Coverage Report

Created: 2025-07-16 07:53

/src/aom/av1/common/reconintra.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <assert.h>
13
#include <math.h>
14
15
#include "config/aom_config.h"
16
#include "config/aom_dsp_rtcd.h"
17
#include "config/av1_rtcd.h"
18
19
#include "aom_dsp/aom_dsp_common.h"
20
#include "aom_mem/aom_mem.h"
21
#include "aom_ports/aom_once.h"
22
#include "aom_ports/mem.h"
23
#include "av1/common/av1_common_int.h"
24
#include "av1/common/cfl.h"
25
#include "av1/common/reconintra.h"
26
27
enum {
28
  NEED_LEFT = 1 << 1,
29
  NEED_ABOVE = 1 << 2,
30
  NEED_ABOVERIGHT = 1 << 3,
31
  NEED_ABOVELEFT = 1 << 4,
32
  NEED_BOTTOMLEFT = 1 << 5,
33
};
34
35
#define INTRA_EDGE_FILT 3
36
138M
#define INTRA_EDGE_TAPS 5
37
#define MAX_UPSAMPLE_SZ 16
38
43.3M
#define NUM_INTRA_NEIGHBOUR_PIXELS (MAX_TX_SIZE * 2 + 32)
39
40
static const uint8_t extend_modes[INTRA_MODES] = {
41
  NEED_ABOVE | NEED_LEFT,                   // DC
42
  NEED_ABOVE,                               // V
43
  NEED_LEFT,                                // H
44
  NEED_ABOVE | NEED_ABOVERIGHT,             // D45
45
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D135
46
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D113
47
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D157
48
  NEED_LEFT | NEED_BOTTOMLEFT,              // D203
49
  NEED_ABOVE | NEED_ABOVERIGHT,             // D67
50
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH
51
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH_V
52
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH_H
53
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // PAETH
54
};
55
56
// Tables to store if the top-right reference pixels are available. The flags
57
// are represented with bits, packed into 8-bit integers. E.g., for the 32x32
58
// blocks in a 128x128 superblock, the index of the "o" block is 10 (in raster
59
// order), so its flag is stored at the 3rd bit of the 2nd entry in the table,
60
// i.e. (table[10 / 8] >> (10 % 8)) & 1.
61
//       . . . .
62
//       . . . .
63
//       . . o .
64
//       . . . .
65
static uint8_t has_tr_4x4[128] = {
66
  255, 255, 255, 255, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
67
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
68
  255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
69
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
70
  255, 255, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
71
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
72
  255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
73
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
74
};
75
static uint8_t has_tr_4x8[64] = {
76
  255, 255, 255, 255, 119, 119, 119, 119, 127, 127, 127, 127, 119,
77
  119, 119, 119, 255, 127, 255, 127, 119, 119, 119, 119, 127, 127,
78
  127, 127, 119, 119, 119, 119, 255, 255, 255, 127, 119, 119, 119,
79
  119, 127, 127, 127, 127, 119, 119, 119, 119, 255, 127, 255, 127,
80
  119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119,
81
};
82
static uint8_t has_tr_8x4[64] = {
83
  255, 255, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
84
  127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
85
  255, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
86
  127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
87
};
88
static uint8_t has_tr_8x8[32] = {
89
  255, 255, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85,
90
  255, 127, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85,
91
};
92
static uint8_t has_tr_8x16[16] = {
93
  255, 255, 119, 119, 127, 127, 119, 119,
94
  255, 127, 119, 119, 127, 127, 119, 119,
95
};
96
static uint8_t has_tr_16x8[16] = {
97
  255, 0, 85, 0, 119, 0, 85, 0, 127, 0, 85, 0, 119, 0, 85, 0,
98
};
99
static uint8_t has_tr_16x16[8] = {
100
  255, 85, 119, 85, 127, 85, 119, 85,
101
};
102
static uint8_t has_tr_16x32[4] = { 255, 119, 127, 119 };
103
static uint8_t has_tr_32x16[4] = { 15, 5, 7, 5 };
104
static uint8_t has_tr_32x32[2] = { 95, 87 };
105
static uint8_t has_tr_32x64[1] = { 127 };
106
static uint8_t has_tr_64x32[1] = { 19 };
107
static uint8_t has_tr_64x64[1] = { 7 };
108
static uint8_t has_tr_64x128[1] = { 3 };
109
static uint8_t has_tr_128x64[1] = { 1 };
110
static uint8_t has_tr_128x128[1] = { 1 };
111
static uint8_t has_tr_4x16[32] = {
112
  255, 255, 255, 255, 127, 127, 127, 127, 255, 127, 255,
113
  127, 127, 127, 127, 127, 255, 255, 255, 127, 127, 127,
114
  127, 127, 255, 127, 255, 127, 127, 127, 127, 127,
115
};
116
static uint8_t has_tr_16x4[32] = {
117
  255, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0,
118
  127, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0,
119
};
120
static uint8_t has_tr_8x32[8] = {
121
  255, 255, 127, 127, 255, 127, 127, 127,
122
};
123
static uint8_t has_tr_32x8[8] = {
124
  15, 0, 5, 0, 7, 0, 5, 0,
125
};
126
static uint8_t has_tr_16x64[2] = { 255, 127 };
127
static uint8_t has_tr_64x16[2] = { 3, 1 };
128
129
static const uint8_t *const has_tr_tables[BLOCK_SIZES_ALL] = {
130
  // 4X4
131
  has_tr_4x4,
132
  // 4X8,       8X4,            8X8
133
  has_tr_4x8, has_tr_8x4, has_tr_8x8,
134
  // 8X16,      16X8,           16X16
135
  has_tr_8x16, has_tr_16x8, has_tr_16x16,
136
  // 16X32,     32X16,          32X32
137
  has_tr_16x32, has_tr_32x16, has_tr_32x32,
138
  // 32X64,     64X32,          64X64
139
  has_tr_32x64, has_tr_64x32, has_tr_64x64,
140
  // 64x128,    128x64,         128x128
141
  has_tr_64x128, has_tr_128x64, has_tr_128x128,
142
  // 4x16,      16x4,            8x32
143
  has_tr_4x16, has_tr_16x4, has_tr_8x32,
144
  // 32x8,      16x64,           64x16
145
  has_tr_32x8, has_tr_16x64, has_tr_64x16
146
};
147
148
static uint8_t has_tr_vert_8x8[32] = {
149
  255, 255, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0,
150
  255, 127, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0,
151
};
152
static uint8_t has_tr_vert_16x16[8] = {
153
  255, 0, 119, 0, 127, 0, 119, 0,
154
};
155
static uint8_t has_tr_vert_32x32[2] = { 15, 7 };
156
static uint8_t has_tr_vert_64x64[1] = { 3 };
157
158
// The _vert_* tables are like the ordinary tables above, but describe the
159
// order we visit square blocks when doing a PARTITION_VERT_A or
160
// PARTITION_VERT_B. This is the same order as normal except for on the last
161
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
162
// as a pair of squares, which means that these tables work correctly for both
163
// mixed vertical partition types.
164
//
165
// There are tables for each of the square sizes. Vertical rectangles (like
166
// BLOCK_16X32) use their respective "non-vert" table
167
static const uint8_t *const has_tr_vert_tables[BLOCK_SIZES] = {
168
  // 4X4
169
  NULL,
170
  // 4X8,      8X4,         8X8
171
  has_tr_4x8, NULL, has_tr_vert_8x8,
172
  // 8X16,     16X8,        16X16
173
  has_tr_8x16, NULL, has_tr_vert_16x16,
174
  // 16X32,    32X16,       32X32
175
  has_tr_16x32, NULL, has_tr_vert_32x32,
176
  // 32X64,    64X32,       64X64
177
  has_tr_32x64, NULL, has_tr_vert_64x64,
178
  // 64x128,   128x64,      128x128
179
  has_tr_64x128, NULL, has_tr_128x128
180
};
181
182
static const uint8_t *get_has_tr_table(PARTITION_TYPE partition,
183
274k
                                       BLOCK_SIZE bsize) {
184
274k
  const uint8_t *ret = NULL;
185
  // If this is a mixed vertical partition, look up bsize in orders_vert.
186
274k
  if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
187
24.8k
    assert(bsize < BLOCK_SIZES);
188
24.8k
    ret = has_tr_vert_tables[bsize];
189
249k
  } else {
190
249k
    ret = has_tr_tables[bsize];
191
249k
  }
192
274k
  assert(ret);
193
274k
  return ret;
194
274k
}
195
196
static int has_top_right(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row,
197
                         int mi_col, int top_available, int right_available,
198
                         PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
199
617k
                         int col_off, int ss_x, int ss_y) {
200
617k
  if (!top_available || !right_available) return 0;
201
202
559k
  const int bw_unit = mi_size_wide[bsize];
203
559k
  const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1);
204
559k
  const int top_right_count_unit = tx_size_wide_unit[txsz];
205
206
559k
  if (row_off > 0) {  // Just need to check if enough pixels on the right.
207
152k
    if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) {
208
      // Special case: For 128x128 blocks, the transform unit whose
209
      // top-right corner is at the center of the block does in fact have
210
      // pixels available at its top-right corner.
211
67.0k
      if (row_off == mi_size_high[BLOCK_64X64] >> ss_y &&
212
67.0k
          col_off + top_right_count_unit == mi_size_wide[BLOCK_64X64] >> ss_x) {
213
2.61k
        return 1;
214
2.61k
      }
215
64.4k
      const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
216
64.4k
      const int col_off_64 = col_off % plane_bw_unit_64;
217
64.4k
      return col_off_64 + top_right_count_unit < plane_bw_unit_64;
218
67.0k
    }
219
85.9k
    return col_off + top_right_count_unit < plane_bw_unit;
220
406k
  } else {
221
    // All top-right pixels are in the block above, which is already available.
222
406k
    if (col_off + top_right_count_unit < plane_bw_unit) return 1;
223
224
375k
    const int bw_in_mi_log2 = mi_size_wide_log2[bsize];
225
375k
    const int bh_in_mi_log2 = mi_size_high_log2[bsize];
226
375k
    const int sb_mi_size = mi_size_high[sb_size];
227
375k
    const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
228
375k
    const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
229
230
    // Top row of superblock: so top-right pixels are in the top and/or
231
    // top-right superblocks, both of which are already available.
232
375k
    if (blk_row_in_sb == 0) return 1;
233
234
    // Rightmost column of superblock (and not the top row): so top-right pixels
235
    // fall in the right superblock, which is not available yet.
236
322k
    if (((blk_col_in_sb + 1) << bw_in_mi_log2) >= sb_mi_size) {
237
48.9k
      return 0;
238
48.9k
    }
239
240
    // General case (neither top row nor rightmost column): check if the
241
    // top-right block is coded before the current block.
242
274k
    const int this_blk_index =
243
274k
        ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
244
274k
        blk_col_in_sb + 0;
245
274k
    const int idx1 = this_blk_index / 8;
246
274k
    const int idx2 = this_blk_index % 8;
247
274k
    const uint8_t *has_tr_table = get_has_tr_table(partition, bsize);
248
274k
    return (has_tr_table[idx1] >> idx2) & 1;
249
322k
  }
250
559k
}
251
252
// Similar to the has_tr_* tables, but store if the bottom-left reference
253
// pixels are available.
254
static uint8_t has_bl_4x4[128] = {
255
  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85, 85,
256
  85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  1,  0,  84, 85, 85, 85, 16, 17,
257
  17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85, 85, 85, 16, 17, 17, 17, 84,
258
  85, 85, 85, 0,  0,  0,  0,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85,
259
  0,  1,  1,  1,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  1,
260
  0,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85,
261
  85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  0,  0,
262
};
263
static uint8_t has_bl_4x8[64] = {
264
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0,
265
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0,
266
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0,
267
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0,
268
};
269
static uint8_t has_bl_8x4[64] = {
270
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1,
271
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0,
272
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1,
273
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0,
274
};
275
static uint8_t has_bl_8x8[32] = {
276
  84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0,
277
  84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0,
278
};
279
static uint8_t has_bl_8x16[16] = {
280
  16, 17, 0, 1, 16, 17, 0, 0, 16, 17, 0, 1, 16, 17, 0, 0,
281
};
282
static uint8_t has_bl_16x8[16] = {
283
  254, 84, 254, 16, 254, 84, 254, 0, 254, 84, 254, 16, 254, 84, 254, 0,
284
};
285
static uint8_t has_bl_16x16[8] = {
286
  84, 16, 84, 0, 84, 16, 84, 0,
287
};
288
static uint8_t has_bl_16x32[4] = { 16, 0, 16, 0 };
289
static uint8_t has_bl_32x16[4] = { 78, 14, 78, 14 };
290
static uint8_t has_bl_32x32[2] = { 4, 4 };
291
static uint8_t has_bl_32x64[1] = { 0 };
292
static uint8_t has_bl_64x32[1] = { 34 };
293
static uint8_t has_bl_64x64[1] = { 0 };
294
static uint8_t has_bl_64x128[1] = { 0 };
295
static uint8_t has_bl_128x64[1] = { 0 };
296
static uint8_t has_bl_128x128[1] = { 0 };
297
static uint8_t has_bl_4x16[32] = {
298
  0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
299
  0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
300
};
301
static uint8_t has_bl_16x4[32] = {
302
  254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0,
303
  254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0,
304
};
305
static uint8_t has_bl_8x32[8] = {
306
  0, 1, 0, 0, 0, 1, 0, 0,
307
};
308
static uint8_t has_bl_32x8[8] = {
309
  238, 78, 238, 14, 238, 78, 238, 14,
310
};
311
static uint8_t has_bl_16x64[2] = { 0, 0 };
312
static uint8_t has_bl_64x16[2] = { 42, 42 };
313
314
static const uint8_t *const has_bl_tables[BLOCK_SIZES_ALL] = {
315
  // 4X4
316
  has_bl_4x4,
317
  // 4X8,         8X4,         8X8
318
  has_bl_4x8, has_bl_8x4, has_bl_8x8,
319
  // 8X16,        16X8,        16X16
320
  has_bl_8x16, has_bl_16x8, has_bl_16x16,
321
  // 16X32,       32X16,       32X32
322
  has_bl_16x32, has_bl_32x16, has_bl_32x32,
323
  // 32X64,       64X32,       64X64
324
  has_bl_32x64, has_bl_64x32, has_bl_64x64,
325
  // 64x128,      128x64,      128x128
326
  has_bl_64x128, has_bl_128x64, has_bl_128x128,
327
  // 4x16,        16x4,        8x32
328
  has_bl_4x16, has_bl_16x4, has_bl_8x32,
329
  // 32x8,        16x64,       64x16
330
  has_bl_32x8, has_bl_16x64, has_bl_64x16
331
};
332
333
static uint8_t has_bl_vert_8x8[32] = {
334
  254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0,
335
  254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0,
336
};
337
static uint8_t has_bl_vert_16x16[8] = {
338
  254, 16, 254, 0, 254, 16, 254, 0,
339
};
340
static uint8_t has_bl_vert_32x32[2] = { 14, 14 };
341
static uint8_t has_bl_vert_64x64[1] = { 2 };
342
343
// The _vert_* tables are like the ordinary tables above, but describe the
344
// order we visit square blocks when doing a PARTITION_VERT_A or
345
// PARTITION_VERT_B. This is the same order as normal except for on the last
346
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
347
// as a pair of squares, which means that these tables work correctly for both
348
// mixed vertical partition types.
349
//
350
// There are tables for each of the square sizes. Vertical rectangles (like
351
// BLOCK_16X32) use their respective "non-vert" table
352
static const uint8_t *const has_bl_vert_tables[BLOCK_SIZES] = {
353
  // 4X4
354
  NULL,
355
  // 4X8,     8X4,         8X8
356
  has_bl_4x8, NULL, has_bl_vert_8x8,
357
  // 8X16,    16X8,        16X16
358
  has_bl_8x16, NULL, has_bl_vert_16x16,
359
  // 16X32,   32X16,       32X32
360
  has_bl_16x32, NULL, has_bl_vert_32x32,
361
  // 32X64,   64X32,       64X64
362
  has_bl_32x64, NULL, has_bl_vert_64x64,
363
  // 64x128,  128x64,      128x128
364
  has_bl_64x128, NULL, has_bl_128x128
365
};
366
367
static const uint8_t *get_has_bl_table(PARTITION_TYPE partition,
368
297k
                                       BLOCK_SIZE bsize) {
369
297k
  const uint8_t *ret = NULL;
370
  // If this is a mixed vertical partition, look up bsize in orders_vert.
371
297k
  if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
372
27.3k
    assert(bsize < BLOCK_SIZES);
373
27.3k
    ret = has_bl_vert_tables[bsize];
374
269k
  } else {
375
269k
    ret = has_bl_tables[bsize];
376
269k
  }
377
297k
  assert(ret);
378
297k
  return ret;
379
297k
}
380
381
static int has_bottom_left(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row,
382
                           int mi_col, int bottom_available, int left_available,
383
                           PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
384
667k
                           int col_off, int ss_x, int ss_y) {
385
667k
  if (!bottom_available || !left_available) return 0;
386
387
  // Special case for 128x* blocks, when col_off is half the block width.
388
  // This is needed because 128x* superblocks are divided into 64x* blocks in
389
  // raster order
390
615k
  if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64] && col_off > 0) {
391
76.0k
    const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
392
76.0k
    const int col_off_64 = col_off % plane_bw_unit_64;
393
76.0k
    if (col_off_64 == 0) {
394
      // We are at the left edge of top-right or bottom-right 64x* block.
395
9.75k
      const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y;
396
9.75k
      const int row_off_64 = row_off % plane_bh_unit_64;
397
9.75k
      const int plane_bh_unit =
398
9.75k
          AOMMIN(mi_size_high[bsize] >> ss_y, plane_bh_unit_64);
399
      // Check if all bottom-left pixels are in the left 64x* block (which is
400
      // already coded).
401
9.75k
      return row_off_64 + tx_size_high_unit[txsz] < plane_bh_unit;
402
9.75k
    }
403
76.0k
  }
404
405
605k
  if (col_off > 0) {
406
    // Bottom-left pixels are in the bottom-left block, which is not available.
407
155k
    return 0;
408
450k
  } else {
409
450k
    const int bh_unit = mi_size_high[bsize];
410
450k
    const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1);
411
450k
    const int bottom_left_count_unit = tx_size_high_unit[txsz];
412
413
    // All bottom-left pixels are in the left block, which is already available.
414
450k
    if (row_off + bottom_left_count_unit < plane_bh_unit) return 1;
415
416
416k
    const int bw_in_mi_log2 = mi_size_wide_log2[bsize];
417
416k
    const int bh_in_mi_log2 = mi_size_high_log2[bsize];
418
416k
    const int sb_mi_size = mi_size_high[sb_size];
419
416k
    const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
420
416k
    const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
421
422
    // Leftmost column of superblock: so bottom-left pixels maybe in the left
423
    // and/or bottom-left superblocks. But only the left superblock is
424
    // available, so check if all required pixels fall in that superblock.
425
416k
    if (blk_col_in_sb == 0) {
426
66.8k
      const int blk_start_row_off =
427
66.8k
          blk_row_in_sb << (bh_in_mi_log2 + MI_SIZE_LOG2 - MI_SIZE_LOG2) >>
428
66.8k
          ss_y;
429
66.8k
      const int row_off_in_sb = blk_start_row_off + row_off;
430
66.8k
      const int sb_height_unit = sb_mi_size >> ss_y;
431
66.8k
      return row_off_in_sb + bottom_left_count_unit < sb_height_unit;
432
66.8k
    }
433
434
    // Bottom row of superblock (and not the leftmost column): so bottom-left
435
    // pixels fall in the bottom superblock, which is not available yet.
436
350k
    if (((blk_row_in_sb + 1) << bh_in_mi_log2) >= sb_mi_size) return 0;
437
438
    // General case (neither leftmost column nor bottom row): check if the
439
    // bottom-left block is coded before the current block.
440
297k
    const int this_blk_index =
441
297k
        ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
442
297k
        blk_col_in_sb + 0;
443
297k
    const int idx1 = this_blk_index / 8;
444
297k
    const int idx2 = this_blk_index % 8;
445
297k
    const uint8_t *has_bl_table = get_has_bl_table(partition, bsize);
446
297k
    return (has_bl_table[idx1] >> idx2) & 1;
447
350k
  }
448
605k
}
449
450
typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride,
451
                              const uint8_t *above, const uint8_t *left);
452
453
static intra_pred_fn pred[INTRA_MODES][TX_SIZES_ALL];
454
static intra_pred_fn dc_pred[2][2][TX_SIZES_ALL];
455
456
#if CONFIG_AV1_HIGHBITDEPTH
457
typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride,
458
                                   const uint16_t *above, const uint16_t *left,
459
                                   int bd);
460
static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL];
461
static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL];
462
#endif
463
464
2
static void init_intra_predictors_internal(void) {
465
2
  assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES);
466
467
#if CONFIG_REALTIME_ONLY && !CONFIG_AV1_DECODER
468
#define INIT_RECTANGULAR(p, type)             \
469
  p[TX_4X8] = aom_##type##_predictor_4x8;     \
470
  p[TX_8X4] = aom_##type##_predictor_8x4;     \
471
  p[TX_8X16] = aom_##type##_predictor_8x16;   \
472
  p[TX_16X8] = aom_##type##_predictor_16x8;   \
473
  p[TX_16X32] = aom_##type##_predictor_16x32; \
474
  p[TX_32X16] = aom_##type##_predictor_32x16; \
475
  p[TX_32X64] = aom_##type##_predictor_32x64; \
476
  p[TX_64X32] = aom_##type##_predictor_64x32;
477
#else
478
2
#define INIT_RECTANGULAR(p, type)             \
479
40
  p[TX_4X8] = aom_##type##_predictor_4x8;     \
480
40
  p[TX_8X4] = aom_##type##_predictor_8x4;     \
481
40
  p[TX_8X16] = aom_##type##_predictor_8x16;   \
482
40
  p[TX_16X8] = aom_##type##_predictor_16x8;   \
483
40
  p[TX_16X32] = aom_##type##_predictor_16x32; \
484
40
  p[TX_32X16] = aom_##type##_predictor_32x16; \
485
40
  p[TX_32X64] = aom_##type##_predictor_32x64; \
486
40
  p[TX_64X32] = aom_##type##_predictor_64x32; \
487
40
  p[TX_4X16] = aom_##type##_predictor_4x16;   \
488
40
  p[TX_16X4] = aom_##type##_predictor_16x4;   \
489
40
  p[TX_8X32] = aom_##type##_predictor_8x32;   \
490
40
  p[TX_32X8] = aom_##type##_predictor_32x8;   \
491
40
  p[TX_16X64] = aom_##type##_predictor_16x64; \
492
40
  p[TX_64X16] = aom_##type##_predictor_64x16;
493
2
#endif  // CONFIG_REALTIME_ONLY && !CONFIG_AV1_DECODER
494
495
2
#define INIT_NO_4X4(p, type)                  \
496
40
  p[TX_8X8] = aom_##type##_predictor_8x8;     \
497
40
  p[TX_16X16] = aom_##type##_predictor_16x16; \
498
40
  p[TX_32X32] = aom_##type##_predictor_32x32; \
499
40
  p[TX_64X64] = aom_##type##_predictor_64x64; \
500
40
  INIT_RECTANGULAR(p, type)
501
502
2
#define INIT_ALL_SIZES(p, type)           \
503
40
  p[TX_4X4] = aom_##type##_predictor_4x4; \
504
40
  INIT_NO_4X4(p, type)
505
506
2
  INIT_ALL_SIZES(pred[V_PRED], v)
507
2
  INIT_ALL_SIZES(pred[H_PRED], h)
508
2
  INIT_ALL_SIZES(pred[PAETH_PRED], paeth)
509
2
  INIT_ALL_SIZES(pred[SMOOTH_PRED], smooth)
510
2
  INIT_ALL_SIZES(pred[SMOOTH_V_PRED], smooth_v)
511
2
  INIT_ALL_SIZES(pred[SMOOTH_H_PRED], smooth_h)
512
2
  INIT_ALL_SIZES(dc_pred[0][0], dc_128)
513
2
  INIT_ALL_SIZES(dc_pred[0][1], dc_top)
514
2
  INIT_ALL_SIZES(dc_pred[1][0], dc_left)
515
2
  INIT_ALL_SIZES(dc_pred[1][1], dc)
516
2
#if CONFIG_AV1_HIGHBITDEPTH
517
2
  INIT_ALL_SIZES(pred_high[V_PRED], highbd_v)
518
2
  INIT_ALL_SIZES(pred_high[H_PRED], highbd_h)
519
2
  INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth)
520
2
  INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth)
521
2
  INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v)
522
2
  INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h)
523
2
  INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128)
524
2
  INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top)
525
2
  INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left)
526
2
  INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc)
527
2
#endif
528
2
#undef intra_pred_allsizes
529
2
}
530
531
// Directional prediction, zone 1: 0 < angle < 90
532
void av1_dr_prediction_z1_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
533
                            const uint8_t *above, const uint8_t *left,
534
292k
                            int upsample_above, int dx, int dy) {
535
292k
  int r, c, x, base, shift, val;
536
537
292k
  (void)left;
538
292k
  (void)dy;
539
292k
  assert(dy == 1);
540
292k
  assert(dx > 0);
541
542
292k
  const int max_base_x = ((bw + bh) - 1) << upsample_above;
543
292k
  const int frac_bits = 6 - upsample_above;
544
292k
  const int base_inc = 1 << upsample_above;
545
292k
  x = dx;
546
3.43M
  for (r = 0; r < bh; ++r, dst += stride, x += dx) {
547
3.14M
    base = x >> frac_bits;
548
3.14M
    shift = ((x << upsample_above) & 0x3F) >> 1;
549
550
3.14M
    if (base >= max_base_x) {
551
6.53k
      for (int i = r; i < bh; ++i) {
552
4.39k
        memset(dst, above[max_base_x], bw * sizeof(dst[0]));
553
4.39k
        dst += stride;
554
4.39k
      }
555
2.14k
      return;
556
2.14k
    }
557
558
56.2M
    for (c = 0; c < bw; ++c, base += base_inc) {
559
53.1M
      if (base < max_base_x) {
560
52.7M
        val = above[base] * (32 - shift) + above[base + 1] * shift;
561
52.7M
        dst[c] = ROUND_POWER_OF_TWO(val, 5);
562
52.7M
      } else {
563
377k
        dst[c] = above[max_base_x];
564
377k
      }
565
53.1M
    }
566
3.13M
  }
567
292k
}
568
569
// Directional prediction, zone 2: 90 < angle < 180
570
void av1_dr_prediction_z2_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
571
                            const uint8_t *above, const uint8_t *left,
572
                            int upsample_above, int upsample_left, int dx,
573
552k
                            int dy) {
574
552k
  assert(dx > 0);
575
552k
  assert(dy > 0);
576
577
552k
  const int min_base_x = -(1 << upsample_above);
578
552k
  const int min_base_y = -(1 << upsample_left);
579
552k
  (void)min_base_y;
580
552k
  const int frac_bits_x = 6 - upsample_above;
581
552k
  const int frac_bits_y = 6 - upsample_left;
582
583
6.52M
  for (int r = 0; r < bh; ++r) {
584
108M
    for (int c = 0; c < bw; ++c) {
585
102M
      int val;
586
102M
      int y = r + 1;
587
102M
      int x = (c << 6) - y * dx;
588
102M
      const int base_x = x >> frac_bits_x;
589
102M
      if (base_x >= min_base_x) {
590
48.3M
        const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
591
48.3M
        val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
592
48.3M
        val = ROUND_POWER_OF_TWO(val, 5);
593
54.4M
      } else {
594
54.4M
        x = c + 1;
595
54.4M
        y = (r << 6) - x * dy;
596
54.4M
        const int base_y = y >> frac_bits_y;
597
54.4M
        assert(base_y >= min_base_y);
598
54.4M
        const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
599
54.4M
        val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
600
54.4M
        val = ROUND_POWER_OF_TWO(val, 5);
601
54.4M
      }
602
102M
      dst[c] = val;
603
102M
    }
604
5.97M
    dst += stride;
605
5.97M
  }
606
552k
}
607
608
// Directional prediction, zone 3: 180 < angle < 270
609
void av1_dr_prediction_z3_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
610
                            const uint8_t *above, const uint8_t *left,
611
320k
                            int upsample_left, int dx, int dy) {
612
320k
  int r, c, y, base, shift, val;
613
614
320k
  (void)above;
615
320k
  (void)dx;
616
617
320k
  assert(dx == 1);
618
320k
  assert(dy > 0);
619
620
320k
  const int max_base_y = (bw + bh - 1) << upsample_left;
621
320k
  const int frac_bits = 6 - upsample_left;
622
320k
  const int base_inc = 1 << upsample_left;
623
320k
  y = dy;
624
3.89M
  for (c = 0; c < bw; ++c, y += dy) {
625
3.57M
    base = y >> frac_bits;
626
3.57M
    shift = ((y << upsample_left) & 0x3F) >> 1;
627
628
59.2M
    for (r = 0; r < bh; ++r, base += base_inc) {
629
55.6M
      if (base < max_base_y) {
630
55.6M
        val = left[base] * (32 - shift) + left[base + 1] * shift;
631
55.6M
        dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5);
632
55.6M
      } else {
633
31
        for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
634
31
        break;
635
31
      }
636
55.6M
    }
637
3.57M
  }
638
320k
}
639
640
static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size,
641
                         const uint8_t *above, const uint8_t *left,
642
1.96M
                         int upsample_above, int upsample_left, int angle) {
643
1.96M
  const int dx = av1_get_dx(angle);
644
1.96M
  const int dy = av1_get_dy(angle);
645
1.96M
  const int bw = tx_size_wide[tx_size];
646
1.96M
  const int bh = tx_size_high[tx_size];
647
1.96M
  assert(angle > 0 && angle < 270);
648
649
1.96M
  if (angle > 0 && angle < 90) {
650
292k
    av1_dr_prediction_z1(dst, stride, bw, bh, above, left, upsample_above, dx,
651
292k
                         dy);
652
1.67M
  } else if (angle > 90 && angle < 180) {
653
552k
    av1_dr_prediction_z2(dst, stride, bw, bh, above, left, upsample_above,
654
552k
                         upsample_left, dx, dy);
655
1.12M
  } else if (angle > 180 && angle < 270) {
656
320k
    av1_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, dx,
657
320k
                         dy);
658
800k
  } else if (angle == 90) {
659
408k
    pred[V_PRED][tx_size](dst, stride, above, left);
660
408k
  } else if (angle == 180) {
661
392k
    pred[H_PRED][tx_size](dst, stride, above, left);
662
392k
  }
663
1.96M
}
664
665
#if CONFIG_AV1_HIGHBITDEPTH
666
// Directional prediction, zone 1: 0 < angle < 90
667
void av1_highbd_dr_prediction_z1_c(uint16_t *dst, ptrdiff_t stride, int bw,
668
                                   int bh, const uint16_t *above,
669
                                   const uint16_t *left, int upsample_above,
670
301k
                                   int dx, int dy, int bd) {
671
301k
  int r, c, x, base, shift, val;
672
673
301k
  (void)left;
674
301k
  (void)dy;
675
301k
  (void)bd;
676
301k
  assert(dy == 1);
677
301k
  assert(dx > 0);
678
679
301k
  const int max_base_x = ((bw + bh) - 1) << upsample_above;
680
301k
  const int frac_bits = 6 - upsample_above;
681
301k
  const int base_inc = 1 << upsample_above;
682
301k
  x = dx;
683
3.58M
  for (r = 0; r < bh; ++r, dst += stride, x += dx) {
684
3.28M
    base = x >> frac_bits;
685
3.28M
    shift = ((x << upsample_above) & 0x3F) >> 1;
686
687
3.28M
    if (base >= max_base_x) {
688
8.41k
      for (int i = r; i < bh; ++i) {
689
5.70k
        aom_memset16(dst, above[max_base_x], bw);
690
5.70k
        dst += stride;
691
5.70k
      }
692
2.71k
      return;
693
2.71k
    }
694
695
58.5M
    for (c = 0; c < bw; ++c, base += base_inc) {
696
55.3M
      if (base < max_base_x) {
697
54.8M
        val = above[base] * (32 - shift) + above[base + 1] * shift;
698
54.8M
        dst[c] = ROUND_POWER_OF_TWO(val, 5);
699
54.8M
      } else {
700
468k
        dst[c] = above[max_base_x];
701
468k
      }
702
55.3M
    }
703
3.28M
  }
704
301k
}
705
706
// Directional prediction, zone 2: 90 < angle < 180
707
void av1_highbd_dr_prediction_z2_c(uint16_t *dst, ptrdiff_t stride, int bw,
708
                                   int bh, const uint16_t *above,
709
                                   const uint16_t *left, int upsample_above,
710
620k
                                   int upsample_left, int dx, int dy, int bd) {
711
620k
  (void)bd;
712
620k
  assert(dx > 0);
713
620k
  assert(dy > 0);
714
715
620k
  const int min_base_x = -(1 << upsample_above);
716
620k
  const int min_base_y = -(1 << upsample_left);
717
620k
  (void)min_base_y;
718
620k
  const int frac_bits_x = 6 - upsample_above;
719
620k
  const int frac_bits_y = 6 - upsample_left;
720
721
8.01M
  for (int r = 0; r < bh; ++r) {
722
145M
    for (int c = 0; c < bw; ++c) {
723
138M
      int val;
724
138M
      int y = r + 1;
725
138M
      int x = (c << 6) - y * dx;
726
138M
      const int base_x = x >> frac_bits_x;
727
138M
      if (base_x >= min_base_x) {
728
62.5M
        const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
729
62.5M
        val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
730
62.5M
        val = ROUND_POWER_OF_TWO(val, 5);
731
75.9M
      } else {
732
75.9M
        x = c + 1;
733
75.9M
        y = (r << 6) - x * dy;
734
75.9M
        const int base_y = y >> frac_bits_y;
735
75.9M
        assert(base_y >= min_base_y);
736
75.9M
        const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
737
75.9M
        val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
738
75.9M
        val = ROUND_POWER_OF_TWO(val, 5);
739
75.9M
      }
740
138M
      dst[c] = val;
741
138M
    }
742
7.39M
    dst += stride;
743
7.39M
  }
744
620k
}
745
746
// Directional prediction, zone 3: 180 < angle < 270
747
void av1_highbd_dr_prediction_z3_c(uint16_t *dst, ptrdiff_t stride, int bw,
748
                                   int bh, const uint16_t *above,
749
                                   const uint16_t *left, int upsample_left,
750
309k
                                   int dx, int dy, int bd) {
751
309k
  int r, c, y, base, shift, val;
752
753
309k
  (void)above;
754
309k
  (void)dx;
755
309k
  (void)bd;
756
309k
  assert(dx == 1);
757
309k
  assert(dy > 0);
758
759
309k
  const int max_base_y = (bw + bh - 1) << upsample_left;
760
309k
  const int frac_bits = 6 - upsample_left;
761
309k
  const int base_inc = 1 << upsample_left;
762
309k
  y = dy;
763
4.00M
  for (c = 0; c < bw; ++c, y += dy) {
764
3.69M
    base = y >> frac_bits;
765
3.69M
    shift = ((y << upsample_left) & 0x3F) >> 1;
766
767
64.5M
    for (r = 0; r < bh; ++r, base += base_inc) {
768
60.8M
      if (base < max_base_y) {
769
60.8M
        val = left[base] * (32 - shift) + left[base + 1] * shift;
770
60.8M
        dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5);
771
60.8M
      } else {
772
0
        for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
773
0
        break;
774
0
      }
775
60.8M
    }
776
3.69M
  }
777
309k
}
778
779
static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride,
780
                                TX_SIZE tx_size, const uint16_t *above,
781
                                const uint16_t *left, int upsample_above,
782
1.64M
                                int upsample_left, int angle, int bd) {
783
1.64M
  const int dx = av1_get_dx(angle);
784
1.64M
  const int dy = av1_get_dy(angle);
785
1.64M
  const int bw = tx_size_wide[tx_size];
786
1.64M
  const int bh = tx_size_high[tx_size];
787
1.64M
  assert(angle > 0 && angle < 270);
788
789
1.64M
  if (angle > 0 && angle < 90) {
790
301k
    av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left,
791
301k
                                upsample_above, dx, dy, bd);
792
1.34M
  } else if (angle > 90 && angle < 180) {
793
620k
    av1_highbd_dr_prediction_z2(dst, stride, bw, bh, above, left,
794
620k
                                upsample_above, upsample_left, dx, dy, bd);
795
727k
  } else if (angle > 180 && angle < 270) {
796
309k
    av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left,
797
309k
                                dx, dy, bd);
798
417k
  } else if (angle == 90) {
799
156k
    pred_high[V_PRED][tx_size](dst, stride, above, left, bd);
800
261k
  } else if (angle == 180) {
801
261k
    pred_high[H_PRED][tx_size](dst, stride, above, left, bd);
802
261k
  }
803
1.64M
}
804
#endif  // CONFIG_AV1_HIGHBITDEPTH
805
806
DECLARE_ALIGNED(16, const int8_t,
807
                av1_filter_intra_taps[FILTER_INTRA_MODES][8][8]) = {
808
  {
809
      { -6, 10, 0, 0, 0, 12, 0, 0 },
810
      { -5, 2, 10, 0, 0, 9, 0, 0 },
811
      { -3, 1, 1, 10, 0, 7, 0, 0 },
812
      { -3, 1, 1, 2, 10, 5, 0, 0 },
813
      { -4, 6, 0, 0, 0, 2, 12, 0 },
814
      { -3, 2, 6, 0, 0, 2, 9, 0 },
815
      { -3, 2, 2, 6, 0, 2, 7, 0 },
816
      { -3, 1, 2, 2, 6, 3, 5, 0 },
817
  },
818
  {
819
      { -10, 16, 0, 0, 0, 10, 0, 0 },
820
      { -6, 0, 16, 0, 0, 6, 0, 0 },
821
      { -4, 0, 0, 16, 0, 4, 0, 0 },
822
      { -2, 0, 0, 0, 16, 2, 0, 0 },
823
      { -10, 16, 0, 0, 0, 0, 10, 0 },
824
      { -6, 0, 16, 0, 0, 0, 6, 0 },
825
      { -4, 0, 0, 16, 0, 0, 4, 0 },
826
      { -2, 0, 0, 0, 16, 0, 2, 0 },
827
  },
828
  {
829
      { -8, 8, 0, 0, 0, 16, 0, 0 },
830
      { -8, 0, 8, 0, 0, 16, 0, 0 },
831
      { -8, 0, 0, 8, 0, 16, 0, 0 },
832
      { -8, 0, 0, 0, 8, 16, 0, 0 },
833
      { -4, 4, 0, 0, 0, 0, 16, 0 },
834
      { -4, 0, 4, 0, 0, 0, 16, 0 },
835
      { -4, 0, 0, 4, 0, 0, 16, 0 },
836
      { -4, 0, 0, 0, 4, 0, 16, 0 },
837
  },
838
  {
839
      { -2, 8, 0, 0, 0, 10, 0, 0 },
840
      { -1, 3, 8, 0, 0, 6, 0, 0 },
841
      { -1, 2, 3, 8, 0, 4, 0, 0 },
842
      { 0, 1, 2, 3, 8, 2, 0, 0 },
843
      { -1, 4, 0, 0, 0, 3, 10, 0 },
844
      { -1, 3, 4, 0, 0, 4, 6, 0 },
845
      { -1, 2, 3, 4, 0, 4, 4, 0 },
846
      { -1, 2, 2, 3, 4, 3, 3, 0 },
847
  },
848
  {
849
      { -12, 14, 0, 0, 0, 14, 0, 0 },
850
      { -10, 0, 14, 0, 0, 12, 0, 0 },
851
      { -9, 0, 0, 14, 0, 11, 0, 0 },
852
      { -8, 0, 0, 0, 14, 10, 0, 0 },
853
      { -10, 12, 0, 0, 0, 0, 14, 0 },
854
      { -9, 1, 12, 0, 0, 0, 12, 0 },
855
      { -8, 0, 0, 12, 0, 1, 11, 0 },
856
      { -7, 0, 0, 1, 12, 1, 9, 0 },
857
  },
858
};
859
860
void av1_filter_intra_predictor_c(uint8_t *dst, ptrdiff_t stride,
861
                                  TX_SIZE tx_size, const uint8_t *above,
862
479k
                                  const uint8_t *left, int mode) {
863
479k
  int r, c;
864
479k
  uint8_t buffer[33][33];
865
479k
  const int bw = tx_size_wide[tx_size];
866
479k
  const int bh = tx_size_high[tx_size];
867
868
479k
  assert(bw <= 32 && bh <= 32);
869
870
4.54M
  for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r];
871
479k
  memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(uint8_t));
872
873
2.51M
  for (r = 1; r < bh + 1; r += 2)
874
7.68M
    for (c = 1; c < bw + 1; c += 4) {
875
5.64M
      const uint8_t p0 = buffer[r - 1][c - 1];
876
5.64M
      const uint8_t p1 = buffer[r - 1][c];
877
5.64M
      const uint8_t p2 = buffer[r - 1][c + 1];
878
5.64M
      const uint8_t p3 = buffer[r - 1][c + 2];
879
5.64M
      const uint8_t p4 = buffer[r - 1][c + 3];
880
5.64M
      const uint8_t p5 = buffer[r][c - 1];
881
5.64M
      const uint8_t p6 = buffer[r + 1][c - 1];
882
50.8M
      for (int k = 0; k < 8; ++k) {
883
45.1M
        int r_offset = k >> 2;
884
45.1M
        int c_offset = k & 0x03;
885
45.1M
        int pr = av1_filter_intra_taps[mode][k][0] * p0 +
886
45.1M
                 av1_filter_intra_taps[mode][k][1] * p1 +
887
45.1M
                 av1_filter_intra_taps[mode][k][2] * p2 +
888
45.1M
                 av1_filter_intra_taps[mode][k][3] * p3 +
889
45.1M
                 av1_filter_intra_taps[mode][k][4] * p4 +
890
45.1M
                 av1_filter_intra_taps[mode][k][5] * p5 +
891
45.1M
                 av1_filter_intra_taps[mode][k][6] * p6;
892
        // Section 7.11.2.3 specifies the right-hand side of the assignment as
893
        //   Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ).
894
        // Since Clip1() clips a negative value to 0, it is safe to replace
895
        // Round2Signed() with Round2().
896
45.1M
        buffer[r + r_offset][c + c_offset] =
897
45.1M
            clip_pixel(ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS));
898
45.1M
      }
899
5.64M
    }
900
901
4.54M
  for (r = 0; r < bh; ++r) {
902
4.06M
    memcpy(dst, &buffer[r + 1][1], bw * sizeof(uint8_t));
903
4.06M
    dst += stride;
904
4.06M
  }
905
479k
}
906
907
#if CONFIG_AV1_HIGHBITDEPTH
908
static void highbd_filter_intra_predictor(uint16_t *dst, ptrdiff_t stride,
909
                                          TX_SIZE tx_size,
910
                                          const uint16_t *above,
911
                                          const uint16_t *left, int mode,
912
150k
                                          int bd) {
913
150k
  int r, c;
914
150k
  uint16_t buffer[33][33];
915
150k
  const int bw = tx_size_wide[tx_size];
916
150k
  const int bh = tx_size_high[tx_size];
917
918
150k
  assert(bw <= 32 && bh <= 32);
919
920
1.33M
  for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r];
921
150k
  memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(buffer[0][0]));
922
923
740k
  for (r = 1; r < bh + 1; r += 2)
924
2.16M
    for (c = 1; c < bw + 1; c += 4) {
925
1.57M
      const uint16_t p0 = buffer[r - 1][c - 1];
926
1.57M
      const uint16_t p1 = buffer[r - 1][c];
927
1.57M
      const uint16_t p2 = buffer[r - 1][c + 1];
928
1.57M
      const uint16_t p3 = buffer[r - 1][c + 2];
929
1.57M
      const uint16_t p4 = buffer[r - 1][c + 3];
930
1.57M
      const uint16_t p5 = buffer[r][c - 1];
931
1.57M
      const uint16_t p6 = buffer[r + 1][c - 1];
932
14.1M
      for (int k = 0; k < 8; ++k) {
933
12.5M
        int r_offset = k >> 2;
934
12.5M
        int c_offset = k & 0x03;
935
12.5M
        int pr = av1_filter_intra_taps[mode][k][0] * p0 +
936
12.5M
                 av1_filter_intra_taps[mode][k][1] * p1 +
937
12.5M
                 av1_filter_intra_taps[mode][k][2] * p2 +
938
12.5M
                 av1_filter_intra_taps[mode][k][3] * p3 +
939
12.5M
                 av1_filter_intra_taps[mode][k][4] * p4 +
940
12.5M
                 av1_filter_intra_taps[mode][k][5] * p5 +
941
12.5M
                 av1_filter_intra_taps[mode][k][6] * p6;
942
        // Section 7.11.2.3 specifies the right-hand side of the assignment as
943
        //   Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ).
944
        // Since Clip1() clips a negative value to 0, it is safe to replace
945
        // Round2Signed() with Round2().
946
12.5M
        buffer[r + r_offset][c + c_offset] = clip_pixel_highbd(
947
12.5M
            ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS), bd);
948
12.5M
      }
949
1.57M
    }
950
951
1.33M
  for (r = 0; r < bh; ++r) {
952
1.18M
    memcpy(dst, &buffer[r + 1][1], bw * sizeof(dst[0]));
953
1.18M
    dst += stride;
954
1.18M
  }
955
150k
}
956
#endif  // CONFIG_AV1_HIGHBITDEPTH
957
958
7.38M
static int is_smooth(const MB_MODE_INFO *mbmi, int plane) {
959
7.38M
  if (plane == 0) {
960
3.87M
    const PREDICTION_MODE mode = mbmi->mode;
961
3.87M
    return (mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
962
3.87M
            mode == SMOOTH_H_PRED);
963
3.87M
  } else {
964
    // uv_mode is not set for inter blocks, so need to explicitly
965
    // detect that case.
966
3.50M
    if (is_inter_block(mbmi)) return 0;
967
968
3.46M
    const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
969
3.46M
    return (uv_mode == UV_SMOOTH_PRED || uv_mode == UV_SMOOTH_V_PRED ||
970
3.46M
            uv_mode == UV_SMOOTH_H_PRED);
971
3.50M
  }
972
7.38M
}
973
974
4.34M
static int get_intra_edge_filter_type(const MACROBLOCKD *xd, int plane) {
975
4.34M
  const MB_MODE_INFO *above;
976
4.34M
  const MB_MODE_INFO *left;
977
978
4.34M
  if (plane == 0) {
979
2.27M
    above = xd->above_mbmi;
980
2.27M
    left = xd->left_mbmi;
981
2.27M
  } else {
982
2.07M
    above = xd->chroma_above_mbmi;
983
2.07M
    left = xd->chroma_left_mbmi;
984
2.07M
  }
985
986
4.34M
  return (above && is_smooth(above, plane)) || (left && is_smooth(left, plane));
987
4.34M
}
988
989
2.05M
static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) {
990
2.05M
  const int d = abs(delta);
991
2.05M
  int strength = 0;
992
993
2.05M
  const int blk_wh = bs0 + bs1;
994
2.05M
  if (type == 0) {
995
1.54M
    if (blk_wh <= 8) {
996
487k
      if (d >= 56) strength = 1;
997
1.06M
    } else if (blk_wh <= 12) {
998
145k
      if (d >= 40) strength = 1;
999
916k
    } else if (blk_wh <= 16) {
1000
274k
      if (d >= 40) strength = 1;
1001
642k
    } else if (blk_wh <= 24) {
1002
277k
      if (d >= 8) strength = 1;
1003
277k
      if (d >= 16) strength = 2;
1004
277k
      if (d >= 32) strength = 3;
1005
364k
    } else if (blk_wh <= 32) {
1006
168k
      if (d >= 1) strength = 1;
1007
168k
      if (d >= 4) strength = 2;
1008
168k
      if (d >= 32) strength = 3;
1009
196k
    } else {
1010
196k
      if (d >= 1) strength = 3;
1011
196k
    }
1012
1.54M
  } else {
1013
509k
    if (blk_wh <= 8) {
1014
112k
      if (d >= 40) strength = 1;
1015
112k
      if (d >= 64) strength = 2;
1016
396k
    } else if (blk_wh <= 16) {
1017
162k
      if (d >= 20) strength = 1;
1018
162k
      if (d >= 48) strength = 2;
1019
233k
    } else if (blk_wh <= 24) {
1020
119k
      if (d >= 4) strength = 3;
1021
119k
    } else {
1022
114k
      if (d >= 1) strength = 3;
1023
114k
    }
1024
509k
  }
1025
2.05M
  return strength;
1026
2.05M
}
1027
1028
1.39M
void av1_filter_intra_edge_c(uint8_t *p, int sz, int strength) {
1029
1.39M
  if (!strength) return;
1030
1031
893k
  const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
1032
893k
                                                         { 0, 5, 6, 5, 0 },
1033
893k
                                                         { 2, 4, 4, 4, 2 } };
1034
893k
  const int filt = strength - 1;
1035
893k
  uint8_t edge[129];
1036
1037
893k
  memcpy(edge, p, sz * sizeof(*p));
1038
17.0M
  for (int i = 1; i < sz; i++) {
1039
16.1M
    int s = 0;
1040
96.9M
    for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
1041
80.7M
      int k = i - 2 + j;
1042
80.7M
      k = (k < 0) ? 0 : k;
1043
80.7M
      k = (k > sz - 1) ? sz - 1 : k;
1044
80.7M
      s += edge[k] * kernel[filt][j];
1045
80.7M
    }
1046
16.1M
    s = (s + 8) >> 4;
1047
16.1M
    p[i] = s;
1048
16.1M
  }
1049
893k
}
1050
1051
167k
static void filter_intra_edge_corner(uint8_t *p_above, uint8_t *p_left) {
1052
167k
  const int kernel[3] = { 5, 6, 5 };
1053
1054
167k
  int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
1055
167k
          (p_above[0] * kernel[2]);
1056
167k
  s = (s + 8) >> 4;
1057
167k
  p_above[-1] = s;
1058
167k
  p_left[-1] = s;
1059
167k
}
1060
1061
348k
void av1_upsample_intra_edge_c(uint8_t *p, int sz) {
1062
  // interpolate half-sample positions
1063
348k
  assert(sz <= MAX_UPSAMPLE_SZ);
1064
1065
348k
  uint8_t in[MAX_UPSAMPLE_SZ + 3];
1066
  // copy p[-1..(sz-1)] and extend first and last samples
1067
348k
  in[0] = p[-1];
1068
348k
  in[1] = p[-1];
1069
3.21M
  for (int i = 0; i < sz; i++) {
1070
2.86M
    in[i + 2] = p[i];
1071
2.86M
  }
1072
348k
  in[sz + 2] = p[sz - 1];
1073
1074
  // interpolate half-sample edge positions
1075
348k
  p[-2] = in[0];
1076
3.21M
  for (int i = 0; i < sz; i++) {
1077
2.86M
    int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
1078
2.86M
    s = clip_pixel((s + 8) >> 4);
1079
2.86M
    p[2 * i - 1] = s;
1080
2.86M
    p[2 * i] = in[i + 2];
1081
2.86M
  }
1082
348k
}
1083
1084
static void build_directional_and_filter_intra_predictors(
1085
    const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride,
1086
    PREDICTION_MODE mode, int p_angle, FILTER_INTRA_MODE filter_intra_mode,
1087
    TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px,
1088
2.49M
    int n_left_px, int n_bottomleft_px, int intra_edge_filter_type) {
1089
2.49M
  int i;
1090
2.49M
  const uint8_t *above_ref = ref - ref_stride;
1091
2.49M
  const uint8_t *left_ref = ref - 1;
1092
2.49M
  DECLARE_ALIGNED(16, uint8_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1093
2.49M
  DECLARE_ALIGNED(16, uint8_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1094
2.49M
  uint8_t *const above_row = above_data + 16;
1095
2.49M
  uint8_t *const left_col = left_data + 16;
1096
2.49M
  const int txwpx = tx_size_wide[tx_size];
1097
2.49M
  const int txhpx = tx_size_high[tx_size];
1098
2.49M
  int need_left = extend_modes[mode] & NEED_LEFT;
1099
2.49M
  int need_above = extend_modes[mode] & NEED_ABOVE;
1100
2.49M
  int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1101
2.49M
  const int is_dr_mode = av1_is_directional_mode(mode);
1102
2.49M
  const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
1103
2.49M
  assert(use_filter_intra || is_dr_mode);
1104
  // The left_data, above_data buffers must be zeroed to fix some intermittent
1105
  // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4
1106
  // path in av1_dr_prediction_z1_avx2()) from left_data, above_data are seen to
1107
  // be the potential reason for this issue.
1108
2.49M
  memset(left_data, 129, NUM_INTRA_NEIGHBOUR_PIXELS);
1109
2.49M
  memset(above_data, 127, NUM_INTRA_NEIGHBOUR_PIXELS);
1110
1111
  // The default values if ref pixels are not available:
1112
  // 128 127 127 .. 127 127 127 127 127 127
1113
  // 129  A   B  ..  Y   Z
1114
  // 129  C   D  ..  W   X
1115
  // 129  E   F  ..  U   V
1116
  // 129  G   H  ..  S   T   T   T   T   T
1117
  // ..
1118
1119
2.49M
  if (is_dr_mode) {
1120
2.01M
    if (p_angle <= 90)
1121
719k
      need_above = 1, need_left = 0, need_above_left = 1;
1122
1.29M
    else if (p_angle < 180)
1123
552k
      need_above = 1, need_left = 1, need_above_left = 1;
1124
742k
    else
1125
742k
      need_above = 0, need_left = 1, need_above_left = 1;
1126
2.01M
  }
1127
2.49M
  if (use_filter_intra) need_left = need_above = need_above_left = 1;
1128
1129
2.49M
  assert(n_top_px >= 0);
1130
2.49M
  assert(n_topright_px >= -1);
1131
2.49M
  assert(n_left_px >= 0);
1132
2.49M
  assert(n_bottomleft_px >= -1);
1133
1134
2.49M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1135
48.6k
    int val;
1136
48.6k
    if (need_left) {
1137
30.3k
      val = (n_top_px > 0) ? above_ref[0] : 129;
1138
30.3k
    } else {
1139
18.3k
      val = (n_left_px > 0) ? left_ref[0] : 127;
1140
18.3k
    }
1141
885k
    for (i = 0; i < txhpx; ++i) {
1142
837k
      memset(dst, val, txwpx);
1143
837k
      dst += dst_stride;
1144
837k
    }
1145
48.6k
    return;
1146
48.6k
  }
1147
1148
  // NEED_LEFT
1149
2.44M
  if (need_left) {
1150
1.74M
    const int num_left_pixels_needed =
1151
1.74M
        txhpx + (n_bottomleft_px >= 0 ? txwpx : 0);
1152
1.74M
    i = 0;
1153
1.74M
    if (n_left_px > 0) {
1154
17.7M
      for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1155
1.71M
      if (n_bottomleft_px > 0) {
1156
102k
        assert(i == txhpx);
1157
1.03M
        for (; i < txhpx + n_bottomleft_px; i++)
1158
927k
          left_col[i] = left_ref[i * ref_stride];
1159
102k
      }
1160
1.71M
      if (i < num_left_pixels_needed)
1161
270k
        memset(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
1162
1.71M
    } else if (n_top_px > 0) {
1163
27.5k
      memset(left_col, above_ref[0], num_left_pixels_needed);
1164
27.5k
    }
1165
1.74M
  }
1166
1167
  // NEED_ABOVE
1168
2.44M
  if (need_above) {
1169
1.73M
    const int num_top_pixels_needed = txwpx + (n_topright_px >= 0 ? txhpx : 0);
1170
1.73M
    if (n_top_px > 0) {
1171
1.70M
      memcpy(above_row, above_ref, n_top_px);
1172
1.70M
      i = n_top_px;
1173
1.70M
      if (n_topright_px > 0) {
1174
179k
        assert(n_top_px == txwpx);
1175
179k
        memcpy(above_row + txwpx, above_ref + txwpx, n_topright_px);
1176
179k
        i += n_topright_px;
1177
179k
      }
1178
1.70M
      if (i < num_top_pixels_needed)
1179
164k
        memset(&above_row[i], above_row[i - 1], num_top_pixels_needed - i);
1180
1.70M
    } else if (n_left_px > 0) {
1181
23.7k
      memset(above_row, left_ref[0], num_top_pixels_needed);
1182
23.7k
    }
1183
1.73M
  }
1184
1185
2.44M
  if (need_above_left) {
1186
2.44M
    if (n_top_px > 0 && n_left_px > 0) {
1187
2.35M
      above_row[-1] = above_ref[-1];
1188
2.35M
    } else if (n_top_px > 0) {
1189
49.6k
      above_row[-1] = above_ref[0];
1190
49.6k
    } else if (n_left_px > 0) {
1191
43.3k
      above_row[-1] = left_ref[0];
1192
43.3k
    } else {
1193
1.22k
      above_row[-1] = 128;
1194
1.22k
    }
1195
2.44M
    left_col[-1] = above_row[-1];
1196
2.44M
  }
1197
1198
2.44M
  if (use_filter_intra) {
1199
479k
    av1_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col,
1200
479k
                               filter_intra_mode);
1201
479k
    return;
1202
479k
  }
1203
1204
1.96M
  assert(is_dr_mode);
1205
1.96M
  int upsample_above = 0;
1206
1.96M
  int upsample_left = 0;
1207
1.96M
  if (!disable_edge_filter) {
1208
1.67M
    const int need_right = p_angle < 90;
1209
1.67M
    const int need_bottom = p_angle > 180;
1210
1.67M
    if (p_angle != 90 && p_angle != 180) {
1211
948k
      assert(need_above_left);
1212
948k
      const int ab_le = 1;
1213
948k
      if (need_above && need_left && (txwpx + txhpx >= 24)) {
1214
167k
        filter_intra_edge_corner(above_row, left_col);
1215
167k
      }
1216
948k
      if (need_above && n_top_px > 0) {
1217
693k
        const int strength = intra_edge_filter_strength(
1218
693k
            txwpx, txhpx, p_angle - 90, intra_edge_filter_type);
1219
693k
        const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
1220
693k
        av1_filter_intra_edge(above_row - ab_le, n_px, strength);
1221
693k
      }
1222
948k
      if (need_left && n_left_px > 0) {
1223
700k
        const int strength = intra_edge_filter_strength(
1224
700k
            txhpx, txwpx, p_angle - 180, intra_edge_filter_type);
1225
700k
        const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
1226
700k
        av1_filter_intra_edge(left_col - ab_le, n_px, strength);
1227
700k
      }
1228
948k
    }
1229
1.67M
    upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90,
1230
1.67M
                                                 intra_edge_filter_type);
1231
1.67M
    if (need_above && upsample_above) {
1232
156k
      const int n_px = txwpx + (need_right ? txhpx : 0);
1233
156k
      av1_upsample_intra_edge(above_row, n_px);
1234
156k
    }
1235
1.67M
    upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180,
1236
1.67M
                                                intra_edge_filter_type);
1237
1.67M
    if (need_left && upsample_left) {
1238
191k
      const int n_px = txhpx + (need_bottom ? txwpx : 0);
1239
191k
      av1_upsample_intra_edge(left_col, n_px);
1240
191k
    }
1241
1.67M
  }
1242
1.96M
  dr_predictor(dst, dst_stride, tx_size, above_row, left_col, upsample_above,
1243
1.96M
               upsample_left, p_angle);
1244
1.96M
}
1245
1246
// This function generates the pred data of a given block for non-directional
1247
// intra prediction modes (i.e., DC, SMOOTH, SMOOTH_H, SMOOTH_V and PAETH).
1248
static void build_non_directional_intra_predictors(
1249
    const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride,
1250
10.6M
    PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, int n_left_px) {
1251
10.6M
  const uint8_t *above_ref = ref - ref_stride;
1252
10.6M
  const uint8_t *left_ref = ref - 1;
1253
10.6M
  const int txwpx = tx_size_wide[tx_size];
1254
10.6M
  const int txhpx = tx_size_high[tx_size];
1255
10.6M
  const int need_left = extend_modes[mode] & NEED_LEFT;
1256
10.6M
  const int need_above = extend_modes[mode] & NEED_ABOVE;
1257
10.6M
  const int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1258
10.6M
  int i = 0;
1259
10.6M
  assert(n_top_px >= 0);
1260
10.6M
  assert(n_left_px >= 0);
1261
10.6M
  assert(mode == DC_PRED || mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
1262
10.6M
         mode == SMOOTH_H_PRED || mode == PAETH_PRED);
1263
1264
10.6M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1265
0
    int val = 0;
1266
0
    if (need_left) {
1267
0
      val = (n_top_px > 0) ? above_ref[0] : 129;
1268
0
    } else {
1269
0
      val = (n_left_px > 0) ? left_ref[0] : 127;
1270
0
    }
1271
0
    for (i = 0; i < txhpx; ++i) {
1272
0
      memset(dst, val, txwpx);
1273
0
      dst += dst_stride;
1274
0
    }
1275
0
    return;
1276
0
  }
1277
1278
10.6M
  DECLARE_ALIGNED(16, uint8_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1279
10.6M
  DECLARE_ALIGNED(16, uint8_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1280
10.6M
  uint8_t *const above_row = above_data + 16;
1281
10.6M
  uint8_t *const left_col = left_data + 16;
1282
1283
10.6M
  if (need_left) {
1284
10.6M
    memset(left_data, 129, NUM_INTRA_NEIGHBOUR_PIXELS);
1285
10.6M
    if (n_left_px > 0) {
1286
90.9M
      for (i = 0; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1287
10.0M
      if (i < txhpx) memset(&left_col[i], left_col[i - 1], txhpx - i);
1288
10.0M
    } else if (n_top_px > 0) {
1289
546k
      memset(left_col, above_ref[0], txhpx);
1290
546k
    }
1291
10.6M
  }
1292
1293
10.6M
  if (need_above) {
1294
10.6M
    memset(above_data, 127, NUM_INTRA_NEIGHBOUR_PIXELS);
1295
10.6M
    if (n_top_px > 0) {
1296
10.3M
      memcpy(above_row, above_ref, n_top_px);
1297
10.3M
      i = n_top_px;
1298
10.3M
      if (i < txwpx) memset(&above_row[i], above_row[i - 1], txwpx - i);
1299
10.3M
    } else if (n_left_px > 0) {
1300
314k
      memset(above_row, left_ref[0], txwpx);
1301
314k
    }
1302
10.6M
  }
1303
1304
10.6M
  if (need_above_left) {
1305
4.40M
    if (n_top_px > 0 && n_left_px > 0) {
1306
4.14M
      above_row[-1] = above_ref[-1];
1307
4.14M
    } else if (n_top_px > 0) {
1308
149k
      above_row[-1] = above_ref[0];
1309
149k
    } else if (n_left_px > 0) {
1310
110k
      above_row[-1] = left_ref[0];
1311
110k
    } else {
1312
2.14k
      above_row[-1] = 128;
1313
2.14k
    }
1314
4.40M
    left_col[-1] = above_row[-1];
1315
4.40M
  }
1316
1317
10.6M
  if (mode == DC_PRED) {
1318
5.03M
    dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, above_row,
1319
5.03M
                                                  left_col);
1320
5.62M
  } else {
1321
5.62M
    pred[mode][tx_size](dst, dst_stride, above_row, left_col);
1322
5.62M
  }
1323
10.6M
}
1324
1325
#if CONFIG_AV1_HIGHBITDEPTH
1326
665k
void av1_highbd_filter_intra_edge_c(uint16_t *p, int sz, int strength) {
1327
665k
  if (!strength) return;
1328
1329
374k
  const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
1330
374k
                                                         { 0, 5, 6, 5, 0 },
1331
374k
                                                         { 2, 4, 4, 4, 2 } };
1332
374k
  const int filt = strength - 1;
1333
374k
  uint16_t edge[129];
1334
1335
374k
  memcpy(edge, p, sz * sizeof(*p));
1336
7.32M
  for (int i = 1; i < sz; i++) {
1337
6.94M
    int s = 0;
1338
41.6M
    for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
1339
34.7M
      int k = i - 2 + j;
1340
34.7M
      k = (k < 0) ? 0 : k;
1341
34.7M
      k = (k > sz - 1) ? sz - 1 : k;
1342
34.7M
      s += edge[k] * kernel[filt][j];
1343
34.7M
    }
1344
6.94M
    s = (s + 8) >> 4;
1345
6.94M
    p[i] = s;
1346
6.94M
  }
1347
374k
}
1348
1349
static void highbd_filter_intra_edge_corner(uint16_t *p_above,
1350
71.8k
                                            uint16_t *p_left) {
1351
71.8k
  const int kernel[3] = { 5, 6, 5 };
1352
1353
71.8k
  int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
1354
71.8k
          (p_above[0] * kernel[2]);
1355
71.8k
  s = (s + 8) >> 4;
1356
71.8k
  p_above[-1] = s;
1357
71.8k
  p_left[-1] = s;
1358
71.8k
}
1359
1360
236k
void av1_highbd_upsample_intra_edge_c(uint16_t *p, int sz, int bd) {
1361
  // interpolate half-sample positions
1362
236k
  assert(sz <= MAX_UPSAMPLE_SZ);
1363
1364
236k
  uint16_t in[MAX_UPSAMPLE_SZ + 3];
1365
  // copy p[-1..(sz-1)] and extend first and last samples
1366
236k
  in[0] = p[-1];
1367
236k
  in[1] = p[-1];
1368
2.09M
  for (int i = 0; i < sz; i++) {
1369
1.86M
    in[i + 2] = p[i];
1370
1.86M
  }
1371
236k
  in[sz + 2] = p[sz - 1];
1372
1373
  // interpolate half-sample edge positions
1374
236k
  p[-2] = in[0];
1375
2.09M
  for (int i = 0; i < sz; i++) {
1376
1.86M
    int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
1377
1.86M
    s = (s + 8) >> 4;
1378
1.86M
    s = clip_pixel_highbd(s, bd);
1379
1.86M
    p[2 * i - 1] = s;
1380
1.86M
    p[2 * i] = in[i + 2];
1381
1.86M
  }
1382
236k
}
1383
1384
static void highbd_build_directional_and_filter_intra_predictors(
1385
    const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride,
1386
    PREDICTION_MODE mode, int p_angle, FILTER_INTRA_MODE filter_intra_mode,
1387
    TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px,
1388
    int n_left_px, int n_bottomleft_px, int intra_edge_filter_type,
1389
1.85M
    int bit_depth) {
1390
1.85M
  int i;
1391
1.85M
  uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
1392
1.85M
  const uint16_t *const ref = CONVERT_TO_SHORTPTR(ref8);
1393
1.85M
  DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1394
1.85M
  DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1395
1.85M
  uint16_t *const above_row = above_data + 16;
1396
1.85M
  uint16_t *const left_col = left_data + 16;
1397
1.85M
  const int txwpx = tx_size_wide[tx_size];
1398
1.85M
  const int txhpx = tx_size_high[tx_size];
1399
1.85M
  int need_left = extend_modes[mode] & NEED_LEFT;
1400
1.85M
  int need_above = extend_modes[mode] & NEED_ABOVE;
1401
1.85M
  int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1402
1.85M
  const uint16_t *above_ref = ref - ref_stride;
1403
1.85M
  const uint16_t *left_ref = ref - 1;
1404
1.85M
  const int is_dr_mode = av1_is_directional_mode(mode);
1405
1.85M
  const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
1406
1.85M
  assert(use_filter_intra || is_dr_mode);
1407
1.85M
  const int base = 128 << (bit_depth - 8);
1408
  // The left_data, above_data buffers must be zeroed to fix some intermittent
1409
  // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4
1410
  // path in av1_highbd_dr_prediction_z2_avx2()) from left_data, above_data are
1411
  // seen to be the potential reason for this issue.
1412
1.85M
  aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1413
1.85M
  aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1414
1415
  // The default values if ref pixels are not available:
1416
  // base   base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1
1417
  // base+1   A      B  ..     Y      Z
1418
  // base+1   C      D  ..     W      X
1419
  // base+1   E      F  ..     U      V
1420
  // base+1   G      H  ..     S      T      T      T      T      T
1421
1422
1.85M
  if (is_dr_mode) {
1423
1.70M
    if (p_angle <= 90)
1424
477k
      need_above = 1, need_left = 0, need_above_left = 1;
1425
1.22M
    else if (p_angle < 180)
1426
620k
      need_above = 1, need_left = 1, need_above_left = 1;
1427
602k
    else
1428
602k
      need_above = 0, need_left = 1, need_above_left = 1;
1429
1.70M
  }
1430
1.85M
  if (use_filter_intra) need_left = need_above = need_above_left = 1;
1431
1432
1.85M
  assert(n_top_px >= 0);
1433
1.85M
  assert(n_topright_px >= -1);
1434
1.85M
  assert(n_left_px >= 0);
1435
1.85M
  assert(n_bottomleft_px >= -1);
1436
1437
1.85M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1438
51.5k
    int val;
1439
51.5k
    if (need_left) {
1440
31.9k
      val = (n_top_px > 0) ? above_ref[0] : base + 1;
1441
31.9k
    } else {
1442
19.5k
      val = (n_left_px > 0) ? left_ref[0] : base - 1;
1443
19.5k
    }
1444
1.34M
    for (i = 0; i < txhpx; ++i) {
1445
1.29M
      aom_memset16(dst, val, txwpx);
1446
1.29M
      dst += dst_stride;
1447
1.29M
    }
1448
51.5k
    return;
1449
51.5k
  }
1450
1451
  // NEED_LEFT
1452
1.79M
  if (need_left) {
1453
1.34M
    const int num_left_pixels_needed =
1454
1.34M
        txhpx + (n_bottomleft_px >= 0 ? txwpx : 0);
1455
1.34M
    i = 0;
1456
1.34M
    if (n_left_px > 0) {
1457
15.1M
      for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1458
1.30M
      if (n_bottomleft_px > 0) {
1459
112k
        assert(i == txhpx);
1460
1.14M
        for (; i < txhpx + n_bottomleft_px; i++)
1461
1.02M
          left_col[i] = left_ref[i * ref_stride];
1462
112k
      }
1463
1.30M
      if (i < num_left_pixels_needed)
1464
257k
        aom_memset16(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
1465
1.30M
    } else if (n_top_px > 0) {
1466
28.0k
      aom_memset16(left_col, above_ref[0], num_left_pixels_needed);
1467
28.0k
    }
1468
1.34M
  }
1469
1470
  // NEED_ABOVE
1471
1.79M
  if (need_above) {
1472
1.22M
    const int num_top_pixels_needed = txwpx + (n_topright_px >= 0 ? txhpx : 0);
1473
1.22M
    if (n_top_px > 0) {
1474
1.19M
      memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0]));
1475
1.19M
      i = n_top_px;
1476
1.19M
      if (n_topright_px > 0) {
1477
189k
        assert(n_top_px == txwpx);
1478
189k
        memcpy(above_row + txwpx, above_ref + txwpx,
1479
189k
               n_topright_px * sizeof(above_ref[0]));
1480
189k
        i += n_topright_px;
1481
189k
      }
1482
1.19M
      if (i < num_top_pixels_needed)
1483
166k
        aom_memset16(&above_row[i], above_row[i - 1],
1484
166k
                     num_top_pixels_needed - i);
1485
1.19M
    } else if (n_left_px > 0) {
1486
26.2k
      aom_memset16(above_row, left_ref[0], num_top_pixels_needed);
1487
26.2k
    }
1488
1.22M
  }
1489
1490
1.79M
  if (need_above_left) {
1491
1.79M
    if (n_top_px > 0 && n_left_px > 0) {
1492
1.69M
      above_row[-1] = above_ref[-1];
1493
1.69M
    } else if (n_top_px > 0) {
1494
49.6k
      above_row[-1] = above_ref[0];
1495
52.3k
    } else if (n_left_px > 0) {
1496
48.6k
      above_row[-1] = left_ref[0];
1497
48.6k
    } else {
1498
3.70k
      above_row[-1] = base;
1499
3.70k
    }
1500
1.79M
    left_col[-1] = above_row[-1];
1501
1.79M
  }
1502
1503
1.79M
  if (use_filter_intra) {
1504
150k
    highbd_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col,
1505
150k
                                  filter_intra_mode, bit_depth);
1506
150k
    return;
1507
150k
  }
1508
1509
1.64M
  assert(is_dr_mode);
1510
1.64M
  int upsample_above = 0;
1511
1.64M
  int upsample_left = 0;
1512
1.64M
  if (!disable_edge_filter) {
1513
623k
    const int need_right = p_angle < 90;
1514
623k
    const int need_bottom = p_angle > 180;
1515
623k
    if (p_angle != 90 && p_angle != 180) {
1516
465k
      assert(need_above_left);
1517
465k
      const int ab_le = 1;
1518
465k
      if (need_above && need_left && (txwpx + txhpx >= 24)) {
1519
71.8k
        highbd_filter_intra_edge_corner(above_row, left_col);
1520
71.8k
      }
1521
465k
      if (need_above && n_top_px > 0) {
1522
328k
        const int strength = intra_edge_filter_strength(
1523
328k
            txwpx, txhpx, p_angle - 90, intra_edge_filter_type);
1524
328k
        const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
1525
328k
        av1_highbd_filter_intra_edge(above_row - ab_le, n_px, strength);
1526
328k
      }
1527
465k
      if (need_left && n_left_px > 0) {
1528
336k
        const int strength = intra_edge_filter_strength(
1529
336k
            txhpx, txwpx, p_angle - 180, intra_edge_filter_type);
1530
336k
        const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
1531
336k
        av1_highbd_filter_intra_edge(left_col - ab_le, n_px, strength);
1532
336k
      }
1533
465k
    }
1534
623k
    upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90,
1535
623k
                                                 intra_edge_filter_type);
1536
623k
    if (need_above && upsample_above) {
1537
103k
      const int n_px = txwpx + (need_right ? txhpx : 0);
1538
103k
      av1_highbd_upsample_intra_edge(above_row, n_px, bit_depth);
1539
103k
    }
1540
623k
    upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180,
1541
623k
                                                intra_edge_filter_type);
1542
623k
    if (need_left && upsample_left) {
1543
133k
      const int n_px = txhpx + (need_bottom ? txwpx : 0);
1544
133k
      av1_highbd_upsample_intra_edge(left_col, n_px, bit_depth);
1545
133k
    }
1546
623k
  }
1547
1.64M
  highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col,
1548
1.64M
                      upsample_above, upsample_left, p_angle, bit_depth);
1549
1.64M
}
1550
1551
// For HBD encode/decode, this function generates the pred data of a given
1552
// block for non-directional intra prediction modes (i.e., DC, SMOOTH, SMOOTH_H,
1553
// SMOOTH_V and PAETH).
1554
static void highbd_build_non_directional_intra_predictors(
1555
    const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride,
1556
    PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, int n_left_px,
1557
6.65M
    int bit_depth) {
1558
6.65M
  int i = 0;
1559
6.65M
  uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
1560
6.65M
  const uint16_t *const ref = CONVERT_TO_SHORTPTR(ref8);
1561
6.65M
  const int txwpx = tx_size_wide[tx_size];
1562
6.65M
  const int txhpx = tx_size_high[tx_size];
1563
6.65M
  int need_left = extend_modes[mode] & NEED_LEFT;
1564
6.65M
  int need_above = extend_modes[mode] & NEED_ABOVE;
1565
6.65M
  int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1566
6.65M
  const uint16_t *above_ref = ref - ref_stride;
1567
6.65M
  const uint16_t *left_ref = ref - 1;
1568
6.65M
  const int base = 128 << (bit_depth - 8);
1569
1570
6.65M
  assert(n_top_px >= 0);
1571
6.65M
  assert(n_left_px >= 0);
1572
6.65M
  assert(mode == DC_PRED || mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
1573
6.65M
         mode == SMOOTH_H_PRED || mode == PAETH_PRED);
1574
1575
6.65M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1576
0
    int val = 0;
1577
0
    if (need_left) {
1578
0
      val = (n_top_px > 0) ? above_ref[0] : base + 1;
1579
0
    } else {
1580
0
      val = (n_left_px > 0) ? left_ref[0] : base - 1;
1581
0
    }
1582
0
    for (i = 0; i < txhpx; ++i) {
1583
0
      aom_memset16(dst, val, txwpx);
1584
0
      dst += dst_stride;
1585
0
    }
1586
0
    return;
1587
0
  }
1588
1589
6.65M
  DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1590
6.65M
  DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1591
6.65M
  uint16_t *const above_row = above_data + 16;
1592
6.65M
  uint16_t *const left_col = left_data + 16;
1593
1594
6.65M
  if (need_left) {
1595
6.65M
    aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1596
6.65M
    if (n_left_px > 0) {
1597
70.1M
      for (i = 0; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1598
6.08M
      if (i < txhpx) aom_memset16(&left_col[i], left_col[i - 1], txhpx - i);
1599
6.08M
    } else if (n_top_px > 0) {
1600
529k
      aom_memset16(left_col, above_ref[0], txhpx);
1601
529k
    }
1602
6.65M
  }
1603
1604
6.65M
  if (need_above) {
1605
6.65M
    aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1606
6.65M
    if (n_top_px > 0) {
1607
6.38M
      memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0]));
1608
6.38M
      i = n_top_px;
1609
6.38M
      if (i < txwpx) aom_memset16(&above_row[i], above_row[i - 1], (txwpx - i));
1610
6.38M
    } else if (n_left_px > 0) {
1611
227k
      aom_memset16(above_row, left_ref[0], txwpx);
1612
227k
    }
1613
6.65M
  }
1614
1615
6.65M
  if (need_above_left) {
1616
1.06M
    if (n_top_px > 0 && n_left_px > 0) {
1617
873k
      above_row[-1] = above_ref[-1];
1618
873k
    } else if (n_top_px > 0) {
1619
115k
      above_row[-1] = above_ref[0];
1620
115k
    } else if (n_left_px > 0) {
1621
75.5k
      above_row[-1] = left_ref[0];
1622
75.5k
    } else {
1623
2.28k
      above_row[-1] = base;
1624
2.28k
    }
1625
1.06M
    left_col[-1] = above_row[-1];
1626
1.06M
  }
1627
1628
6.65M
  if (mode == DC_PRED) {
1629
4.47M
    dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size](
1630
4.47M
        dst, dst_stride, above_row, left_col, bit_depth);
1631
4.47M
  } else {
1632
2.18M
    pred_high[mode][tx_size](dst, dst_stride, above_row, left_col, bit_depth);
1633
2.18M
  }
1634
6.65M
}
1635
#endif  // CONFIG_AV1_HIGHBITDEPTH
1636
1637
static inline BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
1638
453k
                                            int subsampling_y) {
1639
453k
  assert(subsampling_x >= 0 && subsampling_x < 2);
1640
453k
  assert(subsampling_y >= 0 && subsampling_y < 2);
1641
453k
  BLOCK_SIZE bs = bsize;
1642
453k
  switch (bsize) {
1643
7.31k
    case BLOCK_4X4:
1644
7.31k
      if (subsampling_x == 1 && subsampling_y == 1)
1645
7.17k
        bs = BLOCK_8X8;
1646
142
      else if (subsampling_x == 1)
1647
142
        bs = BLOCK_8X4;
1648
0
      else if (subsampling_y == 1)
1649
0
        bs = BLOCK_4X8;
1650
7.31k
      break;
1651
13.4k
    case BLOCK_4X8:
1652
13.4k
      if (subsampling_x == 1 && subsampling_y == 1)
1653
13.4k
        bs = BLOCK_8X8;
1654
0
      else if (subsampling_x == 1)
1655
0
        bs = BLOCK_8X8;
1656
0
      else if (subsampling_y == 1)
1657
0
        bs = BLOCK_4X8;
1658
13.4k
      break;
1659
18.1k
    case BLOCK_8X4:
1660
18.1k
      if (subsampling_x == 1 && subsampling_y == 1)
1661
18.1k
        bs = BLOCK_8X8;
1662
66
      else if (subsampling_x == 1)
1663
66
        bs = BLOCK_8X4;
1664
0
      else if (subsampling_y == 1)
1665
0
        bs = BLOCK_8X8;
1666
18.1k
      break;
1667
9.68k
    case BLOCK_4X16:
1668
9.68k
      if (subsampling_x == 1 && subsampling_y == 1)
1669
9.68k
        bs = BLOCK_8X16;
1670
0
      else if (subsampling_x == 1)
1671
0
        bs = BLOCK_8X16;
1672
0
      else if (subsampling_y == 1)
1673
0
        bs = BLOCK_4X16;
1674
9.68k
      break;
1675
25.2k
    case BLOCK_16X4:
1676
25.2k
      if (subsampling_x == 1 && subsampling_y == 1)
1677
25.1k
        bs = BLOCK_16X8;
1678
70
      else if (subsampling_x == 1)
1679
70
        bs = BLOCK_16X4;
1680
0
      else if (subsampling_y == 1)
1681
0
        bs = BLOCK_16X8;
1682
25.2k
      break;
1683
379k
    default: break;
1684
453k
  }
1685
453k
  return bs;
1686
453k
}
1687
1688
void av1_predict_intra_block(const MACROBLOCKD *xd, BLOCK_SIZE sb_size,
1689
                             int enable_intra_edge_filter, int wpx, int hpx,
1690
                             TX_SIZE tx_size, PREDICTION_MODE mode,
1691
                             int angle_delta, int use_palette,
1692
                             FILTER_INTRA_MODE filter_intra_mode,
1693
                             const uint8_t *ref, int ref_stride, uint8_t *dst,
1694
                             int dst_stride, int col_off, int row_off,
1695
24.3M
                             int plane) {
1696
24.3M
  const MB_MODE_INFO *const mbmi = xd->mi[0];
1697
24.3M
  const int txwpx = tx_size_wide[tx_size];
1698
24.3M
  const int txhpx = tx_size_high[tx_size];
1699
24.3M
  const int x = col_off << MI_SIZE_LOG2;
1700
24.3M
  const int y = row_off << MI_SIZE_LOG2;
1701
24.3M
  const int is_hbd = is_cur_buf_hbd(xd);
1702
1703
24.3M
  assert(mode < INTRA_MODES);
1704
1705
24.3M
  if (use_palette) {
1706
2.65M
    int r, c;
1707
2.65M
    const uint8_t *const map = xd->plane[plane != 0].color_index_map +
1708
2.65M
                               xd->color_index_map_offset[plane != 0];
1709
2.65M
    const uint16_t *const palette =
1710
2.65M
        mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE;
1711
2.65M
    if (is_hbd) {
1712
448k
      uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
1713
5.84M
      for (r = 0; r < txhpx; ++r) {
1714
86.0M
        for (c = 0; c < txwpx; ++c) {
1715
80.6M
          dst16[r * dst_stride + c] = palette[map[(r + y) * wpx + c + x]];
1716
80.6M
        }
1717
5.39M
      }
1718
2.20M
    } else {
1719
14.5M
      for (r = 0; r < txhpx; ++r) {
1720
119M
        for (c = 0; c < txwpx; ++c) {
1721
106M
          dst[r * dst_stride + c] =
1722
106M
              (uint8_t)palette[map[(r + y) * wpx + c + x]];
1723
106M
        }
1724
12.3M
      }
1725
2.20M
    }
1726
2.65M
    return;
1727
2.65M
  }
1728
1729
21.6M
  const struct macroblockd_plane *const pd = &xd->plane[plane];
1730
21.6M
  const int ss_x = pd->subsampling_x;
1731
21.6M
  const int ss_y = pd->subsampling_y;
1732
21.6M
  const int have_top =
1733
21.6M
      row_off || (ss_y ? xd->chroma_up_available : xd->up_available);
1734
21.6M
  const int have_left =
1735
21.6M
      col_off || (ss_x ? xd->chroma_left_available : xd->left_available);
1736
1737
  // Distance between the right edge of this prediction block to
1738
  // the frame right edge
1739
21.6M
  const int xr = (xd->mb_to_right_edge >> (3 + ss_x)) + wpx - x - txwpx;
1740
  // Distance between the bottom edge of this prediction block to
1741
  // the frame bottom edge
1742
21.6M
  const int yd = (xd->mb_to_bottom_edge >> (3 + ss_y)) + hpx - y - txhpx;
1743
21.6M
  const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
1744
21.6M
  const int is_dr_mode = av1_is_directional_mode(mode);
1745
1746
  // The computations in this function, as well as in build_intra_predictors(),
1747
  // are generalized for all intra modes. Some of these operations are not
1748
  // required since non-directional intra modes (i.e., DC, SMOOTH, SMOOTH_H,
1749
  // SMOOTH_V, and PAETH) specifically require left and top neighbors. Hence, a
1750
  // separate function build_non_directional_intra_predictors() is introduced
1751
  // for these modes to avoid redundant computations while generating pred data.
1752
1753
21.6M
  const int n_top_px = have_top ? AOMMIN(txwpx, xr + txwpx) : 0;
1754
21.6M
  const int n_left_px = have_left ? AOMMIN(txhpx, yd + txhpx) : 0;
1755
21.6M
  if (!use_filter_intra && !is_dr_mode) {
1756
17.3M
#if CONFIG_AV1_HIGHBITDEPTH
1757
17.3M
    if (is_hbd) {
1758
6.65M
      highbd_build_non_directional_intra_predictors(
1759
6.65M
          ref, ref_stride, dst, dst_stride, mode, tx_size, n_top_px, n_left_px,
1760
6.65M
          xd->bd);
1761
6.65M
      return;
1762
6.65M
    }
1763
10.6M
#endif  // CONFIG_AV1_HIGHBITDEPTH
1764
10.6M
    build_non_directional_intra_predictors(ref, ref_stride, dst, dst_stride,
1765
10.6M
                                           mode, tx_size, n_top_px, n_left_px);
1766
10.6M
    return;
1767
17.3M
  }
1768
1769
4.34M
  const int txw = tx_size_wide_unit[tx_size];
1770
4.34M
  const int txh = tx_size_high_unit[tx_size];
1771
4.34M
  const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
1772
4.34M
  const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
1773
4.34M
  const int right_available =
1774
4.34M
      mi_col + ((col_off + txw) << ss_x) < xd->tile.mi_col_end;
1775
4.34M
  const int bottom_available =
1776
4.34M
      (yd > 0) && (mi_row + ((row_off + txh) << ss_y) < xd->tile.mi_row_end);
1777
1778
4.34M
  const PARTITION_TYPE partition = mbmi->partition;
1779
1780
4.34M
  BLOCK_SIZE bsize = mbmi->bsize;
1781
  // force 4x4 chroma component block size.
1782
4.34M
  if (ss_x || ss_y) {
1783
453k
    bsize = scale_chroma_bsize(bsize, ss_x, ss_y);
1784
453k
  }
1785
1786
4.34M
  int p_angle = 0;
1787
4.34M
  int need_top_right = extend_modes[mode] & NEED_ABOVERIGHT;
1788
4.34M
  int need_bottom_left = extend_modes[mode] & NEED_BOTTOMLEFT;
1789
1790
4.34M
  if (use_filter_intra) {
1791
630k
    need_top_right = 0;
1792
630k
    need_bottom_left = 0;
1793
630k
  }
1794
4.34M
  if (is_dr_mode) {
1795
3.71M
    p_angle = mode_to_angle_map[mode] + angle_delta;
1796
3.71M
    need_top_right = p_angle < 90;
1797
3.71M
    need_bottom_left = p_angle > 180;
1798
3.71M
  }
1799
1800
  // Possible states for have_top_right(TR) and have_bottom_left(BL)
1801
  // -1 : TR and BL are not needed
1802
  //  0 : TR and BL are needed but not available
1803
  // > 0 : TR and BL are needed and pixels are available
1804
4.34M
  const int have_top_right =
1805
4.34M
      need_top_right ? has_top_right(sb_size, bsize, mi_row, mi_col, have_top,
1806
617k
                                     right_available, partition, tx_size,
1807
617k
                                     row_off, col_off, ss_x, ss_y)
1808
4.34M
                     : -1;
1809
4.34M
  const int have_bottom_left =
1810
4.34M
      need_bottom_left ? has_bottom_left(sb_size, bsize, mi_row, mi_col,
1811
667k
                                         bottom_available, have_left, partition,
1812
667k
                                         tx_size, row_off, col_off, ss_x, ss_y)
1813
4.34M
                       : -1;
1814
1815
4.34M
  const int disable_edge_filter = !enable_intra_edge_filter;
1816
4.34M
  const int intra_edge_filter_type = get_intra_edge_filter_type(xd, plane);
1817
4.34M
  const int n_topright_px =
1818
4.34M
      have_top_right > 0 ? AOMMIN(txwpx, xr) : have_top_right;
1819
4.34M
  const int n_bottomleft_px =
1820
4.34M
      have_bottom_left > 0 ? AOMMIN(txhpx, yd) : have_bottom_left;
1821
4.34M
#if CONFIG_AV1_HIGHBITDEPTH
1822
4.34M
  if (is_hbd) {
1823
1.85M
    highbd_build_directional_and_filter_intra_predictors(
1824
1.85M
        ref, ref_stride, dst, dst_stride, mode, p_angle, filter_intra_mode,
1825
1.85M
        tx_size, disable_edge_filter, n_top_px, n_topright_px, n_left_px,
1826
1.85M
        n_bottomleft_px, intra_edge_filter_type, xd->bd);
1827
1.85M
    return;
1828
1.85M
  }
1829
2.49M
#endif
1830
2.49M
  build_directional_and_filter_intra_predictors(
1831
2.49M
      ref, ref_stride, dst, dst_stride, mode, p_angle, filter_intra_mode,
1832
2.49M
      tx_size, disable_edge_filter, n_top_px, n_topright_px, n_left_px,
1833
2.49M
      n_bottomleft_px, intra_edge_filter_type);
1834
2.49M
}
1835
1836
void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd,
1837
                                    int plane, int blk_col, int blk_row,
1838
24.3M
                                    TX_SIZE tx_size) {
1839
24.3M
  const MB_MODE_INFO *const mbmi = xd->mi[0];
1840
24.3M
  struct macroblockd_plane *const pd = &xd->plane[plane];
1841
24.3M
  const int dst_stride = pd->dst.stride;
1842
24.3M
  uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
1843
24.3M
  const PREDICTION_MODE mode =
1844
24.3M
      (plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1845
24.3M
  const int use_palette = mbmi->palette_mode_info.palette_size[plane != 0] > 0;
1846
24.3M
  const FILTER_INTRA_MODE filter_intra_mode =
1847
24.3M
      (plane == AOM_PLANE_Y && mbmi->filter_intra_mode_info.use_filter_intra)
1848
24.3M
          ? mbmi->filter_intra_mode_info.filter_intra_mode
1849
24.3M
          : FILTER_INTRA_MODES;
1850
24.3M
  const int angle_delta = mbmi->angle_delta[plane != AOM_PLANE_Y] * ANGLE_STEP;
1851
24.3M
  const SequenceHeader *seq_params = cm->seq_params;
1852
1853
24.3M
#if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
1854
24.3M
  if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED) {
1855
#if CONFIG_DEBUG
1856
    assert(is_cfl_allowed(xd));
1857
    const BLOCK_SIZE plane_bsize =
1858
        get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
1859
    (void)plane_bsize;
1860
    assert(plane_bsize < BLOCK_SIZES_ALL);
1861
    if (!xd->lossless[mbmi->segment_id]) {
1862
      assert(blk_col == 0);
1863
      assert(blk_row == 0);
1864
      assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
1865
      assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
1866
    }
1867
#endif
1868
2.26M
    CFL_CTX *const cfl = &xd->cfl;
1869
2.26M
    CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane);
1870
2.26M
    if (!cfl->dc_pred_is_cached[pred_plane]) {
1871
2.26M
      av1_predict_intra_block(xd, seq_params->sb_size,
1872
2.26M
                              seq_params->enable_intra_edge_filter, pd->width,
1873
2.26M
                              pd->height, tx_size, mode, angle_delta,
1874
2.26M
                              use_palette, filter_intra_mode, dst, dst_stride,
1875
2.26M
                              dst, dst_stride, blk_col, blk_row, plane);
1876
2.26M
      if (cfl->use_dc_pred_cache) {
1877
0
        cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]);
1878
0
        cfl->dc_pred_is_cached[pred_plane] = true;
1879
0
      }
1880
2.26M
    } else {
1881
0
      cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane);
1882
0
    }
1883
2.26M
    av1_cfl_predict_block(xd, dst, dst_stride, tx_size, plane);
1884
2.26M
    return;
1885
2.26M
  }
1886
22.0M
#endif  // !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
1887
22.0M
  av1_predict_intra_block(
1888
22.0M
      xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width,
1889
22.0M
      pd->height, tx_size, mode, angle_delta, use_palette, filter_intra_mode,
1890
22.0M
      dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane);
1891
22.0M
}
1892
1893
22.5k
void av1_init_intra_predictors(void) {
1894
22.5k
  aom_once(init_intra_predictors_internal);
1895
22.5k
}