Coverage Report

Created: 2025-06-22 08:04

/src/zstd/lib/decompress/zstd_decompress_block.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) Meta Platforms, Inc. and affiliates.
3
 * All rights reserved.
4
 *
5
 * This source code is licensed under both the BSD-style license (found in the
6
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
 * in the COPYING file in the root directory of this source tree).
8
 * You may select, at your option, one of the above-listed licenses.
9
 */
10
11
/* zstd_decompress_block :
12
 * this module takes care of decompressing _compressed_ block */
13
14
/*-*******************************************************
15
*  Dependencies
16
*********************************************************/
17
#include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
18
#include "../common/compiler.h"    /* prefetch */
19
#include "../common/cpu.h"         /* bmi2 */
20
#include "../common/mem.h"         /* low level memory routines */
21
#define FSE_STATIC_LINKING_ONLY
22
#include "../common/fse.h"
23
#include "../common/huf.h"
24
#include "../common/zstd_internal.h"
25
#include "zstd_decompress_internal.h"   /* ZSTD_DCtx */
26
#include "zstd_ddict.h"  /* ZSTD_DDictDictContent */
27
#include "zstd_decompress_block.h"
28
#include "../common/bits.h"  /* ZSTD_highbit32 */
29
30
/*_*******************************************************
31
*  Macros
32
**********************************************************/
33
34
/* These two optional macros force the use one way or another of the two
35
 * ZSTD_decompressSequences implementations. You can't force in both directions
36
 * at the same time.
37
 */
38
#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
39
    defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
40
#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
41
#endif
42
43
44
/*_*******************************************************
45
*  Memory operations
46
**********************************************************/
47
0
static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }
48
49
50
/*-*************************************************************
51
 *   Block decoding
52
 ***************************************************************/
53
54
static size_t ZSTD_blockSizeMax(ZSTD_DCtx const* dctx)
55
0
{
56
0
    size_t const blockSizeMax = dctx->isFrameDecompression ? dctx->fParams.blockSizeMax : ZSTD_BLOCKSIZE_MAX;
57
0
    assert(blockSizeMax <= ZSTD_BLOCKSIZE_MAX);
58
0
    return blockSizeMax;
59
0
}
60
61
/*! ZSTD_getcBlockSize() :
62
 *  Provides the size of compressed block from block header `src` */
63
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
64
                          blockProperties_t* bpPtr)
65
0
{
66
0
    RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");
67
68
0
    {   U32 const cBlockHeader = MEM_readLE24(src);
69
0
        U32 const cSize = cBlockHeader >> 3;
70
0
        bpPtr->lastBlock = cBlockHeader & 1;
71
0
        bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
72
0
        bpPtr->origSize = cSize;   /* only useful for RLE */
73
0
        if (bpPtr->blockType == bt_rle) return 1;
74
0
        RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
75
0
        return cSize;
76
0
    }
77
0
}
78
79
/* Allocate buffer for literals, either overlapping current dst, or split between dst and litExtraBuffer, or stored entirely within litExtraBuffer */
80
static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize,
81
    const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately)
82
0
{
83
0
    size_t const blockSizeMax = ZSTD_blockSizeMax(dctx);
84
0
    assert(litSize <= blockSizeMax);
85
0
    assert(dctx->isFrameDecompression || streaming == not_streaming);
86
0
    assert(expectedWriteSize <= blockSizeMax);
87
0
    if (streaming == not_streaming && dstCapacity > blockSizeMax + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH) {
88
        /* If we aren't streaming, we can just put the literals after the output
89
         * of the current block. We don't need to worry about overwriting the
90
         * extDict of our window, because it doesn't exist.
91
         * So if we have space after the end of the block, just put it there.
92
         */
93
0
        dctx->litBuffer = (BYTE*)dst + blockSizeMax + WILDCOPY_OVERLENGTH;
94
0
        dctx->litBufferEnd = dctx->litBuffer + litSize;
95
0
        dctx->litBufferLocation = ZSTD_in_dst;
96
0
    } else if (litSize <= ZSTD_LITBUFFEREXTRASIZE) {
97
        /* Literals fit entirely within the extra buffer, put them there to avoid
98
         * having to split the literals.
99
         */
100
0
        dctx->litBuffer = dctx->litExtraBuffer;
101
0
        dctx->litBufferEnd = dctx->litBuffer + litSize;
102
0
        dctx->litBufferLocation = ZSTD_not_in_dst;
103
0
    } else {
104
0
        assert(blockSizeMax > ZSTD_LITBUFFEREXTRASIZE);
105
        /* Literals must be split between the output block and the extra lit
106
         * buffer. We fill the extra lit buffer with the tail of the literals,
107
         * and put the rest of the literals at the end of the block, with
108
         * WILDCOPY_OVERLENGTH of buffer room to allow for overreads.
109
         * This MUST not write more than our maxBlockSize beyond dst, because in
110
         * streaming mode, that could overwrite part of our extDict window.
111
         */
112
0
        if (splitImmediately) {
113
            /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
114
0
            dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
115
0
            dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE;
116
0
        } else {
117
            /* initially this will be stored entirely in dst during huffman decoding, it will partially be shifted to litExtraBuffer after */
118
0
            dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize;
119
0
            dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize;
120
0
        }
121
0
        dctx->litBufferLocation = ZSTD_split;
122
0
        assert(dctx->litBufferEnd <= (BYTE*)dst + expectedWriteSize);
123
0
    }
124
0
}
125
126
/*! ZSTD_decodeLiteralsBlock() :
127
 * Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored
128
 * in the dstBuffer.  If there is room to do so, it will be stored in full in the excess dst space after where the current
129
 * block will be output.  Otherwise it will be stored at the end of the current dst blockspace, with a small portion being
130
 * stored in dctx->litExtraBuffer to help keep it "ahead" of the current output write.
131
 *
132
 * @return : nb of bytes read from src (< srcSize )
133
 *  note : symbol not declared but exposed for fullbench */
134
static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
135
                          const void* src, size_t srcSize,   /* note : srcSize < BLOCKSIZE */
136
                          void* dst, size_t dstCapacity, const streaming_operation streaming)
137
0
{
138
0
    DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
139
0
    RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
140
141
0
    {   const BYTE* const istart = (const BYTE*) src;
142
0
        SymbolEncodingType_e const litEncType = (SymbolEncodingType_e)(istart[0] & 3);
143
0
        size_t const blockSizeMax = ZSTD_blockSizeMax(dctx);
144
145
0
        switch(litEncType)
146
0
        {
147
0
        case set_repeat:
148
0
            DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
149
0
            RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
150
0
            ZSTD_FALLTHROUGH;
151
152
0
        case set_compressed:
153
0
            RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need up to 5 for case 3");
154
0
            {   size_t lhSize, litSize, litCSize;
155
0
                U32 singleStream=0;
156
0
                U32 const lhlCode = (istart[0] >> 2) & 3;
157
0
                U32 const lhc = MEM_readLE32(istart);
158
0
                size_t hufSuccess;
159
0
                size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
160
0
                int const flags = 0
161
0
                    | (ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0)
162
0
                    | (dctx->disableHufAsm ? HUF_flags_disableAsm : 0);
163
0
                switch(lhlCode)
164
0
                {
165
0
                case 0: case 1: default:   /* note : default is impossible, since lhlCode into [0..3] */
166
                    /* 2 - 2 - 10 - 10 */
167
0
                    singleStream = !lhlCode;
168
0
                    lhSize = 3;
169
0
                    litSize  = (lhc >> 4) & 0x3FF;
170
0
                    litCSize = (lhc >> 14) & 0x3FF;
171
0
                    break;
172
0
                case 2:
173
                    /* 2 - 2 - 14 - 14 */
174
0
                    lhSize = 4;
175
0
                    litSize  = (lhc >> 4) & 0x3FFF;
176
0
                    litCSize = lhc >> 18;
177
0
                    break;
178
0
                case 3:
179
                    /* 2 - 2 - 18 - 18 */
180
0
                    lhSize = 5;
181
0
                    litSize  = (lhc >> 4) & 0x3FFFF;
182
0
                    litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
183
0
                    break;
184
0
                }
185
0
                RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
186
0
                RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
187
0
                if (!singleStream)
188
0
                    RETURN_ERROR_IF(litSize < MIN_LITERALS_FOR_4_STREAMS, literals_headerWrong,
189
0
                        "Not enough literals (%zu) for the 4-streams mode (min %u)",
190
0
                        litSize, MIN_LITERALS_FOR_4_STREAMS);
191
0
                RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
192
0
                RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, "");
193
0
                ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0);
194
195
                /* prefetch huffman table if cold */
196
0
                if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
197
0
                    PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
198
0
                }
199
200
0
                if (litEncType==set_repeat) {
201
0
                    if (singleStream) {
202
0
                        hufSuccess = HUF_decompress1X_usingDTable(
203
0
                            dctx->litBuffer, litSize, istart+lhSize, litCSize,
204
0
                            dctx->HUFptr, flags);
205
0
                    } else {
206
0
                        assert(litSize >= MIN_LITERALS_FOR_4_STREAMS);
207
0
                        hufSuccess = HUF_decompress4X_usingDTable(
208
0
                            dctx->litBuffer, litSize, istart+lhSize, litCSize,
209
0
                            dctx->HUFptr, flags);
210
0
                    }
211
0
                } else {
212
0
                    if (singleStream) {
213
#if defined(HUF_FORCE_DECOMPRESS_X2)
214
                        hufSuccess = HUF_decompress1X_DCtx_wksp(
215
                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
216
                            istart+lhSize, litCSize, dctx->workspace,
217
                            sizeof(dctx->workspace), flags);
218
#else
219
0
                        hufSuccess = HUF_decompress1X1_DCtx_wksp(
220
0
                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
221
0
                            istart+lhSize, litCSize, dctx->workspace,
222
0
                            sizeof(dctx->workspace), flags);
223
0
#endif
224
0
                    } else {
225
0
                        hufSuccess = HUF_decompress4X_hufOnly_wksp(
226
0
                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
227
0
                            istart+lhSize, litCSize, dctx->workspace,
228
0
                            sizeof(dctx->workspace), flags);
229
0
                    }
230
0
                }
231
0
                if (dctx->litBufferLocation == ZSTD_split)
232
0
                {
233
0
                    assert(litSize > ZSTD_LITBUFFEREXTRASIZE);
234
0
                    ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
235
0
                    ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE);
236
0
                    dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
237
0
                    dctx->litBufferEnd -= WILDCOPY_OVERLENGTH;
238
0
                    assert(dctx->litBufferEnd <= (BYTE*)dst + blockSizeMax);
239
0
                }
240
241
0
                RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
242
243
0
                dctx->litPtr = dctx->litBuffer;
244
0
                dctx->litSize = litSize;
245
0
                dctx->litEntropy = 1;
246
0
                if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
247
0
                return litCSize + lhSize;
248
0
            }
249
250
0
        case set_basic:
251
0
            {   size_t litSize, lhSize;
252
0
                U32 const lhlCode = ((istart[0]) >> 2) & 3;
253
0
                size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
254
0
                switch(lhlCode)
255
0
                {
256
0
                case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
257
0
                    lhSize = 1;
258
0
                    litSize = istart[0] >> 3;
259
0
                    break;
260
0
                case 1:
261
0
                    lhSize = 2;
262
0
                    litSize = MEM_readLE16(istart) >> 4;
263
0
                    break;
264
0
                case 3:
265
0
                    lhSize = 3;
266
0
                    RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize = 3");
267
0
                    litSize = MEM_readLE24(istart) >> 4;
268
0
                    break;
269
0
                }
270
271
0
                RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
272
0
                RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
273
0
                RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
274
0
                ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
275
0
                if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) {  /* risk reading beyond src buffer with wildcopy */
276
0
                    RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
277
0
                    if (dctx->litBufferLocation == ZSTD_split)
278
0
                    {
279
0
                        ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize - ZSTD_LITBUFFEREXTRASIZE);
280
0
                        ZSTD_memcpy(dctx->litExtraBuffer, istart + lhSize + litSize - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
281
0
                    }
282
0
                    else
283
0
                    {
284
0
                        ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize);
285
0
                    }
286
0
                    dctx->litPtr = dctx->litBuffer;
287
0
                    dctx->litSize = litSize;
288
0
                    return lhSize+litSize;
289
0
                }
290
                /* direct reference into compressed stream */
291
0
                dctx->litPtr = istart+lhSize;
292
0
                dctx->litSize = litSize;
293
0
                dctx->litBufferEnd = dctx->litPtr + litSize;
294
0
                dctx->litBufferLocation = ZSTD_not_in_dst;
295
0
                return lhSize+litSize;
296
0
            }
297
298
0
        case set_rle:
299
0
            {   U32 const lhlCode = ((istart[0]) >> 2) & 3;
300
0
                size_t litSize, lhSize;
301
0
                size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
302
0
                switch(lhlCode)
303
0
                {
304
0
                case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
305
0
                    lhSize = 1;
306
0
                    litSize = istart[0] >> 3;
307
0
                    break;
308
0
                case 1:
309
0
                    lhSize = 2;
310
0
                    RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 3");
311
0
                    litSize = MEM_readLE16(istart) >> 4;
312
0
                    break;
313
0
                case 3:
314
0
                    lhSize = 3;
315
0
                    RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 4");
316
0
                    litSize = MEM_readLE24(istart) >> 4;
317
0
                    break;
318
0
                }
319
0
                RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
320
0
                RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
321
0
                RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
322
0
                ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
323
0
                if (dctx->litBufferLocation == ZSTD_split)
324
0
                {
325
0
                    ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize - ZSTD_LITBUFFEREXTRASIZE);
326
0
                    ZSTD_memset(dctx->litExtraBuffer, istart[lhSize], ZSTD_LITBUFFEREXTRASIZE);
327
0
                }
328
0
                else
329
0
                {
330
0
                    ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize);
331
0
                }
332
0
                dctx->litPtr = dctx->litBuffer;
333
0
                dctx->litSize = litSize;
334
0
                return lhSize+1;
335
0
            }
336
0
        default:
337
0
            RETURN_ERROR(corruption_detected, "impossible");
338
0
        }
339
0
    }
340
0
}
341
342
/* Hidden declaration for fullbench */
343
size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
344
                          const void* src, size_t srcSize,
345
                          void* dst, size_t dstCapacity);
346
size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
347
                          const void* src, size_t srcSize,
348
                          void* dst, size_t dstCapacity)
349
0
{
350
0
    dctx->isFrameDecompression = 0;
351
0
    return ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, not_streaming);
352
0
}
353
354
/* Default FSE distribution tables.
355
 * These are pre-calculated FSE decoding tables using default distributions as defined in specification :
356
 * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
357
 * They were generated programmatically with following method :
358
 * - start from default distributions, present in /lib/common/zstd_internal.h
359
 * - generate tables normally, using ZSTD_buildFSETable()
360
 * - printout the content of tables
361
 * - prettify output, report below, test with fuzzer to ensure it's correct */
362
363
/* Default FSE distribution table for Literal Lengths */
364
static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
365
     {  1,  1,  1, LL_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
366
     /* nextState, nbAddBits, nbBits, baseVal */
367
     {  0,  0,  4,    0},  { 16,  0,  4,    0},
368
     { 32,  0,  5,    1},  {  0,  0,  5,    3},
369
     {  0,  0,  5,    4},  {  0,  0,  5,    6},
370
     {  0,  0,  5,    7},  {  0,  0,  5,    9},
371
     {  0,  0,  5,   10},  {  0,  0,  5,   12},
372
     {  0,  0,  6,   14},  {  0,  1,  5,   16},
373
     {  0,  1,  5,   20},  {  0,  1,  5,   22},
374
     {  0,  2,  5,   28},  {  0,  3,  5,   32},
375
     {  0,  4,  5,   48},  { 32,  6,  5,   64},
376
     {  0,  7,  5,  128},  {  0,  8,  6,  256},
377
     {  0, 10,  6, 1024},  {  0, 12,  6, 4096},
378
     { 32,  0,  4,    0},  {  0,  0,  4,    1},
379
     {  0,  0,  5,    2},  { 32,  0,  5,    4},
380
     {  0,  0,  5,    5},  { 32,  0,  5,    7},
381
     {  0,  0,  5,    8},  { 32,  0,  5,   10},
382
     {  0,  0,  5,   11},  {  0,  0,  6,   13},
383
     { 32,  1,  5,   16},  {  0,  1,  5,   18},
384
     { 32,  1,  5,   22},  {  0,  2,  5,   24},
385
     { 32,  3,  5,   32},  {  0,  3,  5,   40},
386
     {  0,  6,  4,   64},  { 16,  6,  4,   64},
387
     { 32,  7,  5,  128},  {  0,  9,  6,  512},
388
     {  0, 11,  6, 2048},  { 48,  0,  4,    0},
389
     { 16,  0,  4,    1},  { 32,  0,  5,    2},
390
     { 32,  0,  5,    3},  { 32,  0,  5,    5},
391
     { 32,  0,  5,    6},  { 32,  0,  5,    8},
392
     { 32,  0,  5,    9},  { 32,  0,  5,   11},
393
     { 32,  0,  5,   12},  {  0,  0,  6,   15},
394
     { 32,  1,  5,   18},  { 32,  1,  5,   20},
395
     { 32,  2,  5,   24},  { 32,  2,  5,   28},
396
     { 32,  3,  5,   40},  { 32,  4,  5,   48},
397
     {  0, 16,  6,65536},  {  0, 15,  6,32768},
398
     {  0, 14,  6,16384},  {  0, 13,  6, 8192},
399
};   /* LL_defaultDTable */
400
401
/* Default FSE distribution table for Offset Codes */
402
static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
403
    {  1,  1,  1, OF_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
404
    /* nextState, nbAddBits, nbBits, baseVal */
405
    {  0,  0,  5,    0},     {  0,  6,  4,   61},
406
    {  0,  9,  5,  509},     {  0, 15,  5,32765},
407
    {  0, 21,  5,2097149},   {  0,  3,  5,    5},
408
    {  0,  7,  4,  125},     {  0, 12,  5, 4093},
409
    {  0, 18,  5,262141},    {  0, 23,  5,8388605},
410
    {  0,  5,  5,   29},     {  0,  8,  4,  253},
411
    {  0, 14,  5,16381},     {  0, 20,  5,1048573},
412
    {  0,  2,  5,    1},     { 16,  7,  4,  125},
413
    {  0, 11,  5, 2045},     {  0, 17,  5,131069},
414
    {  0, 22,  5,4194301},   {  0,  4,  5,   13},
415
    { 16,  8,  4,  253},     {  0, 13,  5, 8189},
416
    {  0, 19,  5,524285},    {  0,  1,  5,    1},
417
    { 16,  6,  4,   61},     {  0, 10,  5, 1021},
418
    {  0, 16,  5,65533},     {  0, 28,  5,268435453},
419
    {  0, 27,  5,134217725}, {  0, 26,  5,67108861},
420
    {  0, 25,  5,33554429},  {  0, 24,  5,16777213},
421
};   /* OF_defaultDTable */
422
423
424
/* Default FSE distribution table for Match Lengths */
425
static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
426
    {  1,  1,  1, ML_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
427
    /* nextState, nbAddBits, nbBits, baseVal */
428
    {  0,  0,  6,    3},  {  0,  0,  4,    4},
429
    { 32,  0,  5,    5},  {  0,  0,  5,    6},
430
    {  0,  0,  5,    8},  {  0,  0,  5,    9},
431
    {  0,  0,  5,   11},  {  0,  0,  6,   13},
432
    {  0,  0,  6,   16},  {  0,  0,  6,   19},
433
    {  0,  0,  6,   22},  {  0,  0,  6,   25},
434
    {  0,  0,  6,   28},  {  0,  0,  6,   31},
435
    {  0,  0,  6,   34},  {  0,  1,  6,   37},
436
    {  0,  1,  6,   41},  {  0,  2,  6,   47},
437
    {  0,  3,  6,   59},  {  0,  4,  6,   83},
438
    {  0,  7,  6,  131},  {  0,  9,  6,  515},
439
    { 16,  0,  4,    4},  {  0,  0,  4,    5},
440
    { 32,  0,  5,    6},  {  0,  0,  5,    7},
441
    { 32,  0,  5,    9},  {  0,  0,  5,   10},
442
    {  0,  0,  6,   12},  {  0,  0,  6,   15},
443
    {  0,  0,  6,   18},  {  0,  0,  6,   21},
444
    {  0,  0,  6,   24},  {  0,  0,  6,   27},
445
    {  0,  0,  6,   30},  {  0,  0,  6,   33},
446
    {  0,  1,  6,   35},  {  0,  1,  6,   39},
447
    {  0,  2,  6,   43},  {  0,  3,  6,   51},
448
    {  0,  4,  6,   67},  {  0,  5,  6,   99},
449
    {  0,  8,  6,  259},  { 32,  0,  4,    4},
450
    { 48,  0,  4,    4},  { 16,  0,  4,    5},
451
    { 32,  0,  5,    7},  { 32,  0,  5,    8},
452
    { 32,  0,  5,   10},  { 32,  0,  5,   11},
453
    {  0,  0,  6,   14},  {  0,  0,  6,   17},
454
    {  0,  0,  6,   20},  {  0,  0,  6,   23},
455
    {  0,  0,  6,   26},  {  0,  0,  6,   29},
456
    {  0,  0,  6,   32},  {  0, 16,  6,65539},
457
    {  0, 15,  6,32771},  {  0, 14,  6,16387},
458
    {  0, 13,  6, 8195},  {  0, 12,  6, 4099},
459
    {  0, 11,  6, 2051},  {  0, 10,  6, 1027},
460
};   /* ML_defaultDTable */
461
462
463
static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U8 nbAddBits)
464
0
{
465
0
    void* ptr = dt;
466
0
    ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
467
0
    ZSTD_seqSymbol* const cell = dt + 1;
468
469
0
    DTableH->tableLog = 0;
470
0
    DTableH->fastMode = 0;
471
472
0
    cell->nbBits = 0;
473
0
    cell->nextState = 0;
474
0
    assert(nbAddBits < 255);
475
0
    cell->nbAdditionalBits = nbAddBits;
476
0
    cell->baseValue = baseValue;
477
0
}
478
479
480
/* ZSTD_buildFSETable() :
481
 * generate FSE decoding table for one symbol (ll, ml or off)
482
 * cannot fail if input is valid =>
483
 * all inputs are presumed validated at this stage */
484
FORCE_INLINE_TEMPLATE
485
void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
486
            const short* normalizedCounter, unsigned maxSymbolValue,
487
            const U32* baseValue, const U8* nbAdditionalBits,
488
            unsigned tableLog, void* wksp, size_t wkspSize)
489
0
{
490
0
    ZSTD_seqSymbol* const tableDecode = dt+1;
491
0
    U32 const maxSV1 = maxSymbolValue + 1;
492
0
    U32 const tableSize = 1 << tableLog;
493
494
0
    U16* symbolNext = (U16*)wksp;
495
0
    BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1);
496
0
    U32 highThreshold = tableSize - 1;
497
498
499
    /* Sanity Checks */
500
0
    assert(maxSymbolValue <= MaxSeq);
501
0
    assert(tableLog <= MaxFSELog);
502
0
    assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE);
503
0
    (void)wkspSize;
504
    /* Init, lay down lowprob symbols */
505
0
    {   ZSTD_seqSymbol_header DTableH;
506
0
        DTableH.tableLog = tableLog;
507
0
        DTableH.fastMode = 1;
508
0
        {   S16 const largeLimit= (S16)(1 << (tableLog-1));
509
0
            U32 s;
510
0
            for (s=0; s<maxSV1; s++) {
511
0
                if (normalizedCounter[s]==-1) {
512
0
                    tableDecode[highThreshold--].baseValue = s;
513
0
                    symbolNext[s] = 1;
514
0
                } else {
515
0
                    if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
516
0
                    assert(normalizedCounter[s]>=0);
517
0
                    symbolNext[s] = (U16)normalizedCounter[s];
518
0
        }   }   }
519
0
        ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
520
0
    }
521
522
    /* Spread symbols */
523
0
    assert(tableSize <= 512);
524
    /* Specialized symbol spreading for the case when there are
525
     * no low probability (-1 count) symbols. When compressing
526
     * small blocks we avoid low probability symbols to hit this
527
     * case, since header decoding speed matters more.
528
     */
529
0
    if (highThreshold == tableSize - 1) {
530
0
        size_t const tableMask = tableSize-1;
531
0
        size_t const step = FSE_TABLESTEP(tableSize);
532
        /* First lay down the symbols in order.
533
         * We use a uint64_t to lay down 8 bytes at a time. This reduces branch
534
         * misses since small blocks generally have small table logs, so nearly
535
         * all symbols have counts <= 8. We ensure we have 8 bytes at the end of
536
         * our buffer to handle the over-write.
537
         */
538
0
        {
539
0
            U64 const add = 0x0101010101010101ull;
540
0
            size_t pos = 0;
541
0
            U64 sv = 0;
542
0
            U32 s;
543
0
            for (s=0; s<maxSV1; ++s, sv += add) {
544
0
                int i;
545
0
                int const n = normalizedCounter[s];
546
0
                MEM_write64(spread + pos, sv);
547
0
                for (i = 8; i < n; i += 8) {
548
0
                    MEM_write64(spread + pos + i, sv);
549
0
                }
550
0
                assert(n>=0);
551
0
                pos += (size_t)n;
552
0
            }
553
0
        }
554
        /* Now we spread those positions across the table.
555
         * The benefit of doing it in two stages is that we avoid the
556
         * variable size inner loop, which caused lots of branch misses.
557
         * Now we can run through all the positions without any branch misses.
558
         * We unroll the loop twice, since that is what empirically worked best.
559
         */
560
0
        {
561
0
            size_t position = 0;
562
0
            size_t s;
563
0
            size_t const unroll = 2;
564
0
            assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
565
0
            for (s = 0; s < (size_t)tableSize; s += unroll) {
566
0
                size_t u;
567
0
                for (u = 0; u < unroll; ++u) {
568
0
                    size_t const uPosition = (position + (u * step)) & tableMask;
569
0
                    tableDecode[uPosition].baseValue = spread[s + u];
570
0
                }
571
0
                position = (position + (unroll * step)) & tableMask;
572
0
            }
573
0
            assert(position == 0);
574
0
        }
575
0
    } else {
576
0
        U32 const tableMask = tableSize-1;
577
0
        U32 const step = FSE_TABLESTEP(tableSize);
578
0
        U32 s, position = 0;
579
0
        for (s=0; s<maxSV1; s++) {
580
0
            int i;
581
0
            int const n = normalizedCounter[s];
582
0
            for (i=0; i<n; i++) {
583
0
                tableDecode[position].baseValue = s;
584
0
                position = (position + step) & tableMask;
585
0
                while (UNLIKELY(position > highThreshold)) position = (position + step) & tableMask;   /* lowprob area */
586
0
        }   }
587
0
        assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
588
0
    }
589
590
    /* Build Decoding table */
591
0
    {
592
0
        U32 u;
593
0
        for (u=0; u<tableSize; u++) {
594
0
            U32 const symbol = tableDecode[u].baseValue;
595
0
            U32 const nextState = symbolNext[symbol]++;
596
0
            tableDecode[u].nbBits = (BYTE) (tableLog - ZSTD_highbit32(nextState) );
597
0
            tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
598
0
            assert(nbAdditionalBits[symbol] < 255);
599
0
            tableDecode[u].nbAdditionalBits = nbAdditionalBits[symbol];
600
0
            tableDecode[u].baseValue = baseValue[symbol];
601
0
        }
602
0
    }
603
0
}
604
605
/* Avoids the FORCE_INLINE of the _body() function. */
606
static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt,
607
            const short* normalizedCounter, unsigned maxSymbolValue,
608
            const U32* baseValue, const U8* nbAdditionalBits,
609
            unsigned tableLog, void* wksp, size_t wkspSize)
610
0
{
611
0
    ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
612
0
            baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
613
0
}
614
615
#if DYNAMIC_BMI2
616
BMI2_TARGET_ATTRIBUTE static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
617
            const short* normalizedCounter, unsigned maxSymbolValue,
618
            const U32* baseValue, const U8* nbAdditionalBits,
619
            unsigned tableLog, void* wksp, size_t wkspSize)
620
0
{
621
0
    ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
622
0
            baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
623
0
}
624
#endif
625
626
void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
627
            const short* normalizedCounter, unsigned maxSymbolValue,
628
            const U32* baseValue, const U8* nbAdditionalBits,
629
            unsigned tableLog, void* wksp, size_t wkspSize, int bmi2)
630
0
{
631
0
#if DYNAMIC_BMI2
632
0
    if (bmi2) {
633
0
        ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue,
634
0
                baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
635
0
        return;
636
0
    }
637
0
#endif
638
0
    (void)bmi2;
639
0
    ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue,
640
0
            baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
641
0
}
642
643
644
/*! ZSTD_buildSeqTable() :
645
 * @return : nb bytes read from src,
646
 *           or an error code if it fails */
647
static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
648
                                 SymbolEncodingType_e type, unsigned max, U32 maxLog,
649
                                 const void* src, size_t srcSize,
650
                                 const U32* baseValue, const U8* nbAdditionalBits,
651
                                 const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
652
                                 int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize,
653
                                 int bmi2)
654
0
{
655
0
    switch(type)
656
0
    {
657
0
    case set_rle :
658
0
        RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
659
0
        RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
660
0
        {   U32 const symbol = *(const BYTE*)src;
661
0
            U32 const baseline = baseValue[symbol];
662
0
            U8 const nbBits = nbAdditionalBits[symbol];
663
0
            ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
664
0
        }
665
0
        *DTablePtr = DTableSpace;
666
0
        return 1;
667
0
    case set_basic :
668
0
        *DTablePtr = defaultTable;
669
0
        return 0;
670
0
    case set_repeat:
671
0
        RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
672
        /* prefetch FSE table if used */
673
0
        if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
674
0
            const void* const pStart = *DTablePtr;
675
0
            size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
676
0
            PREFETCH_AREA(pStart, pSize);
677
0
        }
678
0
        return 0;
679
0
    case set_compressed :
680
0
        {   unsigned tableLog;
681
0
            S16 norm[MaxSeq+1];
682
0
            size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
683
0
            RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
684
0
            RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
685
0
            ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2);
686
0
            *DTablePtr = DTableSpace;
687
0
            return headerSize;
688
0
        }
689
0
    default :
690
0
        assert(0);
691
0
        RETURN_ERROR(GENERIC, "impossible");
692
0
    }
693
0
}
694
695
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
696
                             const void* src, size_t srcSize)
697
0
{
698
0
    const BYTE* const istart = (const BYTE*)src;
699
0
    const BYTE* const iend = istart + srcSize;
700
0
    const BYTE* ip = istart;
701
0
    int nbSeq;
702
0
    DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
703
704
    /* check */
705
0
    RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");
706
707
    /* SeqHead */
708
0
    nbSeq = *ip++;
709
0
    if (nbSeq > 0x7F) {
710
0
        if (nbSeq == 0xFF) {
711
0
            RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
712
0
            nbSeq = MEM_readLE16(ip) + LONGNBSEQ;
713
0
            ip+=2;
714
0
        } else {
715
0
            RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
716
0
            nbSeq = ((nbSeq-0x80)<<8) + *ip++;
717
0
        }
718
0
    }
719
0
    *nbSeqPtr = nbSeq;
720
721
0
    if (nbSeq == 0) {
722
        /* No sequence : section ends immediately */
723
0
        RETURN_ERROR_IF(ip != iend, corruption_detected,
724
0
            "extraneous data present in the Sequences section");
725
0
        return (size_t)(ip - istart);
726
0
    }
727
728
    /* FSE table descriptors */
729
0
    RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
730
0
    RETURN_ERROR_IF(*ip & 3, corruption_detected, ""); /* The last field, Reserved, must be all-zeroes. */
731
0
    {   SymbolEncodingType_e const LLtype = (SymbolEncodingType_e)(*ip >> 6);
732
0
        SymbolEncodingType_e const OFtype = (SymbolEncodingType_e)((*ip >> 4) & 3);
733
0
        SymbolEncodingType_e const MLtype = (SymbolEncodingType_e)((*ip >> 2) & 3);
734
0
        ip++;
735
736
        /* Build DTables */
737
0
        {   size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
738
0
                                                      LLtype, MaxLL, LLFSELog,
739
0
                                                      ip, iend-ip,
740
0
                                                      LL_base, LL_bits,
741
0
                                                      LL_defaultDTable, dctx->fseEntropy,
742
0
                                                      dctx->ddictIsCold, nbSeq,
743
0
                                                      dctx->workspace, sizeof(dctx->workspace),
744
0
                                                      ZSTD_DCtx_get_bmi2(dctx));
745
0
            RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
746
0
            ip += llhSize;
747
0
        }
748
749
0
        {   size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
750
0
                                                      OFtype, MaxOff, OffFSELog,
751
0
                                                      ip, iend-ip,
752
0
                                                      OF_base, OF_bits,
753
0
                                                      OF_defaultDTable, dctx->fseEntropy,
754
0
                                                      dctx->ddictIsCold, nbSeq,
755
0
                                                      dctx->workspace, sizeof(dctx->workspace),
756
0
                                                      ZSTD_DCtx_get_bmi2(dctx));
757
0
            RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
758
0
            ip += ofhSize;
759
0
        }
760
761
0
        {   size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
762
0
                                                      MLtype, MaxML, MLFSELog,
763
0
                                                      ip, iend-ip,
764
0
                                                      ML_base, ML_bits,
765
0
                                                      ML_defaultDTable, dctx->fseEntropy,
766
0
                                                      dctx->ddictIsCold, nbSeq,
767
0
                                                      dctx->workspace, sizeof(dctx->workspace),
768
0
                                                      ZSTD_DCtx_get_bmi2(dctx));
769
0
            RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
770
0
            ip += mlhSize;
771
0
        }
772
0
    }
773
774
0
    return ip-istart;
775
0
}
776
777
778
typedef struct {
779
    size_t litLength;
780
    size_t matchLength;
781
    size_t offset;
782
} seq_t;
783
784
typedef struct {
785
    size_t state;
786
    const ZSTD_seqSymbol* table;
787
} ZSTD_fseState;
788
789
typedef struct {
790
    BIT_DStream_t DStream;
791
    ZSTD_fseState stateLL;
792
    ZSTD_fseState stateOffb;
793
    ZSTD_fseState stateML;
794
    size_t prevOffset[ZSTD_REP_NUM];
795
} seqState_t;
796
797
/*! ZSTD_overlapCopy8() :
798
 *  Copies 8 bytes from ip to op and updates op and ip where ip <= op.
799
 *  If the offset is < 8 then the offset is spread to at least 8 bytes.
800
 *
801
 *  Precondition: *ip <= *op
802
 *  Postcondition: *op - *op >= 8
803
 */
804
0
HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
805
0
    assert(*ip <= *op);
806
0
    if (offset < 8) {
807
        /* close range match, overlap */
808
0
        static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
809
0
        static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* subtracted */
810
0
        int const sub2 = dec64table[offset];
811
0
        (*op)[0] = (*ip)[0];
812
0
        (*op)[1] = (*ip)[1];
813
0
        (*op)[2] = (*ip)[2];
814
0
        (*op)[3] = (*ip)[3];
815
0
        *ip += dec32table[offset];
816
0
        ZSTD_copy4(*op+4, *ip);
817
0
        *ip -= sub2;
818
0
    } else {
819
0
        ZSTD_copy8(*op, *ip);
820
0
    }
821
0
    *ip += 8;
822
0
    *op += 8;
823
0
    assert(*op - *ip >= 8);
824
0
}
825
826
/*! ZSTD_safecopy() :
827
 *  Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
828
 *  and write up to 16 bytes past oend_w (op >= oend_w is allowed).
829
 *  This function is only called in the uncommon case where the sequence is near the end of the block. It
830
 *  should be fast for a single long sequence, but can be slow for several short sequences.
831
 *
832
 *  @param ovtype controls the overlap detection
833
 *         - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
834
 *         - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
835
 *           The src buffer must be before the dst buffer.
836
 */
837
0
static void ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
838
0
    ptrdiff_t const diff = op - ip;
839
0
    BYTE* const oend = op + length;
840
841
0
    assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
842
0
           (ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
843
844
0
    if (length < 8) {
845
        /* Handle short lengths. */
846
0
        while (op < oend) *op++ = *ip++;
847
0
        return;
848
0
    }
849
0
    if (ovtype == ZSTD_overlap_src_before_dst) {
850
        /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
851
0
        assert(length >= 8);
852
0
        ZSTD_overlapCopy8(&op, &ip, diff);
853
0
        length -= 8;
854
0
        assert(op - ip >= 8);
855
0
        assert(op <= oend);
856
0
    }
857
858
0
    if (oend <= oend_w) {
859
        /* No risk of overwrite. */
860
0
        ZSTD_wildcopy(op, ip, length, ovtype);
861
0
        return;
862
0
    }
863
0
    if (op <= oend_w) {
864
        /* Wildcopy until we get close to the end. */
865
0
        assert(oend > oend_w);
866
0
        ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
867
0
        ip += oend_w - op;
868
0
        op += oend_w - op;
869
0
    }
870
    /* Handle the leftovers. */
871
0
    while (op < oend) *op++ = *ip++;
872
0
}
873
874
/* ZSTD_safecopyDstBeforeSrc():
875
 * This version allows overlap with dst before src, or handles the non-overlap case with dst after src
876
 * Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */
877
0
static void ZSTD_safecopyDstBeforeSrc(BYTE* op, const BYTE* ip, ptrdiff_t length) {
878
0
    ptrdiff_t const diff = op - ip;
879
0
    BYTE* const oend = op + length;
880
881
0
    if (length < 8 || diff > -8) {
882
        /* Handle short lengths, close overlaps, and dst not before src. */
883
0
        while (op < oend) *op++ = *ip++;
884
0
        return;
885
0
    }
886
887
0
    if (op <= oend - WILDCOPY_OVERLENGTH && diff < -WILDCOPY_VECLEN) {
888
0
        ZSTD_wildcopy(op, ip, oend - WILDCOPY_OVERLENGTH - op, ZSTD_no_overlap);
889
0
        ip += oend - WILDCOPY_OVERLENGTH - op;
890
0
        op += oend - WILDCOPY_OVERLENGTH - op;
891
0
    }
892
893
    /* Handle the leftovers. */
894
0
    while (op < oend) *op++ = *ip++;
895
0
}
896
897
/* ZSTD_execSequenceEnd():
898
 * This version handles cases that are near the end of the output buffer. It requires
899
 * more careful checks to make sure there is no overflow. By separating out these hard
900
 * and unlikely cases, we can speed up the common cases.
901
 *
902
 * NOTE: This function needs to be fast for a single long sequence, but doesn't need
903
 * to be optimized for many small sequences, since those fall into ZSTD_execSequence().
904
 */
905
FORCE_NOINLINE
906
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
907
size_t ZSTD_execSequenceEnd(BYTE* op,
908
    BYTE* const oend, seq_t sequence,
909
    const BYTE** litPtr, const BYTE* const litLimit,
910
    const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
911
0
{
912
0
    BYTE* const oLitEnd = op + sequence.litLength;
913
0
    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
914
0
    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
915
0
    const BYTE* match = oLitEnd - sequence.offset;
916
0
    BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
917
918
    /* bounds checks : careful of address space overflow in 32-bit mode */
919
0
    RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
920
0
    RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
921
0
    assert(op < op + sequenceLength);
922
0
    assert(oLitEnd < op + sequenceLength);
923
924
    /* copy literals */
925
0
    ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
926
0
    op = oLitEnd;
927
0
    *litPtr = iLitEnd;
928
929
    /* copy Match */
930
0
    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
931
        /* offset beyond prefix */
932
0
        RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
933
0
        match = dictEnd - (prefixStart - match);
934
0
        if (match + sequence.matchLength <= dictEnd) {
935
0
            ZSTD_memmove(oLitEnd, match, sequence.matchLength);
936
0
            return sequenceLength;
937
0
        }
938
        /* span extDict & currentPrefixSegment */
939
0
        {   size_t const length1 = dictEnd - match;
940
0
        ZSTD_memmove(oLitEnd, match, length1);
941
0
        op = oLitEnd + length1;
942
0
        sequence.matchLength -= length1;
943
0
        match = prefixStart;
944
0
        }
945
0
    }
946
0
    ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
947
0
    return sequenceLength;
948
0
}
949
950
/* ZSTD_execSequenceEndSplitLitBuffer():
951
 * This version is intended to be used during instances where the litBuffer is still split.  It is kept separate to avoid performance impact for the good case.
952
 */
953
FORCE_NOINLINE
954
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
955
size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op,
956
    BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
957
    const BYTE** litPtr, const BYTE* const litLimit,
958
    const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
959
0
{
960
0
    BYTE* const oLitEnd = op + sequence.litLength;
961
0
    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
962
0
    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
963
0
    const BYTE* match = oLitEnd - sequence.offset;
964
965
966
    /* bounds checks : careful of address space overflow in 32-bit mode */
967
0
    RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
968
0
    RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
969
0
    assert(op < op + sequenceLength);
970
0
    assert(oLitEnd < op + sequenceLength);
971
972
    /* copy literals */
973
0
    RETURN_ERROR_IF(op > *litPtr && op < *litPtr + sequence.litLength, dstSize_tooSmall, "output should not catch up to and overwrite literal buffer");
974
0
    ZSTD_safecopyDstBeforeSrc(op, *litPtr, sequence.litLength);
975
0
    op = oLitEnd;
976
0
    *litPtr = iLitEnd;
977
978
    /* copy Match */
979
0
    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
980
        /* offset beyond prefix */
981
0
        RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
982
0
        match = dictEnd - (prefixStart - match);
983
0
        if (match + sequence.matchLength <= dictEnd) {
984
0
            ZSTD_memmove(oLitEnd, match, sequence.matchLength);
985
0
            return sequenceLength;
986
0
        }
987
        /* span extDict & currentPrefixSegment */
988
0
        {   size_t const length1 = dictEnd - match;
989
0
        ZSTD_memmove(oLitEnd, match, length1);
990
0
        op = oLitEnd + length1;
991
0
        sequence.matchLength -= length1;
992
0
        match = prefixStart;
993
0
        }
994
0
    }
995
0
    ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
996
0
    return sequenceLength;
997
0
}
998
999
HINT_INLINE
1000
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
1001
size_t ZSTD_execSequence(BYTE* op,
1002
    BYTE* const oend, seq_t sequence,
1003
    const BYTE** litPtr, const BYTE* const litLimit,
1004
    const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
1005
0
{
1006
0
    BYTE* const oLitEnd = op + sequence.litLength;
1007
0
    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
1008
0
    BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
1009
0
    BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;   /* risk : address space underflow on oend=NULL */
1010
0
    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
1011
0
    const BYTE* match = oLitEnd - sequence.offset;
1012
1013
0
    assert(op != NULL /* Precondition */);
1014
0
    assert(oend_w < oend /* No underflow */);
1015
1016
#if defined(__aarch64__)
1017
    /* prefetch sequence starting from match that will be used for copy later */
1018
    PREFETCH_L1(match);
1019
#endif
1020
    /* Handle edge cases in a slow path:
1021
     *   - Read beyond end of literals
1022
     *   - Match end is within WILDCOPY_OVERLIMIT of oend
1023
     *   - 32-bit mode and the match length overflows
1024
     */
1025
0
    if (UNLIKELY(
1026
0
        iLitEnd > litLimit ||
1027
0
        oMatchEnd > oend_w ||
1028
0
        (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
1029
0
        return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
1030
1031
    /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
1032
0
    assert(op <= oLitEnd /* No overflow */);
1033
0
    assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
1034
0
    assert(oMatchEnd <= oend /* No underflow */);
1035
0
    assert(iLitEnd <= litLimit /* Literal length is in bounds */);
1036
0
    assert(oLitEnd <= oend_w /* Can wildcopy literals */);
1037
0
    assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
1038
1039
    /* Copy Literals:
1040
     * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
1041
     * We likely don't need the full 32-byte wildcopy.
1042
     */
1043
0
    assert(WILDCOPY_OVERLENGTH >= 16);
1044
0
    ZSTD_copy16(op, (*litPtr));
1045
0
    if (UNLIKELY(sequence.litLength > 16)) {
1046
0
        ZSTD_wildcopy(op + 16, (*litPtr) + 16, sequence.litLength - 16, ZSTD_no_overlap);
1047
0
    }
1048
0
    op = oLitEnd;
1049
0
    *litPtr = iLitEnd;   /* update for next sequence */
1050
1051
    /* Copy Match */
1052
0
    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1053
        /* offset beyond prefix -> go into extDict */
1054
0
        RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1055
0
        match = dictEnd + (match - prefixStart);
1056
0
        if (match + sequence.matchLength <= dictEnd) {
1057
0
            ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1058
0
            return sequenceLength;
1059
0
        }
1060
        /* span extDict & currentPrefixSegment */
1061
0
        {   size_t const length1 = dictEnd - match;
1062
0
        ZSTD_memmove(oLitEnd, match, length1);
1063
0
        op = oLitEnd + length1;
1064
0
        sequence.matchLength -= length1;
1065
0
        match = prefixStart;
1066
0
        }
1067
0
    }
1068
    /* Match within prefix of 1 or more bytes */
1069
0
    assert(op <= oMatchEnd);
1070
0
    assert(oMatchEnd <= oend_w);
1071
0
    assert(match >= prefixStart);
1072
0
    assert(sequence.matchLength >= 1);
1073
1074
    /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1075
     * without overlap checking.
1076
     */
1077
0
    if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1078
        /* We bet on a full wildcopy for matches, since we expect matches to be
1079
         * longer than literals (in general). In silesia, ~10% of matches are longer
1080
         * than 16 bytes.
1081
         */
1082
0
        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1083
0
        return sequenceLength;
1084
0
    }
1085
0
    assert(sequence.offset < WILDCOPY_VECLEN);
1086
1087
    /* Copy 8 bytes and spread the offset to be >= 8. */
1088
0
    ZSTD_overlapCopy8(&op, &match, sequence.offset);
1089
1090
    /* If the match length is > 8 bytes, then continue with the wildcopy. */
1091
0
    if (sequence.matchLength > 8) {
1092
0
        assert(op < oMatchEnd);
1093
0
        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8, ZSTD_overlap_src_before_dst);
1094
0
    }
1095
0
    return sequenceLength;
1096
0
}
1097
1098
HINT_INLINE
1099
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
1100
size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op,
1101
    BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
1102
    const BYTE** litPtr, const BYTE* const litLimit,
1103
    const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
1104
0
{
1105
0
    BYTE* const oLitEnd = op + sequence.litLength;
1106
0
    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
1107
0
    BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
1108
0
    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
1109
0
    const BYTE* match = oLitEnd - sequence.offset;
1110
1111
0
    assert(op != NULL /* Precondition */);
1112
0
    assert(oend_w < oend /* No underflow */);
1113
    /* Handle edge cases in a slow path:
1114
     *   - Read beyond end of literals
1115
     *   - Match end is within WILDCOPY_OVERLIMIT of oend
1116
     *   - 32-bit mode and the match length overflows
1117
     */
1118
0
    if (UNLIKELY(
1119
0
            iLitEnd > litLimit ||
1120
0
            oMatchEnd > oend_w ||
1121
0
            (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
1122
0
        return ZSTD_execSequenceEndSplitLitBuffer(op, oend, oend_w, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
1123
1124
    /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
1125
0
    assert(op <= oLitEnd /* No overflow */);
1126
0
    assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
1127
0
    assert(oMatchEnd <= oend /* No underflow */);
1128
0
    assert(iLitEnd <= litLimit /* Literal length is in bounds */);
1129
0
    assert(oLitEnd <= oend_w /* Can wildcopy literals */);
1130
0
    assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
1131
1132
    /* Copy Literals:
1133
     * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
1134
     * We likely don't need the full 32-byte wildcopy.
1135
     */
1136
0
    assert(WILDCOPY_OVERLENGTH >= 16);
1137
0
    ZSTD_copy16(op, (*litPtr));
1138
0
    if (UNLIKELY(sequence.litLength > 16)) {
1139
0
        ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
1140
0
    }
1141
0
    op = oLitEnd;
1142
0
    *litPtr = iLitEnd;   /* update for next sequence */
1143
1144
    /* Copy Match */
1145
0
    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1146
        /* offset beyond prefix -> go into extDict */
1147
0
        RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1148
0
        match = dictEnd + (match - prefixStart);
1149
0
        if (match + sequence.matchLength <= dictEnd) {
1150
0
            ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1151
0
            return sequenceLength;
1152
0
        }
1153
        /* span extDict & currentPrefixSegment */
1154
0
        {   size_t const length1 = dictEnd - match;
1155
0
            ZSTD_memmove(oLitEnd, match, length1);
1156
0
            op = oLitEnd + length1;
1157
0
            sequence.matchLength -= length1;
1158
0
            match = prefixStart;
1159
0
    }   }
1160
    /* Match within prefix of 1 or more bytes */
1161
0
    assert(op <= oMatchEnd);
1162
0
    assert(oMatchEnd <= oend_w);
1163
0
    assert(match >= prefixStart);
1164
0
    assert(sequence.matchLength >= 1);
1165
1166
    /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1167
     * without overlap checking.
1168
     */
1169
0
    if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1170
        /* We bet on a full wildcopy for matches, since we expect matches to be
1171
         * longer than literals (in general). In silesia, ~10% of matches are longer
1172
         * than 16 bytes.
1173
         */
1174
0
        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1175
0
        return sequenceLength;
1176
0
    }
1177
0
    assert(sequence.offset < WILDCOPY_VECLEN);
1178
1179
    /* Copy 8 bytes and spread the offset to be >= 8. */
1180
0
    ZSTD_overlapCopy8(&op, &match, sequence.offset);
1181
1182
    /* If the match length is > 8 bytes, then continue with the wildcopy. */
1183
0
    if (sequence.matchLength > 8) {
1184
0
        assert(op < oMatchEnd);
1185
0
        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
1186
0
    }
1187
0
    return sequenceLength;
1188
0
}
1189
1190
1191
static void
1192
ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
1193
0
{
1194
0
    const void* ptr = dt;
1195
0
    const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
1196
0
    DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
1197
0
    DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
1198
0
                (U32)DStatePtr->state, DTableH->tableLog);
1199
0
    BIT_reloadDStream(bitD);
1200
0
    DStatePtr->table = dt + 1;
1201
0
}
1202
1203
FORCE_INLINE_TEMPLATE void
1204
ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16 nextState, U32 nbBits)
1205
0
{
1206
0
    size_t const lowBits = BIT_readBits(bitD, nbBits);
1207
0
    DStatePtr->state = nextState + lowBits;
1208
0
}
1209
1210
/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
1211
 * offset bits. But we can only read at most STREAM_ACCUMULATOR_MIN_32
1212
 * bits before reloading. This value is the maximum number of bytes we read
1213
 * after reloading when we are decoding long offsets.
1214
 */
1215
#define LONG_OFFSETS_MAX_EXTRA_BITS_32                       \
1216
0
    (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32       \
1217
0
        ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32  \
1218
0
        : 0)
1219
1220
typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
1221
1222
/**
1223
 * ZSTD_decodeSequence():
1224
 * @p longOffsets : tells the decoder to reload more bit while decoding large offsets
1225
 *                  only used in 32-bit mode
1226
 * @return : Sequence (litL + matchL + offset)
1227
 */
1228
FORCE_INLINE_TEMPLATE seq_t
1229
ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const int isLastSeq)
1230
0
{
1231
0
    seq_t seq;
1232
    /*
1233
     * ZSTD_seqSymbol is a 64 bits wide structure.
1234
     * It can be loaded in one operation
1235
     * and its fields extracted by simply shifting or bit-extracting on aarch64.
1236
     * GCC doesn't recognize this and generates more unnecessary ldr/ldrb/ldrh
1237
     * operations that cause performance drop. This can be avoided by using this
1238
     * ZSTD_memcpy hack.
1239
     */
1240
#if defined(__aarch64__) && (defined(__GNUC__) && !defined(__clang__))
1241
    ZSTD_seqSymbol llDInfoS, mlDInfoS, ofDInfoS;
1242
    ZSTD_seqSymbol* const llDInfo = &llDInfoS;
1243
    ZSTD_seqSymbol* const mlDInfo = &mlDInfoS;
1244
    ZSTD_seqSymbol* const ofDInfo = &ofDInfoS;
1245
    ZSTD_memcpy(llDInfo, seqState->stateLL.table + seqState->stateLL.state, sizeof(ZSTD_seqSymbol));
1246
    ZSTD_memcpy(mlDInfo, seqState->stateML.table + seqState->stateML.state, sizeof(ZSTD_seqSymbol));
1247
    ZSTD_memcpy(ofDInfo, seqState->stateOffb.table + seqState->stateOffb.state, sizeof(ZSTD_seqSymbol));
1248
#else
1249
0
    const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state;
1250
0
    const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state;
1251
0
    const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state;
1252
0
#endif
1253
0
    seq.matchLength = mlDInfo->baseValue;
1254
0
    seq.litLength = llDInfo->baseValue;
1255
0
    {   U32 const ofBase = ofDInfo->baseValue;
1256
0
        BYTE const llBits = llDInfo->nbAdditionalBits;
1257
0
        BYTE const mlBits = mlDInfo->nbAdditionalBits;
1258
0
        BYTE const ofBits = ofDInfo->nbAdditionalBits;
1259
0
        BYTE const totalBits = llBits+mlBits+ofBits;
1260
1261
0
        U16 const llNext = llDInfo->nextState;
1262
0
        U16 const mlNext = mlDInfo->nextState;
1263
0
        U16 const ofNext = ofDInfo->nextState;
1264
0
        U32 const llnbBits = llDInfo->nbBits;
1265
0
        U32 const mlnbBits = mlDInfo->nbBits;
1266
0
        U32 const ofnbBits = ofDInfo->nbBits;
1267
1268
0
        assert(llBits <= MaxLLBits);
1269
0
        assert(mlBits <= MaxMLBits);
1270
0
        assert(ofBits <= MaxOff);
1271
        /*
1272
         * As gcc has better branch and block analyzers, sometimes it is only
1273
         * valuable to mark likeliness for clang, it gives around 3-4% of
1274
         * performance.
1275
         */
1276
1277
        /* sequence */
1278
0
        {   size_t offset;
1279
0
            if (ofBits > 1) {
1280
0
                ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
1281
0
                ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
1282
0
                ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 > LONG_OFFSETS_MAX_EXTRA_BITS_32);
1283
0
                ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 - LONG_OFFSETS_MAX_EXTRA_BITS_32 >= MaxMLBits);
1284
0
                if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
1285
                    /* Always read extra bits, this keeps the logic simple,
1286
                     * avoids branches, and avoids accidentally reading 0 bits.
1287
                     */
1288
0
                    U32 const extraBits = LONG_OFFSETS_MAX_EXTRA_BITS_32;
1289
0
                    offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
1290
0
                    BIT_reloadDStream(&seqState->DStream);
1291
0
                    offset += BIT_readBitsFast(&seqState->DStream, extraBits);
1292
0
                } else {
1293
0
                    offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
1294
0
                    if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
1295
0
                }
1296
0
                seqState->prevOffset[2] = seqState->prevOffset[1];
1297
0
                seqState->prevOffset[1] = seqState->prevOffset[0];
1298
0
                seqState->prevOffset[0] = offset;
1299
0
            } else {
1300
0
                U32 const ll0 = (llDInfo->baseValue == 0);
1301
0
                if (LIKELY((ofBits == 0))) {
1302
0
                    offset = seqState->prevOffset[ll0];
1303
0
                    seqState->prevOffset[1] = seqState->prevOffset[!ll0];
1304
0
                    seqState->prevOffset[0] = offset;
1305
0
                } else {
1306
0
                    offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
1307
0
                    {   size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
1308
0
                        temp -= !temp; /* 0 is not valid: input corrupted => force offset to -1 => corruption detected at execSequence */
1309
0
                        if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
1310
0
                        seqState->prevOffset[1] = seqState->prevOffset[0];
1311
0
                        seqState->prevOffset[0] = offset = temp;
1312
0
            }   }   }
1313
0
            seq.offset = offset;
1314
0
        }
1315
1316
0
        if (mlBits > 0)
1317
0
            seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
1318
1319
0
        if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
1320
0
            BIT_reloadDStream(&seqState->DStream);
1321
0
        if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
1322
0
            BIT_reloadDStream(&seqState->DStream);
1323
        /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
1324
0
        ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
1325
1326
0
        if (llBits > 0)
1327
0
            seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
1328
1329
0
        if (MEM_32bits())
1330
0
            BIT_reloadDStream(&seqState->DStream);
1331
1332
0
        DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
1333
0
                    (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1334
1335
0
        if (!isLastSeq) {
1336
            /* don't update FSE state for last Sequence */
1337
0
            ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits);    /* <=  9 bits */
1338
0
            ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits);    /* <=  9 bits */
1339
0
            if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
1340
0
            ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits);  /* <=  8 bits */
1341
0
            BIT_reloadDStream(&seqState->DStream);
1342
0
        }
1343
0
    }
1344
1345
0
    return seq;
1346
0
}
1347
1348
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1349
#if DEBUGLEVEL >= 1
1350
static int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
1351
{
1352
    size_t const windowSize = dctx->fParams.windowSize;
1353
    /* No dictionary used. */
1354
    if (dctx->dictContentEndForFuzzing == NULL) return 0;
1355
    /* Dictionary is our prefix. */
1356
    if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
1357
    /* Dictionary is not our ext-dict. */
1358
    if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
1359
    /* Dictionary is not within our window size. */
1360
    if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
1361
    /* Dictionary is active. */
1362
    return 1;
1363
}
1364
#endif
1365
1366
static void ZSTD_assertValidSequence(
1367
        ZSTD_DCtx const* dctx,
1368
        BYTE const* op, BYTE const* oend,
1369
        seq_t const seq,
1370
        BYTE const* prefixStart, BYTE const* virtualStart)
1371
{
1372
#if DEBUGLEVEL >= 1
1373
    if (dctx->isFrameDecompression) {
1374
        size_t const windowSize = dctx->fParams.windowSize;
1375
        size_t const sequenceSize = seq.litLength + seq.matchLength;
1376
        BYTE const* const oLitEnd = op + seq.litLength;
1377
        DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
1378
                (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1379
        assert(op <= oend);
1380
        assert((size_t)(oend - op) >= sequenceSize);
1381
        assert(sequenceSize <= ZSTD_blockSizeMax(dctx));
1382
        if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
1383
            size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
1384
            /* Offset must be within the dictionary. */
1385
            assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
1386
            assert(seq.offset <= windowSize + dictSize);
1387
        } else {
1388
            /* Offset must be within our window. */
1389
            assert(seq.offset <= windowSize);
1390
        }
1391
    }
1392
#else
1393
    (void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
1394
#endif
1395
}
1396
#endif
1397
1398
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1399
1400
1401
FORCE_INLINE_TEMPLATE size_t
1402
DONT_VECTORIZE
1403
ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
1404
                               void* dst, size_t maxDstSize,
1405
                         const void* seqStart, size_t seqSize, int nbSeq,
1406
                         const ZSTD_longOffset_e isLongOffset)
1407
0
{
1408
0
    const BYTE* ip = (const BYTE*)seqStart;
1409
0
    const BYTE* const iend = ip + seqSize;
1410
0
    BYTE* const ostart = (BYTE*)dst;
1411
0
    BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, maxDstSize);
1412
0
    BYTE* op = ostart;
1413
0
    const BYTE* litPtr = dctx->litPtr;
1414
0
    const BYTE* litBufferEnd = dctx->litBufferEnd;
1415
0
    const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1416
0
    const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
1417
0
    const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1418
0
    DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer (%i seqs)", nbSeq);
1419
1420
    /* Literals are split between internal buffer & output buffer */
1421
0
    if (nbSeq) {
1422
0
        seqState_t seqState;
1423
0
        dctx->fseEntropy = 1;
1424
0
        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1425
0
        RETURN_ERROR_IF(
1426
0
            ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1427
0
            corruption_detected, "");
1428
0
        ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1429
0
        ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1430
0
        ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1431
0
        assert(dst != NULL);
1432
1433
0
        ZSTD_STATIC_ASSERT(
1434
0
                BIT_DStream_unfinished < BIT_DStream_completed &&
1435
0
                BIT_DStream_endOfBuffer < BIT_DStream_completed &&
1436
0
                BIT_DStream_completed < BIT_DStream_overflow);
1437
1438
        /* decompress without overrunning litPtr begins */
1439
0
        {   seq_t sequence = {0,0,0};  /* some static analyzer believe that @sequence is not initialized (it necessarily is, since for(;;) loop as at least one iteration) */
1440
            /* Align the decompression loop to 32 + 16 bytes.
1441
                *
1442
                * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
1443
                * speed swings based on the alignment of the decompression loop. This
1444
                * performance swing is caused by parts of the decompression loop falling
1445
                * out of the DSB. The entire decompression loop should fit in the DSB,
1446
                * when it can't we get much worse performance. You can measure if you've
1447
                * hit the good case or the bad case with this perf command for some
1448
                * compressed file test.zst:
1449
                *
1450
                *   perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
1451
                *             -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
1452
                *
1453
                * If you see most cycles served out of the MITE you've hit the bad case.
1454
                * If you see most cycles served out of the DSB you've hit the good case.
1455
                * If it is pretty even then you may be in an okay case.
1456
                *
1457
                * This issue has been reproduced on the following CPUs:
1458
                *   - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
1459
                *               Use Instruments->Counters to get DSB/MITE cycles.
1460
                *               I never got performance swings, but I was able to
1461
                *               go from the good case of mostly DSB to half of the
1462
                *               cycles served from MITE.
1463
                *   - Coffeelake: Intel i9-9900k
1464
                *   - Coffeelake: Intel i7-9700k
1465
                *
1466
                * I haven't been able to reproduce the instability or DSB misses on any
1467
                * of the following CPUS:
1468
                *   - Haswell
1469
                *   - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
1470
                *   - Skylake
1471
                *
1472
                * Alignment is done for each of the three major decompression loops:
1473
                *   - ZSTD_decompressSequences_bodySplitLitBuffer - presplit section of the literal buffer
1474
                *   - ZSTD_decompressSequences_bodySplitLitBuffer - postsplit section of the literal buffer
1475
                *   - ZSTD_decompressSequences_body
1476
                * Alignment choices are made to minimize large swings on bad cases and influence on performance
1477
                * from changes external to this code, rather than to overoptimize on the current commit.
1478
                *
1479
                * If you are seeing performance stability this script can help test.
1480
                * It tests on 4 commits in zstd where I saw performance change.
1481
                *
1482
                *   https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
1483
                */
1484
0
#if defined(__GNUC__) && defined(__x86_64__)
1485
0
            __asm__(".p2align 6");
1486
#  if __GNUC__ >= 7
1487
      /* good for gcc-7, gcc-9, and gcc-11 */
1488
            __asm__("nop");
1489
            __asm__(".p2align 5");
1490
            __asm__("nop");
1491
            __asm__(".p2align 4");
1492
#    if __GNUC__ == 8 || __GNUC__ == 10
1493
      /* good for gcc-8 and gcc-10 */
1494
            __asm__("nop");
1495
            __asm__(".p2align 3");
1496
#    endif
1497
#  endif
1498
0
#endif
1499
1500
            /* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */
1501
0
            for ( ; nbSeq; nbSeq--) {
1502
0
                sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
1503
0
                if (litPtr + sequence.litLength > dctx->litBufferEnd) break;
1504
0
                {   size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1505
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1506
                    assert(!ZSTD_isError(oneSeqSize));
1507
                    ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1508
#endif
1509
0
                    if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1510
0
                        return oneSeqSize;
1511
0
                    DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1512
0
                    op += oneSeqSize;
1513
0
            }   }
1514
0
            DEBUGLOG(6, "reached: (litPtr + sequence.litLength > dctx->litBufferEnd)");
1515
1516
            /* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */
1517
0
            if (nbSeq > 0) {
1518
0
                const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1519
0
                DEBUGLOG(6, "There are %i sequences left, and %zu/%zu literals left in buffer", nbSeq, leftoverLit, sequence.litLength);
1520
0
                if (leftoverLit) {
1521
0
                    RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1522
0
                    ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1523
0
                    sequence.litLength -= leftoverLit;
1524
0
                    op += leftoverLit;
1525
0
                }
1526
0
                litPtr = dctx->litExtraBuffer;
1527
0
                litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1528
0
                dctx->litBufferLocation = ZSTD_not_in_dst;
1529
0
                {   size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1530
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1531
                    assert(!ZSTD_isError(oneSeqSize));
1532
                    ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1533
#endif
1534
0
                    if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1535
0
                        return oneSeqSize;
1536
0
                    DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1537
0
                    op += oneSeqSize;
1538
0
                }
1539
0
                nbSeq--;
1540
0
            }
1541
0
        }
1542
1543
0
        if (nbSeq > 0) {
1544
            /* there is remaining lit from extra buffer */
1545
1546
0
#if defined(__GNUC__) && defined(__x86_64__)
1547
0
            __asm__(".p2align 6");
1548
0
            __asm__("nop");
1549
0
#  if __GNUC__ != 7
1550
            /* worse for gcc-7 better for gcc-8, gcc-9, and gcc-10 and clang */
1551
0
            __asm__(".p2align 4");
1552
0
            __asm__("nop");
1553
0
            __asm__(".p2align 3");
1554
#  elif __GNUC__ >= 11
1555
            __asm__(".p2align 3");
1556
#  else
1557
            __asm__(".p2align 5");
1558
            __asm__("nop");
1559
            __asm__(".p2align 3");
1560
#  endif
1561
0
#endif
1562
1563
0
            for ( ; nbSeq ; nbSeq--) {
1564
0
                seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
1565
0
                size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1566
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1567
                assert(!ZSTD_isError(oneSeqSize));
1568
                ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1569
#endif
1570
0
                if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1571
0
                    return oneSeqSize;
1572
0
                DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1573
0
                op += oneSeqSize;
1574
0
            }
1575
0
        }
1576
1577
        /* check if reached exact end */
1578
0
        DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq);
1579
0
        RETURN_ERROR_IF(nbSeq, corruption_detected, "");
1580
0
        DEBUGLOG(5, "bitStream : start=%p, ptr=%p, bitsConsumed=%u", seqState.DStream.start, seqState.DStream.ptr, seqState.DStream.bitsConsumed);
1581
0
        RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
1582
        /* save reps for next block */
1583
0
        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1584
0
    }
1585
1586
    /* last literal segment */
1587
0
    if (dctx->litBufferLocation == ZSTD_split) {
1588
        /* split hasn't been reached yet, first get dst then copy litExtraBuffer */
1589
0
        size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
1590
0
        DEBUGLOG(6, "copy last literals from segment : %u", (U32)lastLLSize);
1591
0
        RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1592
0
        if (op != NULL) {
1593
0
            ZSTD_memmove(op, litPtr, lastLLSize);
1594
0
            op += lastLLSize;
1595
0
        }
1596
0
        litPtr = dctx->litExtraBuffer;
1597
0
        litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1598
0
        dctx->litBufferLocation = ZSTD_not_in_dst;
1599
0
    }
1600
    /* copy last literals from internal buffer */
1601
0
    {   size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
1602
0
        DEBUGLOG(6, "copy last literals from internal buffer : %u", (U32)lastLLSize);
1603
0
        RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1604
0
        if (op != NULL) {
1605
0
            ZSTD_memcpy(op, litPtr, lastLLSize);
1606
0
            op += lastLLSize;
1607
0
    }   }
1608
1609
0
    DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart));
1610
0
    return (size_t)(op - ostart);
1611
0
}
1612
1613
FORCE_INLINE_TEMPLATE size_t
1614
DONT_VECTORIZE
1615
ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
1616
    void* dst, size_t maxDstSize,
1617
    const void* seqStart, size_t seqSize, int nbSeq,
1618
    const ZSTD_longOffset_e isLongOffset)
1619
0
{
1620
0
    const BYTE* ip = (const BYTE*)seqStart;
1621
0
    const BYTE* const iend = ip + seqSize;
1622
0
    BYTE* const ostart = (BYTE*)dst;
1623
0
    BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ZSTD_maybeNullPtrAdd(ostart, maxDstSize) : dctx->litBuffer;
1624
0
    BYTE* op = ostart;
1625
0
    const BYTE* litPtr = dctx->litPtr;
1626
0
    const BYTE* const litEnd = litPtr + dctx->litSize;
1627
0
    const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart);
1628
0
    const BYTE* const vBase = (const BYTE*)(dctx->virtualStart);
1629
0
    const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd);
1630
0
    DEBUGLOG(5, "ZSTD_decompressSequences_body: nbSeq = %d", nbSeq);
1631
1632
    /* Regen sequences */
1633
0
    if (nbSeq) {
1634
0
        seqState_t seqState;
1635
0
        dctx->fseEntropy = 1;
1636
0
        { U32 i; for (i = 0; i < ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1637
0
        RETURN_ERROR_IF(
1638
0
            ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend - ip)),
1639
0
            corruption_detected, "");
1640
0
        ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1641
0
        ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1642
0
        ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1643
0
        assert(dst != NULL);
1644
1645
0
#if defined(__GNUC__) && defined(__x86_64__)
1646
0
            __asm__(".p2align 6");
1647
0
            __asm__("nop");
1648
#  if __GNUC__ >= 7
1649
            __asm__(".p2align 5");
1650
            __asm__("nop");
1651
            __asm__(".p2align 3");
1652
#  else
1653
0
            __asm__(".p2align 4");
1654
0
            __asm__("nop");
1655
0
            __asm__(".p2align 3");
1656
0
#  endif
1657
0
#endif
1658
1659
0
        for ( ; nbSeq ; nbSeq--) {
1660
0
            seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
1661
0
            size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
1662
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1663
            assert(!ZSTD_isError(oneSeqSize));
1664
            ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1665
#endif
1666
0
            if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1667
0
                return oneSeqSize;
1668
0
            DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1669
0
            op += oneSeqSize;
1670
0
        }
1671
1672
        /* check if reached exact end */
1673
0
        assert(nbSeq == 0);
1674
0
        RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
1675
        /* save reps for next block */
1676
0
        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1677
0
    }
1678
1679
    /* last literal segment */
1680
0
    {   size_t const lastLLSize = (size_t)(litEnd - litPtr);
1681
0
        DEBUGLOG(6, "copy last literals : %u", (U32)lastLLSize);
1682
0
        RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1683
0
        if (op != NULL) {
1684
0
            ZSTD_memcpy(op, litPtr, lastLLSize);
1685
0
            op += lastLLSize;
1686
0
    }   }
1687
1688
0
    DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart));
1689
0
    return (size_t)(op - ostart);
1690
0
}
1691
1692
static size_t
1693
ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
1694
                                 void* dst, size_t maxDstSize,
1695
                           const void* seqStart, size_t seqSize, int nbSeq,
1696
                           const ZSTD_longOffset_e isLongOffset)
1697
0
{
1698
0
    return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1699
0
}
1700
1701
static size_t
1702
ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx,
1703
                                               void* dst, size_t maxDstSize,
1704
                                         const void* seqStart, size_t seqSize, int nbSeq,
1705
                                         const ZSTD_longOffset_e isLongOffset)
1706
0
{
1707
0
    return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1708
0
}
1709
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1710
1711
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1712
1713
FORCE_INLINE_TEMPLATE
1714
1715
size_t ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence,
1716
                   const BYTE* const prefixStart, const BYTE* const dictEnd)
1717
0
{
1718
0
    prefetchPos += sequence.litLength;
1719
0
    {   const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart;
1720
        /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
1721
         * No consequence though : memory address is only used for prefetching, not for dereferencing */
1722
0
        const BYTE* const match = ZSTD_wrappedPtrSub(ZSTD_wrappedPtrAdd(matchBase, prefetchPos), sequence.offset);
1723
0
        PREFETCH_L1(match); PREFETCH_L1(match+CACHELINE_SIZE);   /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
1724
0
    }
1725
0
    return prefetchPos + sequence.matchLength;
1726
0
}
1727
1728
/* This decoding function employs prefetching
1729
 * to reduce latency impact of cache misses.
1730
 * It's generally employed when block contains a significant portion of long-distance matches
1731
 * or when coupled with a "cold" dictionary */
1732
FORCE_INLINE_TEMPLATE size_t
1733
ZSTD_decompressSequencesLong_body(
1734
                               ZSTD_DCtx* dctx,
1735
                               void* dst, size_t maxDstSize,
1736
                         const void* seqStart, size_t seqSize, int nbSeq,
1737
                         const ZSTD_longOffset_e isLongOffset)
1738
0
{
1739
0
    const BYTE* ip = (const BYTE*)seqStart;
1740
0
    const BYTE* const iend = ip + seqSize;
1741
0
    BYTE* const ostart = (BYTE*)dst;
1742
0
    BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ZSTD_maybeNullPtrAdd(ostart, maxDstSize);
1743
0
    BYTE* op = ostart;
1744
0
    const BYTE* litPtr = dctx->litPtr;
1745
0
    const BYTE* litBufferEnd = dctx->litBufferEnd;
1746
0
    const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1747
0
    const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
1748
0
    const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1749
1750
    /* Regen sequences */
1751
0
    if (nbSeq) {
1752
0
#define STORED_SEQS 8
1753
0
#define STORED_SEQS_MASK (STORED_SEQS-1)
1754
0
#define ADVANCED_SEQS STORED_SEQS
1755
0
        seq_t sequences[STORED_SEQS];
1756
0
        int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
1757
0
        seqState_t seqState;
1758
0
        int seqNb;
1759
0
        size_t prefetchPos = (size_t)(op-prefixStart); /* track position relative to prefixStart */
1760
1761
0
        dctx->fseEntropy = 1;
1762
0
        { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1763
0
        assert(dst != NULL);
1764
0
        assert(iend >= ip);
1765
0
        RETURN_ERROR_IF(
1766
0
            ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1767
0
            corruption_detected, "");
1768
0
        ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1769
0
        ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1770
0
        ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1771
1772
        /* prepare in advance */
1773
0
        for (seqNb=0; seqNb<seqAdvance; seqNb++) {
1774
0
            seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, seqNb == nbSeq-1);
1775
0
            prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1776
0
            sequences[seqNb] = sequence;
1777
0
        }
1778
1779
        /* decompress without stomping litBuffer */
1780
0
        for (; seqNb < nbSeq; seqNb++) {
1781
0
            seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset, seqNb == nbSeq-1);
1782
1783
0
            if (dctx->litBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd) {
1784
                /* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */
1785
0
                const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1786
0
                if (leftoverLit)
1787
0
                {
1788
0
                    RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1789
0
                    ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1790
0
                    sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength -= leftoverLit;
1791
0
                    op += leftoverLit;
1792
0
                }
1793
0
                litPtr = dctx->litExtraBuffer;
1794
0
                litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1795
0
                dctx->litBufferLocation = ZSTD_not_in_dst;
1796
0
                {   size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1797
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1798
                    assert(!ZSTD_isError(oneSeqSize));
1799
                    ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1800
#endif
1801
0
                    if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1802
1803
0
                    prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1804
0
                    sequences[seqNb & STORED_SEQS_MASK] = sequence;
1805
0
                    op += oneSeqSize;
1806
0
            }   }
1807
0
            else
1808
0
            {
1809
                /* lit buffer is either wholly contained in first or second split, or not split at all*/
1810
0
                size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1811
0
                    ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1812
0
                    ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1813
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1814
                assert(!ZSTD_isError(oneSeqSize));
1815
                ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1816
#endif
1817
0
                if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1818
1819
0
                prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1820
0
                sequences[seqNb & STORED_SEQS_MASK] = sequence;
1821
0
                op += oneSeqSize;
1822
0
            }
1823
0
        }
1824
0
        RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
1825
1826
        /* finish queue */
1827
0
        seqNb -= seqAdvance;
1828
0
        for ( ; seqNb<nbSeq ; seqNb++) {
1829
0
            seq_t *sequence = &(sequences[seqNb&STORED_SEQS_MASK]);
1830
0
            if (dctx->litBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd) {
1831
0
                const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1832
0
                if (leftoverLit) {
1833
0
                    RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1834
0
                    ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1835
0
                    sequence->litLength -= leftoverLit;
1836
0
                    op += leftoverLit;
1837
0
                }
1838
0
                litPtr = dctx->litExtraBuffer;
1839
0
                litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1840
0
                dctx->litBufferLocation = ZSTD_not_in_dst;
1841
0
                {   size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1842
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1843
                    assert(!ZSTD_isError(oneSeqSize));
1844
                    ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1845
#endif
1846
0
                    if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1847
0
                    op += oneSeqSize;
1848
0
                }
1849
0
            }
1850
0
            else
1851
0
            {
1852
0
                size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1853
0
                    ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence->litLength - WILDCOPY_OVERLENGTH, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1854
0
                    ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1855
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1856
                assert(!ZSTD_isError(oneSeqSize));
1857
                ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1858
#endif
1859
0
                if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1860
0
                op += oneSeqSize;
1861
0
            }
1862
0
        }
1863
1864
        /* save reps for next block */
1865
0
        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1866
0
    }
1867
1868
    /* last literal segment */
1869
0
    if (dctx->litBufferLocation == ZSTD_split) { /* first deplete literal buffer in dst, then copy litExtraBuffer */
1870
0
        size_t const lastLLSize = litBufferEnd - litPtr;
1871
0
        RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1872
0
        if (op != NULL) {
1873
0
            ZSTD_memmove(op, litPtr, lastLLSize);
1874
0
            op += lastLLSize;
1875
0
        }
1876
0
        litPtr = dctx->litExtraBuffer;
1877
0
        litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1878
0
    }
1879
0
    {   size_t const lastLLSize = litBufferEnd - litPtr;
1880
0
        RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1881
0
        if (op != NULL) {
1882
0
            ZSTD_memmove(op, litPtr, lastLLSize);
1883
0
            op += lastLLSize;
1884
0
        }
1885
0
    }
1886
1887
0
    return (size_t)(op - ostart);
1888
0
}
1889
1890
static size_t
1891
ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
1892
                                 void* dst, size_t maxDstSize,
1893
                           const void* seqStart, size_t seqSize, int nbSeq,
1894
                           const ZSTD_longOffset_e isLongOffset)
1895
0
{
1896
0
    return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1897
0
}
1898
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1899
1900
1901
1902
#if DYNAMIC_BMI2
1903
1904
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1905
static BMI2_TARGET_ATTRIBUTE size_t
1906
DONT_VECTORIZE
1907
ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
1908
                                 void* dst, size_t maxDstSize,
1909
                           const void* seqStart, size_t seqSize, int nbSeq,
1910
                           const ZSTD_longOffset_e isLongOffset)
1911
0
{
1912
0
    return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1913
0
}
1914
static BMI2_TARGET_ATTRIBUTE size_t
1915
DONT_VECTORIZE
1916
ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx,
1917
                                 void* dst, size_t maxDstSize,
1918
                           const void* seqStart, size_t seqSize, int nbSeq,
1919
                           const ZSTD_longOffset_e isLongOffset)
1920
0
{
1921
0
    return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1922
0
}
1923
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1924
1925
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1926
static BMI2_TARGET_ATTRIBUTE size_t
1927
ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
1928
                                 void* dst, size_t maxDstSize,
1929
                           const void* seqStart, size_t seqSize, int nbSeq,
1930
                           const ZSTD_longOffset_e isLongOffset)
1931
0
{
1932
0
    return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1933
0
}
1934
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1935
1936
#endif /* DYNAMIC_BMI2 */
1937
1938
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1939
static size_t
1940
ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1941
                   const void* seqStart, size_t seqSize, int nbSeq,
1942
                   const ZSTD_longOffset_e isLongOffset)
1943
0
{
1944
0
    DEBUGLOG(5, "ZSTD_decompressSequences");
1945
0
#if DYNAMIC_BMI2
1946
0
    if (ZSTD_DCtx_get_bmi2(dctx)) {
1947
0
        return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1948
0
    }
1949
0
#endif
1950
0
    return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1951
0
}
1952
static size_t
1953
ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1954
                                 const void* seqStart, size_t seqSize, int nbSeq,
1955
                                 const ZSTD_longOffset_e isLongOffset)
1956
0
{
1957
0
    DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer");
1958
0
#if DYNAMIC_BMI2
1959
0
    if (ZSTD_DCtx_get_bmi2(dctx)) {
1960
0
        return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1961
0
    }
1962
0
#endif
1963
0
    return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1964
0
}
1965
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1966
1967
1968
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1969
/* ZSTD_decompressSequencesLong() :
1970
 * decompression function triggered when a minimum share of offsets is considered "long",
1971
 * aka out of cache.
1972
 * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
1973
 * This function will try to mitigate main memory latency through the use of prefetching */
1974
static size_t
1975
ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
1976
                             void* dst, size_t maxDstSize,
1977
                             const void* seqStart, size_t seqSize, int nbSeq,
1978
                             const ZSTD_longOffset_e isLongOffset)
1979
0
{
1980
0
    DEBUGLOG(5, "ZSTD_decompressSequencesLong");
1981
0
#if DYNAMIC_BMI2
1982
0
    if (ZSTD_DCtx_get_bmi2(dctx)) {
1983
0
        return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1984
0
    }
1985
0
#endif
1986
0
  return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1987
0
}
1988
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1989
1990
1991
/**
1992
 * @returns The total size of the history referenceable by zstd, including
1993
 * both the prefix and the extDict. At @p op any offset larger than this
1994
 * is invalid.
1995
 */
1996
static size_t ZSTD_totalHistorySize(BYTE* op, BYTE const* virtualStart)
1997
0
{
1998
0
    return (size_t)(op - virtualStart);
1999
0
}
2000
2001
typedef struct {
2002
    unsigned longOffsetShare;
2003
    unsigned maxNbAdditionalBits;
2004
} ZSTD_OffsetInfo;
2005
2006
/* ZSTD_getOffsetInfo() :
2007
 * condition : offTable must be valid
2008
 * @return : "share" of long offsets (arbitrarily defined as > (1<<23))
2009
 *           compared to maximum possible of (1<<OffFSELog),
2010
 *           as well as the maximum number additional bits required.
2011
 */
2012
static ZSTD_OffsetInfo
2013
ZSTD_getOffsetInfo(const ZSTD_seqSymbol* offTable, int nbSeq)
2014
0
{
2015
0
    ZSTD_OffsetInfo info = {0, 0};
2016
    /* If nbSeq == 0, then the offTable is uninitialized, but we have
2017
     * no sequences, so both values should be 0.
2018
     */
2019
0
    if (nbSeq != 0) {
2020
0
        const void* ptr = offTable;
2021
0
        U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
2022
0
        const ZSTD_seqSymbol* table = offTable + 1;
2023
0
        U32 const max = 1 << tableLog;
2024
0
        U32 u;
2025
0
        DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
2026
2027
0
        assert(max <= (1 << OffFSELog));  /* max not too large */
2028
0
        for (u=0; u<max; u++) {
2029
0
            info.maxNbAdditionalBits = MAX(info.maxNbAdditionalBits, table[u].nbAdditionalBits);
2030
0
            if (table[u].nbAdditionalBits > 22) info.longOffsetShare += 1;
2031
0
        }
2032
2033
0
        assert(tableLog <= OffFSELog);
2034
0
        info.longOffsetShare <<= (OffFSELog - tableLog);  /* scale to OffFSELog */
2035
0
    }
2036
2037
0
    return info;
2038
0
}
2039
2040
/**
2041
 * @returns The maximum offset we can decode in one read of our bitstream, without
2042
 * reloading more bits in the middle of the offset bits read. Any offsets larger
2043
 * than this must use the long offset decoder.
2044
 */
2045
static size_t ZSTD_maxShortOffset(void)
2046
0
{
2047
0
    if (MEM_64bits()) {
2048
        /* We can decode any offset without reloading bits.
2049
         * This might change if the max window size grows.
2050
         */
2051
0
        ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
2052
0
        return (size_t)-1;
2053
0
    } else {
2054
        /* The maximum offBase is (1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1.
2055
         * This offBase would require STREAM_ACCUMULATOR_MIN extra bits.
2056
         * Then we have to subtract ZSTD_REP_NUM to get the maximum possible offset.
2057
         */
2058
0
        size_t const maxOffbase = ((size_t)1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1;
2059
0
        size_t const maxOffset = maxOffbase - ZSTD_REP_NUM;
2060
0
        assert(ZSTD_highbit32((U32)maxOffbase) == STREAM_ACCUMULATOR_MIN);
2061
0
        return maxOffset;
2062
0
    }
2063
0
}
2064
2065
size_t
2066
ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
2067
                              void* dst, size_t dstCapacity,
2068
                        const void* src, size_t srcSize, const streaming_operation streaming)
2069
0
{   /* blockType == blockCompressed */
2070
0
    const BYTE* ip = (const BYTE*)src;
2071
0
    DEBUGLOG(5, "ZSTD_decompressBlock_internal (cSize : %u)", (unsigned)srcSize);
2072
2073
    /* Note : the wording of the specification
2074
     * allows compressed block to be sized exactly ZSTD_blockSizeMax(dctx).
2075
     * This generally does not happen, as it makes little sense,
2076
     * since an uncompressed block would feature same size and have no decompression cost.
2077
     * Also, note that decoder from reference libzstd before < v1.5.4
2078
     * would consider this edge case as an error.
2079
     * As a consequence, avoid generating compressed blocks of size ZSTD_blockSizeMax(dctx)
2080
     * for broader compatibility with the deployed ecosystem of zstd decoders */
2081
0
    RETURN_ERROR_IF(srcSize > ZSTD_blockSizeMax(dctx), srcSize_wrong, "");
2082
2083
    /* Decode literals section */
2084
0
    {   size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming);
2085
0
        DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : cSize=%u, nbLiterals=%zu", (U32)litCSize, dctx->litSize);
2086
0
        if (ZSTD_isError(litCSize)) return litCSize;
2087
0
        ip += litCSize;
2088
0
        srcSize -= litCSize;
2089
0
    }
2090
2091
    /* Build Decoding Tables */
2092
0
    {
2093
        /* Compute the maximum block size, which must also work when !frame and fParams are unset.
2094
         * Additionally, take the min with dstCapacity to ensure that the totalHistorySize fits in a size_t.
2095
         */
2096
0
        size_t const blockSizeMax = MIN(dstCapacity, ZSTD_blockSizeMax(dctx));
2097
0
        size_t const totalHistorySize = ZSTD_totalHistorySize(ZSTD_maybeNullPtrAdd((BYTE*)dst, blockSizeMax), (BYTE const*)dctx->virtualStart);
2098
        /* isLongOffset must be true if there are long offsets.
2099
         * Offsets are long if they are larger than ZSTD_maxShortOffset().
2100
         * We don't expect that to be the case in 64-bit mode.
2101
         *
2102
         * We check here to see if our history is large enough to allow long offsets.
2103
         * If it isn't, then we can't possible have (valid) long offsets. If the offset
2104
         * is invalid, then it is okay to read it incorrectly.
2105
         *
2106
         * If isLongOffsets is true, then we will later check our decoding table to see
2107
         * if it is even possible to generate long offsets.
2108
         */
2109
0
        ZSTD_longOffset_e isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (totalHistorySize > ZSTD_maxShortOffset()));
2110
        /* These macros control at build-time which decompressor implementation
2111
         * we use. If neither is defined, we do some inspection and dispatch at
2112
         * runtime.
2113
         */
2114
0
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2115
0
    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2116
0
        int usePrefetchDecoder = dctx->ddictIsCold;
2117
#else
2118
        /* Set to 1 to avoid computing offset info if we don't need to.
2119
         * Otherwise this value is ignored.
2120
         */
2121
        int usePrefetchDecoder = 1;
2122
#endif
2123
0
        int nbSeq;
2124
0
        size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
2125
0
        if (ZSTD_isError(seqHSize)) return seqHSize;
2126
0
        ip += seqHSize;
2127
0
        srcSize -= seqHSize;
2128
2129
0
        RETURN_ERROR_IF((dst == NULL || dstCapacity == 0) && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
2130
0
        RETURN_ERROR_IF(MEM_64bits() && sizeof(size_t) == sizeof(void*) && (size_t)(-1) - (size_t)dst < (size_t)(1 << 20), dstSize_tooSmall,
2131
0
                "invalid dst");
2132
2133
        /* If we could potentially have long offsets, or we might want to use the prefetch decoder,
2134
         * compute information about the share of long offsets, and the maximum nbAdditionalBits.
2135
         * NOTE: could probably use a larger nbSeq limit
2136
         */
2137
0
        if (isLongOffset || (!usePrefetchDecoder && (totalHistorySize > (1u << 24)) && (nbSeq > 8))) {
2138
0
            ZSTD_OffsetInfo const info = ZSTD_getOffsetInfo(dctx->OFTptr, nbSeq);
2139
0
            if (isLongOffset && info.maxNbAdditionalBits <= STREAM_ACCUMULATOR_MIN) {
2140
                /* If isLongOffset, but the maximum number of additional bits that we see in our table is small
2141
                 * enough, then we know it is impossible to have too long an offset in this block, so we can
2142
                 * use the regular offset decoder.
2143
                 */
2144
0
                isLongOffset = ZSTD_lo_isRegularOffset;
2145
0
            }
2146
0
            if (!usePrefetchDecoder) {
2147
0
                U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
2148
0
                usePrefetchDecoder = (info.longOffsetShare >= minShare);
2149
0
            }
2150
0
        }
2151
2152
0
        dctx->ddictIsCold = 0;
2153
2154
0
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2155
0
    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2156
0
        if (usePrefetchDecoder) {
2157
#else
2158
        (void)usePrefetchDecoder;
2159
        {
2160
#endif
2161
0
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
2162
0
            return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
2163
0
#endif
2164
0
        }
2165
2166
0
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
2167
        /* else */
2168
0
        if (dctx->litBufferLocation == ZSTD_split)
2169
0
            return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
2170
0
        else
2171
0
            return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
2172
0
#endif
2173
0
    }
2174
0
}
2175
2176
2177
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
2178
void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
2179
0
{
2180
0
    if (dst != dctx->previousDstEnd && dstSize > 0) {   /* not contiguous */
2181
0
        dctx->dictEnd = dctx->previousDstEnd;
2182
0
        dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
2183
0
        dctx->prefixStart = dst;
2184
0
        dctx->previousDstEnd = dst;
2185
0
    }
2186
0
}
2187
2188
2189
size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx,
2190
                                       void* dst, size_t dstCapacity,
2191
                                 const void* src, size_t srcSize)
2192
0
{
2193
0
    size_t dSize;
2194
0
    dctx->isFrameDecompression = 0;
2195
0
    ZSTD_checkContinuity(dctx, dst, dstCapacity);
2196
0
    dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, not_streaming);
2197
0
    FORWARD_IF_ERROR(dSize, "");
2198
0
    dctx->previousDstEnd = (char*)dst + dSize;
2199
0
    return dSize;
2200
0
}
2201
2202
2203
/* NOTE: Must just wrap ZSTD_decompressBlock_deprecated() */
2204
size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
2205
                            void* dst, size_t dstCapacity,
2206
                      const void* src, size_t srcSize)
2207
0
{
2208
0
    return ZSTD_decompressBlock_deprecated(dctx, dst, dstCapacity, src, srcSize);
2209
0
}