. |
659 | 0 | for (uint32_t i = 0; i < b2a->input_channels; ++i) { |
660 | 0 | b2a->grid_points[i] = mftTag->grid_points[0]; |
661 | 0 | } |
662 | 0 | if (b2a->grid_points[0] < 2) { |
663 | 0 | return false; |
664 | 0 | } |
665 | 0 | return true; |
666 | 0 | } |
667 | | |
668 | | template <typename A2B_or_B2A> |
669 | | static bool init_tables(const uint8_t* table_base, uint64_t max_tables_len, uint32_t byte_width, |
670 | | uint32_t input_table_entries, uint32_t output_table_entries, |
671 | 0 | A2B_or_B2A* out) { |
672 | | // byte_width is 1 or 2, [input|output]_table_entries are in [2, 4096], so no overflow |
673 | 0 | uint32_t byte_len_per_input_table = input_table_entries * byte_width; |
674 | 0 | uint32_t byte_len_per_output_table = output_table_entries * byte_width; |
675 | | |
676 | | // [input|output]_channels are <= 4, so still no overflow |
677 | 0 | uint32_t byte_len_all_input_tables = out->input_channels * byte_len_per_input_table; |
678 | 0 | uint32_t byte_len_all_output_tables = out->output_channels * byte_len_per_output_table; |
679 | |
|
680 | 0 | uint64_t grid_size = out->output_channels * byte_width; |
681 | 0 | for (uint32_t axis = 0; axis < out->input_channels; ++axis) { |
682 | 0 | grid_size *= out->grid_points[axis]; |
683 | 0 | } |
684 | |
|
685 | 0 | if (max_tables_len < byte_len_all_input_tables + grid_size + byte_len_all_output_tables) { |
686 | 0 | return false; |
687 | 0 | } |
688 | | |
689 | 0 | for (uint32_t i = 0; i < out->input_channels; ++i) { |
690 | 0 | out->input_curves[i].table_entries = input_table_entries; |
691 | 0 | if (byte_width == 1) { |
692 | 0 | out->input_curves[i].table_8 = table_base + i * byte_len_per_input_table; |
693 | 0 | out->input_curves[i].table_16 = nullptr; |
694 | 0 | } else { |
695 | 0 | out->input_curves[i].table_8 = nullptr; |
696 | 0 | out->input_curves[i].table_16 = table_base + i * byte_len_per_input_table; |
697 | 0 | } |
698 | 0 | } |
699 | |
|
700 | 0 | if (byte_width == 1) { |
701 | 0 | out->grid_8 = table_base + byte_len_all_input_tables; |
702 | 0 | out->grid_16 = nullptr; |
703 | 0 | } else { |
704 | 0 | out->grid_8 = nullptr; |
705 | 0 | out->grid_16 = table_base + byte_len_all_input_tables; |
706 | 0 | } |
707 | |
|
708 | 0 | const uint8_t* output_table_base = table_base + byte_len_all_input_tables + grid_size; |
709 | 0 | for (uint32_t i = 0; i < out->output_channels; ++i) { |
710 | 0 | out->output_curves[i].table_entries = output_table_entries; |
711 | 0 | if (byte_width == 1) { |
712 | 0 | out->output_curves[i].table_8 = output_table_base + i * byte_len_per_output_table; |
713 | 0 | out->output_curves[i].table_16 = nullptr; |
714 | 0 | } else { |
715 | 0 | out->output_curves[i].table_8 = nullptr; |
716 | 0 | out->output_curves[i].table_16 = output_table_base + i * byte_len_per_output_table; |
717 | 0 | } |
718 | 0 | } |
719 | |
|
720 | 0 | return true; |
721 | 0 | } Unexecuted instantiation: skcms.cc:bool init_tables<skcms_A2B>(unsigned char const*, unsigned long, unsigned int, unsigned int, unsigned int, skcms_A2B*) Unexecuted instantiation: skcms.cc:bool init_tables<skcms_B2A>(unsigned char const*, unsigned long, unsigned int, unsigned int, unsigned int, skcms_B2A*) |
722 | | |
723 | | template <typename A2B_or_B2A> |
724 | 0 | static bool read_tag_mft1(const skcms_ICCTag* tag, A2B_or_B2A* out) { |
725 | 0 | if (tag->size < SAFE_FIXED_SIZE(mft1_Layout)) { |
726 | 0 | return false; |
727 | 0 | } |
728 | | |
729 | 0 | const mft1_Layout* mftTag = (const mft1_Layout*)tag->buf; |
730 | 0 | if (!read_mft_common(mftTag->common, out)) { |
731 | 0 | return false; |
732 | 0 | } |
733 | | |
734 | 0 | uint32_t input_table_entries = 256; |
735 | 0 | uint32_t output_table_entries = 256; |
736 | |
|
737 | 0 | return init_tables(mftTag->variable, tag->size - SAFE_FIXED_SIZE(mft1_Layout), 1, |
738 | 0 | input_table_entries, output_table_entries, out); |
739 | 0 | } Unexecuted instantiation: skcms.cc:bool read_tag_mft1<skcms_A2B>(skcms_ICCTag const*, skcms_A2B*) Unexecuted instantiation: skcms.cc:bool read_tag_mft1<skcms_B2A>(skcms_ICCTag const*, skcms_B2A*) |
740 | | |
741 | | template <typename A2B_or_B2A> |
742 | 0 | static bool read_tag_mft2(const skcms_ICCTag* tag, A2B_or_B2A* out) { |
743 | 0 | if (tag->size < SAFE_FIXED_SIZE(mft2_Layout)) { |
744 | 0 | return false; |
745 | 0 | } |
746 | | |
747 | 0 | const mft2_Layout* mftTag = (const mft2_Layout*)tag->buf; |
748 | 0 | if (!read_mft_common(mftTag->common, out)) { |
749 | 0 | return false; |
750 | 0 | } |
751 | | |
752 | 0 | uint32_t input_table_entries = read_big_u16(mftTag->input_table_entries); |
753 | 0 | uint32_t output_table_entries = read_big_u16(mftTag->output_table_entries); |
754 | | |
755 | | // ICC spec mandates that 2 <= table_entries <= 4096 |
756 | 0 | if (input_table_entries < 2 || input_table_entries > 4096 || |
757 | 0 | output_table_entries < 2 || output_table_entries > 4096) { |
758 | 0 | return false; |
759 | 0 | } |
760 | | |
761 | 0 | return init_tables(mftTag->variable, tag->size - SAFE_FIXED_SIZE(mft2_Layout), 2, |
762 | 0 | input_table_entries, output_table_entries, out); |
763 | 0 | } Unexecuted instantiation: skcms.cc:bool read_tag_mft2<skcms_A2B>(skcms_ICCTag const*, skcms_A2B*) Unexecuted instantiation: skcms.cc:bool read_tag_mft2<skcms_B2A>(skcms_ICCTag const*, skcms_B2A*) |
764 | | |
765 | | static bool read_curves(const uint8_t* buf, uint32_t size, uint32_t curve_offset, |
766 | 0 | uint32_t num_curves, skcms_Curve* curves) { |
767 | 0 | for (uint32_t i = 0; i < num_curves; ++i) { |
768 | 0 | if (curve_offset > size) { |
769 | 0 | return false; |
770 | 0 | } |
771 | | |
772 | 0 | uint32_t curve_bytes; |
773 | 0 | if (!read_curve(buf + curve_offset, size - curve_offset, &curves[i], &curve_bytes)) { |
774 | 0 | return false; |
775 | 0 | } |
776 | | |
777 | 0 | if (curve_bytes > UINT32_MAX - 3) { |
778 | 0 | return false; |
779 | 0 | } |
780 | 0 | curve_bytes = (curve_bytes + 3) & ~3U; |
781 | |
|
782 | 0 | uint64_t new_offset_64 = (uint64_t)curve_offset + curve_bytes; |
783 | 0 | curve_offset = (uint32_t)new_offset_64; |
784 | 0 | if (new_offset_64 != curve_offset) { |
785 | 0 | return false; |
786 | 0 | } |
787 | 0 | } |
788 | | |
789 | 0 | return true; |
790 | 0 | } |
791 | | |
792 | | // mAB and mBA tags use the same encoding, including color lookup tables. |
793 | | typedef struct { |
794 | | uint8_t type [ 4]; |
795 | | uint8_t reserved_a [ 4]; |
796 | | uint8_t input_channels [ 1]; |
797 | | uint8_t output_channels [ 1]; |
798 | | uint8_t reserved_b [ 2]; |
799 | | uint8_t b_curve_offset [ 4]; |
800 | | uint8_t matrix_offset [ 4]; |
801 | | uint8_t m_curve_offset [ 4]; |
802 | | uint8_t clut_offset [ 4]; |
803 | | uint8_t a_curve_offset [ 4]; |
804 | | } mAB_or_mBA_Layout; |
805 | | |
806 | | typedef struct { |
807 | | uint8_t grid_points [16]; |
808 | | uint8_t grid_byte_width [ 1]; |
809 | | uint8_t reserved [ 3]; |
810 | | uint8_t variable [1/*variable*/]; |
811 | | } CLUT_Layout; |
812 | | |
813 | 0 | static bool read_tag_mab(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) { |
814 | 0 | if (tag->size < SAFE_SIZEOF(mAB_or_mBA_Layout)) { |
815 | 0 | return false; |
816 | 0 | } |
817 | | |
818 | 0 | const mAB_or_mBA_Layout* mABTag = (const mAB_or_mBA_Layout*)tag->buf; |
819 | |
|
820 | 0 | a2b->input_channels = mABTag->input_channels[0]; |
821 | 0 | a2b->output_channels = mABTag->output_channels[0]; |
822 | | |
823 | | // We require exactly three (ie XYZ/Lab/RGB) output channels |
824 | 0 | if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) { |
825 | 0 | return false; |
826 | 0 | } |
827 | | // We require no more than four (ie CMYK) input channels |
828 | 0 | if (a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) { |
829 | 0 | return false; |
830 | 0 | } |
831 | | |
832 | 0 | uint32_t b_curve_offset = read_big_u32(mABTag->b_curve_offset); |
833 | 0 | uint32_t matrix_offset = read_big_u32(mABTag->matrix_offset); |
834 | 0 | uint32_t m_curve_offset = read_big_u32(mABTag->m_curve_offset); |
835 | 0 | uint32_t clut_offset = read_big_u32(mABTag->clut_offset); |
836 | 0 | uint32_t a_curve_offset = read_big_u32(mABTag->a_curve_offset); |
837 | | |
838 | | // "B" curves must be present |
839 | 0 | if (0 == b_curve_offset) { |
840 | 0 | return false; |
841 | 0 | } |
842 | | |
843 | 0 | if (!read_curves(tag->buf, tag->size, b_curve_offset, a2b->output_channels, |
844 | 0 | a2b->output_curves)) { |
845 | 0 | return false; |
846 | 0 | } |
847 | | |
848 | | // "M" curves and Matrix must be used together |
849 | 0 | if (0 != m_curve_offset) { |
850 | 0 | if (0 == matrix_offset) { |
851 | 0 | return false; |
852 | 0 | } |
853 | 0 | a2b->matrix_channels = a2b->output_channels; |
854 | 0 | if (!read_curves(tag->buf, tag->size, m_curve_offset, a2b->matrix_channels, |
855 | 0 | a2b->matrix_curves)) { |
856 | 0 | return false; |
857 | 0 | } |
858 | | |
859 | | // Read matrix, which is stored as a row-major 3x3, followed by the fourth column |
860 | 0 | if (tag->size < matrix_offset + 12 * SAFE_SIZEOF(uint32_t)) { |
861 | 0 | return false; |
862 | 0 | } |
863 | 0 | float encoding_factor = pcs_is_xyz ? (65535 / 32768.0f) : 1.0f; |
864 | 0 | const uint8_t* mtx_buf = tag->buf + matrix_offset; |
865 | 0 | a2b->matrix.vals[0][0] = encoding_factor * read_big_fixed(mtx_buf + 0); |
866 | 0 | a2b->matrix.vals[0][1] = encoding_factor * read_big_fixed(mtx_buf + 4); |
867 | 0 | a2b->matrix.vals[0][2] = encoding_factor * read_big_fixed(mtx_buf + 8); |
868 | 0 | a2b->matrix.vals[1][0] = encoding_factor * read_big_fixed(mtx_buf + 12); |
869 | 0 | a2b->matrix.vals[1][1] = encoding_factor * read_big_fixed(mtx_buf + 16); |
870 | 0 | a2b->matrix.vals[1][2] = encoding_factor * read_big_fixed(mtx_buf + 20); |
871 | 0 | a2b->matrix.vals[2][0] = encoding_factor * read_big_fixed(mtx_buf + 24); |
872 | 0 | a2b->matrix.vals[2][1] = encoding_factor * read_big_fixed(mtx_buf + 28); |
873 | 0 | a2b->matrix.vals[2][2] = encoding_factor * read_big_fixed(mtx_buf + 32); |
874 | 0 | a2b->matrix.vals[0][3] = encoding_factor * read_big_fixed(mtx_buf + 36); |
875 | 0 | a2b->matrix.vals[1][3] = encoding_factor * read_big_fixed(mtx_buf + 40); |
876 | 0 | a2b->matrix.vals[2][3] = encoding_factor * read_big_fixed(mtx_buf + 44); |
877 | 0 | } else { |
878 | 0 | if (0 != matrix_offset) { |
879 | 0 | return false; |
880 | 0 | } |
881 | 0 | a2b->matrix_channels = 0; |
882 | 0 | } |
883 | | |
884 | | // "A" curves and CLUT must be used together |
885 | 0 | if (0 != a_curve_offset) { |
886 | 0 | if (0 == clut_offset) { |
887 | 0 | return false; |
888 | 0 | } |
889 | 0 | if (!read_curves(tag->buf, tag->size, a_curve_offset, a2b->input_channels, |
890 | 0 | a2b->input_curves)) { |
891 | 0 | return false; |
892 | 0 | } |
893 | | |
894 | 0 | if (tag->size < clut_offset + SAFE_FIXED_SIZE(CLUT_Layout)) { |
895 | 0 | return false; |
896 | 0 | } |
897 | 0 | const CLUT_Layout* clut = (const CLUT_Layout*)(tag->buf + clut_offset); |
898 | |
|
899 | 0 | if (clut->grid_byte_width[0] == 1) { |
900 | 0 | a2b->grid_8 = clut->variable; |
901 | 0 | a2b->grid_16 = nullptr; |
902 | 0 | } else if (clut->grid_byte_width[0] == 2) { |
903 | 0 | a2b->grid_8 = nullptr; |
904 | 0 | a2b->grid_16 = clut->variable; |
905 | 0 | } else { |
906 | 0 | return false; |
907 | 0 | } |
908 | | |
909 | 0 | uint64_t grid_size = a2b->output_channels * clut->grid_byte_width[0]; // the payload |
910 | 0 | for (uint32_t i = 0; i < a2b->input_channels; ++i) { |
911 | 0 | a2b->grid_points[i] = clut->grid_points[i]; |
912 | | // The grid only makes sense with at least two points along each axis |
913 | 0 | if (a2b->grid_points[i] < 2) { |
914 | 0 | return false; |
915 | 0 | } |
916 | 0 | grid_size *= a2b->grid_points[i]; |
917 | 0 | } |
918 | 0 | if (tag->size < clut_offset + SAFE_FIXED_SIZE(CLUT_Layout) + grid_size) { |
919 | 0 | return false; |
920 | 0 | } |
921 | 0 | } else { |
922 | 0 | if (0 != clut_offset) { |
923 | 0 | return false; |
924 | 0 | } |
925 | | |
926 | | // If there is no CLUT, the number of input and output channels must match |
927 | 0 | if (a2b->input_channels != a2b->output_channels) { |
928 | 0 | return false; |
929 | 0 | } |
930 | | |
931 | | // Zero out the number of input channels to signal that we're skipping this stage |
932 | 0 | a2b->input_channels = 0; |
933 | 0 | } |
934 | | |
935 | 0 | return true; |
936 | 0 | } |
937 | | |
938 | | // Exactly the same as read_tag_mab(), except where there are comments. |
939 | | // TODO: refactor the two to eliminate common code? |
940 | 0 | static bool read_tag_mba(const skcms_ICCTag* tag, skcms_B2A* b2a, bool pcs_is_xyz) { |
941 | 0 | if (tag->size < SAFE_SIZEOF(mAB_or_mBA_Layout)) { |
942 | 0 | return false; |
943 | 0 | } |
944 | | |
945 | 0 | const mAB_or_mBA_Layout* mBATag = (const mAB_or_mBA_Layout*)tag->buf; |
946 | |
|
947 | 0 | b2a->input_channels = mBATag->input_channels[0]; |
948 | 0 | b2a->output_channels = mBATag->output_channels[0]; |
949 | | |
950 | | // Require exactly 3 inputs (XYZ) and 3 (RGB) or 4 (CMYK) outputs. |
951 | 0 | if (b2a->input_channels != ARRAY_COUNT(b2a->input_curves)) { |
952 | 0 | return false; |
953 | 0 | } |
954 | 0 | if (b2a->output_channels < 3 || b2a->output_channels > ARRAY_COUNT(b2a->output_curves)) { |
955 | 0 | return false; |
956 | 0 | } |
957 | | |
958 | 0 | uint32_t b_curve_offset = read_big_u32(mBATag->b_curve_offset); |
959 | 0 | uint32_t matrix_offset = read_big_u32(mBATag->matrix_offset); |
960 | 0 | uint32_t m_curve_offset = read_big_u32(mBATag->m_curve_offset); |
961 | 0 | uint32_t clut_offset = read_big_u32(mBATag->clut_offset); |
962 | 0 | uint32_t a_curve_offset = read_big_u32(mBATag->a_curve_offset); |
963 | |
|
964 | 0 | if (0 == b_curve_offset) { |
965 | 0 | return false; |
966 | 0 | } |
967 | | |
968 | | // "B" curves are our inputs, not outputs. |
969 | 0 | if (!read_curves(tag->buf, tag->size, b_curve_offset, b2a->input_channels, |
970 | 0 | b2a->input_curves)) { |
971 | 0 | return false; |
972 | 0 | } |
973 | | |
974 | 0 | if (0 != m_curve_offset) { |
975 | 0 | if (0 == matrix_offset) { |
976 | 0 | return false; |
977 | 0 | } |
978 | | // Matrix channels is tied to input_channels (3), not output_channels. |
979 | 0 | b2a->matrix_channels = b2a->input_channels; |
980 | |
|
981 | 0 | if (!read_curves(tag->buf, tag->size, m_curve_offset, b2a->matrix_channels, |
982 | 0 | b2a->matrix_curves)) { |
983 | 0 | return false; |
984 | 0 | } |
985 | | |
986 | 0 | if (tag->size < matrix_offset + 12 * SAFE_SIZEOF(uint32_t)) { |
987 | 0 | return false; |
988 | 0 | } |
989 | 0 | float encoding_factor = pcs_is_xyz ? (32768 / 65535.0f) : 1.0f; // TODO: understand |
990 | 0 | const uint8_t* mtx_buf = tag->buf + matrix_offset; |
991 | 0 | b2a->matrix.vals[0][0] = encoding_factor * read_big_fixed(mtx_buf + 0); |
992 | 0 | b2a->matrix.vals[0][1] = encoding_factor * read_big_fixed(mtx_buf + 4); |
993 | 0 | b2a->matrix.vals[0][2] = encoding_factor * read_big_fixed(mtx_buf + 8); |
994 | 0 | b2a->matrix.vals[1][0] = encoding_factor * read_big_fixed(mtx_buf + 12); |
995 | 0 | b2a->matrix.vals[1][1] = encoding_factor * read_big_fixed(mtx_buf + 16); |
996 | 0 | b2a->matrix.vals[1][2] = encoding_factor * read_big_fixed(mtx_buf + 20); |
997 | 0 | b2a->matrix.vals[2][0] = encoding_factor * read_big_fixed(mtx_buf + 24); |
998 | 0 | b2a->matrix.vals[2][1] = encoding_factor * read_big_fixed(mtx_buf + 28); |
999 | 0 | b2a->matrix.vals[2][2] = encoding_factor * read_big_fixed(mtx_buf + 32); |
1000 | 0 | b2a->matrix.vals[0][3] = encoding_factor * read_big_fixed(mtx_buf + 36); |
1001 | 0 | b2a->matrix.vals[1][3] = encoding_factor * read_big_fixed(mtx_buf + 40); |
1002 | 0 | b2a->matrix.vals[2][3] = encoding_factor * read_big_fixed(mtx_buf + 44); |
1003 | 0 | } else { |
1004 | 0 | if (0 != matrix_offset) { |
1005 | 0 | return false; |
1006 | 0 | } |
1007 | 0 | b2a->matrix_channels = 0; |
1008 | 0 | } |
1009 | | |
1010 | 0 | if (0 != a_curve_offset) { |
1011 | 0 | if (0 == clut_offset) { |
1012 | 0 | return false; |
1013 | 0 | } |
1014 | | |
1015 | | // "A" curves are our output, not input. |
1016 | 0 | if (!read_curves(tag->buf, tag->size, a_curve_offset, b2a->output_channels, |
1017 | 0 | b2a->output_curves)) { |
1018 | 0 | return false; |
1019 | 0 | } |
1020 | | |
1021 | 0 | if (tag->size < clut_offset + SAFE_FIXED_SIZE(CLUT_Layout)) { |
1022 | 0 | return false; |
1023 | 0 | } |
1024 | 0 | const CLUT_Layout* clut = (const CLUT_Layout*)(tag->buf + clut_offset); |
1025 | |
|
1026 | 0 | if (clut->grid_byte_width[0] == 1) { |
1027 | 0 | b2a->grid_8 = clut->variable; |
1028 | 0 | b2a->grid_16 = nullptr; |
1029 | 0 | } else if (clut->grid_byte_width[0] == 2) { |
1030 | 0 | b2a->grid_8 = nullptr; |
1031 | 0 | b2a->grid_16 = clut->variable; |
1032 | 0 | } else { |
1033 | 0 | return false; |
1034 | 0 | } |
1035 | | |
1036 | 0 | uint64_t grid_size = b2a->output_channels * clut->grid_byte_width[0]; |
1037 | 0 | for (uint32_t i = 0; i < b2a->input_channels; ++i) { |
1038 | 0 | b2a->grid_points[i] = clut->grid_points[i]; |
1039 | 0 | if (b2a->grid_points[i] < 2) { |
1040 | 0 | return false; |
1041 | 0 | } |
1042 | 0 | grid_size *= b2a->grid_points[i]; |
1043 | 0 | } |
1044 | 0 | if (tag->size < clut_offset + SAFE_FIXED_SIZE(CLUT_Layout) + grid_size) { |
1045 | 0 | return false; |
1046 | 0 | } |
1047 | 0 | } else { |
1048 | 0 | if (0 != clut_offset) { |
1049 | 0 | return false; |
1050 | 0 | } |
1051 | | |
1052 | 0 | if (b2a->input_channels != b2a->output_channels) { |
1053 | 0 | return false; |
1054 | 0 | } |
1055 | | |
1056 | | // Zero out *output* channels to skip this stage. |
1057 | 0 | b2a->output_channels = 0; |
1058 | 0 | } |
1059 | 0 | return true; |
1060 | 0 | } |
1061 | | |
1062 | | // If you pass f, we'll fit a possibly-non-zero value for *f. |
1063 | | // If you pass nullptr, we'll assume you want *f to be treated as zero. |
1064 | | static int fit_linear(const skcms_Curve* curve, int N, float tol, |
1065 | 0 | float* c, float* d, float* f = nullptr) { |
1066 | 0 | assert(N > 1); |
1067 | | // We iteratively fit the first points to the TF's linear piece. |
1068 | | // We want the cx + f line to pass through the first and last points we fit exactly. |
1069 | | // |
1070 | | // As we walk along the points we find the minimum and maximum slope of the line before the |
1071 | | // error would exceed our tolerance. We stop when the range [slope_min, slope_max] becomes |
1072 | | // emtpy, when we definitely can't add any more points. |
1073 | | // |
1074 | | // Some points' error intervals may intersect the running interval but not lie fully |
1075 | | // within it. So we keep track of the last point we saw that is a valid end point candidate, |
1076 | | // and once the search is done, back up to build the line through *that* point. |
1077 | 0 | const float dx = 1.0f / static_cast<float>(N - 1); |
1078 | |
|
1079 | 0 | int lin_points = 1; |
1080 | |
|
1081 | 0 | float f_zero = 0.0f; |
1082 | 0 | if (f) { |
1083 | 0 | *f = eval_curve(curve, 0); |
1084 | 0 | } else { |
1085 | 0 | f = &f_zero; |
1086 | 0 | } |
1087 | | |
1088 | |
|
1089 | 0 | float slope_min = -INFINITY_; |
1090 | 0 | float slope_max = +INFINITY_; |
1091 | 0 | for (int i = 1; i < N; ++i) { |
1092 | 0 | float x = static_cast<float>(i) * dx; |
1093 | 0 | float y = eval_curve(curve, x); |
1094 | |
|
1095 | 0 | float slope_max_i = (y + tol - *f) / x, |
1096 | 0 | slope_min_i = (y - tol - *f) / x; |
1097 | 0 | if (slope_max_i < slope_min || slope_max < slope_min_i) { |
1098 | | // Slope intervals would no longer overlap. |
1099 | 0 | break; |
1100 | 0 | } |
1101 | 0 | slope_max = fminf_(slope_max, slope_max_i); |
1102 | 0 | slope_min = fmaxf_(slope_min, slope_min_i); |
1103 | |
|
1104 | 0 | float cur_slope = (y - *f) / x; |
1105 | 0 | if (slope_min <= cur_slope && cur_slope <= slope_max) { |
1106 | 0 | lin_points = i + 1; |
1107 | 0 | *c = cur_slope; |
1108 | 0 | } |
1109 | 0 | } |
1110 | | |
1111 | | // Set D to the last point that met our tolerance. |
1112 | 0 | *d = static_cast<float>(lin_points - 1) * dx; |
1113 | 0 | return lin_points; |
1114 | 0 | } |
1115 | | |
1116 | | // If this skcms_Curve holds an identity table, rewrite it as an identity skcms_TransferFunction. |
1117 | 0 | static void canonicalize_identity(skcms_Curve* curve) { |
1118 | 0 | if (curve->table_entries && curve->table_entries <= (uint32_t)INT_MAX) { |
1119 | 0 | int N = (int)curve->table_entries; |
1120 | |
|
1121 | 0 | float c = 0.0f, d = 0.0f, f = 0.0f; |
1122 | 0 | if (N == fit_linear(curve, N, 1.0f/static_cast<float>(2*N), &c,&d,&f) |
1123 | 0 | && c == 1.0f |
1124 | 0 | && f == 0.0f) { |
1125 | 0 | curve->table_entries = 0; |
1126 | 0 | curve->table_8 = nullptr; |
1127 | 0 | curve->table_16 = nullptr; |
1128 | 0 | curve->parametric = skcms_TransferFunction{1,1,0,0,0,0,0}; |
1129 | 0 | } |
1130 | 0 | } |
1131 | 0 | } |
1132 | | |
1133 | 0 | static bool read_a2b(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) { |
1134 | 0 | bool ok = false; |
1135 | 0 | if (tag->type == skcms_Signature_mft1) { ok = read_tag_mft1(tag, a2b); } |
1136 | 0 | if (tag->type == skcms_Signature_mft2) { ok = read_tag_mft2(tag, a2b); } |
1137 | 0 | if (tag->type == skcms_Signature_mAB ) { ok = read_tag_mab(tag, a2b, pcs_is_xyz); } |
1138 | 0 | if (!ok) { |
1139 | 0 | return false; |
1140 | 0 | } |
1141 | | |
1142 | 0 | if (a2b->input_channels > 0) { canonicalize_identity(a2b->input_curves + 0); } |
1143 | 0 | if (a2b->input_channels > 1) { canonicalize_identity(a2b->input_curves + 1); } |
1144 | 0 | if (a2b->input_channels > 2) { canonicalize_identity(a2b->input_curves + 2); } |
1145 | 0 | if (a2b->input_channels > 3) { canonicalize_identity(a2b->input_curves + 3); } |
1146 | |
|
1147 | 0 | if (a2b->matrix_channels > 0) { canonicalize_identity(a2b->matrix_curves + 0); } |
1148 | 0 | if (a2b->matrix_channels > 1) { canonicalize_identity(a2b->matrix_curves + 1); } |
1149 | 0 | if (a2b->matrix_channels > 2) { canonicalize_identity(a2b->matrix_curves + 2); } |
1150 | |
|
1151 | 0 | if (a2b->output_channels > 0) { canonicalize_identity(a2b->output_curves + 0); } |
1152 | 0 | if (a2b->output_channels > 1) { canonicalize_identity(a2b->output_curves + 1); } |
1153 | 0 | if (a2b->output_channels > 2) { canonicalize_identity(a2b->output_curves + 2); } |
1154 | |
|
1155 | 0 | return true; |
1156 | 0 | } |
1157 | | |
1158 | 0 | static bool read_b2a(const skcms_ICCTag* tag, skcms_B2A* b2a, bool pcs_is_xyz) { |
1159 | 0 | bool ok = false; |
1160 | 0 | if (tag->type == skcms_Signature_mft1) { ok = read_tag_mft1(tag, b2a); } |
1161 | 0 | if (tag->type == skcms_Signature_mft2) { ok = read_tag_mft2(tag, b2a); } |
1162 | 0 | if (tag->type == skcms_Signature_mBA ) { ok = read_tag_mba(tag, b2a, pcs_is_xyz); } |
1163 | 0 | if (!ok) { |
1164 | 0 | return false; |
1165 | 0 | } |
1166 | | |
1167 | 0 | if (b2a->input_channels > 0) { canonicalize_identity(b2a->input_curves + 0); } |
1168 | 0 | if (b2a->input_channels > 1) { canonicalize_identity(b2a->input_curves + 1); } |
1169 | 0 | if (b2a->input_channels > 2) { canonicalize_identity(b2a->input_curves + 2); } |
1170 | |
|
1171 | 0 | if (b2a->matrix_channels > 0) { canonicalize_identity(b2a->matrix_curves + 0); } |
1172 | 0 | if (b2a->matrix_channels > 1) { canonicalize_identity(b2a->matrix_curves + 1); } |
1173 | 0 | if (b2a->matrix_channels > 2) { canonicalize_identity(b2a->matrix_curves + 2); } |
1174 | |
|
1175 | 0 | if (b2a->output_channels > 0) { canonicalize_identity(b2a->output_curves + 0); } |
1176 | 0 | if (b2a->output_channels > 1) { canonicalize_identity(b2a->output_curves + 1); } |
1177 | 0 | if (b2a->output_channels > 2) { canonicalize_identity(b2a->output_curves + 2); } |
1178 | 0 | if (b2a->output_channels > 3) { canonicalize_identity(b2a->output_curves + 3); } |
1179 | |
|
1180 | 0 | return true; |
1181 | 0 | } |
1182 | | |
1183 | | typedef struct { |
1184 | | uint8_t type [4]; |
1185 | | uint8_t reserved [4]; |
1186 | | uint8_t color_primaries [1]; |
1187 | | uint8_t transfer_characteristics [1]; |
1188 | | uint8_t matrix_coefficients [1]; |
1189 | | uint8_t video_full_range_flag [1]; |
1190 | | } CICP_Layout; |
1191 | | |
1192 | 19.4k | static bool read_cicp(const skcms_ICCTag* tag, skcms_CICP* cicp) { |
1193 | 19.4k | if (tag->type != skcms_Signature_CICP || tag->size < SAFE_SIZEOF(CICP_Layout)) { |
1194 | 0 | return false; |
1195 | 0 | } |
1196 | | |
1197 | 19.4k | const CICP_Layout* cicpTag = (const CICP_Layout*)tag->buf; |
1198 | | |
1199 | 19.4k | cicp->color_primaries = cicpTag->color_primaries[0]; |
1200 | 19.4k | cicp->transfer_characteristics = cicpTag->transfer_characteristics[0]; |
1201 | 19.4k | cicp->matrix_coefficients = cicpTag->matrix_coefficients[0]; |
1202 | 19.4k | cicp->video_full_range_flag = cicpTag->video_full_range_flag[0]; |
1203 | 19.4k | return true; |
1204 | 19.4k | } |
1205 | | |
1206 | 0 | void skcms_GetTagByIndex(const skcms_ICCProfile* profile, uint32_t idx, skcms_ICCTag* tag) { |
1207 | 0 | if (!profile || !profile->buffer || !tag) { return; } |
1208 | 0 | if (idx > profile->tag_count) { return; } |
1209 | 0 | const tag_Layout* tags = get_tag_table(profile); |
1210 | 0 | tag->signature = read_big_u32(tags[idx].signature); |
1211 | 0 | tag->size = read_big_u32(tags[idx].size); |
1212 | 0 | tag->buf = read_big_u32(tags[idx].offset) + profile->buffer; |
1213 | 0 | tag->type = read_big_u32(tag->buf); |
1214 | 0 | } |
1215 | | |
1216 | 463k | bool skcms_GetTagBySignature(const skcms_ICCProfile* profile, uint32_t sig, skcms_ICCTag* tag) { |
1217 | 463k | if (!profile || !profile->buffer || !tag) { return false; } |
1218 | 463k | const tag_Layout* tags = get_tag_table(profile); |
1219 | 3.21M | for (uint32_t i = 0; i < profile->tag_count; ++i) { |
1220 | 2.93M | if (read_big_u32(tags[i].signature) == sig) { |
1221 | 183k | tag->signature = sig; |
1222 | 183k | tag->size = read_big_u32(tags[i].size); |
1223 | 183k | tag->buf = read_big_u32(tags[i].offset) + profile->buffer; |
1224 | 183k | tag->type = read_big_u32(tag->buf); |
1225 | 183k | return true; |
1226 | 183k | } |
1227 | 2.93M | } |
1228 | 279k | return false; |
1229 | 463k | } |
1230 | | |
1231 | 58.1k | static bool usable_as_src(const skcms_ICCProfile* profile) { |
1232 | 58.1k | return profile->has_A2B |
1233 | 58.1k | || (profile->has_trc && profile->has_toXYZD50); |
1234 | 58.1k | } |
1235 | | |
1236 | | bool skcms_ParseWithA2BPriority(const void* buf, size_t len, |
1237 | | const int priority[], const int priorities, |
1238 | 58.1k | skcms_ICCProfile* profile) { |
1239 | 58.1k | assert(SAFE_SIZEOF(header_Layout) == 132); |
1240 | | |
1241 | 58.1k | if (!profile) { |
1242 | 0 | return false; |
1243 | 0 | } |
1244 | 58.1k | memset(profile, 0, SAFE_SIZEOF(*profile)); |
1245 | | |
1246 | 58.1k | if (len < SAFE_SIZEOF(header_Layout)) { |
1247 | 0 | return false; |
1248 | 0 | } |
1249 | | |
1250 | | // Byte-swap all header fields |
1251 | 58.1k | const header_Layout* header = (const header_Layout*)buf; |
1252 | 58.1k | profile->buffer = (const uint8_t*)buf; |
1253 | 58.1k | profile->size = read_big_u32(header->size); |
1254 | 58.1k | uint32_t version = read_big_u32(header->version); |
1255 | 58.1k | profile->data_color_space = read_big_u32(header->data_color_space); |
1256 | 58.1k | profile->pcs = read_big_u32(header->pcs); |
1257 | 58.1k | uint32_t signature = read_big_u32(header->signature); |
1258 | 58.1k | float illuminant_X = read_big_fixed(header->illuminant_X); |
1259 | 58.1k | float illuminant_Y = read_big_fixed(header->illuminant_Y); |
1260 | 58.1k | float illuminant_Z = read_big_fixed(header->illuminant_Z); |
1261 | 58.1k | profile->tag_count = read_big_u32(header->tag_count); |
1262 | | |
1263 | | // Validate signature, size (smaller than buffer, large enough to hold tag table), |
1264 | | // and major version |
1265 | 58.1k | uint64_t tag_table_size = profile->tag_count * SAFE_SIZEOF(tag_Layout); |
1266 | 58.1k | if (signature != skcms_Signature_acsp || |
1267 | 58.1k | profile->size > len || |
1268 | 58.1k | profile->size < SAFE_SIZEOF(header_Layout) + tag_table_size || |
1269 | 58.1k | (version >> 24) > 4) { |
1270 | 0 | return false; |
1271 | 0 | } |
1272 | | |
1273 | | // Validate that illuminant is D50 white |
1274 | 58.1k | if (fabsf_(illuminant_X - 0.9642f) > 0.0100f || |
1275 | 58.1k | fabsf_(illuminant_Y - 1.0000f) > 0.0100f || |
1276 | 58.1k | fabsf_(illuminant_Z - 0.8249f) > 0.0100f) { |
1277 | 0 | return false; |
1278 | 0 | } |
1279 | | |
1280 | | // Validate that all tag entries have sane offset + size |
1281 | 58.1k | const tag_Layout* tags = get_tag_table(profile); |
1282 | 426k | for (uint32_t i = 0; i < profile->tag_count; ++i) { |
1283 | 368k | uint32_t tag_offset = read_big_u32(tags[i].offset); |
1284 | 368k | uint32_t tag_size = read_big_u32(tags[i].size); |
1285 | 368k | uint64_t tag_end = (uint64_t)tag_offset + (uint64_t)tag_size; |
1286 | 368k | if (tag_size < 4 || tag_end > profile->size) { |
1287 | 0 | return false; |
1288 | 0 | } |
1289 | 368k | } |
1290 | | |
1291 | 58.1k | if (profile->pcs != skcms_Signature_XYZ && profile->pcs != skcms_Signature_Lab) { |
1292 | 0 | return false; |
1293 | 0 | } |
1294 | | |
1295 | 58.1k | bool pcs_is_xyz = profile->pcs == skcms_Signature_XYZ; |
1296 | | |
1297 | | // Pre-parse commonly used tags. |
1298 | 58.1k | skcms_ICCTag kTRC; |
1299 | 58.1k | if (profile->data_color_space == skcms_Signature_Gray && |
1300 | 58.1k | skcms_GetTagBySignature(profile, skcms_Signature_kTRC, &kTRC)) { |
1301 | 38.7k | if (!read_curve(kTRC.buf, kTRC.size, &profile->trc[0], nullptr)) { |
1302 | | // Malformed tag |
1303 | 0 | return false; |
1304 | 0 | } |
1305 | 38.7k | profile->trc[1] = profile->trc[0]; |
1306 | 38.7k | profile->trc[2] = profile->trc[0]; |
1307 | 38.7k | profile->has_trc = true; |
1308 | | |
1309 | 38.7k | if (pcs_is_xyz) { |
1310 | 38.7k | profile->toXYZD50.vals[0][0] = illuminant_X; |
1311 | 38.7k | profile->toXYZD50.vals[1][1] = illuminant_Y; |
1312 | 38.7k | profile->toXYZD50.vals[2][2] = illuminant_Z; |
1313 | 38.7k | profile->has_toXYZD50 = true; |
1314 | 38.7k | } |
1315 | 38.7k | } else { |
1316 | 19.4k | skcms_ICCTag rTRC, gTRC, bTRC; |
1317 | 19.4k | if (skcms_GetTagBySignature(profile, skcms_Signature_rTRC, &rTRC) && |
1318 | 19.4k | skcms_GetTagBySignature(profile, skcms_Signature_gTRC, &gTRC) && |
1319 | 19.4k | skcms_GetTagBySignature(profile, skcms_Signature_bTRC, &bTRC)) { |
1320 | 19.4k | if (!read_curve(rTRC.buf, rTRC.size, &profile->trc[0], nullptr) || |
1321 | 19.4k | !read_curve(gTRC.buf, gTRC.size, &profile->trc[1], nullptr) || |
1322 | 19.4k | !read_curve(bTRC.buf, bTRC.size, &profile->trc[2], nullptr)) { |
1323 | | // Malformed TRC tags |
1324 | 0 | return false; |
1325 | 0 | } |
1326 | 19.4k | profile->has_trc = true; |
1327 | 19.4k | } |
1328 | | |
1329 | 19.4k | skcms_ICCTag rXYZ, gXYZ, bXYZ; |
1330 | 19.4k | if (skcms_GetTagBySignature(profile, skcms_Signature_rXYZ, &rXYZ) && |
1331 | 19.4k | skcms_GetTagBySignature(profile, skcms_Signature_gXYZ, &gXYZ) && |
1332 | 19.4k | skcms_GetTagBySignature(profile, skcms_Signature_bXYZ, &bXYZ)) { |
1333 | 19.4k | if (!read_to_XYZD50(&rXYZ, &gXYZ, &bXYZ, &profile->toXYZD50)) { |
1334 | | // Malformed XYZ tags |
1335 | 0 | return false; |
1336 | 0 | } |
1337 | 19.4k | profile->has_toXYZD50 = true; |
1338 | 19.4k | } |
1339 | 19.4k | } |
1340 | | |
1341 | 174k | for (int i = 0; i < priorities; i++) { |
1342 | | // enum { perceptual, relative_colormetric, saturation } |
1343 | 116k | if (priority[i] < 0 || priority[i] > 2) { |
1344 | 0 | return false; |
1345 | 0 | } |
1346 | 116k | uint32_t sig = skcms_Signature_A2B0 + static_cast<uint32_t>(priority[i]); |
1347 | 116k | skcms_ICCTag tag; |
1348 | 116k | if (skcms_GetTagBySignature(profile, sig, &tag)) { |
1349 | 0 | if (!read_a2b(&tag, &profile->A2B, pcs_is_xyz)) { |
1350 | | // Malformed A2B tag |
1351 | 0 | return false; |
1352 | 0 | } |
1353 | 0 | profile->has_A2B = true; |
1354 | 0 | break; |
1355 | 0 | } |
1356 | 116k | } |
1357 | | |
1358 | 174k | for (int i = 0; i < priorities; i++) { |
1359 | | // enum { perceptual, relative_colormetric, saturation } |
1360 | 116k | if (priority[i] < 0 || priority[i] > 2) { |
1361 | 0 | return false; |
1362 | 0 | } |
1363 | 116k | uint32_t sig = skcms_Signature_B2A0 + static_cast<uint32_t>(priority[i]); |
1364 | 116k | skcms_ICCTag tag; |
1365 | 116k | if (skcms_GetTagBySignature(profile, sig, &tag)) { |
1366 | 0 | if (!read_b2a(&tag, &profile->B2A, pcs_is_xyz)) { |
1367 | | // Malformed B2A tag |
1368 | 0 | return false; |
1369 | 0 | } |
1370 | 0 | profile->has_B2A = true; |
1371 | 0 | break; |
1372 | 0 | } |
1373 | 116k | } |
1374 | | |
1375 | 58.1k | skcms_ICCTag cicp_tag; |
1376 | 58.1k | if (skcms_GetTagBySignature(profile, skcms_Signature_CICP, &cicp_tag)) { |
1377 | 19.4k | if (!read_cicp(&cicp_tag, &profile->CICP)) { |
1378 | | // Malformed CICP tag |
1379 | 0 | return false; |
1380 | 0 | } |
1381 | 19.4k | profile->has_CICP = true; |
1382 | 19.4k | } |
1383 | | |
1384 | 58.1k | return usable_as_src(profile); |
1385 | 58.1k | } |
1386 | | |
1387 | | |
1388 | 0 | const skcms_ICCProfile* skcms_sRGB_profile() { |
1389 | 0 | static const skcms_ICCProfile sRGB_profile = { |
1390 | 0 | nullptr, // buffer, moot here |
1391 | |
|
1392 | 0 | 0, // size, moot here |
1393 | 0 | skcms_Signature_RGB, // data_color_space |
1394 | 0 | skcms_Signature_XYZ, // pcs |
1395 | 0 | 0, // tag count, moot here |
1396 | | |
1397 | | // We choose to represent sRGB with its canonical transfer function, |
1398 | | // and with its canonical XYZD50 gamut matrix. |
1399 | 0 | true, // has_trc, followed by the 3 trc curves |
1400 | 0 | { |
1401 | 0 | {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}}, |
1402 | 0 | {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}}, |
1403 | 0 | {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}}, |
1404 | 0 | }, |
1405 | |
|
1406 | 0 | true, // has_toXYZD50, followed by 3x3 toXYZD50 matrix |
1407 | 0 | {{ |
1408 | 0 | { 0.436065674f, 0.385147095f, 0.143066406f }, |
1409 | 0 | { 0.222488403f, 0.716873169f, 0.060607910f }, |
1410 | 0 | { 0.013916016f, 0.097076416f, 0.714096069f }, |
1411 | 0 | }}, |
1412 | |
|
1413 | 0 | false, // has_A2B, followed by A2B itself, which we don't care about. |
1414 | 0 | { |
1415 | 0 | 0, |
1416 | 0 | { |
1417 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1418 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1419 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1420 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1421 | 0 | }, |
1422 | 0 | {0,0,0,0}, |
1423 | 0 | nullptr, |
1424 | 0 | nullptr, |
1425 | |
|
1426 | 0 | 0, |
1427 | 0 | { |
1428 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1429 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1430 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1431 | 0 | }, |
1432 | 0 | {{ |
1433 | 0 | { 0,0,0,0 }, |
1434 | 0 | { 0,0,0,0 }, |
1435 | 0 | { 0,0,0,0 }, |
1436 | 0 | }}, |
1437 | |
|
1438 | 0 | 0, |
1439 | 0 | { |
1440 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1441 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1442 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1443 | 0 | }, |
1444 | 0 | }, |
1445 | |
|
1446 | 0 | false, // has_B2A, followed by B2A itself, which we also don't care about. |
1447 | 0 | { |
1448 | 0 | 0, |
1449 | 0 | { |
1450 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1451 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1452 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1453 | 0 | }, |
1454 | |
|
1455 | 0 | 0, |
1456 | 0 | {{ |
1457 | 0 | { 0,0,0,0 }, |
1458 | 0 | { 0,0,0,0 }, |
1459 | 0 | { 0,0,0,0 }, |
1460 | 0 | }}, |
1461 | 0 | { |
1462 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1463 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1464 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1465 | 0 | }, |
1466 | |
|
1467 | 0 | 0, |
1468 | 0 | {0,0,0,0}, |
1469 | 0 | nullptr, |
1470 | 0 | nullptr, |
1471 | 0 | { |
1472 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1473 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1474 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1475 | 0 | {{0, {0,0, 0,0,0,0,0}}}, |
1476 | 0 | }, |
1477 | 0 | }, |
1478 | |
|
1479 | 0 | false, // has_CICP, followed by cicp itself which we don't care about. |
1480 | 0 | { 0, 0, 0, 0 }, |
1481 | 0 | }; |
1482 | 0 | return &sRGB_profile; |
1483 | 0 | } |
1484 | | |
1485 | 34.4k | const skcms_ICCProfile* skcms_XYZD50_profile() { |
1486 | | // Just like sRGB above, but with identity transfer functions and toXYZD50 matrix. |
1487 | 34.4k | static const skcms_ICCProfile XYZD50_profile = { |
1488 | 34.4k | nullptr, // buffer, moot here |
1489 | | |
1490 | 34.4k | 0, // size, moot here |
1491 | 34.4k | skcms_Signature_RGB, // data_color_space |
1492 | 34.4k | skcms_Signature_XYZ, // pcs |
1493 | 34.4k | 0, // tag count, moot here |
1494 | | |
1495 | 34.4k | true, // has_trc, followed by the 3 trc curves |
1496 | 34.4k | { |
1497 | 34.4k | {{0, {1,1, 0,0,0,0,0}}}, |
1498 | 34.4k | {{0, {1,1, 0,0,0,0,0}}}, |
1499 | 34.4k | {{0, {1,1, 0,0,0,0,0}}}, |
1500 | 34.4k | }, |
1501 | | |
1502 | 34.4k | true, // has_toXYZD50, followed by 3x3 toXYZD50 matrix |
1503 | 34.4k | {{ |
1504 | 34.4k | { 1,0,0 }, |
1505 | 34.4k | { 0,1,0 }, |
1506 | 34.4k | { 0,0,1 }, |
1507 | 34.4k | }}, |
1508 | | |
1509 | 34.4k | false, // has_A2B, followed by A2B itself, which we don't care about. |
1510 | 34.4k | { |
1511 | 34.4k | 0, |
1512 | 34.4k | { |
1513 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1514 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1515 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1516 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1517 | 34.4k | }, |
1518 | 34.4k | {0,0,0,0}, |
1519 | 34.4k | nullptr, |
1520 | 34.4k | nullptr, |
1521 | | |
1522 | 34.4k | 0, |
1523 | 34.4k | { |
1524 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1525 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1526 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1527 | 34.4k | }, |
1528 | 34.4k | {{ |
1529 | 34.4k | { 0,0,0,0 }, |
1530 | 34.4k | { 0,0,0,0 }, |
1531 | 34.4k | { 0,0,0,0 }, |
1532 | 34.4k | }}, |
1533 | | |
1534 | 34.4k | 0, |
1535 | 34.4k | { |
1536 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1537 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1538 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1539 | 34.4k | }, |
1540 | 34.4k | }, |
1541 | | |
1542 | 34.4k | false, // has_B2A, followed by B2A itself, which we also don't care about. |
1543 | 34.4k | { |
1544 | 34.4k | 0, |
1545 | 34.4k | { |
1546 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1547 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1548 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1549 | 34.4k | }, |
1550 | | |
1551 | 34.4k | 0, |
1552 | 34.4k | {{ |
1553 | 34.4k | { 0,0,0,0 }, |
1554 | 34.4k | { 0,0,0,0 }, |
1555 | 34.4k | { 0,0,0,0 }, |
1556 | 34.4k | }}, |
1557 | 34.4k | { |
1558 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1559 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1560 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1561 | 34.4k | }, |
1562 | | |
1563 | 34.4k | 0, |
1564 | 34.4k | {0,0,0,0}, |
1565 | 34.4k | nullptr, |
1566 | 34.4k | nullptr, |
1567 | 34.4k | { |
1568 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1569 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1570 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1571 | 34.4k | {{0, {0,0, 0,0,0,0,0}}}, |
1572 | 34.4k | }, |
1573 | 34.4k | }, |
1574 | | |
1575 | 34.4k | false, // has_CICP, followed by cicp itself which we don't care about. |
1576 | 34.4k | { 0, 0, 0, 0 }, |
1577 | 34.4k | }; |
1578 | | |
1579 | 34.4k | return &XYZD50_profile; |
1580 | 34.4k | } |
1581 | | |
1582 | 0 | const skcms_TransferFunction* skcms_sRGB_TransferFunction() { |
1583 | 0 | return &skcms_sRGB_profile()->trc[0].parametric; |
1584 | 0 | } |
1585 | | |
1586 | 0 | const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction() { |
1587 | 0 | static const skcms_TransferFunction sRGB_inv = |
1588 | 0 | {0.416666657f, 1.137283325f, -0.0f, 12.920000076f, 0.003130805f, -0.054969788f, -0.0f}; |
1589 | 0 | return &sRGB_inv; |
1590 | 0 | } |
1591 | | |
1592 | 0 | const skcms_TransferFunction* skcms_Identity_TransferFunction() { |
1593 | 0 | static const skcms_TransferFunction identity = {1,1,0,0,0,0,0}; |
1594 | 0 | return &identity; |
1595 | 0 | } |
1596 | | |
1597 | | const uint8_t skcms_252_random_bytes[] = { |
1598 | | 8, 179, 128, 204, 253, 38, 134, 184, 68, 102, 32, 138, 99, 39, 169, 215, |
1599 | | 119, 26, 3, 223, 95, 239, 52, 132, 114, 74, 81, 234, 97, 116, 244, 205, 30, |
1600 | | 154, 173, 12, 51, 159, 122, 153, 61, 226, 236, 178, 229, 55, 181, 220, 191, |
1601 | | 194, 160, 126, 168, 82, 131, 18, 180, 245, 163, 22, 246, 69, 235, 252, 57, |
1602 | | 108, 14, 6, 152, 240, 255, 171, 242, 20, 227, 177, 238, 96, 85, 16, 211, |
1603 | | 70, 200, 149, 155, 146, 127, 145, 100, 151, 109, 19, 165, 208, 195, 164, |
1604 | | 137, 254, 182, 248, 64, 201, 45, 209, 5, 147, 207, 210, 113, 162, 83, 225, |
1605 | | 9, 31, 15, 231, 115, 37, 58, 53, 24, 49, 197, 56, 120, 172, 48, 21, 214, |
1606 | | 129, 111, 11, 50, 187, 196, 34, 60, 103, 71, 144, 47, 203, 77, 80, 232, |
1607 | | 140, 222, 250, 206, 166, 247, 139, 249, 221, 72, 106, 27, 199, 117, 54, |
1608 | | 219, 135, 118, 40, 79, 41, 251, 46, 93, 212, 92, 233, 148, 28, 121, 63, |
1609 | | 123, 158, 105, 59, 29, 42, 143, 23, 0, 107, 176, 87, 104, 183, 156, 193, |
1610 | | 189, 90, 188, 65, 190, 17, 198, 7, 186, 161, 1, 124, 78, 125, 170, 133, |
1611 | | 174, 218, 67, 157, 75, 101, 89, 217, 62, 33, 141, 228, 25, 35, 91, 230, 4, |
1612 | | 2, 13, 73, 86, 167, 237, 84, 243, 44, 185, 66, 130, 110, 150, 142, 216, 88, |
1613 | | 112, 36, 224, 136, 202, 76, 94, 98, 175, 213 |
1614 | | }; |
1615 | | |
1616 | 17.2k | bool skcms_ApproximatelyEqualProfiles(const skcms_ICCProfile* A, const skcms_ICCProfile* B) { |
1617 | | // Test for exactly equal profiles first. |
1618 | 17.2k | if (A == B || 0 == memcmp(A,B, sizeof(skcms_ICCProfile))) { |
1619 | 0 | return true; |
1620 | 0 | } |
1621 | | |
1622 | | // For now this is the essentially the same strategy we use in test_only.c |
1623 | | // for our skcms_Transform() smoke tests: |
1624 | | // 1) transform A to XYZD50 |
1625 | | // 2) transform B to XYZD50 |
1626 | | // 3) return true if they're similar enough |
1627 | | // Our current criterion in 3) is maximum 1 bit error per XYZD50 byte. |
1628 | | |
1629 | | // skcms_252_random_bytes are 252 of a random shuffle of all possible bytes. |
1630 | | // 252 is evenly divisible by 3 and 4. Only 192, 10, 241, and 43 are missing. |
1631 | | |
1632 | | // We want to allow otherwise equivalent profiles tagged as grayscale and RGB |
1633 | | // to be treated as equal. But CMYK profiles are a totally different ballgame. |
1634 | 17.2k | const auto CMYK = skcms_Signature_CMYK; |
1635 | 17.2k | if ((A->data_color_space == CMYK) != (B->data_color_space == CMYK)) { |
1636 | 0 | return false; |
1637 | 0 | } |
1638 | | |
1639 | | // Interpret as RGB_888 if data color space is RGB or GRAY, RGBA_8888 if CMYK. |
1640 | | // TODO: working with RGBA_8888 either way is probably fastest. |
1641 | 17.2k | skcms_PixelFormat fmt = skcms_PixelFormat_RGB_888; |
1642 | 17.2k | size_t npixels = 84; |
1643 | 17.2k | if (A->data_color_space == skcms_Signature_CMYK) { |
1644 | 0 | fmt = skcms_PixelFormat_RGBA_8888; |
1645 | 0 | npixels = 63; |
1646 | 0 | } |
1647 | | |
1648 | | // TODO: if A or B is a known profile (skcms_sRGB_profile, skcms_XYZD50_profile), |
1649 | | // use pre-canned results and skip that skcms_Transform() call? |
1650 | 17.2k | uint8_t dstA[252], |
1651 | 17.2k | dstB[252]; |
1652 | 17.2k | if (!skcms_Transform( |
1653 | 17.2k | skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, A, |
1654 | 17.2k | dstA, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(), |
1655 | 17.2k | npixels)) { |
1656 | 0 | return false; |
1657 | 0 | } |
1658 | 17.2k | if (!skcms_Transform( |
1659 | 17.2k | skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, B, |
1660 | 17.2k | dstB, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(), |
1661 | 17.2k | npixels)) { |
1662 | 0 | return false; |
1663 | 0 | } |
1664 | | |
1665 | | // TODO: make sure this final check has reasonable codegen. |
1666 | 2.18M | for (size_t i = 0; i < 252; i++) { |
1667 | 2.18M | if (abs((int)dstA[i] - (int)dstB[i]) > 1) { |
1668 | 8.60k | return false; |
1669 | 8.60k | } |
1670 | 2.18M | } |
1671 | 8.60k | return true; |
1672 | 17.2k | } |
1673 | | |
1674 | | bool skcms_TRCs_AreApproximateInverse(const skcms_ICCProfile* profile, |
1675 | 0 | const skcms_TransferFunction* inv_tf) { |
1676 | 0 | if (!profile || !profile->has_trc) { |
1677 | 0 | return false; |
1678 | 0 | } |
1679 | | |
1680 | 0 | return skcms_AreApproximateInverses(&profile->trc[0], inv_tf) && |
1681 | 0 | skcms_AreApproximateInverses(&profile->trc[1], inv_tf) && |
1682 | 0 | skcms_AreApproximateInverses(&profile->trc[2], inv_tf); |
1683 | 0 | } |
1684 | | |
1685 | 0 | static bool is_zero_to_one(float x) { |
1686 | 0 | return 0 <= x && x <= 1; |
1687 | 0 | } |
1688 | | |
1689 | | typedef struct { float vals[3]; } skcms_Vector3; |
1690 | | |
1691 | 0 | static skcms_Vector3 mv_mul(const skcms_Matrix3x3* m, const skcms_Vector3* v) { |
1692 | 0 | skcms_Vector3 dst = {{0,0,0}}; |
1693 | 0 | for (int row = 0; row < 3; ++row) { |
1694 | 0 | dst.vals[row] = m->vals[row][0] * v->vals[0] |
1695 | 0 | + m->vals[row][1] * v->vals[1] |
1696 | 0 | + m->vals[row][2] * v->vals[2]; |
1697 | 0 | } |
1698 | 0 | return dst; |
1699 | 0 | } |
1700 | | |
1701 | | bool skcms_AdaptToXYZD50(float wx, float wy, |
1702 | 0 | skcms_Matrix3x3* toXYZD50) { |
1703 | 0 | if (!is_zero_to_one(wx) || !is_zero_to_one(wy) || |
1704 | 0 | !toXYZD50) { |
1705 | 0 | return false; |
1706 | 0 | } |
1707 | | |
1708 | | // Assumes that Y is 1.0f. |
1709 | 0 | skcms_Vector3 wXYZ = { { wx / wy, 1, (1 - wx - wy) / wy } }; |
1710 | | |
1711 | | // Now convert toXYZ matrix to toXYZD50. |
1712 | 0 | skcms_Vector3 wXYZD50 = { { 0.96422f, 1.0f, 0.82521f } }; |
1713 | | |
1714 | | // Calculate the chromatic adaptation matrix. We will use the Bradford method, thus |
1715 | | // the matrices below. The Bradford method is used by Adobe and is widely considered |
1716 | | // to be the best. |
1717 | 0 | skcms_Matrix3x3 xyz_to_lms = {{ |
1718 | 0 | { 0.8951f, 0.2664f, -0.1614f }, |
1719 | 0 | { -0.7502f, 1.7135f, 0.0367f }, |
1720 | 0 | { 0.0389f, -0.0685f, 1.0296f }, |
1721 | 0 | }}; |
1722 | 0 | skcms_Matrix3x3 lms_to_xyz = {{ |
1723 | 0 | { 0.9869929f, -0.1470543f, 0.1599627f }, |
1724 | 0 | { 0.4323053f, 0.5183603f, 0.0492912f }, |
1725 | 0 | { -0.0085287f, 0.0400428f, 0.9684867f }, |
1726 | 0 | }}; |
1727 | |
|
1728 | 0 | skcms_Vector3 srcCone = mv_mul(&xyz_to_lms, &wXYZ); |
1729 | 0 | skcms_Vector3 dstCone = mv_mul(&xyz_to_lms, &wXYZD50); |
1730 | |
|
1731 | 0 | *toXYZD50 = {{ |
1732 | 0 | { dstCone.vals[0] / srcCone.vals[0], 0, 0 }, |
1733 | 0 | { 0, dstCone.vals[1] / srcCone.vals[1], 0 }, |
1734 | 0 | { 0, 0, dstCone.vals[2] / srcCone.vals[2] }, |
1735 | 0 | }}; |
1736 | 0 | *toXYZD50 = skcms_Matrix3x3_concat(toXYZD50, &xyz_to_lms); |
1737 | 0 | *toXYZD50 = skcms_Matrix3x3_concat(&lms_to_xyz, toXYZD50); |
1738 | |
|
1739 | 0 | return true; |
1740 | 0 | } |
1741 | | |
1742 | | bool skcms_PrimariesToXYZD50(float rx, float ry, |
1743 | | float gx, float gy, |
1744 | | float bx, float by, |
1745 | | float wx, float wy, |
1746 | 0 | skcms_Matrix3x3* toXYZD50) { |
1747 | 0 | if (!is_zero_to_one(rx) || !is_zero_to_one(ry) || |
1748 | 0 | !is_zero_to_one(gx) || !is_zero_to_one(gy) || |
1749 | 0 | !is_zero_to_one(bx) || !is_zero_to_one(by) || |
1750 | 0 | !is_zero_to_one(wx) || !is_zero_to_one(wy) || |
1751 | 0 | !toXYZD50) { |
1752 | 0 | return false; |
1753 | 0 | } |
1754 | | |
1755 | | // First, we need to convert xy values (primaries) to XYZ. |
1756 | 0 | skcms_Matrix3x3 primaries = {{ |
1757 | 0 | { rx, gx, bx }, |
1758 | 0 | { ry, gy, by }, |
1759 | 0 | { 1 - rx - ry, 1 - gx - gy, 1 - bx - by }, |
1760 | 0 | }}; |
1761 | 0 | skcms_Matrix3x3 primaries_inv; |
1762 | 0 | if (!skcms_Matrix3x3_invert(&primaries, &primaries_inv)) { |
1763 | 0 | return false; |
1764 | 0 | } |
1765 | | |
1766 | | // Assumes that Y is 1.0f. |
1767 | 0 | skcms_Vector3 wXYZ = { { wx / wy, 1, (1 - wx - wy) / wy } }; |
1768 | 0 | skcms_Vector3 XYZ = mv_mul(&primaries_inv, &wXYZ); |
1769 | |
|
1770 | 0 | skcms_Matrix3x3 toXYZ = {{ |
1771 | 0 | { XYZ.vals[0], 0, 0 }, |
1772 | 0 | { 0, XYZ.vals[1], 0 }, |
1773 | 0 | { 0, 0, XYZ.vals[2] }, |
1774 | 0 | }}; |
1775 | 0 | toXYZ = skcms_Matrix3x3_concat(&primaries, &toXYZ); |
1776 | |
|
1777 | 0 | skcms_Matrix3x3 DXtoD50; |
1778 | 0 | if (!skcms_AdaptToXYZD50(wx, wy, &DXtoD50)) { |
1779 | 0 | return false; |
1780 | 0 | } |
1781 | | |
1782 | 0 | *toXYZD50 = skcms_Matrix3x3_concat(&DXtoD50, &toXYZ); |
1783 | 0 | return true; |
1784 | 0 | } |
1785 | | |
1786 | | |
1787 | 42.6k | bool skcms_Matrix3x3_invert(const skcms_Matrix3x3* src, skcms_Matrix3x3* dst) { |
1788 | 42.6k | double a00 = src->vals[0][0], |
1789 | 42.6k | a01 = src->vals[1][0], |
1790 | 42.6k | a02 = src->vals[2][0], |
1791 | 42.6k | a10 = src->vals[0][1], |
1792 | 42.6k | a11 = src->vals[1][1], |
1793 | 42.6k | a12 = src->vals[2][1], |
1794 | 42.6k | a20 = src->vals[0][2], |
1795 | 42.6k | a21 = src->vals[1][2], |
1796 | 42.6k | a22 = src->vals[2][2]; |
1797 | | |
1798 | 42.6k | double b0 = a00*a11 - a01*a10, |
1799 | 42.6k | b1 = a00*a12 - a02*a10, |
1800 | 42.6k | b2 = a01*a12 - a02*a11, |
1801 | 42.6k | b3 = a20, |
1802 | 42.6k | b4 = a21, |
1803 | 42.6k | b5 = a22; |
1804 | | |
1805 | 42.6k | double determinant = b0*b5 |
1806 | 42.6k | - b1*b4 |
1807 | 42.6k | + b2*b3; |
1808 | | |
1809 | 42.6k | if (determinant == 0) { |
1810 | 0 | return false; |
1811 | 0 | } |
1812 | | |
1813 | 42.6k | double invdet = 1.0 / determinant; |
1814 | 42.6k | if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) { |
1815 | 0 | return false; |
1816 | 0 | } |
1817 | | |
1818 | 42.6k | b0 *= invdet; |
1819 | 42.6k | b1 *= invdet; |
1820 | 42.6k | b2 *= invdet; |
1821 | 42.6k | b3 *= invdet; |
1822 | 42.6k | b4 *= invdet; |
1823 | 42.6k | b5 *= invdet; |
1824 | | |
1825 | 42.6k | dst->vals[0][0] = (float)( a11*b5 - a12*b4 ); |
1826 | 42.6k | dst->vals[1][0] = (float)( a02*b4 - a01*b5 ); |
1827 | 42.6k | dst->vals[2][0] = (float)( + b2 ); |
1828 | 42.6k | dst->vals[0][1] = (float)( a12*b3 - a10*b5 ); |
1829 | 42.6k | dst->vals[1][1] = (float)( a00*b5 - a02*b3 ); |
1830 | 42.6k | dst->vals[2][1] = (float)( - b1 ); |
1831 | 42.6k | dst->vals[0][2] = (float)( a10*b4 - a11*b3 ); |
1832 | 42.6k | dst->vals[1][2] = (float)( a01*b3 - a00*b4 ); |
1833 | 42.6k | dst->vals[2][2] = (float)( + b0 ); |
1834 | | |
1835 | 170k | for (int r = 0; r < 3; ++r) |
1836 | 511k | for (int c = 0; c < 3; ++c) { |
1837 | 383k | if (!isfinitef_(dst->vals[r][c])) { |
1838 | 0 | return false; |
1839 | 0 | } |
1840 | 383k | } |
1841 | 42.6k | return true; |
1842 | 42.6k | } |
1843 | | |
1844 | 34.4k | skcms_Matrix3x3 skcms_Matrix3x3_concat(const skcms_Matrix3x3* A, const skcms_Matrix3x3* B) { |
1845 | 34.4k | skcms_Matrix3x3 m = { { { 0,0,0 },{ 0,0,0 },{ 0,0,0 } } }; |
1846 | 137k | for (int r = 0; r < 3; r++) |
1847 | 412k | for (int c = 0; c < 3; c++) { |
1848 | 309k | m.vals[r][c] = A->vals[r][0] * B->vals[0][c] |
1849 | 309k | + A->vals[r][1] * B->vals[1][c] |
1850 | 309k | + A->vals[r][2] * B->vals[2][c]; |
1851 | 309k | } |
1852 | 34.4k | return m; |
1853 | 34.4k | } |
1854 | | |
1855 | | #if defined(__clang__) |
1856 | | [[clang::no_sanitize("float-divide-by-zero")]] // Checked for by classify() on the way out. |
1857 | | #endif |
1858 | 127k | bool skcms_TransferFunction_invert(const skcms_TransferFunction* src, skcms_TransferFunction* dst) { |
1859 | 127k | TF_PQish pq; |
1860 | 127k | TF_HLGish hlg; |
1861 | 127k | switch (classify(*src, &pq, &hlg)) { |
1862 | 0 | case skcms_TFType_Invalid: return false; |
1863 | 127k | case skcms_TFType_sRGBish: break; // handled below |
1864 | | |
1865 | 0 | case skcms_TFType_PQish: |
1866 | 0 | *dst = { TFKind_marker(skcms_TFType_PQish), -pq.A, pq.D, 1.0f/pq.F |
1867 | 0 | , pq.B, -pq.E, 1.0f/pq.C}; |
1868 | 0 | return true; |
1869 | | |
1870 | 0 | case skcms_TFType_HLGish: |
1871 | 0 | *dst = { TFKind_marker(skcms_TFType_HLGinvish), 1.0f/hlg.R, 1.0f/hlg.G |
1872 | 0 | , 1.0f/hlg.a, hlg.b, hlg.c |
1873 | 0 | , hlg.K_minus_1 }; |
1874 | 0 | return true; |
1875 | | |
1876 | 0 | case skcms_TFType_HLGinvish: |
1877 | 0 | *dst = { TFKind_marker(skcms_TFType_HLGish), 1.0f/hlg.R, 1.0f/hlg.G |
1878 | 0 | , 1.0f/hlg.a, hlg.b, hlg.c |
1879 | 0 | , hlg.K_minus_1 }; |
1880 | 0 | return true; |
1881 | 127k | } |
1882 | | |
1883 | 127k | assert (classify(*src) == skcms_TFType_sRGBish); |
1884 | | |
1885 | | // We're inverting this function, solving for x in terms of y. |
1886 | | // y = (cx + f) x < d |
1887 | | // (ax + b)^g + e x ≥ d |
1888 | | // The inverse of this function can be expressed in the same piecewise form. |
1889 | 127k | skcms_TransferFunction inv = {0,0,0,0,0,0,0}; |
1890 | | |
1891 | | // We'll start by finding the new threshold inv.d. |
1892 | | // In principle we should be able to find that by solving for y at x=d from either side. |
1893 | | // (If those two d values aren't the same, it's a discontinuous transfer function.) |
1894 | 127k | float d_l = src->c * src->d + src->f, |
1895 | 127k | d_r = powf_(src->a * src->d + src->b, src->g) + src->e; |
1896 | 127k | if (fabsf_(d_l - d_r) > 1/512.0f) { |
1897 | 0 | return false; |
1898 | 0 | } |
1899 | 127k | inv.d = d_l; // TODO(mtklein): better in practice to choose d_r? |
1900 | | |
1901 | | // When d=0, the linear section collapses to a point. We leave c,d,f all zero in that case. |
1902 | 127k | if (inv.d > 0) { |
1903 | | // Inverting the linear section is pretty straightfoward: |
1904 | | // y = cx + f |
1905 | | // y - f = cx |
1906 | | // (1/c)y - f/c = x |
1907 | 0 | inv.c = 1.0f/src->c; |
1908 | 0 | inv.f = -src->f/src->c; |
1909 | 0 | } |
1910 | | |
1911 | | // The interesting part is inverting the nonlinear section: |
1912 | | // y = (ax + b)^g + e. |
1913 | | // y - e = (ax + b)^g |
1914 | | // (y - e)^1/g = ax + b |
1915 | | // (y - e)^1/g - b = ax |
1916 | | // (1/a)(y - e)^1/g - b/a = x |
1917 | | // |
1918 | | // To make that fit our form, we need to move the (1/a) term inside the exponentiation: |
1919 | | // let k = (1/a)^g |
1920 | | // (1/a)( y - e)^1/g - b/a = x |
1921 | | // (ky - ke)^1/g - b/a = x |
1922 | | |
1923 | 127k | float k = powf_(src->a, -src->g); // (1/a)^g == a^-g |
1924 | 127k | inv.g = 1.0f / src->g; |
1925 | 127k | inv.a = k; |
1926 | 127k | inv.b = -k * src->e; |
1927 | 127k | inv.e = -src->b / src->a; |
1928 | | |
1929 | | // We need to enforce the same constraints here that we do when fitting a curve, |
1930 | | // a >= 0 and ad+b >= 0. These constraints are checked by classify(), so they're true |
1931 | | // of the source function if we're here. |
1932 | | |
1933 | | // Just like when fitting the curve, there's really no way to rescue a < 0. |
1934 | 127k | if (inv.a < 0) { |
1935 | 0 | return false; |
1936 | 0 | } |
1937 | | // On the other hand we can rescue an ad+b that's gone slightly negative here. |
1938 | 127k | if (inv.a * inv.d + inv.b < 0) { |
1939 | 0 | inv.b = -inv.a * inv.d; |
1940 | 0 | } |
1941 | | |
1942 | | // That should usually make classify(inv) == sRGBish true, but there are a couple situations |
1943 | | // where we might still fail here, like non-finite parameter values. |
1944 | 127k | if (classify(inv) != skcms_TFType_sRGBish) { |
1945 | 0 | return false; |
1946 | 0 | } |
1947 | | |
1948 | 127k | assert (inv.a >= 0); |
1949 | 127k | assert (inv.a * inv.d + inv.b >= 0); |
1950 | | |
1951 | | // Now in principle we're done. |
1952 | | // But to preserve the valuable invariant inv(src(1.0f)) == 1.0f, we'll tweak |
1953 | | // e or f of the inverse, depending on which segment contains src(1.0f). |
1954 | 127k | float s = skcms_TransferFunction_eval(src, 1.0f); |
1955 | 127k | if (!isfinitef_(s)) { |
1956 | 0 | return false; |
1957 | 0 | } |
1958 | | |
1959 | 127k | float sign = s < 0 ? -1.0f : 1.0f; |
1960 | 127k | s *= sign; |
1961 | 127k | if (s < inv.d) { |
1962 | 0 | inv.f = 1.0f - sign * inv.c * s; |
1963 | 127k | } else { |
1964 | 127k | inv.e = 1.0f - sign * powf_(inv.a * s + inv.b, inv.g); |
1965 | 127k | } |
1966 | | |
1967 | 127k | *dst = inv; |
1968 | 127k | return classify(*dst) == skcms_TFType_sRGBish; |
1969 | 127k | } |
1970 | | |
1971 | | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // |
1972 | | |
1973 | | // From here below we're approximating an skcms_Curve with an skcms_TransferFunction{g,a,b,c,d,e,f}: |
1974 | | // |
1975 | | // tf(x) = cx + f x < d |
1976 | | // tf(x) = (ax + b)^g + e x ≥ d |
1977 | | // |
1978 | | // When fitting, we add the additional constraint that both pieces meet at d: |
1979 | | // |
1980 | | // cd + f = (ad + b)^g + e |
1981 | | // |
1982 | | // Solving for e and folding it through gives an alternate formulation of the non-linear piece: |
1983 | | // |
1984 | | // tf(x) = cx + f x < d |
1985 | | // tf(x) = (ax + b)^g - (ad + b)^g + cd + f x ≥ d |
1986 | | // |
1987 | | // Our overall strategy is then: |
1988 | | // For a couple tolerances, |
1989 | | // - fit_linear(): fit c,d,f iteratively to as many points as our tolerance allows |
1990 | | // - invert c,d,f |
1991 | | // - fit_nonlinear(): fit g,a,b using Gauss-Newton given those inverted c,d,f |
1992 | | // (and by constraint, inverted e) to the inverse of the table. |
1993 | | // Return the parameters with least maximum error. |
1994 | | // |
1995 | | // To run Gauss-Newton to find g,a,b, we'll also need the gradient of the residuals |
1996 | | // of round-trip f_inv(x), the inverse of the non-linear piece of f(x). |
1997 | | // |
1998 | | // let y = Table(x) |
1999 | | // r(x) = x - f_inv(y) |
2000 | | // |
2001 | | // ∂r/∂g = ln(ay + b)*(ay + b)^g |
2002 | | // - ln(ad + b)*(ad + b)^g |
2003 | | // ∂r/∂a = yg(ay + b)^(g-1) |
2004 | | // - dg(ad + b)^(g-1) |
2005 | | // ∂r/∂b = g(ay + b)^(g-1) |
2006 | | // - g(ad + b)^(g-1) |
2007 | | |
2008 | | // Return the residual of roundtripping skcms_Curve(x) through f_inv(y) with parameters P, |
2009 | | // and fill out the gradient of the residual into dfdP. |
2010 | | static float rg_nonlinear(float x, |
2011 | | const skcms_Curve* curve, |
2012 | | const skcms_TransferFunction* tf, |
2013 | 0 | float dfdP[3]) { |
2014 | 0 | const float y = eval_curve(curve, x); |
2015 | |
|
2016 | 0 | const float g = tf->g, a = tf->a, b = tf->b, |
2017 | 0 | c = tf->c, d = tf->d, f = tf->f; |
2018 | |
|
2019 | 0 | const float Y = fmaxf_(a*y + b, 0.0f), |
2020 | 0 | D = a*d + b; |
2021 | 0 | assert (D >= 0); |
2022 | | |
2023 | | // The gradient. |
2024 | 0 | dfdP[0] = logf_(Y)*powf_(Y, g) |
2025 | 0 | - logf_(D)*powf_(D, g); |
2026 | 0 | dfdP[1] = y*g*powf_(Y, g-1) |
2027 | 0 | - d*g*powf_(D, g-1); |
2028 | 0 | dfdP[2] = g*powf_(Y, g-1) |
2029 | 0 | - g*powf_(D, g-1); |
2030 | | |
2031 | | // The residual. |
2032 | 0 | const float f_inv = powf_(Y, g) |
2033 | 0 | - powf_(D, g) |
2034 | 0 | + c*d + f; |
2035 | 0 | return x - f_inv; |
2036 | 0 | } |
2037 | | |
2038 | | static bool gauss_newton_step(const skcms_Curve* curve, |
2039 | | skcms_TransferFunction* tf, |
2040 | 0 | float x0, float dx, int N) { |
2041 | | // We'll sample x from the range [x0,x1] (both inclusive) N times with even spacing. |
2042 | | // |
2043 | | // Let P = [ tf->g, tf->a, tf->b ] (the three terms that we're adjusting). |
2044 | | // |
2045 | | // We want to do P' = P + (Jf^T Jf)^-1 Jf^T r(P), |
2046 | | // where r(P) is the residual vector |
2047 | | // and Jf is the Jacobian matrix of f(), ∂r/∂P. |
2048 | | // |
2049 | | // Let's review the shape of each of these expressions: |
2050 | | // r(P) is [N x 1], a column vector with one entry per value of x tested |
2051 | | // Jf is [N x 3], a matrix with an entry for each (x,P) pair |
2052 | | // Jf^T is [3 x N], the transpose of Jf |
2053 | | // |
2054 | | // Jf^T Jf is [3 x N] * [N x 3] == [3 x 3], a 3x3 matrix, |
2055 | | // and so is its inverse (Jf^T Jf)^-1 |
2056 | | // Jf^T r(P) is [3 x N] * [N x 1] == [3 x 1], a column vector with the same shape as P |
2057 | | // |
2058 | | // Our implementation strategy to get to the final ∆P is |
2059 | | // 1) evaluate Jf^T Jf, call that lhs |
2060 | | // 2) evaluate Jf^T r(P), call that rhs |
2061 | | // 3) invert lhs |
2062 | | // 4) multiply inverse lhs by rhs |
2063 | | // |
2064 | | // This is a friendly implementation strategy because we don't have to have any |
2065 | | // buffers that scale with N, and equally nice don't have to perform any matrix |
2066 | | // operations that are variable size. |
2067 | | // |
2068 | | // Other implementation strategies could trade this off, e.g. evaluating the |
2069 | | // pseudoinverse of Jf ( (Jf^T Jf)^-1 Jf^T ) directly, then multiplying that by |
2070 | | // the residuals. That would probably require implementing singular value |
2071 | | // decomposition, and would create a [3 x N] matrix to be multiplied by the |
2072 | | // [N x 1] residual vector, but on the upside I think that'd eliminate the |
2073 | | // possibility of this gauss_newton_step() function ever failing. |
2074 | | |
2075 | | // 0) start off with lhs and rhs safely zeroed. |
2076 | 0 | skcms_Matrix3x3 lhs = {{ {0,0,0}, {0,0,0}, {0,0,0} }}; |
2077 | 0 | skcms_Vector3 rhs = { {0,0,0} }; |
2078 | | |
2079 | | // 1,2) evaluate lhs and evaluate rhs |
2080 | | // We want to evaluate Jf only once, but both lhs and rhs involve Jf^T, |
2081 | | // so we'll have to update lhs and rhs at the same time. |
2082 | 0 | for (int i = 0; i < N; i++) { |
2083 | 0 | float x = x0 + static_cast<float>(i)*dx; |
2084 | |
|
2085 | 0 | float dfdP[3] = {0,0,0}; |
2086 | 0 | float resid = rg_nonlinear(x,curve,tf, dfdP); |
2087 | |
|
2088 | 0 | for (int r = 0; r < 3; r++) { |
2089 | 0 | for (int c = 0; c < 3; c++) { |
2090 | 0 | lhs.vals[r][c] += dfdP[r] * dfdP[c]; |
2091 | 0 | } |
2092 | 0 | rhs.vals[r] += dfdP[r] * resid; |
2093 | 0 | } |
2094 | 0 | } |
2095 | | |
2096 | | // If any of the 3 P parameters are unused, this matrix will be singular. |
2097 | | // Detect those cases and fix them up to indentity instead, so we can invert. |
2098 | 0 | for (int k = 0; k < 3; k++) { |
2099 | 0 | if (lhs.vals[0][k]==0 && lhs.vals[1][k]==0 && lhs.vals[2][k]==0 && |
2100 | 0 | lhs.vals[k][0]==0 && lhs.vals[k][1]==0 && lhs.vals[k][2]==0) { |
2101 | 0 | lhs.vals[k][k] = 1; |
2102 | 0 | } |
2103 | 0 | } |
2104 | | |
2105 | | // 3) invert lhs |
2106 | 0 | skcms_Matrix3x3 lhs_inv; |
2107 | 0 | if (!skcms_Matrix3x3_invert(&lhs, &lhs_inv)) { |
2108 | 0 | return false; |
2109 | 0 | } |
2110 | | |
2111 | | // 4) multiply inverse lhs by rhs |
2112 | 0 | skcms_Vector3 dP = mv_mul(&lhs_inv, &rhs); |
2113 | 0 | tf->g += dP.vals[0]; |
2114 | 0 | tf->a += dP.vals[1]; |
2115 | 0 | tf->b += dP.vals[2]; |
2116 | 0 | return isfinitef_(tf->g) && isfinitef_(tf->a) && isfinitef_(tf->b); |
2117 | 0 | } |
2118 | | |
2119 | | static float max_roundtrip_error_checked(const skcms_Curve* curve, |
2120 | 0 | const skcms_TransferFunction* tf_inv) { |
2121 | 0 | skcms_TransferFunction tf; |
2122 | 0 | if (!skcms_TransferFunction_invert(tf_inv, &tf) || skcms_TFType_sRGBish != classify(tf)) { |
2123 | 0 | return INFINITY_; |
2124 | 0 | } |
2125 | | |
2126 | 0 | skcms_TransferFunction tf_inv_again; |
2127 | 0 | if (!skcms_TransferFunction_invert(&tf, &tf_inv_again)) { |
2128 | 0 | return INFINITY_; |
2129 | 0 | } |
2130 | | |
2131 | 0 | return skcms_MaxRoundtripError(curve, &tf_inv_again); |
2132 | 0 | } |
2133 | | |
2134 | | // Fit the points in [L,N) to the non-linear piece of tf, or return false if we can't. |
2135 | 0 | static bool fit_nonlinear(const skcms_Curve* curve, int L, int N, skcms_TransferFunction* tf) { |
2136 | | // This enforces a few constraints that are not modeled in gauss_newton_step()'s optimization. |
2137 | 0 | auto fixup_tf = [tf]() { |
2138 | | // a must be non-negative. That ensures the function is monotonically increasing. |
2139 | | // We don't really know how to fix up a if it goes negative. |
2140 | 0 | if (tf->a < 0) { |
2141 | 0 | return false; |
2142 | 0 | } |
2143 | | // ad+b must be non-negative. That ensures we don't end up with complex numbers in powf. |
2144 | | // We feel just barely not uneasy enough to tweak b so ad+b is zero in this case. |
2145 | 0 | if (tf->a * tf->d + tf->b < 0) { |
2146 | 0 | tf->b = -tf->a * tf->d; |
2147 | 0 | } |
2148 | 0 | assert (tf->a >= 0 && |
2149 | 0 | tf->a * tf->d + tf->b >= 0); |
2150 | | |
2151 | | // cd+f must be ~= (ad+b)^g+e. That ensures the function is continuous. We keep e as a free |
2152 | | // parameter so we can guarantee this. |
2153 | 0 | tf->e = tf->c*tf->d + tf->f |
2154 | 0 | - powf_(tf->a*tf->d + tf->b, tf->g); |
2155 | |
|
2156 | 0 | return isfinitef_(tf->e); |
2157 | 0 | }; |
2158 | |
|
2159 | 0 | if (!fixup_tf()) { |
2160 | 0 | return false; |
2161 | 0 | } |
2162 | | |
2163 | | // No matter where we start, dx should always represent N even steps from 0 to 1. |
2164 | 0 | const float dx = 1.0f / static_cast<float>(N-1); |
2165 | |
|
2166 | 0 | skcms_TransferFunction best_tf = *tf; |
2167 | 0 | float best_max_error = INFINITY_; |
2168 | | |
2169 | | // Need this or several curves get worse... *sigh* |
2170 | 0 | float init_error = max_roundtrip_error_checked(curve, tf); |
2171 | 0 | if (init_error < best_max_error) { |
2172 | 0 | best_max_error = init_error; |
2173 | 0 | best_tf = *tf; |
2174 | 0 | } |
2175 | | |
2176 | | // As far as we can tell, 1 Gauss-Newton step won't converge, and 3 steps is no better than 2. |
2177 | 0 | for (int j = 0; j < 8; j++) { |
2178 | 0 | if (!gauss_newton_step(curve, tf, static_cast<float>(L)*dx, dx, N-L) || !fixup_tf()) { |
2179 | 0 | *tf = best_tf; |
2180 | 0 | return isfinitef_(best_max_error); |
2181 | 0 | } |
2182 | | |
2183 | 0 | float max_error = max_roundtrip_error_checked(curve, tf); |
2184 | 0 | if (max_error < best_max_error) { |
2185 | 0 | best_max_error = max_error; |
2186 | 0 | best_tf = *tf; |
2187 | 0 | } |
2188 | 0 | } |
2189 | | |
2190 | 0 | *tf = best_tf; |
2191 | 0 | return isfinitef_(best_max_error); |
2192 | 0 | } |
2193 | | |
2194 | | bool skcms_ApproximateCurve(const skcms_Curve* curve, |
2195 | | skcms_TransferFunction* approx, |
2196 | 12.9k | float* max_error) { |
2197 | 12.9k | if (!curve || !approx || !max_error) { |
2198 | 0 | return false; |
2199 | 0 | } |
2200 | | |
2201 | 12.9k | if (curve->table_entries == 0) { |
2202 | | // No point approximating an skcms_TransferFunction with an skcms_TransferFunction! |
2203 | 12.9k | return false; |
2204 | 12.9k | } |
2205 | | |
2206 | 0 | if (curve->table_entries == 1 || curve->table_entries > (uint32_t)INT_MAX) { |
2207 | | // We need at least two points, and must put some reasonable cap on the maximum number. |
2208 | 0 | return false; |
2209 | 0 | } |
2210 | | |
2211 | 0 | int N = (int)curve->table_entries; |
2212 | 0 | const float dx = 1.0f / static_cast<float>(N - 1); |
2213 | |
|
2214 | 0 | *max_error = INFINITY_; |
2215 | 0 | const float kTolerances[] = { 1.5f / 65535.0f, 1.0f / 512.0f }; |
2216 | 0 | for (int t = 0; t < ARRAY_COUNT(kTolerances); t++) { |
2217 | 0 | skcms_TransferFunction tf, |
2218 | 0 | tf_inv; |
2219 | | |
2220 | | // It's problematic to fit curves with non-zero f, so always force it to zero explicitly. |
2221 | 0 | tf.f = 0.0f; |
2222 | 0 | int L = fit_linear(curve, N, kTolerances[t], &tf.c, &tf.d); |
2223 | |
|
2224 | 0 | if (L == N) { |
2225 | | // If the entire data set was linear, move the coefficients to the nonlinear portion |
2226 | | // with G == 1. This lets use a canonical representation with d == 0. |
2227 | 0 | tf.g = 1; |
2228 | 0 | tf.a = tf.c; |
2229 | 0 | tf.b = tf.f; |
2230 | 0 | tf.c = tf.d = tf.e = tf.f = 0; |
2231 | 0 | } else if (L == N - 1) { |
2232 | | // Degenerate case with only two points in the nonlinear segment. Solve directly. |
2233 | 0 | tf.g = 1; |
2234 | 0 | tf.a = (eval_curve(curve, static_cast<float>(N-1)*dx) - |
2235 | 0 | eval_curve(curve, static_cast<float>(N-2)*dx)) |
2236 | 0 | / dx; |
2237 | 0 | tf.b = eval_curve(curve, static_cast<float>(N-2)*dx) |
2238 | 0 | - tf.a * static_cast<float>(N-2)*dx; |
2239 | 0 | tf.e = 0; |
2240 | 0 | } else { |
2241 | | // Start by guessing a gamma-only curve through the midpoint. |
2242 | 0 | int mid = (L + N) / 2; |
2243 | 0 | float mid_x = static_cast<float>(mid) / static_cast<float>(N - 1); |
2244 | 0 | float mid_y = eval_curve(curve, mid_x); |
2245 | 0 | tf.g = log2f_(mid_y) / log2f_(mid_x); |
2246 | 0 | tf.a = 1; |
2247 | 0 | tf.b = 0; |
2248 | 0 | tf.e = tf.c*tf.d + tf.f |
2249 | 0 | - powf_(tf.a*tf.d + tf.b, tf.g); |
2250 | | |
2251 | |
|
2252 | 0 | if (!skcms_TransferFunction_invert(&tf, &tf_inv) || |
2253 | 0 | !fit_nonlinear(curve, L,N, &tf_inv)) { |
2254 | 0 | continue; |
2255 | 0 | } |
2256 | | |
2257 | | // We fit tf_inv, so calculate tf to keep in sync. |
2258 | | // fit_nonlinear() should guarantee invertibility. |
2259 | 0 | if (!skcms_TransferFunction_invert(&tf_inv, &tf)) { |
2260 | 0 | assert(false); |
2261 | 0 | continue; |
2262 | 0 | } |
2263 | 0 | } |
2264 | | |
2265 | | // We'd better have a sane, sRGB-ish TF by now. |
2266 | | // Other non-Bad TFs would be fine, but we know we've only ever tried to fit sRGBish; |
2267 | | // anything else is just some accident of math and the way we pun tf.g as a type flag. |
2268 | | // fit_nonlinear() should guarantee this, but the special cases may fail this test. |
2269 | 0 | if (skcms_TFType_sRGBish != classify(tf)) { |
2270 | 0 | continue; |
2271 | 0 | } |
2272 | | |
2273 | | // We find our error by roundtripping the table through tf_inv. |
2274 | | // |
2275 | | // (The most likely use case for this approximation is to be inverted and |
2276 | | // used as the transfer function for a destination color space.) |
2277 | | // |
2278 | | // We've kept tf and tf_inv in sync above, but we can't guarantee that tf is |
2279 | | // invertible, so re-verify that here (and use the new inverse for testing). |
2280 | | // fit_nonlinear() should guarantee this, but the special cases that don't use |
2281 | | // it may fail this test. |
2282 | 0 | if (!skcms_TransferFunction_invert(&tf, &tf_inv)) { |
2283 | 0 | continue; |
2284 | 0 | } |
2285 | | |
2286 | 0 | float err = skcms_MaxRoundtripError(curve, &tf_inv); |
2287 | 0 | if (*max_error > err) { |
2288 | 0 | *max_error = err; |
2289 | 0 | *approx = tf; |
2290 | 0 | } |
2291 | 0 | } |
2292 | 0 | return isfinitef_(*max_error); |
2293 | 0 | } |
2294 | | |
2295 | | // ~~~~ Impl. of skcms_Transform() ~~~~ |
2296 | | |
2297 | | // First, instantiate our default exec_ops() implementation using the default compiliation target. |
2298 | | |
2299 | | namespace baseline { |
2300 | | #if defined(SKCMS_PORTABLE) || !(defined(__clang__) || defined(__GNUC__)) \ |
2301 | | || (defined(__EMSCRIPTEN_major__) && !defined(__wasm_simd128__)) |
2302 | | #define N 1 |
2303 | | template <typename T> using V = T; |
2304 | | #elif defined(__AVX512F__) && defined(__AVX512DQ__) |
2305 | | #define N 16 |
2306 | | template <typename T> using V = skcms_private::Vec<N,T>; |
2307 | | #elif defined(__AVX__) |
2308 | | #define N 8 |
2309 | | template <typename T> using V = skcms_private::Vec<N,T>; |
2310 | | #else |
2311 | 0 | #define N 4 |
2312 | | template <typename T> using V = skcms_private::Vec<N,T>; |
2313 | | #endif |
2314 | | |
2315 | | #include "src/Transform_inl.h" |
2316 | | #undef N |
2317 | | } |
2318 | | |
2319 | | // Now, instantiate any other versions of run_program() we may want for runtime detection. |
2320 | | #if !defined(SKCMS_PORTABLE) && \ |
2321 | | !defined(SKCMS_NO_RUNTIME_CPU_DETECTION) && \ |
2322 | | (( defined(__clang__) && __clang_major__ >= 5) || \ |
2323 | | (!defined(__clang__) && defined(__GNUC__))) \ |
2324 | | && defined(__x86_64__) |
2325 | | |
2326 | | #if !defined(__AVX2__) |
2327 | | #if defined(__clang__) |
2328 | | #pragma clang attribute push(__attribute__((target("avx2,f16c"))), apply_to=function) |
2329 | | #elif defined(__GNUC__) |
2330 | | #pragma GCC push_options |
2331 | | #pragma GCC target("avx2,f16c") |
2332 | | #endif |
2333 | | |
2334 | | namespace hsw { |
2335 | | #define USING_AVX |
2336 | | #define USING_AVX_F16C |
2337 | | #define USING_AVX2 |
2338 | 1.06M | #define N 8 |
2339 | | template <typename T> using V = skcms_private::Vec<N,T>; |
2340 | | |
2341 | | #include "src/Transform_inl.h" |
2342 | | |
2343 | | // src/Transform_inl.h will undefine USING_* for us. |
2344 | | #undef N |
2345 | | } |
2346 | | |
2347 | | #if defined(__clang__) |
2348 | | #pragma clang attribute pop |
2349 | | #elif defined(__GNUC__) |
2350 | | #pragma GCC pop_options |
2351 | | #endif |
2352 | | |
2353 | | #define TEST_FOR_HSW |
2354 | | #endif |
2355 | | |
2356 | | #if !defined(__AVX512F__) || !defined(__AVX512DQ__) |
2357 | | #if defined(__clang__) |
2358 | | #pragma clang attribute push(__attribute__((target("avx512f,avx512dq,avx512cd,avx512bw,avx512vl"))), apply_to=function) |
2359 | | #elif defined(__GNUC__) |
2360 | | #pragma GCC push_options |
2361 | | #pragma GCC target("avx512f,avx512dq,avx512cd,avx512bw,avx512vl") |
2362 | | #endif |
2363 | | |
2364 | | namespace skx { |
2365 | | #define USING_AVX512F |
2366 | 0 | #define N 16 |
2367 | | template <typename T> using V = skcms_private::Vec<N,T>; |
2368 | | |
2369 | | #include "src/Transform_inl.h" |
2370 | | |
2371 | | // src/Transform_inl.h will undefine USING_* for us. |
2372 | | #undef N |
2373 | | } |
2374 | | |
2375 | | #if defined(__clang__) |
2376 | | #pragma clang attribute pop |
2377 | | #elif defined(__GNUC__) |
2378 | | #pragma GCC pop_options |
2379 | | #endif |
2380 | | |
2381 | | #define TEST_FOR_SKX |
2382 | | #endif |
2383 | | |
2384 | | #if defined(TEST_FOR_HSW) || defined(TEST_FOR_SKX) |
2385 | | enum class CpuType { None, HSW, SKX }; |
2386 | 68.8k | static CpuType cpu_type() { |
2387 | 68.8k | static const CpuType type = []{ |
2388 | 1 | if (!runtime_cpu_detection) { |
2389 | 0 | return CpuType::None; |
2390 | 0 | } |
2391 | | // See http://www.sandpile.org/x86/cpuid.htm |
2392 | | |
2393 | | // First, a basic cpuid(1) lets us check prerequisites for HSW, SKX. |
2394 | 1 | uint32_t eax, ebx, ecx, edx; |
2395 | 1 | __asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) |
2396 | 1 | : "0"(1), "2"(0)); |
2397 | 1 | if ((edx & (1u<<25)) && // SSE |
2398 | 1 | (edx & (1u<<26)) && // SSE2 |
2399 | 1 | (ecx & (1u<< 0)) && // SSE3 |
2400 | 1 | (ecx & (1u<< 9)) && // SSSE3 |
2401 | 1 | (ecx & (1u<<12)) && // FMA (N.B. not used, avoided even) |
2402 | 1 | (ecx & (1u<<19)) && // SSE4.1 |
2403 | 1 | (ecx & (1u<<20)) && // SSE4.2 |
2404 | 1 | (ecx & (1u<<26)) && // XSAVE |
2405 | 1 | (ecx & (1u<<27)) && // OSXSAVE |
2406 | 1 | (ecx & (1u<<28)) && // AVX |
2407 | 1 | (ecx & (1u<<29))) { // F16C |
2408 | | |
2409 | | // Call cpuid(7) to check for AVX2 and AVX-512 bits. |
2410 | 1 | __asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) |
2411 | 1 | : "0"(7), "2"(0)); |
2412 | | // eax from xgetbv(0) will tell us whether XMM, YMM, and ZMM state is saved. |
2413 | 1 | uint32_t xcr0, dont_need_edx; |
2414 | 1 | __asm__ __volatile__("xgetbv" : "=a"(xcr0), "=d"(dont_need_edx) : "c"(0)); |
2415 | | |
2416 | 1 | if ((xcr0 & (1u<<1)) && // XMM register state saved? |
2417 | 1 | (xcr0 & (1u<<2)) && // YMM register state saved? |
2418 | 1 | (ebx & (1u<<5))) { // AVX2 |
2419 | | // At this point we're at least HSW. Continue checking for SKX. |
2420 | 1 | if ((xcr0 & (1u<< 5)) && // Opmasks state saved? |
2421 | 1 | (xcr0 & (1u<< 6)) && // First 16 ZMM registers saved? |
2422 | 1 | (xcr0 & (1u<< 7)) && // High 16 ZMM registers saved? |
2423 | 1 | (ebx & (1u<<16)) && // AVX512F |
2424 | 1 | (ebx & (1u<<17)) && // AVX512DQ |
2425 | 1 | (ebx & (1u<<28)) && // AVX512CD |
2426 | 1 | (ebx & (1u<<30)) && // AVX512BW |
2427 | 1 | (ebx & (1u<<31))) { // AVX512VL |
2428 | 0 | return CpuType::SKX; |
2429 | 0 | } |
2430 | 1 | return CpuType::HSW; |
2431 | 1 | } |
2432 | 1 | } |
2433 | 0 | return CpuType::None; |
2434 | 1 | }(); |
2435 | 68.8k | return type; |
2436 | 68.8k | } |
2437 | | #endif |
2438 | | |
2439 | | #endif |
2440 | | |
2441 | 206k | static bool tf_is_gamma(const skcms_TransferFunction& tf) { |
2442 | 206k | return tf.g > 0 && tf.a == 1 && |
2443 | 206k | tf.b == 0 && tf.c == 0 && tf.d == 0 && tf.e == 0 && tf.f == 0; |
2444 | 206k | } |
2445 | | |
2446 | | struct OpAndArg { |
2447 | | Op op; |
2448 | | const void* arg; |
2449 | | }; |
2450 | | |
2451 | 206k | static OpAndArg select_curve_op(const skcms_Curve* curve, int channel) { |
2452 | 206k | struct OpType { |
2453 | 206k | Op sGamma, sRGBish, PQish, HLGish, HLGinvish, table; |
2454 | 206k | }; |
2455 | 206k | static constexpr OpType kOps[] = { |
2456 | 206k | { Op::gamma_r, Op::tf_r, Op::pq_r, Op::hlg_r, Op::hlginv_r, Op::table_r }, |
2457 | 206k | { Op::gamma_g, Op::tf_g, Op::pq_g, Op::hlg_g, Op::hlginv_g, Op::table_g }, |
2458 | 206k | { Op::gamma_b, Op::tf_b, Op::pq_b, Op::hlg_b, Op::hlginv_b, Op::table_b }, |
2459 | 206k | { Op::gamma_a, Op::tf_a, Op::pq_a, Op::hlg_a, Op::hlginv_a, Op::table_a }, |
2460 | 206k | }; |
2461 | 206k | const auto& op = kOps[channel]; |
2462 | | |
2463 | 206k | if (curve->table_entries == 0) { |
2464 | 206k | const OpAndArg noop = { Op::load_a8/*doesn't matter*/, nullptr }; |
2465 | | |
2466 | 206k | const skcms_TransferFunction& tf = curve->parametric; |
2467 | | |
2468 | 206k | if (tf_is_gamma(tf)) { |
2469 | 103k | return tf.g != 1 ? OpAndArg{op.sGamma, &tf} |
2470 | 103k | : noop; |
2471 | 103k | } |
2472 | | |
2473 | 103k | switch (classify(tf)) { |
2474 | 0 | case skcms_TFType_Invalid: return noop; |
2475 | 103k | case skcms_TFType_sRGBish: return OpAndArg{op.sRGBish, &tf}; |
2476 | 0 | case skcms_TFType_PQish: return OpAndArg{op.PQish, &tf}; |
2477 | 0 | case skcms_TFType_HLGish: return OpAndArg{op.HLGish, &tf}; |
2478 | 0 | case skcms_TFType_HLGinvish: return OpAndArg{op.HLGinvish, &tf}; |
2479 | 103k | } |
2480 | 103k | } |
2481 | 0 | return OpAndArg{op.table, curve}; |
2482 | 206k | } |
2483 | | |
2484 | 68.8k | static int select_curve_ops(const skcms_Curve* curves, int numChannels, OpAndArg* ops) { |
2485 | 68.8k | int position = 0; |
2486 | 275k | for (int index = 0; index < numChannels; ++index) { |
2487 | 206k | ops[position] = select_curve_op(&curves[index], index); |
2488 | 206k | if (ops[position].arg) { |
2489 | 103k | ++position; |
2490 | 103k | } |
2491 | | |
2492 | | // Identify separate R/G/B functions which can be fused into a single op. |
2493 | | // (We do this check inside the loop in order to allow R+G+B+A to be fused into RGB+A.) |
2494 | 206k | if (index == 2 && position == 3) { |
2495 | 34.4k | struct FusableOps { |
2496 | 34.4k | Op r, g, b, rgb; |
2497 | 34.4k | }; |
2498 | 34.4k | static constexpr FusableOps kFusableOps[] = { |
2499 | 34.4k | {Op::gamma_r, Op::gamma_g, Op::gamma_b, Op::gamma_rgb}, |
2500 | 34.4k | {Op::tf_r, Op::tf_g, Op::tf_b, Op::tf_rgb}, |
2501 | 34.4k | {Op::pq_r, Op::pq_g, Op::pq_b, Op::pq_rgb}, |
2502 | 34.4k | {Op::hlg_r, Op::hlg_g, Op::hlg_b, Op::hlg_rgb}, |
2503 | 34.4k | {Op::hlginv_r, Op::hlginv_g, Op::hlginv_b, Op::hlginv_rgb}, |
2504 | 34.4k | }; |
2505 | 68.8k | for (const FusableOps& fusableOp : kFusableOps) { |
2506 | 68.8k | if (ops[0].op == fusableOp.r && |
2507 | 68.8k | ops[1].op == fusableOp.g && |
2508 | 68.8k | ops[2].op == fusableOp.b && |
2509 | 68.8k | (0 == memcmp(ops[0].arg, ops[1].arg, sizeof(skcms_TransferFunction))) && |
2510 | 68.8k | (0 == memcmp(ops[0].arg, ops[2].arg, sizeof(skcms_TransferFunction)))) { |
2511 | | |
2512 | 34.4k | ops[0].op = fusableOp.rgb; |
2513 | 34.4k | position = 1; |
2514 | 34.4k | break; |
2515 | 34.4k | } |
2516 | 68.8k | } |
2517 | 34.4k | } |
2518 | 206k | } |
2519 | | |
2520 | 68.8k | return position; |
2521 | 68.8k | } |
2522 | | |
2523 | 68.8k | static size_t bytes_per_pixel(skcms_PixelFormat fmt) { |
2524 | 68.8k | switch (fmt >> 1) { // ignore rgb/bgr |
2525 | 0 | case skcms_PixelFormat_A_8 >> 1: return 1; |
2526 | 0 | case skcms_PixelFormat_G_8 >> 1: return 1; |
2527 | 0 | case skcms_PixelFormat_ABGR_4444 >> 1: return 2; |
2528 | 0 | case skcms_PixelFormat_RGB_565 >> 1: return 2; |
2529 | 68.8k | case skcms_PixelFormat_RGB_888 >> 1: return 3; |
2530 | 0 | case skcms_PixelFormat_RGBA_8888 >> 1: return 4; |
2531 | 0 | case skcms_PixelFormat_RGBA_8888_sRGB >> 1: return 4; |
2532 | 0 | case skcms_PixelFormat_RGBA_1010102 >> 1: return 4; |
2533 | 0 | case skcms_PixelFormat_RGB_101010x_XR >> 1: return 4; |
2534 | 0 | case skcms_PixelFormat_RGB_161616LE >> 1: return 6; |
2535 | 0 | case skcms_PixelFormat_RGBA_16161616LE >> 1: return 8; |
2536 | 0 | case skcms_PixelFormat_RGB_161616BE >> 1: return 6; |
2537 | 0 | case skcms_PixelFormat_RGBA_16161616BE >> 1: return 8; |
2538 | 0 | case skcms_PixelFormat_RGB_hhh_Norm >> 1: return 6; |
2539 | 0 | case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: return 8; |
2540 | 0 | case skcms_PixelFormat_RGB_hhh >> 1: return 6; |
2541 | 0 | case skcms_PixelFormat_RGBA_hhhh >> 1: return 8; |
2542 | 0 | case skcms_PixelFormat_RGB_fff >> 1: return 12; |
2543 | 0 | case skcms_PixelFormat_RGBA_ffff >> 1: return 16; |
2544 | 68.8k | } |
2545 | 0 | assert(false); |
2546 | 0 | return 0; |
2547 | 68.8k | } |
2548 | | |
2549 | | static bool prep_for_destination(const skcms_ICCProfile* profile, |
2550 | | skcms_Matrix3x3* fromXYZD50, |
2551 | | skcms_TransferFunction* invR, |
2552 | | skcms_TransferFunction* invG, |
2553 | 34.4k | skcms_TransferFunction* invB) { |
2554 | | // skcms_Transform() supports B2A destinations... |
2555 | 34.4k | if (profile->has_B2A) { return true; } |
2556 | | // ...and destinations with parametric transfer functions and an XYZD50 gamut matrix. |
2557 | 34.4k | return profile->has_trc |
2558 | 34.4k | && profile->has_toXYZD50 |
2559 | 34.4k | && profile->trc[0].table_entries == 0 |
2560 | 34.4k | && profile->trc[1].table_entries == 0 |
2561 | 34.4k | && profile->trc[2].table_entries == 0 |
2562 | 34.4k | && skcms_TransferFunction_invert(&profile->trc[0].parametric, invR) |
2563 | 34.4k | && skcms_TransferFunction_invert(&profile->trc[1].parametric, invG) |
2564 | 34.4k | && skcms_TransferFunction_invert(&profile->trc[2].parametric, invB) |
2565 | 34.4k | && skcms_Matrix3x3_invert(&profile->toXYZD50, fromXYZD50); |
2566 | 34.4k | } |
2567 | | |
2568 | | bool skcms_Transform(const void* src, |
2569 | | skcms_PixelFormat srcFmt, |
2570 | | skcms_AlphaFormat srcAlpha, |
2571 | | const skcms_ICCProfile* srcProfile, |
2572 | | void* dst, |
2573 | | skcms_PixelFormat dstFmt, |
2574 | | skcms_AlphaFormat dstAlpha, |
2575 | | const skcms_ICCProfile* dstProfile, |
2576 | 34.4k | size_t nz) { |
2577 | 34.4k | const size_t dst_bpp = bytes_per_pixel(dstFmt), |
2578 | 34.4k | src_bpp = bytes_per_pixel(srcFmt); |
2579 | | // Let's just refuse if the request is absurdly big. |
2580 | 34.4k | if (nz * dst_bpp > INT_MAX || nz * src_bpp > INT_MAX) { |
2581 | 0 | return false; |
2582 | 0 | } |
2583 | 34.4k | int n = (int)nz; |
2584 | | |
2585 | | // Null profiles default to sRGB. Passing null for both is handy when doing format conversion. |
2586 | 34.4k | if (!srcProfile) { |
2587 | 0 | srcProfile = skcms_sRGB_profile(); |
2588 | 0 | } |
2589 | 34.4k | if (!dstProfile) { |
2590 | 0 | dstProfile = skcms_sRGB_profile(); |
2591 | 0 | } |
2592 | | |
2593 | | // We can't transform in place unless the PixelFormats are the same size. |
2594 | 34.4k | if (dst == src && dst_bpp != src_bpp) { |
2595 | 0 | return false; |
2596 | 0 | } |
2597 | | // TODO: more careful alias rejection (like, dst == src + 1)? |
2598 | | |
2599 | 34.4k | Op program[32]; |
2600 | 34.4k | const void* context[32]; |
2601 | | |
2602 | 34.4k | Op* ops = program; |
2603 | 34.4k | const void** contexts = context; |
2604 | | |
2605 | 103k | auto add_op = [&](Op o) { |
2606 | 103k | *ops++ = o; |
2607 | 103k | *contexts++ = nullptr; |
2608 | 103k | }; |
2609 | | |
2610 | 68.8k | auto add_op_ctx = [&](Op o, const void* c) { |
2611 | 68.8k | *ops++ = o; |
2612 | 68.8k | *contexts++ = c; |
2613 | 68.8k | }; |
2614 | | |
2615 | 34.4k | auto add_curve_ops = [&](const skcms_Curve* curves, int numChannels) { |
2616 | 34.4k | OpAndArg oa[4]; |
2617 | 34.4k | assert(numChannels <= ARRAY_COUNT(oa)); |
2618 | | |
2619 | 34.4k | int numOps = select_curve_ops(curves, numChannels, oa); |
2620 | | |
2621 | 68.8k | for (int i = 0; i < numOps; ++i) { |
2622 | 34.4k | add_op_ctx(oa[i].op, oa[i].arg); |
2623 | 34.4k | } |
2624 | 34.4k | }; |
2625 | | |
2626 | | // These are always parametric curves of some sort. |
2627 | 34.4k | skcms_Curve dst_curves[3]; |
2628 | 34.4k | dst_curves[0].table_entries = |
2629 | 34.4k | dst_curves[1].table_entries = |
2630 | 34.4k | dst_curves[2].table_entries = 0; |
2631 | | |
2632 | 34.4k | skcms_Matrix3x3 from_xyz; |
2633 | | |
2634 | 34.4k | switch (srcFmt >> 1) { |
2635 | 0 | default: return false; |
2636 | 0 | case skcms_PixelFormat_A_8 >> 1: add_op(Op::load_a8); break; |
2637 | 0 | case skcms_PixelFormat_G_8 >> 1: add_op(Op::load_g8); break; |
2638 | 0 | case skcms_PixelFormat_ABGR_4444 >> 1: add_op(Op::load_4444); break; |
2639 | 0 | case skcms_PixelFormat_RGB_565 >> 1: add_op(Op::load_565); break; |
2640 | 34.4k | case skcms_PixelFormat_RGB_888 >> 1: add_op(Op::load_888); break; |
2641 | 0 | case skcms_PixelFormat_RGBA_8888 >> 1: add_op(Op::load_8888); break; |
2642 | 0 | case skcms_PixelFormat_RGBA_1010102 >> 1: add_op(Op::load_1010102); break; |
2643 | 0 | case skcms_PixelFormat_RGB_101010x_XR >> 1: add_op(Op::load_101010x_XR); break; |
2644 | 0 | case skcms_PixelFormat_RGB_161616LE >> 1: add_op(Op::load_161616LE); break; |
2645 | 0 | case skcms_PixelFormat_RGBA_16161616LE >> 1: add_op(Op::load_16161616LE); break; |
2646 | 0 | case skcms_PixelFormat_RGB_161616BE >> 1: add_op(Op::load_161616BE); break; |
2647 | 0 | case skcms_PixelFormat_RGBA_16161616BE >> 1: add_op(Op::load_16161616BE); break; |
2648 | 0 | case skcms_PixelFormat_RGB_hhh_Norm >> 1: add_op(Op::load_hhh); break; |
2649 | 0 | case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: add_op(Op::load_hhhh); break; |
2650 | 0 | case skcms_PixelFormat_RGB_hhh >> 1: add_op(Op::load_hhh); break; |
2651 | 0 | case skcms_PixelFormat_RGBA_hhhh >> 1: add_op(Op::load_hhhh); break; |
2652 | 0 | case skcms_PixelFormat_RGB_fff >> 1: add_op(Op::load_fff); break; |
2653 | 0 | case skcms_PixelFormat_RGBA_ffff >> 1: add_op(Op::load_ffff); break; |
2654 | | |
2655 | 0 | case skcms_PixelFormat_RGBA_8888_sRGB >> 1: |
2656 | 0 | add_op(Op::load_8888); |
2657 | 0 | add_op_ctx(Op::tf_rgb, skcms_sRGB_TransferFunction()); |
2658 | 0 | break; |
2659 | 34.4k | } |
2660 | 34.4k | if (srcFmt == skcms_PixelFormat_RGB_hhh_Norm || |
2661 | 34.4k | srcFmt == skcms_PixelFormat_RGBA_hhhh_Norm) { |
2662 | 0 | add_op(Op::clamp); |
2663 | 0 | } |
2664 | 34.4k | if (srcFmt & 1) { |
2665 | 0 | add_op(Op::swap_rb); |
2666 | 0 | } |
2667 | 34.4k | skcms_ICCProfile gray_dst_profile; |
2668 | 34.4k | if ((dstFmt >> 1) == (skcms_PixelFormat_G_8 >> 1)) { |
2669 | | // When transforming to gray, stop at XYZ (by setting toXYZ to identity), then transform |
2670 | | // luminance (Y) by the destination transfer function. |
2671 | 0 | gray_dst_profile = *dstProfile; |
2672 | 0 | skcms_SetXYZD50(&gray_dst_profile, &skcms_XYZD50_profile()->toXYZD50); |
2673 | 0 | dstProfile = &gray_dst_profile; |
2674 | 0 | } |
2675 | | |
2676 | 34.4k | if (srcProfile->data_color_space == skcms_Signature_CMYK) { |
2677 | | // Photoshop creates CMYK images as inverse CMYK. |
2678 | | // These happen to be the only ones we've _ever_ seen. |
2679 | 0 | add_op(Op::invert); |
2680 | | // With CMYK, ignore the alpha type, to avoid changing K or conflating CMY with K. |
2681 | 0 | srcAlpha = skcms_AlphaFormat_Unpremul; |
2682 | 0 | } |
2683 | | |
2684 | 34.4k | if (srcAlpha == skcms_AlphaFormat_Opaque) { |
2685 | 0 | add_op(Op::force_opaque); |
2686 | 34.4k | } else if (srcAlpha == skcms_AlphaFormat_PremulAsEncoded) { |
2687 | 0 | add_op(Op::unpremul); |
2688 | 0 | } |
2689 | | |
2690 | 34.4k | if (dstProfile != srcProfile) { |
2691 | | |
2692 | 34.4k | if (!prep_for_destination(dstProfile, |
2693 | 34.4k | &from_xyz, |
2694 | 34.4k | &dst_curves[0].parametric, |
2695 | 34.4k | &dst_curves[1].parametric, |
2696 | 34.4k | &dst_curves[2].parametric)) { |
2697 | 0 | return false; |
2698 | 0 | } |
2699 | | |
2700 | 34.4k | if (srcProfile->has_A2B) { |
2701 | 0 | if (srcProfile->A2B.input_channels) { |
2702 | 0 | add_curve_ops(srcProfile->A2B.input_curves, |
2703 | 0 | (int)srcProfile->A2B.input_channels); |
2704 | 0 | add_op(Op::clamp); |
2705 | 0 | add_op_ctx(Op::clut_A2B, &srcProfile->A2B); |
2706 | 0 | } |
2707 | |
|
2708 | 0 | if (srcProfile->A2B.matrix_channels == 3) { |
2709 | 0 | add_curve_ops(srcProfile->A2B.matrix_curves, /*numChannels=*/3); |
2710 | |
|
2711 | 0 | static const skcms_Matrix3x4 I = {{ |
2712 | 0 | {1,0,0,0}, |
2713 | 0 | {0,1,0,0}, |
2714 | 0 | {0,0,1,0}, |
2715 | 0 | }}; |
2716 | 0 | if (0 != memcmp(&I, &srcProfile->A2B.matrix, sizeof(I))) { |
2717 | 0 | add_op_ctx(Op::matrix_3x4, &srcProfile->A2B.matrix); |
2718 | 0 | } |
2719 | 0 | } |
2720 | |
|
2721 | 0 | if (srcProfile->A2B.output_channels == 3) { |
2722 | 0 | add_curve_ops(srcProfile->A2B.output_curves, /*numChannels=*/3); |
2723 | 0 | } |
2724 | |
|
2725 | 0 | if (srcProfile->pcs == skcms_Signature_Lab) { |
2726 | 0 | add_op(Op::lab_to_xyz); |
2727 | 0 | } |
2728 | |
|
2729 | 34.4k | } else if (srcProfile->has_trc && srcProfile->has_toXYZD50) { |
2730 | 34.4k | add_curve_ops(srcProfile->trc, /*numChannels=*/3); |
2731 | 34.4k | } else { |
2732 | 0 | return false; |
2733 | 0 | } |
2734 | | |
2735 | | // A2B sources are in XYZD50 by now, but TRC sources are still in their original gamut. |
2736 | 34.4k | assert (srcProfile->has_A2B || srcProfile->has_toXYZD50); |
2737 | | |
2738 | 34.4k | if (dstProfile->has_B2A) { |
2739 | | // B2A needs its input in XYZD50, so transform TRC sources now. |
2740 | 0 | if (!srcProfile->has_A2B) { |
2741 | 0 | add_op_ctx(Op::matrix_3x3, &srcProfile->toXYZD50); |
2742 | 0 | } |
2743 | |
|
2744 | 0 | if (dstProfile->pcs == skcms_Signature_Lab) { |
2745 | 0 | add_op(Op::xyz_to_lab); |
2746 | 0 | } |
2747 | |
|
2748 | 0 | if (dstProfile->B2A.input_channels == 3) { |
2749 | 0 | add_curve_ops(dstProfile->B2A.input_curves, /*numChannels=*/3); |
2750 | 0 | } |
2751 | |
|
2752 | 0 | if (dstProfile->B2A.matrix_channels == 3) { |
2753 | 0 | static const skcms_Matrix3x4 I = {{ |
2754 | 0 | {1,0,0,0}, |
2755 | 0 | {0,1,0,0}, |
2756 | 0 | {0,0,1,0}, |
2757 | 0 | }}; |
2758 | 0 | if (0 != memcmp(&I, &dstProfile->B2A.matrix, sizeof(I))) { |
2759 | 0 | add_op_ctx(Op::matrix_3x4, &dstProfile->B2A.matrix); |
2760 | 0 | } |
2761 | |
|
2762 | 0 | add_curve_ops(dstProfile->B2A.matrix_curves, /*numChannels=*/3); |
2763 | 0 | } |
2764 | |
|
2765 | 0 | if (dstProfile->B2A.output_channels) { |
2766 | 0 | add_op(Op::clamp); |
2767 | 0 | add_op_ctx(Op::clut_B2A, &dstProfile->B2A); |
2768 | |
|
2769 | 0 | add_curve_ops(dstProfile->B2A.output_curves, |
2770 | 0 | (int)dstProfile->B2A.output_channels); |
2771 | 0 | } |
2772 | 34.4k | } else { |
2773 | | // This is a TRC destination. |
2774 | | // We'll concat any src->xyz matrix with our xyz->dst matrix into one src->dst matrix. |
2775 | | // (A2B sources are already in XYZD50, making that src->xyz matrix I.) |
2776 | 34.4k | static const skcms_Matrix3x3 I = {{ |
2777 | 34.4k | { 1.0f, 0.0f, 0.0f }, |
2778 | 34.4k | { 0.0f, 1.0f, 0.0f }, |
2779 | 34.4k | { 0.0f, 0.0f, 1.0f }, |
2780 | 34.4k | }}; |
2781 | 34.4k | const skcms_Matrix3x3* to_xyz = srcProfile->has_A2B ? &I : &srcProfile->toXYZD50; |
2782 | | |
2783 | | // There's a chance the source and destination gamuts are identical, |
2784 | | // in which case we can skip the gamut transform. |
2785 | 34.4k | if (0 != memcmp(&dstProfile->toXYZD50, to_xyz, sizeof(skcms_Matrix3x3))) { |
2786 | | // Concat the entire gamut transform into from_xyz, |
2787 | | // now slightly misnamed but it's a handy spot to stash the result. |
2788 | 34.4k | from_xyz = skcms_Matrix3x3_concat(&from_xyz, to_xyz); |
2789 | 34.4k | add_op_ctx(Op::matrix_3x3, &from_xyz); |
2790 | 34.4k | } |
2791 | | |
2792 | | // Encode back to dst RGB using its parametric transfer functions. |
2793 | 34.4k | OpAndArg oa[3]; |
2794 | 34.4k | int numOps = select_curve_ops(dst_curves, /*numChannels=*/3, oa); |
2795 | 34.4k | for (int index = 0; index < numOps; ++index) { |
2796 | 0 | assert(oa[index].op != Op::table_r && |
2797 | 0 | oa[index].op != Op::table_g && |
2798 | 0 | oa[index].op != Op::table_b && |
2799 | 0 | oa[index].op != Op::table_a); |
2800 | 0 | add_op_ctx(oa[index].op, oa[index].arg); |
2801 | 0 | } |
2802 | 34.4k | } |
2803 | 34.4k | } |
2804 | | |
2805 | | // Clamp here before premul to make sure we're clamping to normalized values _and_ gamut, |
2806 | | // not just to values that fit in [0,1]. |
2807 | | // |
2808 | | // E.g. r = 1.1, a = 0.5 would fit fine in fixed point after premul (ra=0.55,a=0.5), |
2809 | | // but would be carrying r > 1, which is really unexpected for downstream consumers. |
2810 | 34.4k | if (dstFmt < skcms_PixelFormat_RGB_hhh) { |
2811 | 34.4k | add_op(Op::clamp); |
2812 | 34.4k | } |
2813 | | |
2814 | 34.4k | if (dstProfile->data_color_space == skcms_Signature_CMYK) { |
2815 | | // Photoshop creates CMYK images as inverse CMYK. |
2816 | | // These happen to be the only ones we've _ever_ seen. |
2817 | 0 | add_op(Op::invert); |
2818 | | |
2819 | | // CMYK has no alpha channel, so make sure dstAlpha is a no-op. |
2820 | 0 | dstAlpha = skcms_AlphaFormat_Unpremul; |
2821 | 0 | } |
2822 | | |
2823 | 34.4k | if (dstAlpha == skcms_AlphaFormat_Opaque) { |
2824 | 0 | add_op(Op::force_opaque); |
2825 | 34.4k | } else if (dstAlpha == skcms_AlphaFormat_PremulAsEncoded) { |
2826 | 0 | add_op(Op::premul); |
2827 | 0 | } |
2828 | 34.4k | if (dstFmt & 1) { |
2829 | 0 | add_op(Op::swap_rb); |
2830 | 0 | } |
2831 | 34.4k | switch (dstFmt >> 1) { |
2832 | 0 | default: return false; |
2833 | 0 | case skcms_PixelFormat_A_8 >> 1: add_op(Op::store_a8); break; |
2834 | 0 | case skcms_PixelFormat_G_8 >> 1: add_op(Op::store_g8); break; |
2835 | 0 | case skcms_PixelFormat_ABGR_4444 >> 1: add_op(Op::store_4444); break; |
2836 | 0 | case skcms_PixelFormat_RGB_565 >> 1: add_op(Op::store_565); break; |
2837 | 34.4k | case skcms_PixelFormat_RGB_888 >> 1: add_op(Op::store_888); break; |
2838 | 0 | case skcms_PixelFormat_RGBA_8888 >> 1: add_op(Op::store_8888); break; |
2839 | 0 | case skcms_PixelFormat_RGBA_1010102 >> 1: add_op(Op::store_1010102); break; |
2840 | 0 | case skcms_PixelFormat_RGB_161616LE >> 1: add_op(Op::store_161616LE); break; |
2841 | 0 | case skcms_PixelFormat_RGBA_16161616LE >> 1: add_op(Op::store_16161616LE); break; |
2842 | 0 | case skcms_PixelFormat_RGB_161616BE >> 1: add_op(Op::store_161616BE); break; |
2843 | 0 | case skcms_PixelFormat_RGBA_16161616BE >> 1: add_op(Op::store_16161616BE); break; |
2844 | 0 | case skcms_PixelFormat_RGB_hhh_Norm >> 1: add_op(Op::store_hhh); break; |
2845 | 0 | case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: add_op(Op::store_hhhh); break; |
2846 | 0 | case skcms_PixelFormat_RGB_101010x_XR >> 1: add_op(Op::store_101010x_XR); break; |
2847 | 0 | case skcms_PixelFormat_RGB_hhh >> 1: add_op(Op::store_hhh); break; |
2848 | 0 | case skcms_PixelFormat_RGBA_hhhh >> 1: add_op(Op::store_hhhh); break; |
2849 | 0 | case skcms_PixelFormat_RGB_fff >> 1: add_op(Op::store_fff); break; |
2850 | 0 | case skcms_PixelFormat_RGBA_ffff >> 1: add_op(Op::store_ffff); break; |
2851 | | |
2852 | 0 | case skcms_PixelFormat_RGBA_8888_sRGB >> 1: |
2853 | 0 | add_op_ctx(Op::tf_rgb, skcms_sRGB_Inverse_TransferFunction()); |
2854 | 0 | add_op(Op::store_8888); |
2855 | 0 | break; |
2856 | 34.4k | } |
2857 | | |
2858 | 34.4k | assert(ops <= program + ARRAY_COUNT(program)); |
2859 | 34.4k | assert(contexts <= context + ARRAY_COUNT(context)); |
2860 | | |
2861 | 34.4k | auto run = baseline::run_program; |
2862 | 34.4k | #if defined(TEST_FOR_HSW) |
2863 | 34.4k | switch (cpu_type()) { |
2864 | 0 | case CpuType::None: break; |
2865 | 34.4k | case CpuType::HSW: run = hsw::run_program; break; |
2866 | 0 | case CpuType::SKX: run = hsw::run_program; break; |
2867 | 34.4k | } |
2868 | 34.4k | #endif |
2869 | 34.4k | #if defined(TEST_FOR_SKX) |
2870 | 34.4k | switch (cpu_type()) { |
2871 | 0 | case CpuType::None: break; |
2872 | 34.4k | case CpuType::HSW: break; |
2873 | 0 | case CpuType::SKX: run = skx::run_program; break; |
2874 | 34.4k | } |
2875 | 34.4k | #endif |
2876 | 34.4k | run(program, context, ops - program, (const char*)src, (char*)dst, n, src_bpp,dst_bpp); |
2877 | 34.4k | return true; |
2878 | 34.4k | } |
2879 | | |
2880 | 8.19k | static void assert_usable_as_destination(const skcms_ICCProfile* profile) { |
2881 | 8.19k | #if defined(NDEBUG) |
2882 | 8.19k | (void)profile; |
2883 | | #else |
2884 | | skcms_Matrix3x3 fromXYZD50; |
2885 | | skcms_TransferFunction invR, invG, invB; |
2886 | | assert(prep_for_destination(profile, &fromXYZD50, &invR, &invG, &invB)); |
2887 | | #endif |
2888 | 8.19k | } |
2889 | | |
2890 | 8.19k | bool skcms_MakeUsableAsDestination(skcms_ICCProfile* profile) { |
2891 | 8.19k | if (!profile->has_B2A) { |
2892 | 8.19k | skcms_Matrix3x3 fromXYZD50; |
2893 | 8.19k | if (!profile->has_trc || !profile->has_toXYZD50 |
2894 | 8.19k | || !skcms_Matrix3x3_invert(&profile->toXYZD50, &fromXYZD50)) { |
2895 | 0 | return false; |
2896 | 0 | } |
2897 | | |
2898 | 8.19k | skcms_TransferFunction tf[3]; |
2899 | 32.7k | for (int i = 0; i < 3; i++) { |
2900 | 24.5k | skcms_TransferFunction inv; |
2901 | 24.5k | if (profile->trc[i].table_entries == 0 |
2902 | 24.5k | && skcms_TransferFunction_invert(&profile->trc[i].parametric, &inv)) { |
2903 | 24.5k | tf[i] = profile->trc[i].parametric; |
2904 | 24.5k | continue; |
2905 | 24.5k | } |
2906 | | |
2907 | 0 | float max_error; |
2908 | | // Parametric curves from skcms_ApproximateCurve() are guaranteed to be invertible. |
2909 | 0 | if (!skcms_ApproximateCurve(&profile->trc[i], &tf[i], &max_error)) { |
2910 | 0 | return false; |
2911 | 0 | } |
2912 | 0 | } |
2913 | | |
2914 | 32.7k | for (int i = 0; i < 3; ++i) { |
2915 | 24.5k | profile->trc[i].table_entries = 0; |
2916 | 24.5k | profile->trc[i].parametric = tf[i]; |
2917 | 24.5k | } |
2918 | 8.19k | } |
2919 | 8.19k | assert_usable_as_destination(profile); |
2920 | 8.19k | return true; |
2921 | 8.19k | } |
2922 | | |
2923 | 0 | bool skcms_MakeUsableAsDestinationWithSingleCurve(skcms_ICCProfile* profile) { |
2924 | | // Call skcms_MakeUsableAsDestination() with B2A disabled; |
2925 | | // on success that'll return a TRC/XYZ profile with three skcms_TransferFunctions. |
2926 | 0 | skcms_ICCProfile result = *profile; |
2927 | 0 | result.has_B2A = false; |
2928 | 0 | if (!skcms_MakeUsableAsDestination(&result)) { |
2929 | 0 | return false; |
2930 | 0 | } |
2931 | | |
2932 | | // Of the three, pick the transfer function that best fits the other two. |
2933 | 0 | int best_tf = 0; |
2934 | 0 | float min_max_error = INFINITY_; |
2935 | 0 | for (int i = 0; i < 3; i++) { |
2936 | 0 | skcms_TransferFunction inv; |
2937 | 0 | if (!skcms_TransferFunction_invert(&result.trc[i].parametric, &inv)) { |
2938 | 0 | return false; |
2939 | 0 | } |
2940 | | |
2941 | 0 | float err = 0; |
2942 | 0 | for (int j = 0; j < 3; ++j) { |
2943 | 0 | err = fmaxf_(err, skcms_MaxRoundtripError(&profile->trc[j], &inv)); |
2944 | 0 | } |
2945 | 0 | if (min_max_error > err) { |
2946 | 0 | min_max_error = err; |
2947 | 0 | best_tf = i; |
2948 | 0 | } |
2949 | 0 | } |
2950 | | |
2951 | 0 | for (int i = 0; i < 3; i++) { |
2952 | 0 | result.trc[i].parametric = result.trc[best_tf].parametric; |
2953 | 0 | } |
2954 | |
|
2955 | 0 | *profile = result; |
2956 | 0 | assert_usable_as_destination(profile); |
2957 | 0 | return true; |
2958 | 0 | } |