/src/libavif/src/reformat.c
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2019 Joe Drago. All rights reserved. |
2 | | // SPDX-License-Identifier: BSD-2-Clause |
3 | | |
4 | | #include "avif/internal.h" |
5 | | |
6 | | #include <assert.h> |
7 | | #include <stdint.h> |
8 | | #include <string.h> |
9 | | |
10 | | #if defined(_WIN32) |
11 | | #include <process.h> |
12 | | #include <windows.h> |
13 | | #else |
14 | | #include <pthread.h> |
15 | | #endif |
16 | | |
17 | | static void * avifMemset16(void * dest, int val, size_t count) |
18 | 0 | { |
19 | 0 | uint16_t * dest16 = (uint16_t *)dest; |
20 | 0 | for (size_t i = 0; i < count; i++) |
21 | 0 | *dest16++ = (uint16_t)val; |
22 | 0 | return dest; |
23 | 0 | } |
24 | | |
25 | | struct YUVBlock |
26 | | { |
27 | | float y; |
28 | | float u; |
29 | | float v; |
30 | | }; |
31 | | |
32 | | avifBool avifGetRGBColorSpaceInfo(const avifRGBImage * rgb, avifRGBColorSpaceInfo * info) |
33 | 2.13k | { |
34 | 2.13k | AVIF_CHECK(rgb->depth == 8 || rgb->depth == 10 || rgb->depth == 12 || rgb->depth == 16); |
35 | 2.13k | if (rgb->isFloat) { |
36 | 0 | AVIF_CHECK(rgb->depth == 16); |
37 | 0 | } |
38 | 2.13k | if (rgb->format == AVIF_RGB_FORMAT_RGB_565) { |
39 | 0 | AVIF_CHECK(rgb->depth == 8); |
40 | 0 | } |
41 | | // Cast to silence "comparison of unsigned expression is always true" warning. |
42 | 2.13k | AVIF_CHECK((int)rgb->format >= AVIF_RGB_FORMAT_RGB && rgb->format < AVIF_RGB_FORMAT_COUNT); |
43 | | |
44 | 2.13k | info->channelBytes = (rgb->depth > 8) ? 2 : 1; |
45 | 2.13k | info->pixelBytes = avifRGBImagePixelSize(rgb); |
46 | | |
47 | 2.13k | switch (rgb->format) { |
48 | 0 | case AVIF_RGB_FORMAT_RGB: |
49 | 0 | info->offsetBytesR = info->channelBytes * 0; |
50 | 0 | info->offsetBytesG = info->channelBytes * 1; |
51 | 0 | info->offsetBytesB = info->channelBytes * 2; |
52 | 0 | info->offsetBytesA = 0; |
53 | 0 | break; |
54 | 723 | case AVIF_RGB_FORMAT_RGBA: |
55 | 723 | info->offsetBytesR = info->channelBytes * 0; |
56 | 723 | info->offsetBytesG = info->channelBytes * 1; |
57 | 723 | info->offsetBytesB = info->channelBytes * 2; |
58 | 723 | info->offsetBytesA = info->channelBytes * 3; |
59 | 723 | break; |
60 | 0 | case AVIF_RGB_FORMAT_ARGB: |
61 | 0 | info->offsetBytesA = info->channelBytes * 0; |
62 | 0 | info->offsetBytesR = info->channelBytes * 1; |
63 | 0 | info->offsetBytesG = info->channelBytes * 2; |
64 | 0 | info->offsetBytesB = info->channelBytes * 3; |
65 | 0 | break; |
66 | 0 | case AVIF_RGB_FORMAT_BGR: |
67 | 0 | info->offsetBytesB = info->channelBytes * 0; |
68 | 0 | info->offsetBytesG = info->channelBytes * 1; |
69 | 0 | info->offsetBytesR = info->channelBytes * 2; |
70 | 0 | info->offsetBytesA = 0; |
71 | 0 | break; |
72 | 1.40k | case AVIF_RGB_FORMAT_BGRA: |
73 | 1.40k | info->offsetBytesB = info->channelBytes * 0; |
74 | 1.40k | info->offsetBytesG = info->channelBytes * 1; |
75 | 1.40k | info->offsetBytesR = info->channelBytes * 2; |
76 | 1.40k | info->offsetBytesA = info->channelBytes * 3; |
77 | 1.40k | break; |
78 | 0 | case AVIF_RGB_FORMAT_ABGR: |
79 | 0 | info->offsetBytesA = info->channelBytes * 0; |
80 | 0 | info->offsetBytesB = info->channelBytes * 1; |
81 | 0 | info->offsetBytesG = info->channelBytes * 2; |
82 | 0 | info->offsetBytesR = info->channelBytes * 3; |
83 | 0 | break; |
84 | 0 | case AVIF_RGB_FORMAT_RGB_565: |
85 | | // Since RGB_565 consists of two bytes per RGB pixel, we simply use |
86 | | // the pointer to the red channel to populate the entire pixel value |
87 | | // as a uint16_t. As a result only offsetBytesR is used and the |
88 | | // other offsets are unused. |
89 | 0 | info->offsetBytesR = 0; |
90 | 0 | info->offsetBytesG = 0; |
91 | 0 | info->offsetBytesB = 0; |
92 | 0 | info->offsetBytesA = 0; |
93 | 0 | break; |
94 | 0 | case AVIF_RGB_FORMAT_GRAY: |
95 | 0 | info->offsetBytesGray = info->channelBytes * 0; |
96 | 0 | break; |
97 | 0 | case AVIF_RGB_FORMAT_GRAYA: |
98 | 0 | info->offsetBytesGray = info->channelBytes * 0; |
99 | 0 | info->offsetBytesA = info->channelBytes * 1; |
100 | 0 | break; |
101 | 0 | case AVIF_RGB_FORMAT_AGRAY: |
102 | 0 | info->offsetBytesA = info->channelBytes * 0; |
103 | 0 | info->offsetBytesGray = info->channelBytes * 1; |
104 | 0 | break; |
105 | | |
106 | 0 | case AVIF_RGB_FORMAT_COUNT: |
107 | 0 | return AVIF_FALSE; |
108 | 2.13k | } |
109 | | |
110 | 2.13k | info->maxChannel = (1 << rgb->depth) - 1; |
111 | 2.13k | info->maxChannelF = (float)info->maxChannel; |
112 | | |
113 | 2.13k | return AVIF_TRUE; |
114 | 2.13k | } |
115 | | |
116 | | avifBool avifGetYUVColorSpaceInfo(const avifImage * image, avifYUVColorSpaceInfo * info) |
117 | 2.13k | { |
118 | 2.13k | AVIF_CHECK(image->depth == 8 || image->depth == 10 || image->depth == 12 || image->depth == 16); |
119 | 2.13k | AVIF_CHECK(image->yuvFormat >= AVIF_PIXEL_FORMAT_YUV444 && image->yuvFormat < AVIF_PIXEL_FORMAT_COUNT); |
120 | 2.13k | AVIF_CHECK(image->yuvRange == AVIF_RANGE_LIMITED || image->yuvRange == AVIF_RANGE_FULL); |
121 | | |
122 | | // These matrix coefficients values are currently unsupported. Revise this list as more support is added. |
123 | | // |
124 | | // YCgCo performs limited-full range adjustment on R,G,B but the current implementation performs range adjustment |
125 | | // on Y,U,V. So YCgCo with limited range is unsupported. |
126 | 2.13k | if ((image->matrixCoefficients == 3 /* CICP reserved */) || |
127 | 2.13k | ((image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_YCGCO || image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_YCGCO_RE || |
128 | 2.12k | image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_YCGCO_RO) && |
129 | 2.12k | (image->yuvRange == AVIF_RANGE_LIMITED)) || |
130 | 2.13k | (image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_BT2020_CL) || |
131 | 2.13k | (image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_SMPTE2085) || |
132 | 2.13k | (image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_CHROMA_DERIVED_CL) || |
133 | 2.13k | (image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_ICTCP) || (image->matrixCoefficients >= AVIF_MATRIX_COEFFICIENTS_LAST)) { |
134 | 207 | return AVIF_FALSE; |
135 | 207 | } |
136 | | |
137 | | // Removing 400 here would break backward behavior but would respect the spec. |
138 | 1.92k | if ((image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_IDENTITY) && (image->yuvFormat != AVIF_PIXEL_FORMAT_YUV444) && |
139 | 1.92k | (image->yuvFormat != AVIF_PIXEL_FORMAT_YUV400)) { |
140 | 0 | return AVIF_FALSE; |
141 | 0 | } |
142 | 1.92k | avifGetPixelFormatInfo(image->yuvFormat, &info->formatInfo); |
143 | 1.92k | avifCalcYUVCoefficients(image, &info->kr, &info->kg, &info->kb); |
144 | | |
145 | 1.92k | info->channelBytes = (image->depth > 8) ? 2 : 1; |
146 | | |
147 | 1.92k | info->depth = image->depth; |
148 | 1.92k | info->range = image->yuvRange; |
149 | 1.92k | info->maxChannel = (1 << image->depth) - 1; |
150 | 1.92k | info->biasY = (info->range == AVIF_RANGE_LIMITED) ? (float)(16 << (info->depth - 8)) : 0.0f; |
151 | 1.92k | info->biasUV = (float)(1 << (info->depth - 1)); |
152 | 1.92k | info->rangeY = (float)((info->range == AVIF_RANGE_LIMITED) ? (219 << (info->depth - 8)) : info->maxChannel); |
153 | 1.92k | info->rangeUV = (float)((info->range == AVIF_RANGE_LIMITED) ? (224 << (info->depth - 8)) : info->maxChannel); |
154 | | |
155 | 1.92k | return AVIF_TRUE; |
156 | 1.92k | } |
157 | | |
158 | | static avifBool avifPrepareReformatState(const avifImage * image, const avifRGBImage * rgb, avifReformatState * state) |
159 | 2.14k | { |
160 | 2.14k | const avifBool useYCgCoRe = (image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_YCGCO_RE); |
161 | 2.14k | const avifBool useYCgCoRo = (image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_YCGCO_RO); |
162 | 2.14k | if (useYCgCoRe || useYCgCoRo) { |
163 | 12 | const int bitOffset = (useYCgCoRe) ? 2 : 1; |
164 | 12 | if (image->depth - bitOffset != rgb->depth) { |
165 | 12 | return AVIF_FALSE; |
166 | 12 | } |
167 | 12 | } |
168 | | |
169 | 2.13k | AVIF_CHECK(avifGetRGBColorSpaceInfo(rgb, &state->rgb)); |
170 | 2.13k | AVIF_CHECK(avifGetYUVColorSpaceInfo(image, &state->yuv)); |
171 | | |
172 | 1.92k | state->yuv.mode = AVIF_REFORMAT_MODE_YUV_COEFFICIENTS; |
173 | | |
174 | 1.92k | if (image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_IDENTITY) { |
175 | 668 | state->yuv.mode = AVIF_REFORMAT_MODE_IDENTITY; |
176 | 1.25k | } else if (image->matrixCoefficients == AVIF_MATRIX_COEFFICIENTS_YCGCO) { |
177 | 112 | state->yuv.mode = AVIF_REFORMAT_MODE_YCGCO; |
178 | 1.14k | } else if (useYCgCoRe) { |
179 | 0 | state->yuv.mode = AVIF_REFORMAT_MODE_YCGCO_RE; |
180 | 1.14k | } else if (useYCgCoRo) { |
181 | 0 | state->yuv.mode = AVIF_REFORMAT_MODE_YCGCO_RO; |
182 | 0 | } |
183 | | |
184 | 1.92k | if (state->yuv.mode != AVIF_REFORMAT_MODE_YUV_COEFFICIENTS) { |
185 | 780 | state->yuv.kr = 0.0f; |
186 | 780 | state->yuv.kg = 0.0f; |
187 | 780 | state->yuv.kb = 0.0f; |
188 | 780 | } |
189 | | |
190 | 1.92k | return AVIF_TRUE; |
191 | 2.13k | } |
192 | | |
193 | | // Formulas 20-31 from https://www.itu.int/rec/T-REC-H.273-201612-S |
194 | | static int avifYUVColorSpaceInfoYToUNorm(avifYUVColorSpaceInfo * info, float v) |
195 | 0 | { |
196 | 0 | int unorm = (int)avifRoundf(v * info->rangeY + info->biasY); |
197 | 0 | return AVIF_CLAMP(unorm, 0, info->maxChannel); |
198 | 0 | } |
199 | | |
200 | | static int avifYUVColorSpaceInfoUVToUNorm(avifYUVColorSpaceInfo * info, float v) |
201 | 0 | { |
202 | 0 | int unorm; |
203 | | |
204 | | // YCgCo performs limited-full range adjustment on R,G,B but the current implementation performs range adjustment |
205 | | // on Y,U,V. So YCgCo with limited range is unsupported. |
206 | 0 | assert((info->mode != AVIF_REFORMAT_MODE_YCGCO && info->mode != AVIF_REFORMAT_MODE_YCGCO_RE && info->mode != AVIF_REFORMAT_MODE_YCGCO_RO) || |
207 | 0 | (info->range == AVIF_RANGE_FULL)); |
208 | | |
209 | 0 | if (info->mode == AVIF_REFORMAT_MODE_IDENTITY) { |
210 | 0 | unorm = (int)avifRoundf(v * info->rangeY + info->biasY); |
211 | 0 | } else { |
212 | 0 | unorm = (int)avifRoundf(v * info->rangeUV + info->biasUV); |
213 | 0 | } |
214 | |
|
215 | 0 | return AVIF_CLAMP(unorm, 0, info->maxChannel); |
216 | 0 | } |
217 | | |
218 | | avifResult avifImageRGBToYUV(avifImage * image, const avifRGBImage * rgb) |
219 | 0 | { |
220 | 0 | if (!rgb->pixels || rgb->format == AVIF_RGB_FORMAT_RGB_565) { |
221 | 0 | return AVIF_RESULT_REFORMAT_FAILED; |
222 | 0 | } |
223 | | |
224 | 0 | avifReformatState state; |
225 | 0 | if (!avifPrepareReformatState(image, rgb, &state)) { |
226 | 0 | return AVIF_RESULT_REFORMAT_FAILED; |
227 | 0 | } |
228 | | |
229 | 0 | if (rgb->isFloat) { |
230 | 0 | return AVIF_RESULT_NOT_IMPLEMENTED; |
231 | 0 | } |
232 | | |
233 | 0 | const avifBool hasAlpha = avifRGBFormatHasAlpha(rgb->format) && !rgb->ignoreAlpha; |
234 | 0 | avifResult allocationResult = avifImageAllocatePlanes(image, hasAlpha ? AVIF_PLANES_ALL : AVIF_PLANES_YUV); |
235 | 0 | if (allocationResult != AVIF_RESULT_OK) { |
236 | 0 | return allocationResult; |
237 | 0 | } |
238 | | |
239 | 0 | avifAlphaMultiplyMode alphaMode = AVIF_ALPHA_MULTIPLY_MODE_NO_OP; |
240 | 0 | if (hasAlpha) { |
241 | 0 | if (!rgb->alphaPremultiplied && image->alphaPremultiplied) { |
242 | 0 | alphaMode = AVIF_ALPHA_MULTIPLY_MODE_MULTIPLY; |
243 | 0 | } else if (rgb->alphaPremultiplied && !image->alphaPremultiplied) { |
244 | 0 | alphaMode = AVIF_ALPHA_MULTIPLY_MODE_UNMULTIPLY; |
245 | 0 | } |
246 | 0 | } |
247 | |
|
248 | 0 | const avifBool isGray = avifRGBFormatIsGray(rgb->format); |
249 | 0 | avifBool converted = AVIF_FALSE; |
250 | | |
251 | | // Try converting with libsharpyuv. |
252 | 0 | if (!isGray) { |
253 | 0 | if ((rgb->chromaDownsampling == AVIF_CHROMA_DOWNSAMPLING_SHARP_YUV) && (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV420)) { |
254 | 0 | const avifResult libSharpYUVResult = avifImageRGBToYUVLibSharpYUV(image, rgb, &state); |
255 | 0 | if (libSharpYUVResult != AVIF_RESULT_OK) { |
256 | | // Return the error if sharpyuv was requested but failed for any reason, including libsharpyuv not being available. |
257 | 0 | return libSharpYUVResult; |
258 | 0 | } |
259 | 0 | converted = AVIF_TRUE; |
260 | 0 | } |
261 | | |
262 | 0 | if (!converted && !rgb->avoidLibYUV && (alphaMode == AVIF_ALPHA_MULTIPLY_MODE_NO_OP)) { |
263 | 0 | avifResult libyuvResult = avifImageRGBToYUVLibYUV(image, rgb); |
264 | 0 | if (libyuvResult == AVIF_RESULT_OK) { |
265 | 0 | converted = AVIF_TRUE; |
266 | 0 | } else if (libyuvResult != AVIF_RESULT_NOT_IMPLEMENTED) { |
267 | 0 | return libyuvResult; |
268 | 0 | } |
269 | 0 | } |
270 | 0 | } |
271 | | |
272 | 0 | if (!converted && !isGray) { |
273 | 0 | const float kr = state.yuv.kr; |
274 | 0 | const float kg = state.yuv.kg; |
275 | 0 | const float kb = state.yuv.kb; |
276 | |
|
277 | 0 | struct YUVBlock yuvBlock[2][2]; |
278 | 0 | float rgbPixel[3]; |
279 | 0 | const uint32_t rgbPixelBytes = state.rgb.pixelBytes; |
280 | 0 | const uint32_t offsetBytesR = state.rgb.offsetBytesR; |
281 | 0 | const uint32_t offsetBytesG = state.rgb.offsetBytesG; |
282 | 0 | const uint32_t offsetBytesB = state.rgb.offsetBytesB; |
283 | 0 | const uint32_t offsetBytesA = state.rgb.offsetBytesA; |
284 | 0 | const size_t rgbRowBytes = rgb->rowBytes; |
285 | 0 | const float rgbMaxChannelF = state.rgb.maxChannelF; |
286 | 0 | uint8_t * yPlane = image->yuvPlanes[AVIF_CHAN_Y]; |
287 | 0 | uint8_t * uPlane = image->yuvPlanes[AVIF_CHAN_U]; |
288 | 0 | uint8_t * vPlane = image->yuvPlanes[AVIF_CHAN_V]; |
289 | 0 | const size_t yRowBytes = image->yuvRowBytes[AVIF_CHAN_Y]; |
290 | 0 | const size_t uRowBytes = image->yuvRowBytes[AVIF_CHAN_U]; |
291 | 0 | const size_t vRowBytes = image->yuvRowBytes[AVIF_CHAN_V]; |
292 | 0 | for (uint32_t outerJ = 0; outerJ < image->height; outerJ += 2) { |
293 | 0 | for (uint32_t outerI = 0; outerI < image->width; outerI += 2) { |
294 | 0 | uint32_t blockW = 2, blockH = 2; |
295 | 0 | if ((outerI + 1) >= image->width) { |
296 | 0 | blockW = 1; |
297 | 0 | } |
298 | 0 | if ((outerJ + 1) >= image->height) { |
299 | 0 | blockH = 1; |
300 | 0 | } |
301 | | |
302 | | // Convert an entire 2x2 block to YUV, and populate any fully sampled channels as we go |
303 | 0 | for (uint32_t bJ = 0; bJ < blockH; ++bJ) { |
304 | 0 | for (uint32_t bI = 0; bI < blockW; ++bI) { |
305 | 0 | const uint32_t i = outerI + bI; |
306 | 0 | const uint32_t j = outerJ + bJ; |
307 | | |
308 | | // Unpack RGB into normalized float |
309 | 0 | if (state.rgb.channelBytes > 1) { |
310 | 0 | rgbPixel[0] = *((uint16_t *)(&rgb->pixels[offsetBytesR + (i * rgbPixelBytes) + (j * rgbRowBytes)])) / |
311 | 0 | rgbMaxChannelF; |
312 | 0 | rgbPixel[1] = *((uint16_t *)(&rgb->pixels[offsetBytesG + (i * rgbPixelBytes) + (j * rgbRowBytes)])) / |
313 | 0 | rgbMaxChannelF; |
314 | 0 | rgbPixel[2] = *((uint16_t *)(&rgb->pixels[offsetBytesB + (i * rgbPixelBytes) + (j * rgbRowBytes)])) / |
315 | 0 | rgbMaxChannelF; |
316 | 0 | } else { |
317 | 0 | rgbPixel[0] = rgb->pixels[offsetBytesR + (i * rgbPixelBytes) + (j * rgbRowBytes)] / rgbMaxChannelF; |
318 | 0 | rgbPixel[1] = rgb->pixels[offsetBytesG + (i * rgbPixelBytes) + (j * rgbRowBytes)] / rgbMaxChannelF; |
319 | 0 | rgbPixel[2] = rgb->pixels[offsetBytesB + (i * rgbPixelBytes) + (j * rgbRowBytes)] / rgbMaxChannelF; |
320 | 0 | } |
321 | |
|
322 | 0 | if (alphaMode != AVIF_ALPHA_MULTIPLY_MODE_NO_OP) { |
323 | 0 | float a; |
324 | 0 | if (state.rgb.channelBytes > 1) { |
325 | 0 | a = *((uint16_t *)(&rgb->pixels[offsetBytesA + (i * rgbPixelBytes) + (j * rgbRowBytes)])) / rgbMaxChannelF; |
326 | 0 | } else { |
327 | 0 | a = rgb->pixels[offsetBytesA + (i * rgbPixelBytes) + (j * rgbRowBytes)] / rgbMaxChannelF; |
328 | 0 | } |
329 | |
|
330 | 0 | if (alphaMode == AVIF_ALPHA_MULTIPLY_MODE_MULTIPLY) { |
331 | 0 | if (a == 0) { |
332 | 0 | rgbPixel[0] = 0; |
333 | 0 | rgbPixel[1] = 0; |
334 | 0 | rgbPixel[2] = 0; |
335 | 0 | } else if (a < 1.0f) { |
336 | 0 | rgbPixel[0] *= a; |
337 | 0 | rgbPixel[1] *= a; |
338 | 0 | rgbPixel[2] *= a; |
339 | 0 | } |
340 | 0 | } else { |
341 | | // alphaMode == AVIF_ALPHA_MULTIPLY_MODE_UNMULTIPLY |
342 | 0 | if (a == 0) { |
343 | 0 | rgbPixel[0] = 0; |
344 | 0 | rgbPixel[1] = 0; |
345 | 0 | rgbPixel[2] = 0; |
346 | 0 | } else if (a < 1.0f) { |
347 | 0 | rgbPixel[0] /= a; |
348 | 0 | rgbPixel[1] /= a; |
349 | 0 | rgbPixel[2] /= a; |
350 | 0 | rgbPixel[0] = AVIF_MIN(rgbPixel[0], 1.0f); |
351 | 0 | rgbPixel[1] = AVIF_MIN(rgbPixel[1], 1.0f); |
352 | 0 | rgbPixel[2] = AVIF_MIN(rgbPixel[2], 1.0f); |
353 | 0 | } |
354 | 0 | } |
355 | 0 | } |
356 | | |
357 | | // RGB -> YUV conversion |
358 | 0 | if (state.yuv.mode == AVIF_REFORMAT_MODE_IDENTITY) { |
359 | | // Formulas 41,42,43 from https://www.itu.int/rec/T-REC-H.273-201612-S |
360 | 0 | yuvBlock[bI][bJ].y = rgbPixel[1]; // G |
361 | 0 | yuvBlock[bI][bJ].u = rgbPixel[2]; // B |
362 | 0 | yuvBlock[bI][bJ].v = rgbPixel[0]; // R |
363 | 0 | } else if (state.yuv.mode == AVIF_REFORMAT_MODE_YCGCO) { |
364 | | // Formulas 44,45,46 from https://www.itu.int/rec/T-REC-H.273-201612-S |
365 | 0 | yuvBlock[bI][bJ].y = 0.5f * rgbPixel[1] + 0.25f * (rgbPixel[0] + rgbPixel[2]); |
366 | 0 | yuvBlock[bI][bJ].u = 0.5f * rgbPixel[1] - 0.25f * (rgbPixel[0] + rgbPixel[2]); |
367 | 0 | yuvBlock[bI][bJ].v = 0.5f * (rgbPixel[0] - rgbPixel[2]); |
368 | 0 | } else if (state.yuv.mode == AVIF_REFORMAT_MODE_YCGCO_RE || state.yuv.mode == AVIF_REFORMAT_MODE_YCGCO_RO) { |
369 | | // Formulas 58,59,60,61 from https://www.itu.int/rec/T-REC-H.273-202407-P |
370 | 0 | const int R = (int)avifRoundf(AVIF_CLAMP(rgbPixel[0] * rgbMaxChannelF, 0.0f, rgbMaxChannelF)); |
371 | 0 | const int G = (int)avifRoundf(AVIF_CLAMP(rgbPixel[1] * rgbMaxChannelF, 0.0f, rgbMaxChannelF)); |
372 | 0 | const int B = (int)avifRoundf(AVIF_CLAMP(rgbPixel[2] * rgbMaxChannelF, 0.0f, rgbMaxChannelF)); |
373 | 0 | const int Co = R - B; |
374 | 0 | const int t = B + (Co >> 1); |
375 | 0 | const int Cg = G - t; |
376 | 0 | yuvBlock[bI][bJ].y = (t + (Cg >> 1)) / state.yuv.rangeY; |
377 | 0 | yuvBlock[bI][bJ].u = Cg / state.yuv.rangeUV; |
378 | 0 | yuvBlock[bI][bJ].v = Co / state.yuv.rangeUV; |
379 | 0 | } else { |
380 | 0 | float Y = (kr * rgbPixel[0]) + (kg * rgbPixel[1]) + (kb * rgbPixel[2]); |
381 | 0 | yuvBlock[bI][bJ].y = Y; |
382 | 0 | yuvBlock[bI][bJ].u = (rgbPixel[2] - Y) / (2 * (1 - kb)); |
383 | 0 | yuvBlock[bI][bJ].v = (rgbPixel[0] - Y) / (2 * (1 - kr)); |
384 | 0 | } |
385 | |
|
386 | 0 | if (state.yuv.channelBytes > 1) { |
387 | 0 | uint16_t * pY = (uint16_t *)&yPlane[(i * 2) + (j * yRowBytes)]; |
388 | 0 | *pY = (uint16_t)avifYUVColorSpaceInfoYToUNorm(&state.yuv, yuvBlock[bI][bJ].y); |
389 | 0 | if (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV444) { |
390 | | // YUV444, full chroma |
391 | 0 | uint16_t * pU = (uint16_t *)&uPlane[(i * 2) + (j * uRowBytes)]; |
392 | 0 | *pU = (uint16_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, yuvBlock[bI][bJ].u); |
393 | 0 | uint16_t * pV = (uint16_t *)&vPlane[(i * 2) + (j * vRowBytes)]; |
394 | 0 | *pV = (uint16_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, yuvBlock[bI][bJ].v); |
395 | 0 | } |
396 | 0 | } else { |
397 | 0 | yPlane[i + (j * yRowBytes)] = (uint8_t)avifYUVColorSpaceInfoYToUNorm(&state.yuv, yuvBlock[bI][bJ].y); |
398 | 0 | if (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV444) { |
399 | | // YUV444, full chroma |
400 | 0 | uPlane[i + (j * uRowBytes)] = (uint8_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, yuvBlock[bI][bJ].u); |
401 | 0 | vPlane[i + (j * vRowBytes)] = (uint8_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, yuvBlock[bI][bJ].v); |
402 | 0 | } |
403 | 0 | } |
404 | 0 | } |
405 | 0 | } |
406 | | |
407 | | // Populate any subsampled channels with averages from the 2x2 block |
408 | 0 | if (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV400) { |
409 | | // Do nothing on chroma planes. |
410 | 0 | } else if (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV420) { |
411 | | // YUV420, average 4 samples (2x2) |
412 | |
|
413 | 0 | float sumU = 0.0f; |
414 | 0 | float sumV = 0.0f; |
415 | 0 | for (uint32_t bJ = 0; bJ < blockH; ++bJ) { |
416 | 0 | for (uint32_t bI = 0; bI < blockW; ++bI) { |
417 | 0 | sumU += yuvBlock[bI][bJ].u; |
418 | 0 | sumV += yuvBlock[bI][bJ].v; |
419 | 0 | } |
420 | 0 | } |
421 | 0 | float totalSamples = (float)(blockW * blockH); |
422 | 0 | float avgU = sumU / totalSamples; |
423 | 0 | float avgV = sumV / totalSamples; |
424 | |
|
425 | 0 | const int chromaShiftX = 1; |
426 | 0 | const int chromaShiftY = 1; |
427 | 0 | int uvI = outerI >> chromaShiftX; |
428 | 0 | int uvJ = outerJ >> chromaShiftY; |
429 | 0 | if (state.yuv.channelBytes > 1) { |
430 | 0 | uint16_t * pU = (uint16_t *)&uPlane[(uvI * 2) + (uvJ * uRowBytes)]; |
431 | 0 | *pU = (uint16_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, avgU); |
432 | 0 | uint16_t * pV = (uint16_t *)&vPlane[(uvI * 2) + (uvJ * vRowBytes)]; |
433 | 0 | *pV = (uint16_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, avgV); |
434 | 0 | } else { |
435 | 0 | uPlane[uvI + (uvJ * uRowBytes)] = (uint8_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, avgU); |
436 | 0 | vPlane[uvI + (uvJ * vRowBytes)] = (uint8_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, avgV); |
437 | 0 | } |
438 | 0 | } else if (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV422) { |
439 | | // YUV422, average 2 samples (1x2), twice |
440 | |
|
441 | 0 | for (uint32_t bJ = 0; bJ < blockH; ++bJ) { |
442 | 0 | float sumU = 0.0f; |
443 | 0 | float sumV = 0.0f; |
444 | 0 | for (uint32_t bI = 0; bI < blockW; ++bI) { |
445 | 0 | sumU += yuvBlock[bI][bJ].u; |
446 | 0 | sumV += yuvBlock[bI][bJ].v; |
447 | 0 | } |
448 | 0 | float totalSamples = (float)blockW; |
449 | 0 | float avgU = sumU / totalSamples; |
450 | 0 | float avgV = sumV / totalSamples; |
451 | |
|
452 | 0 | const int chromaShiftX = 1; |
453 | 0 | int uvI = outerI >> chromaShiftX; |
454 | 0 | int uvJ = outerJ + bJ; |
455 | 0 | if (state.yuv.channelBytes > 1) { |
456 | 0 | uint16_t * pU = (uint16_t *)&uPlane[(uvI * 2) + (uvJ * uRowBytes)]; |
457 | 0 | *pU = (uint16_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, avgU); |
458 | 0 | uint16_t * pV = (uint16_t *)&vPlane[(uvI * 2) + (uvJ * vRowBytes)]; |
459 | 0 | *pV = (uint16_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, avgV); |
460 | 0 | } else { |
461 | 0 | uPlane[uvI + (uvJ * uRowBytes)] = (uint8_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, avgU); |
462 | 0 | vPlane[uvI + (uvJ * vRowBytes)] = (uint8_t)avifYUVColorSpaceInfoUVToUNorm(&state.yuv, avgV); |
463 | 0 | } |
464 | 0 | } |
465 | 0 | } |
466 | 0 | } |
467 | 0 | } |
468 | 0 | } else if (!converted && isGray) { |
469 | 0 | const uint32_t grayPixelBytes = state.rgb.pixelBytes; |
470 | 0 | const uint32_t offsetBytesGray = state.rgb.offsetBytesGray; |
471 | 0 | const uint32_t offsetBytesA = state.rgb.offsetBytesA; |
472 | 0 | const uint32_t grayRowBytes = rgb->rowBytes; |
473 | 0 | const float grayMaxChannelF = state.rgb.maxChannelF; |
474 | 0 | uint8_t * yPlane = image->yuvPlanes[AVIF_CHAN_Y]; |
475 | 0 | const uint32_t yRowBytes = image->yuvRowBytes[AVIF_CHAN_Y]; |
476 | 0 | for (uint32_t j = 0; j < image->height; ++j) { |
477 | 0 | for (uint32_t i = 0; i < image->width; ++i) { |
478 | 0 | float g; |
479 | 0 | if (state.rgb.channelBytes > 1) { |
480 | 0 | g = *(uint16_t *)&rgb->pixels[offsetBytesGray + i * grayPixelBytes + (j * grayRowBytes)]; |
481 | 0 | } else { |
482 | 0 | g = rgb->pixels[offsetBytesGray + i * grayPixelBytes + (j * grayRowBytes)]; |
483 | 0 | } |
484 | 0 | if (alphaMode != AVIF_ALPHA_MULTIPLY_MODE_NO_OP) { |
485 | 0 | float a; |
486 | 0 | if (state.rgb.channelBytes > 1) { |
487 | 0 | a = *((uint16_t *)(&rgb->pixels[offsetBytesA + (i * grayPixelBytes) + (j * grayRowBytes)])) / grayMaxChannelF; |
488 | 0 | } else { |
489 | 0 | a = rgb->pixels[offsetBytesA + (i * grayPixelBytes) + (j * grayRowBytes)] / grayMaxChannelF; |
490 | 0 | } |
491 | |
|
492 | 0 | if (alphaMode == AVIF_ALPHA_MULTIPLY_MODE_MULTIPLY) { |
493 | 0 | if (a == 0) { |
494 | 0 | g = 0; |
495 | 0 | } else if (a < 1.0f) { |
496 | 0 | g *= a; |
497 | 0 | } |
498 | 0 | } else { |
499 | | // alphaMode == AVIF_ALPHA_MULTIPLY_MODE_UNMULTIPLY |
500 | 0 | if (a == 0) { |
501 | 0 | g = 0; |
502 | 0 | } else if (a < 1.0f) { |
503 | 0 | g /= a; |
504 | 0 | g = AVIF_MIN(g, 1.0f); |
505 | 0 | } |
506 | 0 | } |
507 | 0 | } |
508 | 0 | g = avifRoundf(AVIF_CLAMP(g, 0.0f, state.yuv.maxChannel)); |
509 | 0 | if (state.yuv.channelBytes > 1) { |
510 | 0 | uint16_t * pY = (uint16_t *)&yPlane[(i * 2) + j * yRowBytes]; |
511 | 0 | *pY = (uint16_t)g; |
512 | 0 | } else { |
513 | 0 | yPlane[i + (j * yRowBytes)] = (uint8_t)g; |
514 | 0 | } |
515 | 0 | } |
516 | 0 | } |
517 | | // Set the chroma planes, if any, to the half value. |
518 | 0 | avifPixelFormatInfo info; |
519 | 0 | avifGetPixelFormatInfo(image->yuvFormat, &info); |
520 | 0 | const uint32_t shiftedH = (uint32_t)(((uint64_t)image->height + info.chromaShiftY) >> info.chromaShiftY); |
521 | 0 | const int half = 1 << (image->depth - 1); |
522 | 0 | if (image->yuvPlanes[AVIF_CHAN_U]) { |
523 | 0 | uint8_t * uPlane = image->yuvPlanes[AVIF_CHAN_U]; |
524 | 0 | const uint32_t uRowBytes = image->yuvRowBytes[AVIF_CHAN_U]; |
525 | 0 | if (state.yuv.channelBytes > 1) { |
526 | 0 | avifMemset16(uPlane, half, shiftedH * uRowBytes / 2); |
527 | 0 | } else { |
528 | 0 | memset(uPlane, half, shiftedH * uRowBytes); |
529 | 0 | } |
530 | 0 | } |
531 | 0 | if (image->yuvPlanes[AVIF_CHAN_V]) { |
532 | 0 | uint8_t * vPlane = image->yuvPlanes[AVIF_CHAN_V]; |
533 | 0 | const uint32_t vRowBytes = image->yuvRowBytes[AVIF_CHAN_V]; |
534 | 0 | if (state.yuv.channelBytes > 1) { |
535 | 0 | avifMemset16(vPlane, half, shiftedH * vRowBytes / 2); |
536 | 0 | } else { |
537 | 0 | memset(vPlane, half, shiftedH * vRowBytes); |
538 | 0 | } |
539 | 0 | } |
540 | 0 | } |
541 | |
|
542 | 0 | if (image->alphaPlane && image->alphaRowBytes) { |
543 | 0 | avifAlphaParams params; |
544 | |
|
545 | 0 | params.width = image->width; |
546 | 0 | params.height = image->height; |
547 | 0 | params.dstDepth = image->depth; |
548 | 0 | params.dstPlane = image->alphaPlane; |
549 | 0 | params.dstRowBytes = image->alphaRowBytes; |
550 | 0 | params.dstOffsetBytes = 0; |
551 | 0 | params.dstPixelBytes = state.yuv.channelBytes; |
552 | |
|
553 | 0 | if (avifRGBFormatHasAlpha(rgb->format) && !rgb->ignoreAlpha) { |
554 | 0 | params.srcDepth = rgb->depth; |
555 | 0 | params.srcPlane = rgb->pixels; |
556 | 0 | params.srcRowBytes = rgb->rowBytes; |
557 | 0 | params.srcOffsetBytes = state.rgb.offsetBytesA; |
558 | 0 | params.srcPixelBytes = state.rgb.pixelBytes; |
559 | |
|
560 | 0 | avifReformatAlpha(¶ms); |
561 | 0 | } else { |
562 | | // libyuv does not fill alpha when converting from RGB to YUV so |
563 | | // fill it regardless of the value of convertedWithLibYUV. |
564 | 0 | avifFillAlpha(¶ms); |
565 | 0 | } |
566 | 0 | } |
567 | 0 | return AVIF_RESULT_OK; |
568 | 0 | } |
569 | | |
570 | | // Allocates and fills look-up tables for going from YUV limited/full unorm -> full range RGB FP32. |
571 | | // Review this when implementing YCgCo limited range support. |
572 | | static avifBool avifCreateYUVToRGBLookUpTables(float ** unormFloatTableY, float ** unormFloatTableUV, uint32_t depth, const avifReformatState * state) |
573 | 6.22k | { |
574 | 6.22k | const size_t cpCount = (size_t)1 << depth; |
575 | | |
576 | 6.22k | assert(unormFloatTableY); |
577 | 6.22k | *unormFloatTableY = (float *)avifAlloc(cpCount * sizeof(float)); |
578 | 6.22k | AVIF_CHECK(*unormFloatTableY); |
579 | 7.71M | for (uint32_t cp = 0; cp < cpCount; ++cp) { |
580 | 7.70M | (*unormFloatTableY)[cp] = ((float)cp - state->yuv.biasY) / state->yuv.rangeY; |
581 | 7.70M | } |
582 | | |
583 | 6.22k | if (unormFloatTableUV) { |
584 | 4.73k | if (state->yuv.mode == AVIF_REFORMAT_MODE_IDENTITY) { |
585 | | // Just reuse the luma table since the chroma values are the same. |
586 | 346 | *unormFloatTableUV = *unormFloatTableY; |
587 | 4.39k | } else { |
588 | 4.39k | *unormFloatTableUV = (float *)avifAlloc(cpCount * sizeof(float)); |
589 | 4.39k | if (!*unormFloatTableUV) { |
590 | 0 | avifFree(*unormFloatTableY); |
591 | 0 | *unormFloatTableY = NULL; |
592 | 0 | return AVIF_FALSE; |
593 | 0 | } |
594 | 6.56M | for (uint32_t cp = 0; cp < cpCount; ++cp) { |
595 | 6.55M | (*unormFloatTableUV)[cp] = ((float)cp - state->yuv.biasUV) / state->yuv.rangeUV; |
596 | 6.55M | } |
597 | 4.39k | } |
598 | 4.73k | } |
599 | 6.22k | return AVIF_TRUE; |
600 | 6.22k | } |
601 | | |
602 | | // Frees look-up tables allocated with avifCreateYUVToRGBLookUpTables(). |
603 | | static void avifFreeYUVToRGBLookUpTables(float ** unormFloatTableY, float ** unormFloatTableUV) |
604 | 6.22k | { |
605 | 6.22k | if (unormFloatTableUV) { |
606 | 4.73k | if (*unormFloatTableUV != *unormFloatTableY) { |
607 | 4.39k | avifFree(*unormFloatTableUV); |
608 | 4.39k | } |
609 | 4.73k | *unormFloatTableUV = NULL; |
610 | 4.73k | } |
611 | | |
612 | 6.22k | avifFree(*unormFloatTableY); |
613 | 6.22k | *unormFloatTableY = NULL; |
614 | 6.22k | } |
615 | | |
616 | 0 | #define RGB565(R, G, B) ((uint16_t)(((B) >> 3) | (((G) >> 2) << 5) | (((R) >> 3) << 11))) |
617 | | |
618 | | static void avifStoreRGB8Pixel(avifRGBFormat format, uint8_t R, uint8_t G, uint8_t B, uint8_t * ptrR, uint8_t * ptrG, uint8_t * ptrB) |
619 | 538M | { |
620 | 538M | if (format == AVIF_RGB_FORMAT_RGB_565) { |
621 | | // References for RGB565 color conversion: |
622 | | // * https://docs.microsoft.com/en-us/windows/win32/directshow/working-with-16-bit-rgb |
623 | | // * https://chromium.googlesource.com/libyuv/libyuv/+/9892d70c965678381d2a70a1c9002d1cf136ee78/source/row_common.cc#2362 |
624 | 0 | *(uint16_t *)ptrR = RGB565(R, G, B); |
625 | 0 | return; |
626 | 0 | } |
627 | 538M | *ptrR = R; |
628 | 538M | *ptrG = G; |
629 | 538M | *ptrB = B; |
630 | 538M | } |
631 | | |
632 | | static void avifGetRGB565(const uint8_t * ptrR, uint8_t * R, uint8_t * G, uint8_t * B) |
633 | 0 | { |
634 | | // References for RGB565 color conversion: |
635 | | // * https://docs.microsoft.com/en-us/windows/win32/directshow/working-with-16-bit-rgb |
636 | | // * https://chromium.googlesource.com/libyuv/libyuv/+/331c361581896292fb46c8c6905e41262b7ca95f/source/row_common.cc#185 |
637 | 0 | const uint16_t rgb656 = ((const uint16_t *)ptrR)[0]; |
638 | 0 | const uint16_t r5 = (rgb656 & 0xF800) >> 11; |
639 | 0 | const uint16_t g6 = (rgb656 & 0x07E0) >> 5; |
640 | 0 | const uint16_t b5 = (rgb656 & 0x001F); |
641 | 0 | *R = (uint8_t)((r5 << 3) | (r5 >> 2)); |
642 | 0 | *G = (uint8_t)((g6 << 2) | (g6 >> 4)); |
643 | 0 | *B = (uint8_t)((b5 << 3) | (b5 >> 2)); |
644 | 0 | } |
645 | | |
646 | | // Note: This function handles alpha (un)multiply. |
647 | | static avifResult avifImageYUVAnyToRGBAnySlow(const avifImage * image, |
648 | | avifRGBImage * rgb, |
649 | | const avifReformatState * state, |
650 | | avifAlphaMultiplyMode alphaMultiplyMode) |
651 | 2.07k | { |
652 | | // Aliases for some state |
653 | 2.07k | const float kr = state->yuv.kr; |
654 | 2.07k | const float kg = state->yuv.kg; |
655 | 2.07k | const float kb = state->yuv.kb; |
656 | 2.07k | float * unormFloatTableY = NULL; |
657 | 2.07k | float * unormFloatTableUV = NULL; |
658 | 2.07k | AVIF_CHECKERR(avifCreateYUVToRGBLookUpTables(&unormFloatTableY, &unormFloatTableUV, image->depth, state), AVIF_RESULT_OUT_OF_MEMORY); |
659 | 2.07k | const uint32_t yuvChannelBytes = state->yuv.channelBytes; |
660 | 2.07k | const uint32_t rgbPixelBytes = state->rgb.pixelBytes; |
661 | | |
662 | | // Aliases for plane data |
663 | 2.07k | const uint8_t * yPlane = image->yuvPlanes[AVIF_CHAN_Y]; |
664 | 2.07k | const uint8_t * uPlane = image->yuvPlanes[AVIF_CHAN_U]; |
665 | 2.07k | const uint8_t * vPlane = image->yuvPlanes[AVIF_CHAN_V]; |
666 | 2.07k | const uint8_t * aPlane = image->alphaPlane; |
667 | 2.07k | const uint32_t yRowBytes = image->yuvRowBytes[AVIF_CHAN_Y]; |
668 | 2.07k | const uint32_t uRowBytes = image->yuvRowBytes[AVIF_CHAN_U]; |
669 | 2.07k | const uint32_t vRowBytes = image->yuvRowBytes[AVIF_CHAN_V]; |
670 | 2.07k | const uint32_t aRowBytes = image->alphaRowBytes; |
671 | | |
672 | | // Various observations and limits |
673 | 2.07k | const avifBool yuvHasColor = (uPlane && vPlane && (image->yuvFormat != AVIF_PIXEL_FORMAT_YUV400)); |
674 | 2.07k | const avifBool rgbHasColor = !avifRGBFormatIsGray(rgb->format); |
675 | 2.07k | const uint16_t yuvMaxChannel = (uint16_t)state->yuv.maxChannel; |
676 | 2.07k | const float rgbMaxChannelF = state->rgb.maxChannelF; |
677 | | |
678 | | // If toRGBAlphaMode is active (not no-op), assert that the alpha plane is present. The end of |
679 | | // the avifPrepareReformatState() function should ensure this, but this assert makes it clear |
680 | | // to clang's analyzer. |
681 | 2.07k | assert((alphaMultiplyMode == AVIF_ALPHA_MULTIPLY_MODE_NO_OP) || aPlane); |
682 | | |
683 | 2.45M | for (uint32_t j = 0; j < image->height; ++j) { |
684 | | // uvJ is used only when yuvHasColor is true. |
685 | 2.45M | const uint32_t uvJ = yuvHasColor ? (j >> state->yuv.formatInfo.chromaShiftY) : 0; |
686 | 2.45M | const uint8_t * ptrY8 = &yPlane[j * yRowBytes]; |
687 | 2.45M | const uint8_t * ptrU8 = uPlane ? &uPlane[(uvJ * uRowBytes)] : NULL; |
688 | 2.45M | const uint8_t * ptrV8 = vPlane ? &vPlane[(uvJ * vRowBytes)] : NULL; |
689 | 2.45M | const uint8_t * ptrA8 = aPlane ? &aPlane[j * aRowBytes] : NULL; |
690 | 2.45M | const uint16_t * ptrY16 = (const uint16_t *)ptrY8; |
691 | 2.45M | const uint16_t * ptrU16 = (const uint16_t *)ptrU8; |
692 | 2.45M | const uint16_t * ptrV16 = (const uint16_t *)ptrV8; |
693 | 2.45M | const uint16_t * ptrA16 = (const uint16_t *)ptrA8; |
694 | | |
695 | 2.45M | uint8_t * ptrR = &rgb->pixels[state->rgb.offsetBytesR + (j * rgb->rowBytes)]; |
696 | 2.45M | uint8_t * ptrG = &rgb->pixels[state->rgb.offsetBytesG + (j * rgb->rowBytes)]; |
697 | 2.45M | uint8_t * ptrB = &rgb->pixels[state->rgb.offsetBytesB + (j * rgb->rowBytes)]; |
698 | 2.45M | uint8_t * ptrGray = &rgb->pixels[state->rgb.offsetBytesGray + (j * rgb->rowBytes)]; |
699 | | |
700 | 290M | for (uint32_t i = 0; i < image->width; ++i) { |
701 | 287M | float Y, Cb = 0.5f, Cr = 0.5f; |
702 | | |
703 | | // Calculate Y |
704 | 287M | uint16_t unormY; |
705 | 287M | if (image->depth == 8) { |
706 | 74.9M | unormY = ptrY8[i]; |
707 | 212M | } else { |
708 | | // clamp incoming data to protect against bad LUT lookups |
709 | 212M | unormY = AVIF_MIN(ptrY16[i], yuvMaxChannel); |
710 | 212M | } |
711 | 287M | Y = unormFloatTableY[unormY]; |
712 | | |
713 | | // Calculate Cb and Cr |
714 | 287M | if (yuvHasColor) { |
715 | 280M | const uint32_t uvI = i >> state->yuv.formatInfo.chromaShiftX; |
716 | 280M | if (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV444) { |
717 | 31.8M | uint16_t unormU, unormV; |
718 | | |
719 | 31.8M | if (image->depth == 8) { |
720 | 11.3M | unormU = ptrU8[uvI]; |
721 | 11.3M | unormV = ptrV8[uvI]; |
722 | 20.4M | } else { |
723 | | // clamp incoming data to protect against bad LUT lookups |
724 | 20.4M | unormU = AVIF_MIN(ptrU16[uvI], yuvMaxChannel); |
725 | 20.4M | unormV = AVIF_MIN(ptrV16[uvI], yuvMaxChannel); |
726 | 20.4M | } |
727 | | |
728 | 31.8M | Cb = unormFloatTableUV[unormU]; |
729 | 31.8M | Cr = unormFloatTableUV[unormV]; |
730 | 248M | } else { |
731 | | // Upsample to 444: |
732 | | // |
733 | | // * * * * |
734 | | // A B |
735 | | // * 1 2 * |
736 | | // |
737 | | // * 3 4 * |
738 | | // C D |
739 | | // * * * * |
740 | | // |
741 | | // When converting from YUV420 to RGB, for any given "high-resolution" RGB |
742 | | // coordinate (1,2,3,4,*), there are up to four "low-resolution" UV samples |
743 | | // (A,B,C,D) that are "nearest" to the pixel. For RGB pixel #1, A is the closest |
744 | | // UV sample, B and C are "adjacent" to it on the same row and column, and D is |
745 | | // the diagonal. For RGB pixel 3, C is the closest UV sample, A and D are |
746 | | // adjacent, and B is the diagonal. Sometimes the adjacent pixel on the same row |
747 | | // is to the left or right, and sometimes the adjacent pixel on the same column |
748 | | // is up or down. For any edge or corner, there might only be only one or two |
749 | | // samples nearby, so they'll be duplicated. |
750 | | // |
751 | | // The following code attempts to find all four nearest UV samples and put them |
752 | | // in the following unormU and unormV grid as follows: |
753 | | // |
754 | | // unorm[0][0] = closest ( weights: bilinear: 9/16, nearest: 1 ) |
755 | | // unorm[1][0] = adjacent col ( weights: bilinear: 3/16, nearest: 0 ) |
756 | | // unorm[0][1] = adjacent row ( weights: bilinear: 3/16, nearest: 0 ) |
757 | | // unorm[1][1] = diagonal ( weights: bilinear: 1/16, nearest: 0 ) |
758 | | // |
759 | | // It then weights them according to the requested upsampling set in avifRGBImage. |
760 | | |
761 | 248M | uint16_t unormU[2][2], unormV[2][2]; |
762 | | |
763 | | // How many bytes to add to a uint8_t pointer index to get to the adjacent (lesser) sample in a given direction |
764 | 248M | int uAdjCol, vAdjCol, uAdjRow, vAdjRow; |
765 | 248M | if ((i == 0) || ((i == (image->width - 1)) && ((i % 2) != 0))) { |
766 | 2.74M | uAdjCol = 0; |
767 | 2.74M | vAdjCol = 0; |
768 | 245M | } else { |
769 | 245M | if ((i % 2) != 0) { |
770 | 125M | uAdjCol = yuvChannelBytes; |
771 | 125M | vAdjCol = yuvChannelBytes; |
772 | 125M | } else { |
773 | 120M | uAdjCol = -1 * yuvChannelBytes; |
774 | 120M | vAdjCol = -1 * yuvChannelBytes; |
775 | 120M | } |
776 | 245M | } |
777 | | |
778 | | // For YUV422, uvJ will always be a fresh value (always corresponds to j), so |
779 | | // we'll simply duplicate the sample as if we were on the top or bottom row and |
780 | | // it'll behave as plain old linear (1D) upsampling, which is all we want. |
781 | 248M | if ((j == 0) || ((j == (image->height - 1)) && ((j % 2) != 0)) || (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV422)) { |
782 | 19.5M | uAdjRow = 0; |
783 | 19.5M | vAdjRow = 0; |
784 | 229M | } else { |
785 | 229M | if ((j % 2) != 0) { |
786 | 114M | uAdjRow = (int)uRowBytes; |
787 | 114M | vAdjRow = (int)vRowBytes; |
788 | 114M | } else { |
789 | 114M | uAdjRow = -1 * (int)uRowBytes; |
790 | 114M | vAdjRow = -1 * (int)vRowBytes; |
791 | 114M | } |
792 | 229M | } |
793 | | |
794 | 248M | if (image->depth == 8) { |
795 | 57.9M | unormU[0][0] = uPlane[(uvJ * uRowBytes) + (uvI * yuvChannelBytes)]; |
796 | 57.9M | unormV[0][0] = vPlane[(uvJ * vRowBytes) + (uvI * yuvChannelBytes)]; |
797 | 57.9M | unormU[1][0] = uPlane[(uvJ * uRowBytes) + (uvI * yuvChannelBytes) + uAdjCol]; |
798 | 57.9M | unormV[1][0] = vPlane[(uvJ * vRowBytes) + (uvI * yuvChannelBytes) + vAdjCol]; |
799 | 57.9M | unormU[0][1] = uPlane[(uvJ * uRowBytes) + (uvI * yuvChannelBytes) + uAdjRow]; |
800 | 57.9M | unormV[0][1] = vPlane[(uvJ * vRowBytes) + (uvI * yuvChannelBytes) + vAdjRow]; |
801 | 57.9M | unormU[1][1] = uPlane[(uvJ * uRowBytes) + (uvI * yuvChannelBytes) + uAdjCol + uAdjRow]; |
802 | 57.9M | unormV[1][1] = vPlane[(uvJ * vRowBytes) + (uvI * yuvChannelBytes) + vAdjCol + vAdjRow]; |
803 | 190M | } else { |
804 | 190M | unormU[0][0] = *((const uint16_t *)&uPlane[(uvJ * uRowBytes) + (uvI * yuvChannelBytes)]); |
805 | 190M | unormV[0][0] = *((const uint16_t *)&vPlane[(uvJ * vRowBytes) + (uvI * yuvChannelBytes)]); |
806 | 190M | unormU[1][0] = *((const uint16_t *)&uPlane[(uvJ * uRowBytes) + (uvI * yuvChannelBytes) + uAdjCol]); |
807 | 190M | unormV[1][0] = *((const uint16_t *)&vPlane[(uvJ * vRowBytes) + (uvI * yuvChannelBytes) + vAdjCol]); |
808 | 190M | unormU[0][1] = *((const uint16_t *)&uPlane[(uvJ * uRowBytes) + (uvI * yuvChannelBytes) + uAdjRow]); |
809 | 190M | unormV[0][1] = *((const uint16_t *)&vPlane[(uvJ * vRowBytes) + (uvI * yuvChannelBytes) + vAdjRow]); |
810 | 190M | unormU[1][1] = *((const uint16_t *)&uPlane[(uvJ * uRowBytes) + (uvI * yuvChannelBytes) + uAdjCol + uAdjRow]); |
811 | 190M | unormV[1][1] = *((const uint16_t *)&vPlane[(uvJ * vRowBytes) + (uvI * yuvChannelBytes) + vAdjCol + vAdjRow]); |
812 | | |
813 | | // clamp incoming data to protect against bad LUT lookups |
814 | 569M | for (int bJ = 0; bJ < 2; ++bJ) { |
815 | 1.13G | for (int bI = 0; bI < 2; ++bI) { |
816 | 757M | unormU[bI][bJ] = AVIF_MIN(unormU[bI][bJ], yuvMaxChannel); |
817 | 757M | unormV[bI][bJ] = AVIF_MIN(unormV[bI][bJ], yuvMaxChannel); |
818 | 757M | } |
819 | 378M | } |
820 | 190M | } |
821 | | |
822 | 248M | if ((rgb->chromaUpsampling == AVIF_CHROMA_UPSAMPLING_FASTEST) || |
823 | 248M | (rgb->chromaUpsampling == AVIF_CHROMA_UPSAMPLING_NEAREST)) { |
824 | | // Nearest neighbor; ignore all UVs but the closest one |
825 | 0 | Cb = unormFloatTableUV[unormU[0][0]]; |
826 | 0 | Cr = unormFloatTableUV[unormV[0][0]]; |
827 | 248M | } else { |
828 | | // Bilinear filtering with weights |
829 | 248M | Cb = (unormFloatTableUV[unormU[0][0]] * (9.0f / 16.0f)) + (unormFloatTableUV[unormU[1][0]] * (3.0f / 16.0f)) + |
830 | 248M | (unormFloatTableUV[unormU[0][1]] * (3.0f / 16.0f)) + (unormFloatTableUV[unormU[1][1]] * (1.0f / 16.0f)); |
831 | 248M | Cr = (unormFloatTableUV[unormV[0][0]] * (9.0f / 16.0f)) + (unormFloatTableUV[unormV[1][0]] * (3.0f / 16.0f)) + |
832 | 248M | (unormFloatTableUV[unormV[0][1]] * (3.0f / 16.0f)) + (unormFloatTableUV[unormV[1][1]] * (1.0f / 16.0f)); |
833 | 248M | } |
834 | 248M | } |
835 | 280M | } |
836 | | |
837 | 287M | float Rc = 0.0f, Gc = 0.0f, Bc = 0.0f, grayc = 0.0f; |
838 | 287M | if (rgbHasColor) { |
839 | 287M | float R, G, B; |
840 | 287M | if (yuvHasColor) { |
841 | 276M | if (state->yuv.mode == AVIF_REFORMAT_MODE_IDENTITY) { |
842 | | // Identity (GBR): Formulas 41,42,43 from |
843 | | // https://www.itu.int/rec/T-REC-H.273-201612-S |
844 | 3.56M | G = Y; |
845 | 3.56M | B = Cb; |
846 | 3.56M | R = Cr; |
847 | 273M | } else if (state->yuv.mode == AVIF_REFORMAT_MODE_YCGCO) { |
848 | | // YCgCo: Formulas 47,48,49,50 from |
849 | | // https://www.itu.int/rec/T-REC-H.273-201612-S |
850 | 28.0M | const float t = Y - Cb; |
851 | 28.0M | G = Y + Cb; |
852 | 28.0M | B = t - Cr; |
853 | 28.0M | R = t + Cr; |
854 | 247M | } else if ((state->yuv.mode == AVIF_REFORMAT_MODE_YCGCO_RE) || (state->yuv.mode == AVIF_REFORMAT_MODE_YCGCO_RO)) { |
855 | | // YCgCoRe/YCgCoRo: Formulas 62,63,64,65 from |
856 | | // https://www.itu.int/rec/T-REC-H.273-202407-P |
857 | 0 | const int YY = unormY; |
858 | 0 | const int Cg = (int)avifRoundf(Cb * yuvMaxChannel); |
859 | 0 | const int Co = (int)avifRoundf(Cr * yuvMaxChannel); |
860 | 0 | const int t = YY - (Cg >> 1); |
861 | 0 | G = (float)AVIF_CLAMP(t + Cg, 0, state->rgb.maxChannel); |
862 | 0 | B = (float)AVIF_CLAMP(t - (Co >> 1), 0, state->rgb.maxChannel); |
863 | 0 | R = (float)AVIF_CLAMP(B + Co, 0, state->rgb.maxChannel); |
864 | 0 | G /= rgbMaxChannelF; |
865 | 0 | B /= rgbMaxChannelF; |
866 | 0 | R /= rgbMaxChannelF; |
867 | 245M | } else { |
868 | | // Normal YUV |
869 | 245M | R = Y + (2 * (1 - kr)) * Cr; |
870 | 245M | B = Y + (2 * (1 - kb)) * Cb; |
871 | 245M | G = Y - ((2 * ((kr * (1 - kr) * Cr) + (kb * (1 - kb) * Cb))) / kg); |
872 | 245M | } |
873 | 276M | } else { |
874 | | // Monochrome: just populate all channels with luma (state->yuv.mode |
875 | | // is irrelevant) |
876 | 10.8M | R = Y; |
877 | 10.8M | G = Y; |
878 | 10.8M | B = Y; |
879 | 10.8M | } |
880 | 287M | Rc = AVIF_CLAMP(R, 0.0f, 1.0f); |
881 | 287M | Gc = AVIF_CLAMP(G, 0.0f, 1.0f); |
882 | 287M | Bc = AVIF_CLAMP(B, 0.0f, 1.0f); |
883 | 18.4E | } else { |
884 | | // Monochrome: gray is luma |
885 | 18.4E | float gray = Y; |
886 | 18.4E | grayc = AVIF_CLAMP(gray, 0.0f, 1.0f); |
887 | 18.4E | } |
888 | | |
889 | 287M | if (alphaMultiplyMode != AVIF_ALPHA_MULTIPLY_MODE_NO_OP) { |
890 | | // Calculate A |
891 | 0 | uint16_t unormA; |
892 | 0 | if (image->depth == 8) { |
893 | 0 | unormA = ptrA8[i]; |
894 | 0 | } else { |
895 | 0 | unormA = AVIF_MIN(ptrA16[i], yuvMaxChannel); |
896 | 0 | } |
897 | 0 | const float A = unormA / ((float)state->yuv.maxChannel); |
898 | 0 | const float Ac = AVIF_CLAMP(A, 0.0f, 1.0f); |
899 | |
|
900 | 0 | if (alphaMultiplyMode == AVIF_ALPHA_MULTIPLY_MODE_MULTIPLY) { |
901 | 0 | if (rgbHasColor) { |
902 | 0 | if (Ac == 0.0f) { |
903 | 0 | Rc = 0.0f; |
904 | 0 | Gc = 0.0f; |
905 | 0 | Bc = 0.0f; |
906 | 0 | } else if (Ac < 1.0f) { |
907 | 0 | Rc *= Ac; |
908 | 0 | Gc *= Ac; |
909 | 0 | Bc *= Ac; |
910 | 0 | } |
911 | 0 | } else { |
912 | 0 | if (Ac == 0.0f) { |
913 | 0 | grayc = 0.0f; |
914 | 0 | } else if (Ac < 1.0f) { |
915 | 0 | grayc *= Ac; |
916 | 0 | } |
917 | 0 | } |
918 | 0 | } else { |
919 | | // alphaMultiplyMode == AVIF_ALPHA_MULTIPLY_MODE_UNMULTIPLY |
920 | 0 | if (rgbHasColor) { |
921 | 0 | if (Ac == 0.0f) { |
922 | 0 | Rc = 0.0f; |
923 | 0 | Gc = 0.0f; |
924 | 0 | Bc = 0.0f; |
925 | 0 | } else if (Ac < 1.0f) { |
926 | 0 | Rc /= Ac; |
927 | 0 | Gc /= Ac; |
928 | 0 | Bc /= Ac; |
929 | 0 | Rc = AVIF_MIN(Rc, 1.0f); |
930 | 0 | Gc = AVIF_MIN(Gc, 1.0f); |
931 | 0 | Bc = AVIF_MIN(Bc, 1.0f); |
932 | 0 | } |
933 | 0 | } else { |
934 | 0 | if (Ac == 0.0f) { |
935 | 0 | grayc = 0.0f; |
936 | 0 | } else if (Ac < 1.0f) { |
937 | 0 | grayc /= Ac; |
938 | 0 | grayc = AVIF_MIN(grayc, 1.0f); |
939 | 0 | } |
940 | 0 | } |
941 | 0 | } |
942 | 0 | } |
943 | | |
944 | 287M | if (rgbHasColor) { |
945 | 287M | if (rgb->depth == 8) { |
946 | 74.6M | avifStoreRGB8Pixel(rgb->format, |
947 | 74.6M | (uint8_t)(0.5f + (Rc * rgbMaxChannelF)), |
948 | 74.6M | (uint8_t)(0.5f + (Gc * rgbMaxChannelF)), |
949 | 74.6M | (uint8_t)(0.5f + (Bc * rgbMaxChannelF)), |
950 | 74.6M | ptrR, |
951 | 74.6M | ptrG, |
952 | 74.6M | ptrB); |
953 | 212M | } else { |
954 | 212M | *((uint16_t *)ptrR) = (uint16_t)(0.5f + (Rc * rgbMaxChannelF)); |
955 | 212M | *((uint16_t *)ptrG) = (uint16_t)(0.5f + (Gc * rgbMaxChannelF)); |
956 | 212M | *((uint16_t *)ptrB) = (uint16_t)(0.5f + (Bc * rgbMaxChannelF)); |
957 | 212M | } |
958 | 287M | ptrR += rgbPixelBytes; |
959 | 287M | ptrG += rgbPixelBytes; |
960 | 287M | ptrB += rgbPixelBytes; |
961 | 287M | } else { |
962 | 120k | if (rgb->depth == 8) { |
963 | 0 | *ptrGray = (uint8_t)(0.5f + (grayc * rgbMaxChannelF)); |
964 | 120k | } else { |
965 | 120k | *((uint16_t *)ptrGray) = (uint16_t)(0.5f + (grayc * rgbMaxChannelF)); |
966 | 120k | } |
967 | 120k | ptrGray += rgbPixelBytes; |
968 | 120k | } |
969 | 287M | } |
970 | 2.45M | } |
971 | 2.07k | avifFreeYUVToRGBLookUpTables(&unormFloatTableY, &unormFloatTableUV); |
972 | 2.07k | return AVIF_RESULT_OK; |
973 | 2.07k | } |
974 | | |
975 | | static avifResult avifImageYUV16ToRGB16Color(const avifImage * image, avifRGBImage * rgb, avifReformatState * state) |
976 | 1.41k | { |
977 | 1.41k | const float kr = state->yuv.kr; |
978 | 1.41k | const float kg = state->yuv.kg; |
979 | 1.41k | const float kb = state->yuv.kb; |
980 | 1.41k | const uint32_t rgbPixelBytes = state->rgb.pixelBytes; |
981 | 1.41k | float * unormFloatTableY = NULL; |
982 | 1.41k | float * unormFloatTableUV = NULL; |
983 | 1.41k | AVIF_CHECKERR(avifCreateYUVToRGBLookUpTables(&unormFloatTableY, &unormFloatTableUV, image->depth, state), AVIF_RESULT_OUT_OF_MEMORY); |
984 | | |
985 | 1.41k | const uint16_t yuvMaxChannel = (uint16_t)state->yuv.maxChannel; |
986 | 1.41k | const float rgbMaxChannelF = state->rgb.maxChannelF; |
987 | 583k | for (uint32_t j = 0; j < image->height; ++j) { |
988 | 582k | const uint32_t uvJ = j >> state->yuv.formatInfo.chromaShiftY; |
989 | 582k | const uint16_t * const ptrY = (uint16_t *)&image->yuvPlanes[AVIF_CHAN_Y][(j * image->yuvRowBytes[AVIF_CHAN_Y])]; |
990 | 582k | const uint16_t * const ptrU = (uint16_t *)&image->yuvPlanes[AVIF_CHAN_U][(uvJ * image->yuvRowBytes[AVIF_CHAN_U])]; |
991 | 582k | const uint16_t * const ptrV = (uint16_t *)&image->yuvPlanes[AVIF_CHAN_V][(uvJ * image->yuvRowBytes[AVIF_CHAN_V])]; |
992 | 582k | uint8_t * ptrR = &rgb->pixels[state->rgb.offsetBytesR + (j * rgb->rowBytes)]; |
993 | 582k | uint8_t * ptrG = &rgb->pixels[state->rgb.offsetBytesG + (j * rgb->rowBytes)]; |
994 | 582k | uint8_t * ptrB = &rgb->pixels[state->rgb.offsetBytesB + (j * rgb->rowBytes)]; |
995 | | |
996 | 100M | for (uint32_t i = 0; i < image->width; ++i) { |
997 | 99.9M | uint32_t uvI = i >> state->yuv.formatInfo.chromaShiftX; |
998 | | |
999 | | // clamp incoming data to protect against bad LUT lookups |
1000 | 99.9M | const uint16_t unormY = AVIF_MIN(ptrY[i], yuvMaxChannel); |
1001 | 99.9M | const uint16_t unormU = AVIF_MIN(ptrU[uvI], yuvMaxChannel); |
1002 | 99.9M | const uint16_t unormV = AVIF_MIN(ptrV[uvI], yuvMaxChannel); |
1003 | | |
1004 | | // Convert unorm to float |
1005 | 99.9M | const float Y = unormFloatTableY[unormY]; |
1006 | 99.9M | const float Cb = unormFloatTableUV[unormU]; |
1007 | 99.9M | const float Cr = unormFloatTableUV[unormV]; |
1008 | | |
1009 | 99.9M | const float R = Y + (2 * (1 - kr)) * Cr; |
1010 | 99.9M | const float B = Y + (2 * (1 - kb)) * Cb; |
1011 | 99.9M | const float G = Y - ((2 * ((kr * (1 - kr) * Cr) + (kb * (1 - kb) * Cb))) / kg); |
1012 | 99.9M | const float Rc = AVIF_CLAMP(R, 0.0f, 1.0f); |
1013 | 99.9M | const float Gc = AVIF_CLAMP(G, 0.0f, 1.0f); |
1014 | 99.9M | const float Bc = AVIF_CLAMP(B, 0.0f, 1.0f); |
1015 | | |
1016 | 99.9M | *((uint16_t *)ptrR) = (uint16_t)(0.5f + (Rc * rgbMaxChannelF)); |
1017 | 99.9M | *((uint16_t *)ptrG) = (uint16_t)(0.5f + (Gc * rgbMaxChannelF)); |
1018 | 99.9M | *((uint16_t *)ptrB) = (uint16_t)(0.5f + (Bc * rgbMaxChannelF)); |
1019 | | |
1020 | 99.9M | ptrR += rgbPixelBytes; |
1021 | 99.9M | ptrG += rgbPixelBytes; |
1022 | 99.9M | ptrB += rgbPixelBytes; |
1023 | 99.9M | } |
1024 | 582k | } |
1025 | 1.41k | avifFreeYUVToRGBLookUpTables(&unormFloatTableY, &unormFloatTableUV); |
1026 | 1.41k | return AVIF_RESULT_OK; |
1027 | 1.41k | } |
1028 | | |
1029 | | static avifResult avifImageYUV16ToRGB16Mono(const avifImage * image, avifRGBImage * rgb, avifReformatState * state) |
1030 | 666 | { |
1031 | 666 | const float kr = state->yuv.kr; |
1032 | 666 | const float kg = state->yuv.kg; |
1033 | 666 | const float kb = state->yuv.kb; |
1034 | 666 | const uint32_t rgbPixelBytes = state->rgb.pixelBytes; |
1035 | 666 | float * unormFloatTableY = NULL; |
1036 | 666 | AVIF_CHECKERR(avifCreateYUVToRGBLookUpTables(&unormFloatTableY, NULL, image->depth, state), AVIF_RESULT_OUT_OF_MEMORY); |
1037 | | |
1038 | 666 | const uint16_t maxChannel = (uint16_t)state->yuv.maxChannel; |
1039 | 666 | const float maxChannelF = state->rgb.maxChannelF; |
1040 | 234k | for (uint32_t j = 0; j < image->height; ++j) { |
1041 | 234k | const uint16_t * const ptrY = (uint16_t *)&image->yuvPlanes[AVIF_CHAN_Y][(j * image->yuvRowBytes[AVIF_CHAN_Y])]; |
1042 | 234k | uint8_t * ptrR = &rgb->pixels[state->rgb.offsetBytesR + (j * rgb->rowBytes)]; |
1043 | 234k | uint8_t * ptrG = &rgb->pixels[state->rgb.offsetBytesG + (j * rgb->rowBytes)]; |
1044 | 234k | uint8_t * ptrB = &rgb->pixels[state->rgb.offsetBytesB + (j * rgb->rowBytes)]; |
1045 | | |
1046 | 381M | for (uint32_t i = 0; i < image->width; ++i) { |
1047 | | // clamp incoming data to protect against bad LUT lookups |
1048 | 381M | const uint16_t unormY = AVIF_MIN(ptrY[i], maxChannel); |
1049 | | |
1050 | | // Convert unorm to float |
1051 | 381M | const float Y = unormFloatTableY[unormY]; |
1052 | 381M | const float Cb = 0.0f; |
1053 | 381M | const float Cr = 0.0f; |
1054 | | |
1055 | 381M | const float R = Y + (2 * (1 - kr)) * Cr; |
1056 | 381M | const float B = Y + (2 * (1 - kb)) * Cb; |
1057 | 381M | const float G = Y - ((2 * ((kr * (1 - kr) * Cr) + (kb * (1 - kb) * Cb))) / kg); |
1058 | 381M | const float Rc = AVIF_CLAMP(R, 0.0f, 1.0f); |
1059 | 381M | const float Gc = AVIF_CLAMP(G, 0.0f, 1.0f); |
1060 | 381M | const float Bc = AVIF_CLAMP(B, 0.0f, 1.0f); |
1061 | | |
1062 | 381M | *((uint16_t *)ptrR) = (uint16_t)(0.5f + (Rc * maxChannelF)); |
1063 | 381M | *((uint16_t *)ptrG) = (uint16_t)(0.5f + (Gc * maxChannelF)); |
1064 | 381M | *((uint16_t *)ptrB) = (uint16_t)(0.5f + (Bc * maxChannelF)); |
1065 | | |
1066 | 381M | ptrR += rgbPixelBytes; |
1067 | 381M | ptrG += rgbPixelBytes; |
1068 | 381M | ptrB += rgbPixelBytes; |
1069 | 381M | } |
1070 | 234k | } |
1071 | 666 | avifFreeYUVToRGBLookUpTables(&unormFloatTableY, NULL); |
1072 | 666 | return AVIF_RESULT_OK; |
1073 | 666 | } |
1074 | | |
1075 | | static avifResult avifImageYUV16ToRGB8Color(const avifImage * image, avifRGBImage * rgb, avifReformatState * state) |
1076 | 0 | { |
1077 | 0 | const float kr = state->yuv.kr; |
1078 | 0 | const float kg = state->yuv.kg; |
1079 | 0 | const float kb = state->yuv.kb; |
1080 | 0 | const uint32_t rgbPixelBytes = state->rgb.pixelBytes; |
1081 | 0 | float * unormFloatTableY = NULL; |
1082 | 0 | float * unormFloatTableUV = NULL; |
1083 | 0 | AVIF_CHECKERR(avifCreateYUVToRGBLookUpTables(&unormFloatTableY, &unormFloatTableUV, image->depth, state), AVIF_RESULT_OUT_OF_MEMORY); |
1084 | | |
1085 | 0 | const uint16_t yuvMaxChannel = (uint16_t)state->yuv.maxChannel; |
1086 | 0 | const float rgbMaxChannelF = state->rgb.maxChannelF; |
1087 | 0 | for (uint32_t j = 0; j < image->height; ++j) { |
1088 | 0 | const uint32_t uvJ = j >> state->yuv.formatInfo.chromaShiftY; |
1089 | 0 | const uint16_t * const ptrY = (uint16_t *)&image->yuvPlanes[AVIF_CHAN_Y][(j * image->yuvRowBytes[AVIF_CHAN_Y])]; |
1090 | 0 | const uint16_t * const ptrU = (uint16_t *)&image->yuvPlanes[AVIF_CHAN_U][(uvJ * image->yuvRowBytes[AVIF_CHAN_U])]; |
1091 | 0 | const uint16_t * const ptrV = (uint16_t *)&image->yuvPlanes[AVIF_CHAN_V][(uvJ * image->yuvRowBytes[AVIF_CHAN_V])]; |
1092 | 0 | uint8_t * ptrR = &rgb->pixels[state->rgb.offsetBytesR + (j * rgb->rowBytes)]; |
1093 | 0 | uint8_t * ptrG = &rgb->pixels[state->rgb.offsetBytesG + (j * rgb->rowBytes)]; |
1094 | 0 | uint8_t * ptrB = &rgb->pixels[state->rgb.offsetBytesB + (j * rgb->rowBytes)]; |
1095 | |
|
1096 | 0 | for (uint32_t i = 0; i < image->width; ++i) { |
1097 | 0 | uint32_t uvI = i >> state->yuv.formatInfo.chromaShiftX; |
1098 | | |
1099 | | // clamp incoming data to protect against bad LUT lookups |
1100 | 0 | const uint16_t unormY = AVIF_MIN(ptrY[i], yuvMaxChannel); |
1101 | 0 | const uint16_t unormU = AVIF_MIN(ptrU[uvI], yuvMaxChannel); |
1102 | 0 | const uint16_t unormV = AVIF_MIN(ptrV[uvI], yuvMaxChannel); |
1103 | | |
1104 | | // Convert unorm to float |
1105 | 0 | const float Y = unormFloatTableY[unormY]; |
1106 | 0 | const float Cb = unormFloatTableUV[unormU]; |
1107 | 0 | const float Cr = unormFloatTableUV[unormV]; |
1108 | |
|
1109 | 0 | const float R = Y + (2 * (1 - kr)) * Cr; |
1110 | 0 | const float B = Y + (2 * (1 - kb)) * Cb; |
1111 | 0 | const float G = Y - ((2 * ((kr * (1 - kr) * Cr) + (kb * (1 - kb) * Cb))) / kg); |
1112 | 0 | const float Rc = AVIF_CLAMP(R, 0.0f, 1.0f); |
1113 | 0 | const float Gc = AVIF_CLAMP(G, 0.0f, 1.0f); |
1114 | 0 | const float Bc = AVIF_CLAMP(B, 0.0f, 1.0f); |
1115 | |
|
1116 | 0 | avifStoreRGB8Pixel(rgb->format, |
1117 | 0 | (uint8_t)(0.5f + (Rc * rgbMaxChannelF)), |
1118 | 0 | (uint8_t)(0.5f + (Gc * rgbMaxChannelF)), |
1119 | 0 | (uint8_t)(0.5f + (Bc * rgbMaxChannelF)), |
1120 | 0 | ptrR, |
1121 | 0 | ptrG, |
1122 | 0 | ptrB); |
1123 | |
|
1124 | 0 | ptrR += rgbPixelBytes; |
1125 | 0 | ptrG += rgbPixelBytes; |
1126 | 0 | ptrB += rgbPixelBytes; |
1127 | 0 | } |
1128 | 0 | } |
1129 | 0 | avifFreeYUVToRGBLookUpTables(&unormFloatTableY, &unormFloatTableUV); |
1130 | 0 | return AVIF_RESULT_OK; |
1131 | 0 | } |
1132 | | |
1133 | | static avifResult avifImageYUV16ToRGB8Mono(const avifImage * image, avifRGBImage * rgb, avifReformatState * state) |
1134 | 0 | { |
1135 | 0 | const float kr = state->yuv.kr; |
1136 | 0 | const float kg = state->yuv.kg; |
1137 | 0 | const float kb = state->yuv.kb; |
1138 | 0 | const uint32_t rgbPixelBytes = state->rgb.pixelBytes; |
1139 | 0 | float * unormFloatTableY = NULL; |
1140 | 0 | AVIF_CHECKERR(avifCreateYUVToRGBLookUpTables(&unormFloatTableY, NULL, image->depth, state), AVIF_RESULT_OUT_OF_MEMORY); |
1141 | | |
1142 | 0 | const uint16_t yuvMaxChannel = (uint16_t)state->yuv.maxChannel; |
1143 | 0 | const float rgbMaxChannelF = state->rgb.maxChannelF; |
1144 | 0 | for (uint32_t j = 0; j < image->height; ++j) { |
1145 | 0 | const uint16_t * const ptrY = (uint16_t *)&image->yuvPlanes[AVIF_CHAN_Y][(j * image->yuvRowBytes[AVIF_CHAN_Y])]; |
1146 | 0 | uint8_t * ptrR = &rgb->pixels[state->rgb.offsetBytesR + (j * rgb->rowBytes)]; |
1147 | 0 | uint8_t * ptrG = &rgb->pixels[state->rgb.offsetBytesG + (j * rgb->rowBytes)]; |
1148 | 0 | uint8_t * ptrB = &rgb->pixels[state->rgb.offsetBytesB + (j * rgb->rowBytes)]; |
1149 | |
|
1150 | 0 | for (uint32_t i = 0; i < image->width; ++i) { |
1151 | | // clamp incoming data to protect against bad LUT lookups |
1152 | 0 | const uint16_t unormY = AVIF_MIN(ptrY[i], yuvMaxChannel); |
1153 | | |
1154 | | // Convert unorm to float |
1155 | 0 | const float Y = unormFloatTableY[unormY]; |
1156 | 0 | const float Cb = 0.0f; |
1157 | 0 | const float Cr = 0.0f; |
1158 | |
|
1159 | 0 | const float R = Y + (2 * (1 - kr)) * Cr; |
1160 | 0 | const float B = Y + (2 * (1 - kb)) * Cb; |
1161 | 0 | const float G = Y - ((2 * ((kr * (1 - kr) * Cr) + (kb * (1 - kb) * Cb))) / kg); |
1162 | 0 | const float Rc = AVIF_CLAMP(R, 0.0f, 1.0f); |
1163 | 0 | const float Gc = AVIF_CLAMP(G, 0.0f, 1.0f); |
1164 | 0 | const float Bc = AVIF_CLAMP(B, 0.0f, 1.0f); |
1165 | |
|
1166 | 0 | avifStoreRGB8Pixel(rgb->format, |
1167 | 0 | (uint8_t)(0.5f + (Rc * rgbMaxChannelF)), |
1168 | 0 | (uint8_t)(0.5f + (Gc * rgbMaxChannelF)), |
1169 | 0 | (uint8_t)(0.5f + (Bc * rgbMaxChannelF)), |
1170 | 0 | ptrR, |
1171 | 0 | ptrG, |
1172 | 0 | ptrB); |
1173 | |
|
1174 | 0 | ptrR += rgbPixelBytes; |
1175 | 0 | ptrG += rgbPixelBytes; |
1176 | 0 | ptrB += rgbPixelBytes; |
1177 | 0 | } |
1178 | 0 | } |
1179 | 0 | avifFreeYUVToRGBLookUpTables(&unormFloatTableY, NULL); |
1180 | 0 | return AVIF_RESULT_OK; |
1181 | 0 | } |
1182 | | |
1183 | | static avifResult avifImageYUV8ToRGB16Color(const avifImage * image, avifRGBImage * rgb, avifReformatState * state) |
1184 | 0 | { |
1185 | 0 | const float kr = state->yuv.kr; |
1186 | 0 | const float kg = state->yuv.kg; |
1187 | 0 | const float kb = state->yuv.kb; |
1188 | 0 | const uint32_t rgbPixelBytes = state->rgb.pixelBytes; |
1189 | 0 | float * unormFloatTableY = NULL; |
1190 | 0 | float * unormFloatTableUV = NULL; |
1191 | 0 | AVIF_CHECKERR(avifCreateYUVToRGBLookUpTables(&unormFloatTableY, &unormFloatTableUV, image->depth, state), AVIF_RESULT_OUT_OF_MEMORY); |
1192 | | |
1193 | 0 | const float rgbMaxChannelF = state->rgb.maxChannelF; |
1194 | 0 | for (uint32_t j = 0; j < image->height; ++j) { |
1195 | 0 | const uint32_t uvJ = j >> state->yuv.formatInfo.chromaShiftY; |
1196 | 0 | const uint8_t * const ptrY = &image->yuvPlanes[AVIF_CHAN_Y][(j * image->yuvRowBytes[AVIF_CHAN_Y])]; |
1197 | 0 | const uint8_t * const ptrU = &image->yuvPlanes[AVIF_CHAN_U][(uvJ * image->yuvRowBytes[AVIF_CHAN_U])]; |
1198 | 0 | const uint8_t * const ptrV = &image->yuvPlanes[AVIF_CHAN_V][(uvJ * image->yuvRowBytes[AVIF_CHAN_V])]; |
1199 | 0 | uint8_t * ptrR = &rgb->pixels[state->rgb.offsetBytesR + (j * rgb->rowBytes)]; |
1200 | 0 | uint8_t * ptrG = &rgb->pixels[state->rgb.offsetBytesG + (j * rgb->rowBytes)]; |
1201 | 0 | uint8_t * ptrB = &rgb->pixels[state->rgb.offsetBytesB + (j * rgb->rowBytes)]; |
1202 | |
|
1203 | 0 | for (uint32_t i = 0; i < image->width; ++i) { |
1204 | 0 | uint32_t uvI = i >> state->yuv.formatInfo.chromaShiftX; |
1205 | | |
1206 | | // Convert unorm to float (no clamp necessary, the full uint8_t range is a legal lookup) |
1207 | 0 | const float Y = unormFloatTableY[ptrY[i]]; |
1208 | 0 | const float Cb = unormFloatTableUV[ptrU[uvI]]; |
1209 | 0 | const float Cr = unormFloatTableUV[ptrV[uvI]]; |
1210 | |
|
1211 | 0 | const float R = Y + (2 * (1 - kr)) * Cr; |
1212 | 0 | const float B = Y + (2 * (1 - kb)) * Cb; |
1213 | 0 | const float G = Y - ((2 * ((kr * (1 - kr) * Cr) + (kb * (1 - kb) * Cb))) / kg); |
1214 | 0 | const float Rc = AVIF_CLAMP(R, 0.0f, 1.0f); |
1215 | 0 | const float Gc = AVIF_CLAMP(G, 0.0f, 1.0f); |
1216 | 0 | const float Bc = AVIF_CLAMP(B, 0.0f, 1.0f); |
1217 | |
|
1218 | 0 | *((uint16_t *)ptrR) = (uint16_t)(0.5f + (Rc * rgbMaxChannelF)); |
1219 | 0 | *((uint16_t *)ptrG) = (uint16_t)(0.5f + (Gc * rgbMaxChannelF)); |
1220 | 0 | *((uint16_t *)ptrB) = (uint16_t)(0.5f + (Bc * rgbMaxChannelF)); |
1221 | |
|
1222 | 0 | ptrR += rgbPixelBytes; |
1223 | 0 | ptrG += rgbPixelBytes; |
1224 | 0 | ptrB += rgbPixelBytes; |
1225 | 0 | } |
1226 | 0 | } |
1227 | 0 | avifFreeYUVToRGBLookUpTables(&unormFloatTableY, &unormFloatTableUV); |
1228 | 0 | return AVIF_RESULT_OK; |
1229 | 0 | } |
1230 | | |
1231 | | static avifResult avifImageYUV8ToRGB16Mono(const avifImage * image, avifRGBImage * rgb, avifReformatState * state) |
1232 | 0 | { |
1233 | 0 | const float kr = state->yuv.kr; |
1234 | 0 | const float kg = state->yuv.kg; |
1235 | 0 | const float kb = state->yuv.kb; |
1236 | 0 | const uint32_t rgbPixelBytes = state->rgb.pixelBytes; |
1237 | 0 | float * unormFloatTableY = NULL; |
1238 | 0 | AVIF_CHECKERR(avifCreateYUVToRGBLookUpTables(&unormFloatTableY, NULL, image->depth, state), AVIF_RESULT_OUT_OF_MEMORY); |
1239 | | |
1240 | 0 | const float rgbMaxChannelF = state->rgb.maxChannelF; |
1241 | 0 | for (uint32_t j = 0; j < image->height; ++j) { |
1242 | 0 | const uint8_t * const ptrY = &image->yuvPlanes[AVIF_CHAN_Y][(j * image->yuvRowBytes[AVIF_CHAN_Y])]; |
1243 | 0 | uint8_t * ptrR = &rgb->pixels[state->rgb.offsetBytesR + (j * rgb->rowBytes)]; |
1244 | 0 | uint8_t * ptrG = &rgb->pixels[state->rgb.offsetBytesG + (j * rgb->rowBytes)]; |
1245 | 0 | uint8_t * ptrB = &rgb->pixels[state->rgb.offsetBytesB + (j * rgb->rowBytes)]; |
1246 | |
|
1247 | 0 | for (uint32_t i = 0; i < image->width; ++i) { |
1248 | | // Convert unorm to float (no clamp necessary, the full uint8_t range is a legal lookup) |
1249 | 0 | const float Y = unormFloatTableY[ptrY[i]]; |
1250 | 0 | const float Cb = 0.0f; |
1251 | 0 | const float Cr = 0.0f; |
1252 | |
|
1253 | 0 | const float R = Y + (2 * (1 - kr)) * Cr; |
1254 | 0 | const float B = Y + (2 * (1 - kb)) * Cb; |
1255 | 0 | const float G = Y - ((2 * ((kr * (1 - kr) * Cr) + (kb * (1 - kb) * Cb))) / kg); |
1256 | 0 | const float Rc = AVIF_CLAMP(R, 0.0f, 1.0f); |
1257 | 0 | const float Gc = AVIF_CLAMP(G, 0.0f, 1.0f); |
1258 | 0 | const float Bc = AVIF_CLAMP(B, 0.0f, 1.0f); |
1259 | |
|
1260 | 0 | *((uint16_t *)ptrR) = (uint16_t)(0.5f + (Rc * rgbMaxChannelF)); |
1261 | 0 | *((uint16_t *)ptrG) = (uint16_t)(0.5f + (Gc * rgbMaxChannelF)); |
1262 | 0 | *((uint16_t *)ptrB) = (uint16_t)(0.5f + (Bc * rgbMaxChannelF)); |
1263 | |
|
1264 | 0 | ptrR += rgbPixelBytes; |
1265 | 0 | ptrG += rgbPixelBytes; |
1266 | 0 | ptrB += rgbPixelBytes; |
1267 | 0 | } |
1268 | 0 | } |
1269 | 0 | avifFreeYUVToRGBLookUpTables(&unormFloatTableY, NULL); |
1270 | 0 | return AVIF_RESULT_OK; |
1271 | 0 | } |
1272 | | |
1273 | | static avifResult avifImageIdentity8ToRGB8ColorFullRange(const avifImage * image, avifRGBImage * rgb, avifReformatState * state) |
1274 | 4.58k | { |
1275 | 4.58k | const uint32_t rgbPixelBytes = state->rgb.pixelBytes; |
1276 | 191k | for (uint32_t j = 0; j < image->height; ++j) { |
1277 | 186k | const uint8_t * const ptrY = &image->yuvPlanes[AVIF_CHAN_Y][(j * image->yuvRowBytes[AVIF_CHAN_Y])]; |
1278 | 186k | const uint8_t * const ptrU = &image->yuvPlanes[AVIF_CHAN_U][(j * image->yuvRowBytes[AVIF_CHAN_U])]; |
1279 | 186k | const uint8_t * const ptrV = &image->yuvPlanes[AVIF_CHAN_V][(j * image->yuvRowBytes[AVIF_CHAN_V])]; |
1280 | 186k | uint8_t * ptrR = &rgb->pixels[state->rgb.offsetBytesR + (j * rgb->rowBytes)]; |
1281 | 186k | uint8_t * ptrG = &rgb->pixels[state->rgb.offsetBytesG + (j * rgb->rowBytes)]; |
1282 | 186k | uint8_t * ptrB = &rgb->pixels[state->rgb.offsetBytesB + (j * rgb->rowBytes)]; |
1283 | | |
1284 | | // This is intentionally a per-row conditional instead of a per-pixel |
1285 | | // conditional. This makes the "else" path (much more common than the |
1286 | | // "if" path) much faster than having a per-pixel branch. |
1287 | 186k | if (rgb->format == AVIF_RGB_FORMAT_RGB_565) { |
1288 | 0 | for (uint32_t i = 0; i < image->width; ++i) { |
1289 | 0 | *(uint16_t *)ptrR = RGB565(ptrV[i], ptrY[i], ptrU[i]); |
1290 | 0 | ptrR += rgbPixelBytes; |
1291 | 0 | } |
1292 | 186k | } else { |
1293 | 36.0M | for (uint32_t i = 0; i < image->width; ++i) { |
1294 | 35.8M | *ptrR = ptrV[i]; |
1295 | 35.8M | *ptrG = ptrY[i]; |
1296 | 35.8M | *ptrB = ptrU[i]; |
1297 | 35.8M | ptrR += rgbPixelBytes; |
1298 | 35.8M | ptrG += rgbPixelBytes; |
1299 | 35.8M | ptrB += rgbPixelBytes; |
1300 | 35.8M | } |
1301 | 186k | } |
1302 | 186k | } |
1303 | 4.58k | return AVIF_RESULT_OK; |
1304 | 4.58k | } |
1305 | | |
1306 | | static avifResult avifImageYUV8ToRGB8Color(const avifImage * image, avifRGBImage * rgb, avifReformatState * state) |
1307 | 1.25k | { |
1308 | 1.25k | const float kr = state->yuv.kr; |
1309 | 1.25k | const float kg = state->yuv.kg; |
1310 | 1.25k | const float kb = state->yuv.kb; |
1311 | 1.25k | const uint32_t rgbPixelBytes = state->rgb.pixelBytes; |
1312 | 1.25k | float * unormFloatTableY = NULL; |
1313 | 1.25k | float * unormFloatTableUV = NULL; |
1314 | 1.25k | AVIF_CHECKERR(avifCreateYUVToRGBLookUpTables(&unormFloatTableY, &unormFloatTableUV, image->depth, state), AVIF_RESULT_OUT_OF_MEMORY); |
1315 | | |
1316 | 1.25k | const float rgbMaxChannelF = state->rgb.maxChannelF; |
1317 | 909k | for (uint32_t j = 0; j < image->height; ++j) { |
1318 | 908k | const uint32_t uvJ = j >> state->yuv.formatInfo.chromaShiftY; |
1319 | 908k | const uint8_t * const ptrY = &image->yuvPlanes[AVIF_CHAN_Y][(j * image->yuvRowBytes[AVIF_CHAN_Y])]; |
1320 | 908k | const uint8_t * const ptrU = &image->yuvPlanes[AVIF_CHAN_U][(uvJ * image->yuvRowBytes[AVIF_CHAN_U])]; |
1321 | 908k | const uint8_t * const ptrV = &image->yuvPlanes[AVIF_CHAN_V][(uvJ * image->yuvRowBytes[AVIF_CHAN_V])]; |
1322 | 908k | uint8_t * ptrR = &rgb->pixels[state->rgb.offsetBytesR + (j * rgb->rowBytes)]; |
1323 | 908k | uint8_t * ptrG = &rgb->pixels[state->rgb.offsetBytesG + (j * rgb->rowBytes)]; |
1324 | 908k | uint8_t * ptrB = &rgb->pixels[state->rgb.offsetBytesB + (j * rgb->rowBytes)]; |
1325 | | |
1326 | 100M | for (uint32_t i = 0; i < image->width; ++i) { |
1327 | 99.1M | uint32_t uvI = i >> state->yuv.formatInfo.chromaShiftX; |
1328 | | |
1329 | | // Convert unorm to float (no clamp necessary, the full uint8_t range is a legal lookup) |
1330 | 99.1M | const float Y = unormFloatTableY[ptrY[i]]; |
1331 | 99.1M | const float Cb = unormFloatTableUV[ptrU[uvI]]; |
1332 | 99.1M | const float Cr = unormFloatTableUV[ptrV[uvI]]; |
1333 | | |
1334 | 99.1M | const float R = Y + (2 * (1 - kr)) * Cr; |
1335 | 99.1M | const float B = Y + (2 * (1 - kb)) * Cb; |
1336 | 99.1M | const float G = Y - ((2 * ((kr * (1 - kr) * Cr) + (kb * (1 - kb) * Cb))) / kg); |
1337 | 99.1M | const float Rc = AVIF_CLAMP(R, 0.0f, 1.0f); |
1338 | 99.1M | const float Gc = AVIF_CLAMP(G, 0.0f, 1.0f); |
1339 | 99.1M | const float Bc = AVIF_CLAMP(B, 0.0f, 1.0f); |
1340 | | |
1341 | 99.1M | avifStoreRGB8Pixel(rgb->format, |
1342 | 99.1M | (uint8_t)(0.5f + (Rc * rgbMaxChannelF)), |
1343 | 99.1M | (uint8_t)(0.5f + (Gc * rgbMaxChannelF)), |
1344 | 99.1M | (uint8_t)(0.5f + (Bc * rgbMaxChannelF)), |
1345 | 99.1M | ptrR, |
1346 | 99.1M | ptrG, |
1347 | 99.1M | ptrB); |
1348 | | |
1349 | 99.1M | ptrR += rgbPixelBytes; |
1350 | 99.1M | ptrG += rgbPixelBytes; |
1351 | 99.1M | ptrB += rgbPixelBytes; |
1352 | 99.1M | } |
1353 | 908k | } |
1354 | 1.25k | avifFreeYUVToRGBLookUpTables(&unormFloatTableY, &unormFloatTableUV); |
1355 | 1.25k | return AVIF_RESULT_OK; |
1356 | 1.25k | } |
1357 | | |
1358 | | static avifResult avifImageYUV8ToRGB8Mono(const avifImage * image, avifRGBImage * rgb, avifReformatState * state) |
1359 | 819 | { |
1360 | 819 | const float kr = state->yuv.kr; |
1361 | 819 | const float kg = state->yuv.kg; |
1362 | 819 | const float kb = state->yuv.kb; |
1363 | 819 | const uint32_t rgbPixelBytes = state->rgb.pixelBytes; |
1364 | 819 | float * unormFloatTableY = NULL; |
1365 | 819 | AVIF_CHECKERR(avifCreateYUVToRGBLookUpTables(&unormFloatTableY, NULL, image->depth, state), AVIF_RESULT_OUT_OF_MEMORY); |
1366 | | |
1367 | 819 | const float rgbMaxChannelF = state->rgb.maxChannelF; |
1368 | 391k | for (uint32_t j = 0; j < image->height; ++j) { |
1369 | 390k | const uint8_t * const ptrY = &image->yuvPlanes[AVIF_CHAN_Y][(j * image->yuvRowBytes[AVIF_CHAN_Y])]; |
1370 | 390k | uint8_t * ptrR = &rgb->pixels[state->rgb.offsetBytesR + (j * rgb->rowBytes)]; |
1371 | 390k | uint8_t * ptrG = &rgb->pixels[state->rgb.offsetBytesG + (j * rgb->rowBytes)]; |
1372 | 390k | uint8_t * ptrB = &rgb->pixels[state->rgb.offsetBytesB + (j * rgb->rowBytes)]; |
1373 | | |
1374 | 364M | for (uint32_t i = 0; i < image->width; ++i) { |
1375 | | // Convert unorm to float (no clamp necessary, the full uint8_t range is a legal lookup) |
1376 | 364M | const float Y = unormFloatTableY[ptrY[i]]; |
1377 | 364M | const float Cb = 0.0f; |
1378 | 364M | const float Cr = 0.0f; |
1379 | | |
1380 | 364M | const float R = Y + (2 * (1 - kr)) * Cr; |
1381 | 364M | const float B = Y + (2 * (1 - kb)) * Cb; |
1382 | 364M | const float G = Y - ((2 * ((kr * (1 - kr) * Cr) + (kb * (1 - kb) * Cb))) / kg); |
1383 | 364M | const float Rc = AVIF_CLAMP(R, 0.0f, 1.0f); |
1384 | 364M | const float Gc = AVIF_CLAMP(G, 0.0f, 1.0f); |
1385 | 364M | const float Bc = AVIF_CLAMP(B, 0.0f, 1.0f); |
1386 | | |
1387 | 364M | avifStoreRGB8Pixel(rgb->format, |
1388 | 364M | (uint8_t)(0.5f + (Rc * rgbMaxChannelF)), |
1389 | 364M | (uint8_t)(0.5f + (Gc * rgbMaxChannelF)), |
1390 | 364M | (uint8_t)(0.5f + (Bc * rgbMaxChannelF)), |
1391 | 364M | ptrR, |
1392 | 364M | ptrG, |
1393 | 364M | ptrB); |
1394 | | |
1395 | 364M | ptrR += rgbPixelBytes; |
1396 | 364M | ptrG += rgbPixelBytes; |
1397 | 364M | ptrB += rgbPixelBytes; |
1398 | 364M | } |
1399 | 390k | } |
1400 | 819 | avifFreeYUVToRGBLookUpTables(&unormFloatTableY, NULL); |
1401 | 819 | return AVIF_RESULT_OK; |
1402 | 819 | } |
1403 | | |
1404 | | // This constant comes from libyuv. For details, see here: |
1405 | | // https://chromium.googlesource.com/libyuv/libyuv/+/2f87e9a7/source/row_common.cc#3537 |
1406 | 0 | #define F16_MULTIPLIER 1.9259299444e-34f |
1407 | | |
1408 | | typedef union avifF16 |
1409 | | { |
1410 | | float f; |
1411 | | uint32_t u32; |
1412 | | } avifF16; |
1413 | | |
1414 | | static avifResult avifRGBImageToF16(avifRGBImage * rgb) |
1415 | 0 | { |
1416 | 0 | avifResult libyuvResult = AVIF_RESULT_NOT_IMPLEMENTED; |
1417 | 0 | if (!rgb->avoidLibYUV) { |
1418 | 0 | libyuvResult = avifRGBImageToF16LibYUV(rgb); |
1419 | 0 | } |
1420 | 0 | if (libyuvResult != AVIF_RESULT_NOT_IMPLEMENTED) { |
1421 | 0 | return libyuvResult; |
1422 | 0 | } |
1423 | 0 | const uint32_t channelCount = avifRGBFormatChannelCount(rgb->format); |
1424 | 0 | const float scale = 1.0f / ((1 << rgb->depth) - 1); |
1425 | 0 | const float multiplier = F16_MULTIPLIER * scale; |
1426 | 0 | uint16_t * pixelRowBase = (uint16_t *)rgb->pixels; |
1427 | 0 | const uint32_t stride = rgb->rowBytes >> 1; |
1428 | 0 | for (uint32_t j = 0; j < rgb->height; ++j) { |
1429 | 0 | uint16_t * pixel = pixelRowBase; |
1430 | 0 | for (uint32_t i = 0; i < rgb->width * channelCount; ++i, ++pixel) { |
1431 | 0 | avifF16 f16; |
1432 | 0 | f16.f = *pixel * multiplier; |
1433 | 0 | *pixel = (uint16_t)(f16.u32 >> 13); |
1434 | 0 | } |
1435 | 0 | pixelRowBase += stride; |
1436 | 0 | } |
1437 | 0 | return AVIF_RESULT_OK; |
1438 | 0 | } |
1439 | | |
1440 | | static avifResult avifImageYUVToRGBImpl(const avifImage * image, avifRGBImage * rgb, avifReformatState * state, avifAlphaMultiplyMode alphaMultiplyMode) |
1441 | 10.8k | { |
1442 | 10.8k | avifBool convertedWithLibYUV = AVIF_FALSE; |
1443 | | // Reformat alpha, if user asks for it, or (un)multiply processing needs it. |
1444 | 10.8k | avifBool reformatAlpha = avifRGBFormatHasAlpha(rgb->format) && |
1445 | 10.8k | (!rgb->ignoreAlpha || (alphaMultiplyMode != AVIF_ALPHA_MULTIPLY_MODE_NO_OP)); |
1446 | | // This value is used only when reformatAlpha is true. |
1447 | 10.8k | avifBool alphaReformattedWithLibYUV = AVIF_FALSE; |
1448 | 10.8k | if (!rgb->avoidLibYUV && ((alphaMultiplyMode == AVIF_ALPHA_MULTIPLY_MODE_NO_OP) || avifRGBFormatHasAlpha(rgb->format))) { |
1449 | 10.8k | avifResult libyuvResult = avifImageYUVToRGBLibYUV(image, rgb, reformatAlpha, &alphaReformattedWithLibYUV); |
1450 | 10.8k | if (libyuvResult == AVIF_RESULT_OK) { |
1451 | 0 | convertedWithLibYUV = AVIF_TRUE; |
1452 | 10.8k | } else { |
1453 | 10.8k | if (libyuvResult != AVIF_RESULT_NOT_IMPLEMENTED) { |
1454 | 0 | return libyuvResult; |
1455 | 0 | } |
1456 | 10.8k | } |
1457 | 10.8k | } |
1458 | | |
1459 | 10.8k | if (reformatAlpha && !alphaReformattedWithLibYUV) { |
1460 | 10.8k | avifAlphaParams params; |
1461 | | |
1462 | 10.8k | params.width = rgb->width; |
1463 | 10.8k | params.height = rgb->height; |
1464 | 10.8k | params.dstDepth = rgb->depth; |
1465 | 10.8k | params.dstPlane = rgb->pixels; |
1466 | 10.8k | params.dstRowBytes = rgb->rowBytes; |
1467 | 10.8k | params.dstOffsetBytes = state->rgb.offsetBytesA; |
1468 | 10.8k | params.dstPixelBytes = state->rgb.pixelBytes; |
1469 | | |
1470 | 10.8k | if (image->alphaPlane && image->alphaRowBytes) { |
1471 | 188 | params.srcDepth = image->depth; |
1472 | 188 | params.srcPlane = image->alphaPlane; |
1473 | 188 | params.srcRowBytes = image->alphaRowBytes; |
1474 | 188 | params.srcOffsetBytes = 0; |
1475 | 188 | params.srcPixelBytes = state->yuv.channelBytes; |
1476 | | |
1477 | 188 | avifReformatAlpha(¶ms); |
1478 | 10.6k | } else { |
1479 | 10.6k | avifFillAlpha(¶ms); |
1480 | 10.6k | } |
1481 | 10.8k | } |
1482 | | |
1483 | 10.8k | if (!convertedWithLibYUV) { |
1484 | | // libyuv is either unavailable or unable to perform the specific conversion required here. |
1485 | | // Look over the available built-in "fast" routines for YUV->RGB conversion and see if one |
1486 | | // fits the current combination, or as a last resort, call avifImageYUVAnyToRGBAnySlow(), |
1487 | | // which handles every possibly YUV->RGB combination, but very slowly (in comparison). |
1488 | | |
1489 | 10.8k | avifResult convertResult = AVIF_RESULT_NOT_IMPLEMENTED; |
1490 | | |
1491 | 10.8k | const avifBool hasColor = |
1492 | 10.8k | (image->yuvRowBytes[AVIF_CHAN_U] && image->yuvRowBytes[AVIF_CHAN_V] && (image->yuvFormat != AVIF_PIXEL_FORMAT_YUV400)); |
1493 | | |
1494 | 10.8k | if (!avifRGBFormatIsGray(rgb->format) && |
1495 | 10.8k | (!hasColor || (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV444) || |
1496 | 10.8k | ((rgb->chromaUpsampling == AVIF_CHROMA_UPSAMPLING_FASTEST) || (rgb->chromaUpsampling == AVIF_CHROMA_UPSAMPLING_NEAREST))) && |
1497 | 10.8k | (alphaMultiplyMode == AVIF_ALPHA_MULTIPLY_MODE_NO_OP || avifRGBFormatHasAlpha(rgb->format))) { |
1498 | | // Explanations on the above conditional: |
1499 | | // * None of these fast paths currently support bilinear upsampling, so avoid all of them |
1500 | | // unless the YUV data isn't subsampled or they explicitly requested AVIF_CHROMA_UPSAMPLING_NEAREST. |
1501 | | // * None of these fast paths currently handle alpha (un)multiply, so avoid all of them |
1502 | | // if we can't do alpha (un)multiply as a separated post step (destination format doesn't have alpha). |
1503 | | |
1504 | 9.67k | if (state->yuv.mode == AVIF_REFORMAT_MODE_IDENTITY) { |
1505 | 4.92k | if ((image->depth == 8) && (rgb->depth == 8) && (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV444) && |
1506 | 4.92k | (image->yuvRange == AVIF_RANGE_FULL)) { |
1507 | 4.58k | convertResult = avifImageIdentity8ToRGB8ColorFullRange(image, rgb, state); |
1508 | 4.58k | } |
1509 | | |
1510 | | // TODO: Add more fast paths for identity |
1511 | 4.92k | } else if (state->yuv.mode == AVIF_REFORMAT_MODE_YUV_COEFFICIENTS) { |
1512 | 4.14k | if (image->depth > 8) { |
1513 | | // yuv:u16 |
1514 | | |
1515 | 2.07k | if (rgb->depth > 8) { |
1516 | | // yuv:u16, rgb:u16 |
1517 | | |
1518 | 2.07k | if (hasColor) { |
1519 | 1.41k | convertResult = avifImageYUV16ToRGB16Color(image, rgb, state); |
1520 | 1.41k | } else { |
1521 | 666 | convertResult = avifImageYUV16ToRGB16Mono(image, rgb, state); |
1522 | 666 | } |
1523 | 2.07k | } else { |
1524 | | // yuv:u16, rgb:u8 |
1525 | |
|
1526 | 0 | if (hasColor) { |
1527 | 0 | convertResult = avifImageYUV16ToRGB8Color(image, rgb, state); |
1528 | 0 | } else { |
1529 | 0 | convertResult = avifImageYUV16ToRGB8Mono(image, rgb, state); |
1530 | 0 | } |
1531 | 0 | } |
1532 | 2.07k | } else { |
1533 | | // yuv:u8 |
1534 | | |
1535 | 2.06k | if (rgb->depth > 8) { |
1536 | | // yuv:u8, rgb:u16 |
1537 | |
|
1538 | 0 | if (hasColor) { |
1539 | 0 | convertResult = avifImageYUV8ToRGB16Color(image, rgb, state); |
1540 | 0 | } else { |
1541 | 0 | convertResult = avifImageYUV8ToRGB16Mono(image, rgb, state); |
1542 | 0 | } |
1543 | 2.06k | } else { |
1544 | | // yuv:u8, rgb:u8 |
1545 | | |
1546 | 2.06k | if (hasColor) { |
1547 | 1.25k | convertResult = avifImageYUV8ToRGB8Color(image, rgb, state); |
1548 | 1.25k | } else { |
1549 | 819 | convertResult = avifImageYUV8ToRGB8Mono(image, rgb, state); |
1550 | 819 | } |
1551 | 2.06k | } |
1552 | 2.06k | } |
1553 | 4.14k | } |
1554 | 9.67k | } |
1555 | | |
1556 | 10.8k | if (convertResult == AVIF_RESULT_NOT_IMPLEMENTED) { |
1557 | | // If we get here, there is no fast path for this combination. Time to be slow! |
1558 | 2.07k | convertResult = avifImageYUVAnyToRGBAnySlow(image, rgb, state, alphaMultiplyMode); |
1559 | | |
1560 | | // The slow path also handles alpha (un)multiply, so forget the operation here. |
1561 | 2.07k | alphaMultiplyMode = AVIF_ALPHA_MULTIPLY_MODE_NO_OP; |
1562 | 2.07k | } |
1563 | | |
1564 | 10.8k | if (convertResult != AVIF_RESULT_OK) { |
1565 | 0 | return convertResult; |
1566 | 0 | } |
1567 | 10.8k | } |
1568 | | |
1569 | | // Process alpha premultiplication, if necessary |
1570 | 10.8k | if (alphaMultiplyMode == AVIF_ALPHA_MULTIPLY_MODE_MULTIPLY) { |
1571 | 0 | avifResult result = avifRGBImagePremultiplyAlpha(rgb); |
1572 | 0 | if (result != AVIF_RESULT_OK) { |
1573 | 0 | return result; |
1574 | 0 | } |
1575 | 10.8k | } else if (alphaMultiplyMode == AVIF_ALPHA_MULTIPLY_MODE_UNMULTIPLY) { |
1576 | 0 | avifResult result = avifRGBImageUnpremultiplyAlpha(rgb); |
1577 | 0 | if (result != AVIF_RESULT_OK) { |
1578 | 0 | return result; |
1579 | 0 | } |
1580 | 0 | } |
1581 | | |
1582 | | // Convert pixels to half floats (F16), if necessary. |
1583 | 10.8k | if (rgb->isFloat) { |
1584 | 0 | return avifRGBImageToF16(rgb); |
1585 | 0 | } |
1586 | | |
1587 | 10.8k | return AVIF_RESULT_OK; |
1588 | 10.8k | } |
1589 | | |
1590 | | typedef struct |
1591 | | { |
1592 | | #if defined(_WIN32) |
1593 | | HANDLE thread; |
1594 | | #else |
1595 | | pthread_t thread; |
1596 | | #endif |
1597 | | avifImage image; |
1598 | | avifRGBImage rgb; |
1599 | | avifReformatState * state; |
1600 | | avifAlphaMultiplyMode alphaMultiplyMode; |
1601 | | avifResult result; |
1602 | | avifBool threadCreated; |
1603 | | } YUVToRGBThreadData; |
1604 | | |
1605 | | #if defined(_WIN32) |
1606 | | static unsigned int __stdcall avifImageYUVToRGBThreadWorker(void * arg) |
1607 | | #else |
1608 | | static void * avifImageYUVToRGBThreadWorker(void * arg) |
1609 | | #endif |
1610 | 10.1k | { |
1611 | 10.1k | YUVToRGBThreadData * data = (YUVToRGBThreadData *)arg; |
1612 | 10.1k | data->result = avifImageYUVToRGBImpl(&data->image, &data->rgb, data->state, data->alphaMultiplyMode); |
1613 | | #if defined(_WIN32) |
1614 | | return 0; |
1615 | | #else |
1616 | 10.1k | return NULL; |
1617 | 10.1k | #endif |
1618 | 10.1k | } |
1619 | | |
1620 | | static avifBool avifCreateYUVToRGBThread(YUVToRGBThreadData * tdata) |
1621 | 8.88k | { |
1622 | | #if defined(_WIN32) |
1623 | | tdata->thread = (HANDLE)_beginthreadex(/*security=*/NULL, |
1624 | | /*stack_size=*/0, |
1625 | | &avifImageYUVToRGBThreadWorker, |
1626 | | tdata, |
1627 | | /*initflag=*/0, |
1628 | | /*thrdaddr=*/NULL); |
1629 | | return tdata->thread != NULL; |
1630 | | #else |
1631 | | // TODO: Set the thread name for ease of debugging. |
1632 | 8.88k | return pthread_create(&tdata->thread, NULL, &avifImageYUVToRGBThreadWorker, tdata) == 0; |
1633 | 8.88k | #endif |
1634 | 8.88k | } |
1635 | | |
1636 | | static avifBool avifJoinYUVToRGBThread(YUVToRGBThreadData * tdata) |
1637 | 8.88k | { |
1638 | | #if defined(_WIN32) |
1639 | | return WaitForSingleObject(tdata->thread, INFINITE) == WAIT_OBJECT_0 && CloseHandle(tdata->thread) != 0; |
1640 | | #else |
1641 | 8.88k | return pthread_join(tdata->thread, NULL) == 0; |
1642 | 8.88k | #endif |
1643 | 8.88k | } |
1644 | | |
1645 | | avifResult avifImageYUVToRGB(const avifImage * image, avifRGBImage * rgb) |
1646 | 2.14k | { |
1647 | | // It is okay for rgb->maxThreads to be equal to zero in order to allow clients to zero initialize the avifRGBImage struct |
1648 | | // with memset. |
1649 | 2.14k | if (!image->yuvPlanes[AVIF_CHAN_Y] || rgb->maxThreads < 0) { |
1650 | 0 | return AVIF_RESULT_REFORMAT_FAILED; |
1651 | 0 | } |
1652 | | |
1653 | 2.14k | avifReformatState state; |
1654 | 2.14k | if (!avifPrepareReformatState(image, rgb, &state)) { |
1655 | 219 | return AVIF_RESULT_REFORMAT_FAILED; |
1656 | 219 | } |
1657 | | |
1658 | 1.92k | avifAlphaMultiplyMode alphaMultiplyMode = AVIF_ALPHA_MULTIPLY_MODE_NO_OP; |
1659 | 1.92k | if (image->alphaPlane) { |
1660 | 34 | if (!avifRGBFormatHasAlpha(rgb->format) || rgb->ignoreAlpha) { |
1661 | | // if we are converting some image with alpha into a format without alpha, we should do 'premultiply alpha' before |
1662 | | // discarding alpha plane. This has the same effect of rendering this image on a black background, which makes sense. |
1663 | 0 | if (!image->alphaPremultiplied) { |
1664 | 0 | alphaMultiplyMode = AVIF_ALPHA_MULTIPLY_MODE_MULTIPLY; |
1665 | 0 | } |
1666 | 34 | } else { |
1667 | 34 | if (!image->alphaPremultiplied && rgb->alphaPremultiplied) { |
1668 | 0 | alphaMultiplyMode = AVIF_ALPHA_MULTIPLY_MODE_MULTIPLY; |
1669 | 34 | } else if (image->alphaPremultiplied && !rgb->alphaPremultiplied) { |
1670 | 0 | alphaMultiplyMode = AVIF_ALPHA_MULTIPLY_MODE_UNMULTIPLY; |
1671 | 0 | } |
1672 | 34 | } |
1673 | 34 | } |
1674 | | |
1675 | | // In practice, we rarely need more than 8 threads for YUV to RGB conversion. |
1676 | 1.92k | uint32_t jobs = AVIF_CLAMP(rgb->maxThreads, 1, 8); |
1677 | | |
1678 | | // When yuv format is 420 and chromaUpsampling could be BILINEAR, there is a dependency across the horizontal borders of each |
1679 | | // job. So we disallow multithreading in that case. |
1680 | 1.92k | if (image->yuvFormat == AVIF_PIXEL_FORMAT_YUV420 && (rgb->chromaUpsampling == AVIF_CHROMA_UPSAMPLING_AUTOMATIC || |
1681 | 246 | rgb->chromaUpsampling == AVIF_CHROMA_UPSAMPLING_BEST_QUALITY || |
1682 | 246 | rgb->chromaUpsampling == AVIF_CHROMA_UPSAMPLING_BILINEAR)) { |
1683 | 246 | jobs = 1; |
1684 | 246 | } |
1685 | | |
1686 | | // Each thread worker needs at least 2 Y rows (to account for potential U/V subsampling). |
1687 | 1.92k | if (jobs == 1 || (image->height / 2) < jobs) { |
1688 | 653 | return avifImageYUVToRGBImpl(image, rgb, &state, alphaMultiplyMode); |
1689 | 653 | } |
1690 | | |
1691 | 1.27k | const size_t byteCount = sizeof(YUVToRGBThreadData) * jobs; |
1692 | 1.27k | YUVToRGBThreadData * threadData = (YUVToRGBThreadData *)avifAlloc(byteCount); |
1693 | 1.27k | if (!threadData) { |
1694 | 0 | return AVIF_RESULT_OUT_OF_MEMORY; |
1695 | 0 | } |
1696 | 1.27k | memset(threadData, 0, byteCount); |
1697 | 1.27k | uint32_t rowsPerJob = image->height / jobs; |
1698 | 1.27k | if (rowsPerJob % 2) { |
1699 | 134 | ++rowsPerJob; |
1700 | 134 | jobs = (image->height + rowsPerJob - 1) / rowsPerJob; // ceil |
1701 | 134 | } |
1702 | 1.27k | const uint32_t rowsForLastJob = image->height - rowsPerJob * (jobs - 1); |
1703 | 1.27k | uint32_t startRow = 0; |
1704 | 1.27k | uint32_t i; |
1705 | 11.4k | for (i = 0; i < jobs; ++i, startRow += rowsPerJob) { |
1706 | 10.1k | YUVToRGBThreadData * tdata = &threadData[i]; |
1707 | 10.1k | const avifCropRect rect = { .x = 0, .y = startRow, .width = image->width, .height = (i == jobs - 1) ? rowsForLastJob : rowsPerJob }; |
1708 | 10.1k | if (avifImageSetViewRect(&tdata->image, image, &rect) != AVIF_RESULT_OK) { |
1709 | 0 | tdata->result = AVIF_RESULT_REFORMAT_FAILED; |
1710 | 0 | break; |
1711 | 0 | } |
1712 | | |
1713 | 10.1k | tdata->rgb = *rgb; |
1714 | 10.1k | tdata->rgb.pixels += startRow * (size_t)rgb->rowBytes; |
1715 | 10.1k | tdata->rgb.height = tdata->image.height; |
1716 | | |
1717 | 10.1k | tdata->state = &state; |
1718 | 10.1k | tdata->alphaMultiplyMode = alphaMultiplyMode; |
1719 | | |
1720 | 10.1k | if (i > 0) { |
1721 | 8.88k | tdata->threadCreated = avifCreateYUVToRGBThread(tdata); |
1722 | 8.88k | if (!tdata->threadCreated) { |
1723 | 0 | tdata->result = AVIF_RESULT_REFORMAT_FAILED; |
1724 | 0 | break; |
1725 | 0 | } |
1726 | 8.88k | } |
1727 | 10.1k | } |
1728 | | // If above loop ran successfully, run the first job in the current thread. |
1729 | 1.27k | if (i == jobs) { |
1730 | 1.27k | avifImageYUVToRGBThreadWorker(&threadData[0]); |
1731 | 1.27k | } |
1732 | 1.27k | avifResult result = AVIF_RESULT_OK; |
1733 | 11.4k | for (i = 0; i < jobs; ++i) { |
1734 | 10.1k | YUVToRGBThreadData * tdata = &threadData[i]; |
1735 | 10.1k | if (tdata->threadCreated && !avifJoinYUVToRGBThread(tdata)) { |
1736 | 0 | result = AVIF_RESULT_REFORMAT_FAILED; |
1737 | 0 | } |
1738 | 10.1k | if (tdata->result != AVIF_RESULT_OK) { |
1739 | 0 | result = tdata->result; |
1740 | 0 | } |
1741 | 10.1k | } |
1742 | 1.27k | avifFree(threadData); |
1743 | 1.27k | return result; |
1744 | 1.27k | } |
1745 | | |
1746 | | // Limited -> Full |
1747 | | // Plan: subtract limited offset, then multiply by ratio of FULLSIZE/LIMITEDSIZE (rounding), then clamp. |
1748 | | // RATIO = (FULLY - 0) / (MAXLIMITEDY - MINLIMITEDY) |
1749 | | // ----------------------------------------- |
1750 | | // ( ( (v - MINLIMITEDY) | subtract limited offset |
1751 | | // * FULLY | multiply numerator of ratio |
1752 | | // ) + ((MAXLIMITEDY - MINLIMITEDY) / 2) | add 0.5 (half of denominator) to round |
1753 | | // ) / (MAXLIMITEDY - MINLIMITEDY) | divide by denominator of ratio |
1754 | | // AVIF_CLAMP(v, 0, FULLY) | clamp to full range |
1755 | | // ----------------------------------------- |
1756 | | #define LIMITED_TO_FULL(MINLIMITEDY, MAXLIMITEDY, FULLY) \ |
1757 | 31.4k | v = (((v - MINLIMITEDY) * FULLY) + ((MAXLIMITEDY - MINLIMITEDY) / 2)) / (MAXLIMITEDY - MINLIMITEDY); \ |
1758 | 31.4k | v = AVIF_CLAMP(v, 0, FULLY) |
1759 | | |
1760 | | // Full -> Limited |
1761 | | // Plan: multiply by ratio of LIMITEDSIZE/FULLSIZE (rounding), then add limited offset, then clamp. |
1762 | | // RATIO = (MAXLIMITEDY - MINLIMITEDY) / (FULLY - 0) |
1763 | | // ----------------------------------------- |
1764 | | // ( ( (v * (MAXLIMITEDY - MINLIMITEDY)) | multiply numerator of ratio |
1765 | | // + (FULLY / 2) | add 0.5 (half of denominator) to round |
1766 | | // ) / FULLY | divide by denominator of ratio |
1767 | | // ) + MINLIMITEDY | add limited offset |
1768 | | // AVIF_CLAMP(v, MINLIMITEDY, MAXLIMITEDY) | clamp to limited range |
1769 | | // ----------------------------------------- |
1770 | | #define FULL_TO_LIMITED(MINLIMITEDY, MAXLIMITEDY, FULLY) \ |
1771 | 0 | v = (((v * (MAXLIMITEDY - MINLIMITEDY)) + (FULLY / 2)) / FULLY) + MINLIMITEDY; \ |
1772 | 0 | v = AVIF_CLAMP(v, MINLIMITEDY, MAXLIMITEDY) |
1773 | | |
1774 | | int avifLimitedToFullY(uint32_t depth, int v) |
1775 | 31.4k | { |
1776 | 31.4k | switch (depth) { |
1777 | 22.5k | case 8: |
1778 | 22.5k | LIMITED_TO_FULL(16, 235, 255); |
1779 | 22.5k | break; |
1780 | 8.86k | case 10: |
1781 | 8.86k | LIMITED_TO_FULL(64, 940, 1023); |
1782 | 8.86k | break; |
1783 | 0 | case 12: |
1784 | 0 | LIMITED_TO_FULL(256, 3760, 4095); |
1785 | 0 | break; |
1786 | 31.4k | } |
1787 | 31.4k | return v; |
1788 | 31.4k | } |
1789 | | |
1790 | | int avifLimitedToFullUV(uint32_t depth, int v) |
1791 | 0 | { |
1792 | 0 | switch (depth) { |
1793 | 0 | case 8: |
1794 | 0 | LIMITED_TO_FULL(16, 240, 255); |
1795 | 0 | break; |
1796 | 0 | case 10: |
1797 | 0 | LIMITED_TO_FULL(64, 960, 1023); |
1798 | 0 | break; |
1799 | 0 | case 12: |
1800 | 0 | LIMITED_TO_FULL(256, 3840, 4095); |
1801 | 0 | break; |
1802 | 0 | } |
1803 | 0 | return v; |
1804 | 0 | } |
1805 | | |
1806 | | int avifFullToLimitedY(uint32_t depth, int v) |
1807 | 0 | { |
1808 | 0 | switch (depth) { |
1809 | 0 | case 8: |
1810 | 0 | FULL_TO_LIMITED(16, 235, 255); |
1811 | 0 | break; |
1812 | 0 | case 10: |
1813 | 0 | FULL_TO_LIMITED(64, 940, 1023); |
1814 | 0 | break; |
1815 | 0 | case 12: |
1816 | 0 | FULL_TO_LIMITED(256, 3760, 4095); |
1817 | 0 | break; |
1818 | 0 | } |
1819 | 0 | return v; |
1820 | 0 | } |
1821 | | |
1822 | | int avifFullToLimitedUV(uint32_t depth, int v) |
1823 | 0 | { |
1824 | 0 | switch (depth) { |
1825 | 0 | case 8: |
1826 | 0 | FULL_TO_LIMITED(16, 240, 255); |
1827 | 0 | break; |
1828 | 0 | case 10: |
1829 | 0 | FULL_TO_LIMITED(64, 960, 1023); |
1830 | 0 | break; |
1831 | 0 | case 12: |
1832 | 0 | FULL_TO_LIMITED(256, 3840, 4095); |
1833 | 0 | break; |
1834 | 0 | } |
1835 | 0 | return v; |
1836 | 0 | } |
1837 | | |
1838 | | static inline uint16_t avifFloatToF16(float v) |
1839 | 0 | { |
1840 | 0 | avifF16 f16; |
1841 | 0 | f16.f = v * F16_MULTIPLIER; |
1842 | 0 | return (uint16_t)(f16.u32 >> 13); |
1843 | 0 | } |
1844 | | |
1845 | | static inline float avifF16ToFloat(uint16_t v) |
1846 | 0 | { |
1847 | 0 | avifF16 f16; |
1848 | 0 | f16.u32 = v << 13; |
1849 | 0 | return f16.f / F16_MULTIPLIER; |
1850 | 0 | } |
1851 | | |
1852 | | void avifGetRGBAPixel(const avifRGBImage * src, uint32_t x, uint32_t y, const avifRGBColorSpaceInfo * info, float rgbaPixel[4]) |
1853 | 0 | { |
1854 | 0 | assert(src != NULL); |
1855 | 0 | assert(!src->isFloat || src->depth == 16); |
1856 | 0 | assert(src->format != AVIF_RGB_FORMAT_RGB_565 || src->depth == 8); |
1857 | | |
1858 | 0 | const uint8_t * const srcPixel = &src->pixels[y * src->rowBytes + x * info->pixelBytes]; |
1859 | 0 | if (info->channelBytes > 1) { |
1860 | 0 | uint16_t r = *((const uint16_t *)(&srcPixel[info->offsetBytesR])); |
1861 | 0 | uint16_t g = *((const uint16_t *)(&srcPixel[info->offsetBytesG])); |
1862 | 0 | uint16_t b = *((const uint16_t *)(&srcPixel[info->offsetBytesB])); |
1863 | 0 | uint16_t a = avifRGBFormatHasAlpha(src->format) ? *((const uint16_t *)(&srcPixel[info->offsetBytesA])) : (uint16_t)info->maxChannel; |
1864 | 0 | if (src->isFloat) { |
1865 | 0 | rgbaPixel[0] = avifF16ToFloat(r); |
1866 | 0 | rgbaPixel[1] = avifF16ToFloat(g); |
1867 | 0 | rgbaPixel[2] = avifF16ToFloat(b); |
1868 | 0 | rgbaPixel[3] = avifRGBFormatHasAlpha(src->format) ? avifF16ToFloat(a) : 1.0f; |
1869 | 0 | } else { |
1870 | 0 | rgbaPixel[0] = r / info->maxChannelF; |
1871 | 0 | rgbaPixel[1] = g / info->maxChannelF; |
1872 | 0 | rgbaPixel[2] = b / info->maxChannelF; |
1873 | 0 | rgbaPixel[3] = a / info->maxChannelF; |
1874 | 0 | } |
1875 | 0 | } else { |
1876 | 0 | if (src->format == AVIF_RGB_FORMAT_RGB_565) { |
1877 | 0 | uint8_t r, g, b; |
1878 | 0 | avifGetRGB565(&srcPixel[info->offsetBytesR], &r, &g, &b); |
1879 | 0 | rgbaPixel[0] = r / info->maxChannelF; |
1880 | 0 | rgbaPixel[1] = g / info->maxChannelF; |
1881 | 0 | rgbaPixel[2] = b / info->maxChannelF; |
1882 | 0 | rgbaPixel[3] = 1.0f; |
1883 | 0 | } else { |
1884 | 0 | rgbaPixel[0] = srcPixel[info->offsetBytesR] / info->maxChannelF; |
1885 | 0 | rgbaPixel[1] = srcPixel[info->offsetBytesG] / info->maxChannelF; |
1886 | 0 | rgbaPixel[2] = srcPixel[info->offsetBytesB] / info->maxChannelF; |
1887 | 0 | rgbaPixel[3] = avifRGBFormatHasAlpha(src->format) ? (srcPixel[info->offsetBytesA] / info->maxChannelF) : 1.0f; |
1888 | 0 | } |
1889 | 0 | } |
1890 | 0 | } |
1891 | | |
1892 | | void avifSetRGBAPixel(const avifRGBImage * dst, uint32_t x, uint32_t y, const avifRGBColorSpaceInfo * info, const float rgbaPixel[4]) |
1893 | 0 | { |
1894 | 0 | assert(dst != NULL); |
1895 | 0 | assert(!dst->isFloat || dst->depth == 16); |
1896 | 0 | assert(dst->format != AVIF_RGB_FORMAT_RGB_565 || dst->depth == 8); |
1897 | 0 | assert(rgbaPixel[0] >= 0.0f && rgbaPixel[0] <= 1.0f); |
1898 | 0 | assert(rgbaPixel[1] >= 0.0f && rgbaPixel[1] <= 1.0f); |
1899 | 0 | assert(rgbaPixel[2] >= 0.0f && rgbaPixel[2] <= 1.0f); |
1900 | | |
1901 | 0 | uint8_t * const dstPixel = &dst->pixels[y * dst->rowBytes + x * info->pixelBytes]; |
1902 | |
|
1903 | 0 | uint8_t * const ptrR = &dstPixel[info->offsetBytesR]; |
1904 | 0 | uint8_t * const ptrG = &dstPixel[info->offsetBytesG]; |
1905 | 0 | uint8_t * const ptrB = &dstPixel[info->offsetBytesB]; |
1906 | 0 | uint8_t * const ptrA = avifRGBFormatHasAlpha(dst->format) ? &dstPixel[info->offsetBytesA] : NULL; |
1907 | 0 | if (dst->depth > 8) { |
1908 | 0 | if (dst->isFloat) { |
1909 | 0 | *((uint16_t *)ptrR) = avifFloatToF16(rgbaPixel[0]); |
1910 | 0 | *((uint16_t *)ptrG) = avifFloatToF16(rgbaPixel[1]); |
1911 | 0 | *((uint16_t *)ptrB) = avifFloatToF16(rgbaPixel[2]); |
1912 | 0 | if (ptrA) { |
1913 | 0 | *((uint16_t *)ptrA) = avifFloatToF16(rgbaPixel[3]); |
1914 | 0 | } |
1915 | 0 | } else { |
1916 | 0 | *((uint16_t *)ptrR) = (uint16_t)(0.5f + (rgbaPixel[0] * info->maxChannelF)); |
1917 | 0 | *((uint16_t *)ptrG) = (uint16_t)(0.5f + (rgbaPixel[1] * info->maxChannelF)); |
1918 | 0 | *((uint16_t *)ptrB) = (uint16_t)(0.5f + (rgbaPixel[2] * info->maxChannelF)); |
1919 | 0 | if (ptrA) { |
1920 | 0 | *((uint16_t *)ptrA) = (uint16_t)(0.5f + (rgbaPixel[3] * info->maxChannelF)); |
1921 | 0 | } |
1922 | 0 | } |
1923 | 0 | } else { |
1924 | 0 | avifStoreRGB8Pixel(dst->format, |
1925 | 0 | (uint8_t)(0.5f + (rgbaPixel[0] * info->maxChannelF)), |
1926 | 0 | (uint8_t)(0.5f + (rgbaPixel[1] * info->maxChannelF)), |
1927 | 0 | (uint8_t)(0.5f + (rgbaPixel[2] * info->maxChannelF)), |
1928 | 0 | ptrR, |
1929 | 0 | ptrG, |
1930 | 0 | ptrB); |
1931 | 0 | if (ptrA) { |
1932 | 0 | *ptrA = (uint8_t)(0.5f + (rgbaPixel[3] * info->maxChannelF)); |
1933 | 0 | } |
1934 | 0 | } |
1935 | 0 | } |