Coverage Report

Created: 2025-07-16 07:53

/src/libjxl/lib/jxl/modular/encoding/encoding.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
#include "lib/jxl/modular/encoding/encoding.h"
7
8
#include <jxl/memory_manager.h>
9
10
#include <algorithm>
11
#include <array>
12
#include <cstddef>
13
#include <cstdint>
14
#include <cstdlib>
15
#include <queue>
16
#include <utility>
17
#include <vector>
18
19
#include "lib/jxl/base/printf_macros.h"
20
#include "lib/jxl/base/scope_guard.h"
21
#include "lib/jxl/base/status.h"
22
#include "lib/jxl/dec_ans.h"
23
#include "lib/jxl/dec_bit_reader.h"
24
#include "lib/jxl/frame_dimensions.h"
25
#include "lib/jxl/image_ops.h"
26
#include "lib/jxl/modular/encoding/context_predict.h"
27
#include "lib/jxl/modular/options.h"
28
#include "lib/jxl/pack_signed.h"
29
30
namespace jxl {
31
32
// Removes all nodes that use a static property (i.e. channel or group ID) from
33
// the tree and collapses each node on even levels with its two children to
34
// produce a flatter tree. Also computes whether the resulting tree requires
35
// using the weighted predictor.
36
FlatTree FilterTree(const Tree &global_tree,
37
                    std::array<pixel_type, kNumStaticProperties> &static_props,
38
                    size_t *num_props, bool *use_wp, bool *wp_only,
39
192k
                    bool *gradient_only) {
40
192k
  *num_props = 0;
41
192k
  bool has_wp = false;
42
192k
  bool has_non_wp = false;
43
192k
  *gradient_only = true;
44
216k
  const auto mark_property = [&](int32_t p) {
45
216k
    if (p == kWPProp) {
46
10.0k
      has_wp = true;
47
206k
    } else if (p >= kNumStaticProperties) {
48
131k
      has_non_wp = true;
49
131k
    }
50
216k
    if (p >= kNumStaticProperties && p != kGradientProp) {
51
129k
      *gradient_only = false;
52
129k
    }
53
216k
  };
54
192k
  FlatTree output;
55
192k
  std::queue<size_t> nodes;
56
192k
  nodes.push(0);
57
  // Produces a trimmed and flattened tree by doing a BFS visit of the original
58
  // tree, ignoring branches that are known to be false and proceeding two
59
  // levels at a time to collapse nodes in a flatter tree; if an inner parent
60
  // node has a leaf as a child, the leaf is duplicated and an implicit fake
61
  // node is added. This allows to reduce the number of branches when traversing
62
  // the resulting flat tree.
63
669k
  while (!nodes.empty()) {
64
477k
    size_t cur = nodes.front();
65
477k
    nodes.pop();
66
    // Skip nodes that we can decide now, by jumping directly to their children.
67
492k
    while (global_tree[cur].property < kNumStaticProperties &&
68
492k
           global_tree[cur].property != -1) {
69
15.2k
      if (static_props[global_tree[cur].property] > global_tree[cur].splitval) {
70
7.72k
        cur = global_tree[cur].lchild;
71
7.72k
      } else {
72
7.56k
        cur = global_tree[cur].rchild;
73
7.56k
      }
74
15.2k
    }
75
477k
    FlatDecisionNode flat;
76
477k
    if (global_tree[cur].property == -1) {
77
397k
      flat.property0 = -1;
78
397k
      flat.childID = global_tree[cur].lchild;
79
397k
      flat.predictor = global_tree[cur].predictor;
80
397k
      flat.predictor_offset = global_tree[cur].predictor_offset;
81
397k
      flat.multiplier = global_tree[cur].multiplier;
82
397k
      *gradient_only &= flat.predictor == Predictor::Gradient;
83
397k
      has_wp |= flat.predictor == Predictor::Weighted;
84
397k
      has_non_wp |= flat.predictor != Predictor::Weighted;
85
397k
      output.push_back(flat);
86
397k
      continue;
87
397k
    }
88
79.4k
    flat.childID = output.size() + nodes.size() + 1;
89
90
79.4k
    flat.property0 = global_tree[cur].property;
91
79.4k
    *num_props = std::max<size_t>(flat.property0 + 1, *num_props);
92
79.4k
    flat.splitval0 = global_tree[cur].splitval;
93
94
222k
    for (size_t i = 0; i < 2; i++) {
95
143k
      size_t cur_child =
96
143k
          i == 0 ? global_tree[cur].lchild : global_tree[cur].rchild;
97
      // Skip nodes that we can decide now.
98
158k
      while (global_tree[cur_child].property < kNumStaticProperties &&
99
158k
             global_tree[cur_child].property != -1) {
100
15.4k
        if (static_props[global_tree[cur_child].property] >
101
15.4k
            global_tree[cur_child].splitval) {
102
9.63k
          cur_child = global_tree[cur_child].lchild;
103
9.63k
        } else {
104
5.82k
          cur_child = global_tree[cur_child].rchild;
105
5.82k
        }
106
15.4k
      }
107
      // We ended up in a leaf, add a placeholder decision and two copies of the
108
      // leaf.
109
143k
      if (global_tree[cur_child].property == -1) {
110
76.7k
        flat.properties[i] = 0;
111
76.7k
        flat.splitvals[i] = 0;
112
76.7k
        nodes.push(cur_child);
113
76.7k
        nodes.push(cur_child);
114
76.7k
      } else {
115
66.2k
        flat.properties[i] = global_tree[cur_child].property;
116
66.2k
        flat.splitvals[i] = global_tree[cur_child].splitval;
117
66.2k
        nodes.push(global_tree[cur_child].lchild);
118
66.2k
        nodes.push(global_tree[cur_child].rchild);
119
66.2k
        *num_props = std::max<size_t>(flat.properties[i] + 1, *num_props);
120
66.2k
      }
121
143k
    }
122
123
144k
    for (int16_t property : flat.properties) mark_property(property);
124
79.4k
    mark_property(flat.property0);
125
79.4k
    output.push_back(flat);
126
79.4k
  }
127
192k
  if (*num_props > kNumNonrefProperties) {
128
0
    *num_props =
129
0
        DivCeil(*num_props - kNumNonrefProperties, kExtraPropsPerChannel) *
130
0
            kExtraPropsPerChannel +
131
0
        kNumNonrefProperties;
132
192k
  } else {
133
192k
    *num_props = kNumNonrefProperties;
134
192k
  }
135
192k
  *use_wp = has_wp;
136
192k
  *wp_only = has_wp && !has_non_wp;
137
138
192k
  return output;
139
192k
}
140
141
namespace detail {
142
template <bool uses_lz77>
143
Status DecodeModularChannelMAANS(BitReader *br, ANSSymbolReader *reader,
144
                                 const std::vector<uint8_t> &context_map,
145
                                 const Tree &global_tree,
146
                                 const weighted::Header &wp_header,
147
                                 pixel_type chan, size_t group_id,
148
                                 TreeLut<uint8_t, false, false> &tree_lut,
149
                                 Image *image, uint32_t &fl_run,
150
192k
                                 uint32_t &fl_v) {
151
192k
  JxlMemoryManager *memory_manager = image->memory_manager();
152
192k
  Channel &channel = image->channel[chan];
153
154
192k
  std::array<pixel_type, kNumStaticProperties> static_props = {
155
192k
      {chan, static_cast<int>(group_id)}};
156
  // TODO(veluca): filter the tree according to static_props.
157
158
  // zero pixel channel? could happen
159
192k
  if (channel.w == 0 || channel.h == 0) return true;
160
161
192k
  bool tree_has_wp_prop_or_pred = false;
162
192k
  bool is_wp_only = false;
163
192k
  bool is_gradient_only = false;
164
192k
  size_t num_props;
165
192k
  FlatTree tree =
166
192k
      FilterTree(global_tree, static_props, &num_props,
167
192k
                 &tree_has_wp_prop_or_pred, &is_wp_only, &is_gradient_only);
168
169
  // From here on, tree lookup returns a *clustered* context ID.
170
  // This avoids an extra memory lookup after tree traversal.
171
494k
  for (auto &node : tree) {
172
494k
    if (node.property0 == -1) {
173
419k
      node.childID = context_map[node.childID];
174
419k
    }
175
494k
  }
176
177
192k
  JXL_DEBUG_V(3, "Decoded MA tree with %" PRIuS " nodes", tree.size());
178
179
  // MAANS decode
180
192k
  const auto make_pixel = [](uint64_t v, pixel_type multiplier,
181
30.4M
                             pixel_type_w offset) -> pixel_type {
182
30.4M
    JXL_DASSERT((v & 0xFFFFFFFF) == v);
183
30.4M
    pixel_type_w val = UnpackSigned(v);
184
    // if it overflows, it overflows, and we have a problem anyway
185
30.4M
    return val * multiplier + offset;
186
30.4M
  };
jxl::detail::DecodeModularChannelMAANS<true>(jxl::BitReader*, jxl::ANSSymbolReader*, std::__1::vector<unsigned char, std::__1::allocator<unsigned char> > const&, std::__1::vector<jxl::PropertyDecisionNode, std::__1::allocator<jxl::PropertyDecisionNode> > const&, jxl::weighted::Header const&, int, unsigned long, jxl::TreeLut<unsigned char, false, false>&, jxl::Image*, unsigned int&, unsigned int&)::{lambda(unsigned long, int, long)#1}::operator()(unsigned long, int, long) const
Line
Count
Source
181
2.56k
                             pixel_type_w offset) -> pixel_type {
182
2.56k
    JXL_DASSERT((v & 0xFFFFFFFF) == v);
183
2.56k
    pixel_type_w val = UnpackSigned(v);
184
    // if it overflows, it overflows, and we have a problem anyway
185
2.56k
    return val * multiplier + offset;
186
2.56k
  };
jxl::detail::DecodeModularChannelMAANS<false>(jxl::BitReader*, jxl::ANSSymbolReader*, std::__1::vector<unsigned char, std::__1::allocator<unsigned char> > const&, std::__1::vector<jxl::PropertyDecisionNode, std::__1::allocator<jxl::PropertyDecisionNode> > const&, jxl::weighted::Header const&, int, unsigned long, jxl::TreeLut<unsigned char, false, false>&, jxl::Image*, unsigned int&, unsigned int&)::{lambda(unsigned long, int, long)#1}::operator()(unsigned long, int, long) const
Line
Count
Source
181
30.4M
                             pixel_type_w offset) -> pixel_type {
182
30.4M
    JXL_DASSERT((v & 0xFFFFFFFF) == v);
183
30.4M
    pixel_type_w val = UnpackSigned(v);
184
    // if it overflows, it overflows, and we have a problem anyway
185
30.4M
    return val * multiplier + offset;
186
30.4M
  };
187
188
192k
  if (tree.size() == 1) {
189
    // special optimized case: no meta-adaptation, so no need
190
    // to compute properties.
191
188k
    Predictor predictor = tree[0].predictor;
192
188k
    int64_t offset = tree[0].predictor_offset;
193
188k
    int32_t multiplier = tree[0].multiplier;
194
188k
    size_t ctx_id = tree[0].childID;
195
188k
    if (predictor == Predictor::Zero) {
196
187k
      uint32_t value;
197
187k
      if (reader->IsSingleValueAndAdvance(ctx_id, &value,
198
187k
                                          channel.w * channel.h)) {
199
        // Special-case: histogram has a single symbol, with no extra bits, and
200
        // we use ANS mode.
201
25.9k
        JXL_DEBUG_V(8, "Fastest track.");
202
25.9k
        pixel_type v = make_pixel(value, multiplier, offset);
203
1.31M
        for (size_t y = 0; y < channel.h; y++) {
204
1.28M
          pixel_type *JXL_RESTRICT r = channel.Row(y);
205
1.28M
          std::fill(r, r + channel.w, v);
206
1.28M
        }
207
161k
      } else {
208
161k
        JXL_DEBUG_V(8, "Fast track.");
209
161k
        if (multiplier == 1 && offset == 0) {
210
2.80M
          for (size_t y = 0; y < channel.h; y++) {
211
2.64M
            pixel_type *JXL_RESTRICT r = channel.Row(y);
212
70.2M
            for (size_t x = 0; x < channel.w; x++) {
213
67.6M
              uint32_t v =
214
67.6M
                  reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
215
67.6M
              r[x] = UnpackSigned(v);
216
67.6M
            }
217
2.64M
          }
218
18.4E
        } else {
219
18.4E
          for (size_t y = 0; y < channel.h; y++) {
220
1.40k
            pixel_type *JXL_RESTRICT r = channel.Row(y);
221
263k
            for (size_t x = 0; x < channel.w; x++) {
222
262k
              uint32_t v =
223
262k
                  reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(ctx_id,
224
262k
                                                                         br);
225
262k
              r[x] = make_pixel(v, multiplier, offset);
226
262k
            }
227
1.40k
          }
228
18.4E
        }
229
161k
      }
230
187k
      return true;
231
187k
    } else if (uses_lz77 && predictor == Predictor::Gradient && offset == 0 &&
232
1.09k
               multiplier == 1 && reader->IsHuffRleOnly()) {
233
0
      JXL_DEBUG_V(8, "Gradient RLE (fjxl) very fast track.");
234
0
      pixel_type_w sv = UnpackSigned(fl_v);
235
0
      for (size_t y = 0; y < channel.h; y++) {
236
0
        pixel_type *JXL_RESTRICT r = channel.Row(y);
237
0
        const pixel_type *JXL_RESTRICT rtop = (y ? channel.Row(y - 1) : r - 1);
238
0
        const pixel_type *JXL_RESTRICT rtopleft =
239
0
            (y ? channel.Row(y - 1) - 1 : r - 1);
240
0
        pixel_type_w guess = (y ? rtop[0] : 0);
241
0
        if (fl_run == 0) {
242
0
          reader->ReadHybridUintClusteredHuffRleOnly(ctx_id, br, &fl_v,
243
0
                                                     &fl_run);
244
0
          sv = UnpackSigned(fl_v);
245
0
        } else {
246
0
          fl_run--;
247
0
        }
248
0
        r[0] = sv + guess;
249
0
        for (size_t x = 1; x < channel.w; x++) {
250
0
          pixel_type left = r[x - 1];
251
0
          pixel_type top = rtop[x];
252
0
          pixel_type topleft = rtopleft[x];
253
0
          pixel_type_w guess = ClampedGradient(top, left, topleft);
254
0
          if (!fl_run) {
255
0
            reader->ReadHybridUintClusteredHuffRleOnly(ctx_id, br, &fl_v,
256
0
                                                       &fl_run);
257
0
            sv = UnpackSigned(fl_v);
258
0
          } else {
259
0
            fl_run--;
260
0
          }
261
0
          r[x] = sv + guess;
262
0
        }
263
0
      }
264
0
      return true;
265
1.10k
    } else if (predictor == Predictor::Gradient && offset == 0 &&
266
1.10k
               multiplier == 1) {
267
1.10k
      JXL_DEBUG_V(8, "Gradient very fast track.");
268
1.10k
      const intptr_t onerow = channel.plane.PixelsPerRow();
269
11.2k
      for (size_t y = 0; y < channel.h; y++) {
270
10.1k
        pixel_type *JXL_RESTRICT r = channel.Row(y);
271
140k
        for (size_t x = 0; x < channel.w; x++) {
272
130k
          pixel_type left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
273
130k
          pixel_type top = (y ? *(r + x - onerow) : left);
274
130k
          pixel_type topleft = (x && y ? *(r + x - 1 - onerow) : left);
275
130k
          pixel_type guess = ClampedGradient(top, left, topleft);
276
130k
          uint64_t v = reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(
277
130k
              ctx_id, br);
278
130k
          r[x] = make_pixel(v, 1, guess);
279
130k
        }
280
10.1k
      }
281
1.10k
      return true;
282
1.10k
    }
283
188k
  }
284
285
  // Check if this tree is a WP-only tree with a small enough property value
286
  // range.
287
3.90k
  if (is_wp_only) {
288
0
    is_wp_only = TreeToLookupTable(tree, tree_lut);
289
0
  }
290
3.90k
  if (is_gradient_only) {
291
4
    is_gradient_only = TreeToLookupTable(tree, tree_lut);
292
4
  }
293
294
3.90k
  if (is_gradient_only) {
295
0
    JXL_DEBUG_V(8, "Gradient fast track.");
296
0
    const intptr_t onerow = channel.plane.PixelsPerRow();
297
0
    for (size_t y = 0; y < channel.h; y++) {
298
0
      pixel_type *JXL_RESTRICT r = channel.Row(y);
299
0
      for (size_t x = 0; x < channel.w; x++) {
300
0
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
301
0
        pixel_type_w top = (y ? *(r + x - onerow) : left);
302
0
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
303
0
        int32_t guess = ClampedGradient(top, left, topleft);
304
0
        uint32_t pos =
305
0
            kPropRangeFast +
306
0
            std::min<pixel_type_w>(
307
0
                std::max<pixel_type_w>(-kPropRangeFast, top + left - topleft),
308
0
                kPropRangeFast - 1);
309
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
310
0
        uint64_t v =
311
0
            reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(ctx_id, br);
312
0
        r[x] = make_pixel(v, 1, guess);
313
0
      }
314
0
    }
315
3.90k
  } else if (!uses_lz77 && is_wp_only && channel.w > 8) {
316
0
    JXL_DEBUG_V(8, "WP fast track.");
317
0
    weighted::State wp_state(wp_header, channel.w, channel.h);
318
0
    Properties properties(1);
319
0
    for (size_t y = 0; y < channel.h; y++) {
320
0
      pixel_type *JXL_RESTRICT r = channel.Row(y);
321
0
      const pixel_type *JXL_RESTRICT rtop = (y ? channel.Row(y - 1) : r - 1);
322
0
      const pixel_type *JXL_RESTRICT rtoptop =
323
0
          (y > 1 ? channel.Row(y - 2) : rtop);
324
0
      const pixel_type *JXL_RESTRICT rtopleft =
325
0
          (y ? channel.Row(y - 1) - 1 : r - 1);
326
0
      const pixel_type *JXL_RESTRICT rtopright =
327
0
          (y ? channel.Row(y - 1) + 1 : r - 1);
328
0
      size_t x = 0;
329
0
      {
330
0
        size_t offset = 0;
331
0
        pixel_type_w left = y ? rtop[x] : 0;
332
0
        pixel_type_w toptop = y ? rtoptop[x] : 0;
333
0
        pixel_type_w topright = (x + 1 < channel.w && y ? rtop[x + 1] : left);
334
0
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
335
0
            x, y, channel.w, left, left, topright, left, toptop, &properties,
336
0
            offset);
337
0
        uint32_t pos =
338
0
            kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
339
0
                                      kPropRangeFast - 1);
340
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
341
0
        uint64_t v =
342
0
            reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
343
0
        r[x] = make_pixel(v, 1, guess);
344
0
        wp_state.UpdateErrors(r[x], x, y, channel.w);
345
0
      }
346
0
      for (x = 1; x + 1 < channel.w; x++) {
347
0
        size_t offset = 0;
348
0
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
349
0
            x, y, channel.w, rtop[x], r[x - 1], rtopright[x], rtopleft[x],
350
0
            rtoptop[x], &properties, offset);
351
0
        uint32_t pos =
352
0
            kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
353
0
                                      kPropRangeFast - 1);
354
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
355
0
        uint64_t v =
356
0
            reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
357
0
        r[x] = make_pixel(v, 1, guess);
358
0
        wp_state.UpdateErrors(r[x], x, y, channel.w);
359
0
      }
360
0
      {
361
0
        size_t offset = 0;
362
0
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
363
0
            x, y, channel.w, rtop[x], r[x - 1], rtop[x], rtopleft[x],
364
0
            rtoptop[x], &properties, offset);
365
0
        uint32_t pos =
366
0
            kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
367
0
                                      kPropRangeFast - 1);
368
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
369
0
        uint64_t v =
370
0
            reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
371
0
        r[x] = make_pixel(v, 1, guess);
372
0
        wp_state.UpdateErrors(r[x], x, y, channel.w);
373
0
      }
374
0
    }
375
3.90k
  } else if (!tree_has_wp_prop_or_pred) {
376
    // special optimized case: the weighted predictor and its properties are not
377
    // used, so no need to compute weights and properties.
378
2.86k
    JXL_DEBUG_V(8, "Slow track.");
379
2.86k
    MATreeLookup tree_lookup(tree);
380
2.86k
    Properties properties = Properties(num_props);
381
2.86k
    const intptr_t onerow = channel.plane.PixelsPerRow();
382
2.86k
    JXL_ASSIGN_OR_RETURN(
383
2.86k
        Channel references,
384
2.86k
        Channel::Create(memory_manager,
385
2.86k
                        properties.size() - kNumNonrefProperties, channel.w));
386
127k
    for (size_t y = 0; y < channel.h; y++) {
387
124k
      pixel_type *JXL_RESTRICT p = channel.Row(y);
388
124k
      PrecomputeReferences(channel, y, *image, chan, &references);
389
124k
      InitPropsRow(&properties, static_props, y);
390
124k
      if (y > 1 && channel.w > 8 && references.w == 0) {
391
346k
        for (size_t x = 0; x < 2; x++) {
392
231k
          PredictionResult res =
393
231k
              PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
394
231k
                              tree_lookup, references);
395
231k
          uint64_t v =
396
231k
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
397
231k
          p[x] = make_pixel(v, res.multiplier, res.guess);
398
231k
        }
399
15.0M
        for (size_t x = 2; x < channel.w - 2; x++) {
400
14.8M
          PredictionResult res =
401
14.8M
              PredictTreeNoWPNEC(&properties, channel.w, p + x, onerow, x, y,
402
14.8M
                                 tree_lookup, references);
403
14.8M
          uint64_t v = reader->ReadHybridUintClusteredInlined<uses_lz77>(
404
14.8M
              res.context, br);
405
14.8M
          p[x] = make_pixel(v, res.multiplier, res.guess);
406
14.8M
        }
407
346k
        for (size_t x = channel.w - 2; x < channel.w; x++) {
408
231k
          PredictionResult res =
409
231k
              PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
410
231k
                              tree_lookup, references);
411
231k
          uint64_t v =
412
231k
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
413
231k
          p[x] = make_pixel(v, res.multiplier, res.guess);
414
231k
        }
415
115k
      } else {
416
408k
        for (size_t x = 0; x < channel.w; x++) {
417
399k
          PredictionResult res =
418
399k
              PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
419
399k
                              tree_lookup, references);
420
399k
          uint64_t v = reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(
421
399k
              res.context, br);
422
399k
          p[x] = make_pixel(v, res.multiplier, res.guess);
423
399k
        }
424
8.84k
      }
425
124k
    }
426
2.86k
  } else {
427
1.04k
    JXL_DEBUG_V(8, "Slowest track.");
428
1.04k
    MATreeLookup tree_lookup(tree);
429
1.04k
    Properties properties = Properties(num_props);
430
1.04k
    const intptr_t onerow = channel.plane.PixelsPerRow();
431
1.04k
    JXL_ASSIGN_OR_RETURN(
432
1.04k
        Channel references,
433
1.04k
        Channel::Create(memory_manager,
434
1.04k
                        properties.size() - kNumNonrefProperties, channel.w));
435
1.04k
    weighted::State wp_state(wp_header, channel.w, channel.h);
436
98.9k
    for (size_t y = 0; y < channel.h; y++) {
437
97.8k
      pixel_type *JXL_RESTRICT p = channel.Row(y);
438
97.8k
      InitPropsRow(&properties, static_props, y);
439
97.8k
      PrecomputeReferences(channel, y, *image, chan, &references);
440
97.8k
      if (!uses_lz77 && y > 1 && channel.w > 8 && references.w == 0) {
441
288k
        for (size_t x = 0; x < 2; x++) {
442
192k
          PredictionResult res =
443
192k
              PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
444
192k
                            tree_lookup, references, &wp_state);
445
192k
          uint64_t v =
446
192k
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
447
192k
          p[x] = make_pixel(v, res.multiplier, res.guess);
448
192k
          wp_state.UpdateErrors(p[x], x, y, channel.w);
449
192k
        }
450
18.3M
        for (size_t x = 2; x < channel.w - 2; x++) {
451
18.2M
          PredictionResult res =
452
18.2M
              PredictTreeWPNEC(&properties, channel.w, p + x, onerow, x, y,
453
18.2M
                               tree_lookup, references, &wp_state);
454
18.2M
          uint64_t v = reader->ReadHybridUintClusteredInlined<uses_lz77>(
455
18.2M
              res.context, br);
456
18.2M
          p[x] = make_pixel(v, res.multiplier, res.guess);
457
18.2M
          wp_state.UpdateErrors(p[x], x, y, channel.w);
458
18.2M
        }
459
288k
        for (size_t x = channel.w - 2; x < channel.w; x++) {
460
192k
          PredictionResult res =
461
192k
              PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
462
192k
                            tree_lookup, references, &wp_state);
463
192k
          uint64_t v =
464
192k
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
465
192k
          p[x] = make_pixel(v, res.multiplier, res.guess);
466
192k
          wp_state.UpdateErrors(p[x], x, y, channel.w);
467
192k
        }
468
96.3k
      } else {
469
304k
        for (size_t x = 0; x < channel.w; x++) {
470
302k
          PredictionResult res =
471
302k
              PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
472
302k
                            tree_lookup, references, &wp_state);
473
302k
          uint64_t v =
474
302k
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
475
302k
          p[x] = make_pixel(v, res.multiplier, res.guess);
476
302k
          wp_state.UpdateErrors(p[x], x, y, channel.w);
477
302k
        }
478
1.59k
      }
479
97.8k
    }
480
1.04k
  }
481
3.90k
  return true;
482
3.90k
}
jxl::Status jxl::detail::DecodeModularChannelMAANS<true>(jxl::BitReader*, jxl::ANSSymbolReader*, std::__1::vector<unsigned char, std::__1::allocator<unsigned char> > const&, std::__1::vector<jxl::PropertyDecisionNode, std::__1::allocator<jxl::PropertyDecisionNode> > const&, jxl::weighted::Header const&, int, unsigned long, jxl::TreeLut<unsigned char, false, false>&, jxl::Image*, unsigned int&, unsigned int&)
Line
Count
Source
150
8.94k
                                 uint32_t &fl_v) {
151
8.94k
  JxlMemoryManager *memory_manager = image->memory_manager();
152
8.94k
  Channel &channel = image->channel[chan];
153
154
8.94k
  std::array<pixel_type, kNumStaticProperties> static_props = {
155
8.94k
      {chan, static_cast<int>(group_id)}};
156
  // TODO(veluca): filter the tree according to static_props.
157
158
  // zero pixel channel? could happen
159
8.95k
  if (channel.w == 0 || channel.h == 0) return true;
160
161
8.94k
  bool tree_has_wp_prop_or_pred = false;
162
8.94k
  bool is_wp_only = false;
163
8.94k
  bool is_gradient_only = false;
164
8.94k
  size_t num_props;
165
8.94k
  FlatTree tree =
166
8.94k
      FilterTree(global_tree, static_props, &num_props,
167
8.94k
                 &tree_has_wp_prop_or_pred, &is_wp_only, &is_gradient_only);
168
169
  // From here on, tree lookup returns a *clustered* context ID.
170
  // This avoids an extra memory lookup after tree traversal.
171
8.95k
  for (auto &node : tree) {
172
8.95k
    if (node.property0 == -1) {
173
8.94k
      node.childID = context_map[node.childID];
174
8.94k
    }
175
8.95k
  }
176
177
8.94k
  JXL_DEBUG_V(3, "Decoded MA tree with %" PRIuS " nodes", tree.size());
178
179
  // MAANS decode
180
8.94k
  const auto make_pixel = [](uint64_t v, pixel_type multiplier,
181
8.94k
                             pixel_type_w offset) -> pixel_type {
182
8.94k
    JXL_DASSERT((v & 0xFFFFFFFF) == v);
183
8.94k
    pixel_type_w val = UnpackSigned(v);
184
    // if it overflows, it overflows, and we have a problem anyway
185
8.94k
    return val * multiplier + offset;
186
8.94k
  };
187
188
8.94k
  if (tree.size() == 1) {
189
    // special optimized case: no meta-adaptation, so no need
190
    // to compute properties.
191
8.91k
    Predictor predictor = tree[0].predictor;
192
8.91k
    int64_t offset = tree[0].predictor_offset;
193
8.91k
    int32_t multiplier = tree[0].multiplier;
194
8.91k
    size_t ctx_id = tree[0].childID;
195
8.92k
    if (predictor == Predictor::Zero) {
196
8.92k
      uint32_t value;
197
8.92k
      if (reader->IsSingleValueAndAdvance(ctx_id, &value,
198
8.92k
                                          channel.w * channel.h)) {
199
        // Special-case: histogram has a single symbol, with no extra bits, and
200
        // we use ANS mode.
201
2.47k
        JXL_DEBUG_V(8, "Fastest track.");
202
2.47k
        pixel_type v = make_pixel(value, multiplier, offset);
203
217k
        for (size_t y = 0; y < channel.h; y++) {
204
214k
          pixel_type *JXL_RESTRICT r = channel.Row(y);
205
214k
          std::fill(r, r + channel.w, v);
206
214k
        }
207
6.45k
      } else {
208
6.45k
        JXL_DEBUG_V(8, "Fast track.");
209
6.46k
        if (multiplier == 1 && offset == 0) {
210
741k
          for (size_t y = 0; y < channel.h; y++) {
211
735k
            pixel_type *JXL_RESTRICT r = channel.Row(y);
212
21.4M
            for (size_t x = 0; x < channel.w; x++) {
213
20.7M
              uint32_t v =
214
20.7M
                  reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
215
20.7M
              r[x] = UnpackSigned(v);
216
20.7M
            }
217
735k
          }
218
18.4E
        } else {
219
18.4E
          for (size_t y = 0; y < channel.h; y++) {
220
0
            pixel_type *JXL_RESTRICT r = channel.Row(y);
221
0
            for (size_t x = 0; x < channel.w; x++) {
222
0
              uint32_t v =
223
0
                  reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(ctx_id,
224
0
                                                                         br);
225
0
              r[x] = make_pixel(v, multiplier, offset);
226
0
            }
227
0
          }
228
18.4E
        }
229
6.45k
      }
230
8.92k
      return true;
231
18.4E
    } else if (uses_lz77 && predictor == Predictor::Gradient && offset == 0 &&
232
18.4E
               multiplier == 1 && reader->IsHuffRleOnly()) {
233
0
      JXL_DEBUG_V(8, "Gradient RLE (fjxl) very fast track.");
234
0
      pixel_type_w sv = UnpackSigned(fl_v);
235
0
      for (size_t y = 0; y < channel.h; y++) {
236
0
        pixel_type *JXL_RESTRICT r = channel.Row(y);
237
0
        const pixel_type *JXL_RESTRICT rtop = (y ? channel.Row(y - 1) : r - 1);
238
0
        const pixel_type *JXL_RESTRICT rtopleft =
239
0
            (y ? channel.Row(y - 1) - 1 : r - 1);
240
0
        pixel_type_w guess = (y ? rtop[0] : 0);
241
0
        if (fl_run == 0) {
242
0
          reader->ReadHybridUintClusteredHuffRleOnly(ctx_id, br, &fl_v,
243
0
                                                     &fl_run);
244
0
          sv = UnpackSigned(fl_v);
245
0
        } else {
246
0
          fl_run--;
247
0
        }
248
0
        r[0] = sv + guess;
249
0
        for (size_t x = 1; x < channel.w; x++) {
250
0
          pixel_type left = r[x - 1];
251
0
          pixel_type top = rtop[x];
252
0
          pixel_type topleft = rtopleft[x];
253
0
          pixel_type_w guess = ClampedGradient(top, left, topleft);
254
0
          if (!fl_run) {
255
0
            reader->ReadHybridUintClusteredHuffRleOnly(ctx_id, br, &fl_v,
256
0
                                                       &fl_run);
257
0
            sv = UnpackSigned(fl_v);
258
0
          } else {
259
0
            fl_run--;
260
0
          }
261
0
          r[x] = sv + guess;
262
0
        }
263
0
      }
264
0
      return true;
265
18.4E
    } else if (predictor == Predictor::Gradient && offset == 0 &&
266
18.4E
               multiplier == 1) {
267
0
      JXL_DEBUG_V(8, "Gradient very fast track.");
268
0
      const intptr_t onerow = channel.plane.PixelsPerRow();
269
0
      for (size_t y = 0; y < channel.h; y++) {
270
0
        pixel_type *JXL_RESTRICT r = channel.Row(y);
271
0
        for (size_t x = 0; x < channel.w; x++) {
272
0
          pixel_type left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
273
0
          pixel_type top = (y ? *(r + x - onerow) : left);
274
0
          pixel_type topleft = (x && y ? *(r + x - 1 - onerow) : left);
275
0
          pixel_type guess = ClampedGradient(top, left, topleft);
276
0
          uint64_t v = reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(
277
0
              ctx_id, br);
278
0
          r[x] = make_pixel(v, 1, guess);
279
0
        }
280
0
      }
281
0
      return true;
282
0
    }
283
8.91k
  }
284
285
  // Check if this tree is a WP-only tree with a small enough property value
286
  // range.
287
25
  if (is_wp_only) {
288
0
    is_wp_only = TreeToLookupTable(tree, tree_lut);
289
0
  }
290
25
  if (is_gradient_only) {
291
0
    is_gradient_only = TreeToLookupTable(tree, tree_lut);
292
0
  }
293
294
25
  if (is_gradient_only) {
295
0
    JXL_DEBUG_V(8, "Gradient fast track.");
296
0
    const intptr_t onerow = channel.plane.PixelsPerRow();
297
0
    for (size_t y = 0; y < channel.h; y++) {
298
0
      pixel_type *JXL_RESTRICT r = channel.Row(y);
299
0
      for (size_t x = 0; x < channel.w; x++) {
300
0
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
301
0
        pixel_type_w top = (y ? *(r + x - onerow) : left);
302
0
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
303
0
        int32_t guess = ClampedGradient(top, left, topleft);
304
0
        uint32_t pos =
305
0
            kPropRangeFast +
306
0
            std::min<pixel_type_w>(
307
0
                std::max<pixel_type_w>(-kPropRangeFast, top + left - topleft),
308
0
                kPropRangeFast - 1);
309
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
310
0
        uint64_t v =
311
0
            reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(ctx_id, br);
312
0
        r[x] = make_pixel(v, 1, guess);
313
0
      }
314
0
    }
315
25
  } else if (!uses_lz77 && is_wp_only && channel.w > 8) {
316
0
    JXL_DEBUG_V(8, "WP fast track.");
317
0
    weighted::State wp_state(wp_header, channel.w, channel.h);
318
0
    Properties properties(1);
319
0
    for (size_t y = 0; y < channel.h; y++) {
320
0
      pixel_type *JXL_RESTRICT r = channel.Row(y);
321
0
      const pixel_type *JXL_RESTRICT rtop = (y ? channel.Row(y - 1) : r - 1);
322
0
      const pixel_type *JXL_RESTRICT rtoptop =
323
0
          (y > 1 ? channel.Row(y - 2) : rtop);
324
0
      const pixel_type *JXL_RESTRICT rtopleft =
325
0
          (y ? channel.Row(y - 1) - 1 : r - 1);
326
0
      const pixel_type *JXL_RESTRICT rtopright =
327
0
          (y ? channel.Row(y - 1) + 1 : r - 1);
328
0
      size_t x = 0;
329
0
      {
330
0
        size_t offset = 0;
331
0
        pixel_type_w left = y ? rtop[x] : 0;
332
0
        pixel_type_w toptop = y ? rtoptop[x] : 0;
333
0
        pixel_type_w topright = (x + 1 < channel.w && y ? rtop[x + 1] : left);
334
0
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
335
0
            x, y, channel.w, left, left, topright, left, toptop, &properties,
336
0
            offset);
337
0
        uint32_t pos =
338
0
            kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
339
0
                                      kPropRangeFast - 1);
340
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
341
0
        uint64_t v =
342
0
            reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
343
0
        r[x] = make_pixel(v, 1, guess);
344
0
        wp_state.UpdateErrors(r[x], x, y, channel.w);
345
0
      }
346
0
      for (x = 1; x + 1 < channel.w; x++) {
347
0
        size_t offset = 0;
348
0
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
349
0
            x, y, channel.w, rtop[x], r[x - 1], rtopright[x], rtopleft[x],
350
0
            rtoptop[x], &properties, offset);
351
0
        uint32_t pos =
352
0
            kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
353
0
                                      kPropRangeFast - 1);
354
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
355
0
        uint64_t v =
356
0
            reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
357
0
        r[x] = make_pixel(v, 1, guess);
358
0
        wp_state.UpdateErrors(r[x], x, y, channel.w);
359
0
      }
360
0
      {
361
0
        size_t offset = 0;
362
0
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
363
0
            x, y, channel.w, rtop[x], r[x - 1], rtop[x], rtopleft[x],
364
0
            rtoptop[x], &properties, offset);
365
0
        uint32_t pos =
366
0
            kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
367
0
                                      kPropRangeFast - 1);
368
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
369
0
        uint64_t v =
370
0
            reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
371
0
        r[x] = make_pixel(v, 1, guess);
372
0
        wp_state.UpdateErrors(r[x], x, y, channel.w);
373
0
      }
374
0
    }
375
25
  } else if (!tree_has_wp_prop_or_pred) {
376
    // special optimized case: the weighted predictor and its properties are not
377
    // used, so no need to compute weights and properties.
378
3
    JXL_DEBUG_V(8, "Slow track.");
379
3
    MATreeLookup tree_lookup(tree);
380
3
    Properties properties = Properties(num_props);
381
3
    const intptr_t onerow = channel.plane.PixelsPerRow();
382
3
    JXL_ASSIGN_OR_RETURN(
383
3
        Channel references,
384
3
        Channel::Create(memory_manager,
385
3
                        properties.size() - kNumNonrefProperties, channel.w));
386
27
    for (size_t y = 0; y < channel.h; y++) {
387
24
      pixel_type *JXL_RESTRICT p = channel.Row(y);
388
24
      PrecomputeReferences(channel, y, *image, chan, &references);
389
24
      InitPropsRow(&properties, static_props, y);
390
24
      if (y > 1 && channel.w > 8 && references.w == 0) {
391
0
        for (size_t x = 0; x < 2; x++) {
392
0
          PredictionResult res =
393
0
              PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
394
0
                              tree_lookup, references);
395
0
          uint64_t v =
396
0
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
397
0
          p[x] = make_pixel(v, res.multiplier, res.guess);
398
0
        }
399
0
        for (size_t x = 2; x < channel.w - 2; x++) {
400
0
          PredictionResult res =
401
0
              PredictTreeNoWPNEC(&properties, channel.w, p + x, onerow, x, y,
402
0
                                 tree_lookup, references);
403
0
          uint64_t v = reader->ReadHybridUintClusteredInlined<uses_lz77>(
404
0
              res.context, br);
405
0
          p[x] = make_pixel(v, res.multiplier, res.guess);
406
0
        }
407
0
        for (size_t x = channel.w - 2; x < channel.w; x++) {
408
0
          PredictionResult res =
409
0
              PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
410
0
                              tree_lookup, references);
411
0
          uint64_t v =
412
0
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
413
0
          p[x] = make_pixel(v, res.multiplier, res.guess);
414
0
        }
415
24
      } else {
416
120
        for (size_t x = 0; x < channel.w; x++) {
417
96
          PredictionResult res =
418
96
              PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
419
96
                              tree_lookup, references);
420
96
          uint64_t v = reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(
421
96
              res.context, br);
422
96
          p[x] = make_pixel(v, res.multiplier, res.guess);
423
96
        }
424
24
      }
425
24
    }
426
22
  } else {
427
22
    JXL_DEBUG_V(8, "Slowest track.");
428
22
    MATreeLookup tree_lookup(tree);
429
22
    Properties properties = Properties(num_props);
430
22
    const intptr_t onerow = channel.plane.PixelsPerRow();
431
22
    JXL_ASSIGN_OR_RETURN(
432
22
        Channel references,
433
22
        Channel::Create(memory_manager,
434
22
                        properties.size() - kNumNonrefProperties, channel.w));
435
22
    weighted::State wp_state(wp_header, channel.w, channel.h);
436
22
    for (size_t y = 0; y < channel.h; y++) {
437
0
      pixel_type *JXL_RESTRICT p = channel.Row(y);
438
0
      InitPropsRow(&properties, static_props, y);
439
0
      PrecomputeReferences(channel, y, *image, chan, &references);
440
0
      if (!uses_lz77 && y > 1 && channel.w > 8 && references.w == 0) {
441
0
        for (size_t x = 0; x < 2; x++) {
442
0
          PredictionResult res =
443
0
              PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
444
0
                            tree_lookup, references, &wp_state);
445
0
          uint64_t v =
446
0
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
447
0
          p[x] = make_pixel(v, res.multiplier, res.guess);
448
0
          wp_state.UpdateErrors(p[x], x, y, channel.w);
449
0
        }
450
0
        for (size_t x = 2; x < channel.w - 2; x++) {
451
0
          PredictionResult res =
452
0
              PredictTreeWPNEC(&properties, channel.w, p + x, onerow, x, y,
453
0
                               tree_lookup, references, &wp_state);
454
0
          uint64_t v = reader->ReadHybridUintClusteredInlined<uses_lz77>(
455
0
              res.context, br);
456
0
          p[x] = make_pixel(v, res.multiplier, res.guess);
457
0
          wp_state.UpdateErrors(p[x], x, y, channel.w);
458
0
        }
459
0
        for (size_t x = channel.w - 2; x < channel.w; x++) {
460
0
          PredictionResult res =
461
0
              PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
462
0
                            tree_lookup, references, &wp_state);
463
0
          uint64_t v =
464
0
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
465
0
          p[x] = make_pixel(v, res.multiplier, res.guess);
466
0
          wp_state.UpdateErrors(p[x], x, y, channel.w);
467
0
        }
468
0
      } else {
469
0
        for (size_t x = 0; x < channel.w; x++) {
470
0
          PredictionResult res =
471
0
              PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
472
0
                            tree_lookup, references, &wp_state);
473
0
          uint64_t v =
474
0
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
475
0
          p[x] = make_pixel(v, res.multiplier, res.guess);
476
0
          wp_state.UpdateErrors(p[x], x, y, channel.w);
477
0
        }
478
0
      }
479
0
    }
480
22
  }
481
25
  return true;
482
25
}
jxl::Status jxl::detail::DecodeModularChannelMAANS<false>(jxl::BitReader*, jxl::ANSSymbolReader*, std::__1::vector<unsigned char, std::__1::allocator<unsigned char> > const&, std::__1::vector<jxl::PropertyDecisionNode, std::__1::allocator<jxl::PropertyDecisionNode> > const&, jxl::weighted::Header const&, int, unsigned long, jxl::TreeLut<unsigned char, false, false>&, jxl::Image*, unsigned int&, unsigned int&)
Line
Count
Source
150
183k
                                 uint32_t &fl_v) {
151
183k
  JxlMemoryManager *memory_manager = image->memory_manager();
152
183k
  Channel &channel = image->channel[chan];
153
154
183k
  std::array<pixel_type, kNumStaticProperties> static_props = {
155
183k
      {chan, static_cast<int>(group_id)}};
156
  // TODO(veluca): filter the tree according to static_props.
157
158
  // zero pixel channel? could happen
159
183k
  if (channel.w == 0 || channel.h == 0) return true;
160
161
183k
  bool tree_has_wp_prop_or_pred = false;
162
183k
  bool is_wp_only = false;
163
183k
  bool is_gradient_only = false;
164
183k
  size_t num_props;
165
183k
  FlatTree tree =
166
183k
      FilterTree(global_tree, static_props, &num_props,
167
183k
                 &tree_has_wp_prop_or_pred, &is_wp_only, &is_gradient_only);
168
169
  // From here on, tree lookup returns a *clustered* context ID.
170
  // This avoids an extra memory lookup after tree traversal.
171
485k
  for (auto &node : tree) {
172
485k
    if (node.property0 == -1) {
173
410k
      node.childID = context_map[node.childID];
174
410k
    }
175
485k
  }
176
177
183k
  JXL_DEBUG_V(3, "Decoded MA tree with %" PRIuS " nodes", tree.size());
178
179
  // MAANS decode
180
183k
  const auto make_pixel = [](uint64_t v, pixel_type multiplier,
181
183k
                             pixel_type_w offset) -> pixel_type {
182
183k
    JXL_DASSERT((v & 0xFFFFFFFF) == v);
183
183k
    pixel_type_w val = UnpackSigned(v);
184
    // if it overflows, it overflows, and we have a problem anyway
185
183k
    return val * multiplier + offset;
186
183k
  };
187
188
183k
  if (tree.size() == 1) {
189
    // special optimized case: no meta-adaptation, so no need
190
    // to compute properties.
191
179k
    Predictor predictor = tree[0].predictor;
192
179k
    int64_t offset = tree[0].predictor_offset;
193
179k
    int32_t multiplier = tree[0].multiplier;
194
179k
    size_t ctx_id = tree[0].childID;
195
179k
    if (predictor == Predictor::Zero) {
196
178k
      uint32_t value;
197
178k
      if (reader->IsSingleValueAndAdvance(ctx_id, &value,
198
178k
                                          channel.w * channel.h)) {
199
        // Special-case: histogram has a single symbol, with no extra bits, and
200
        // we use ANS mode.
201
23.5k
        JXL_DEBUG_V(8, "Fastest track.");
202
23.5k
        pixel_type v = make_pixel(value, multiplier, offset);
203
1.09M
        for (size_t y = 0; y < channel.h; y++) {
204
1.07M
          pixel_type *JXL_RESTRICT r = channel.Row(y);
205
1.07M
          std::fill(r, r + channel.w, v);
206
1.07M
        }
207
154k
      } else {
208
154k
        JXL_DEBUG_V(8, "Fast track.");
209
154k
        if (multiplier == 1 && offset == 0) {
210
2.06M
          for (size_t y = 0; y < channel.h; y++) {
211
1.90M
            pixel_type *JXL_RESTRICT r = channel.Row(y);
212
48.8M
            for (size_t x = 0; x < channel.w; x++) {
213
46.9M
              uint32_t v =
214
46.9M
                  reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
215
46.9M
              r[x] = UnpackSigned(v);
216
46.9M
            }
217
1.90M
          }
218
18.4E
        } else {
219
18.4E
          for (size_t y = 0; y < channel.h; y++) {
220
1.40k
            pixel_type *JXL_RESTRICT r = channel.Row(y);
221
263k
            for (size_t x = 0; x < channel.w; x++) {
222
262k
              uint32_t v =
223
262k
                  reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(ctx_id,
224
262k
                                                                         br);
225
262k
              r[x] = make_pixel(v, multiplier, offset);
226
262k
            }
227
1.40k
          }
228
18.4E
        }
229
154k
      }
230
178k
      return true;
231
178k
    } else if (uses_lz77 && predictor == Predictor::Gradient && offset == 0 &&
232
1.10k
               multiplier == 1 && reader->IsHuffRleOnly()) {
233
0
      JXL_DEBUG_V(8, "Gradient RLE (fjxl) very fast track.");
234
0
      pixel_type_w sv = UnpackSigned(fl_v);
235
0
      for (size_t y = 0; y < channel.h; y++) {
236
0
        pixel_type *JXL_RESTRICT r = channel.Row(y);
237
0
        const pixel_type *JXL_RESTRICT rtop = (y ? channel.Row(y - 1) : r - 1);
238
0
        const pixel_type *JXL_RESTRICT rtopleft =
239
0
            (y ? channel.Row(y - 1) - 1 : r - 1);
240
0
        pixel_type_w guess = (y ? rtop[0] : 0);
241
0
        if (fl_run == 0) {
242
0
          reader->ReadHybridUintClusteredHuffRleOnly(ctx_id, br, &fl_v,
243
0
                                                     &fl_run);
244
0
          sv = UnpackSigned(fl_v);
245
0
        } else {
246
0
          fl_run--;
247
0
        }
248
0
        r[0] = sv + guess;
249
0
        for (size_t x = 1; x < channel.w; x++) {
250
0
          pixel_type left = r[x - 1];
251
0
          pixel_type top = rtop[x];
252
0
          pixel_type topleft = rtopleft[x];
253
0
          pixel_type_w guess = ClampedGradient(top, left, topleft);
254
0
          if (!fl_run) {
255
0
            reader->ReadHybridUintClusteredHuffRleOnly(ctx_id, br, &fl_v,
256
0
                                                       &fl_run);
257
0
            sv = UnpackSigned(fl_v);
258
0
          } else {
259
0
            fl_run--;
260
0
          }
261
0
          r[x] = sv + guess;
262
0
        }
263
0
      }
264
0
      return true;
265
1.10k
    } else if (predictor == Predictor::Gradient && offset == 0 &&
266
1.10k
               multiplier == 1) {
267
1.10k
      JXL_DEBUG_V(8, "Gradient very fast track.");
268
1.10k
      const intptr_t onerow = channel.plane.PixelsPerRow();
269
11.2k
      for (size_t y = 0; y < channel.h; y++) {
270
10.1k
        pixel_type *JXL_RESTRICT r = channel.Row(y);
271
140k
        for (size_t x = 0; x < channel.w; x++) {
272
130k
          pixel_type left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
273
130k
          pixel_type top = (y ? *(r + x - onerow) : left);
274
130k
          pixel_type topleft = (x && y ? *(r + x - 1 - onerow) : left);
275
130k
          pixel_type guess = ClampedGradient(top, left, topleft);
276
130k
          uint64_t v = reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(
277
130k
              ctx_id, br);
278
130k
          r[x] = make_pixel(v, 1, guess);
279
130k
        }
280
10.1k
      }
281
1.10k
      return true;
282
1.10k
    }
283
179k
  }
284
285
  // Check if this tree is a WP-only tree with a small enough property value
286
  // range.
287
3.88k
  if (is_wp_only) {
288
0
    is_wp_only = TreeToLookupTable(tree, tree_lut);
289
0
  }
290
3.88k
  if (is_gradient_only) {
291
4
    is_gradient_only = TreeToLookupTable(tree, tree_lut);
292
4
  }
293
294
3.88k
  if (is_gradient_only) {
295
0
    JXL_DEBUG_V(8, "Gradient fast track.");
296
0
    const intptr_t onerow = channel.plane.PixelsPerRow();
297
0
    for (size_t y = 0; y < channel.h; y++) {
298
0
      pixel_type *JXL_RESTRICT r = channel.Row(y);
299
0
      for (size_t x = 0; x < channel.w; x++) {
300
0
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
301
0
        pixel_type_w top = (y ? *(r + x - onerow) : left);
302
0
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
303
0
        int32_t guess = ClampedGradient(top, left, topleft);
304
0
        uint32_t pos =
305
0
            kPropRangeFast +
306
0
            std::min<pixel_type_w>(
307
0
                std::max<pixel_type_w>(-kPropRangeFast, top + left - topleft),
308
0
                kPropRangeFast - 1);
309
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
310
0
        uint64_t v =
311
0
            reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(ctx_id, br);
312
0
        r[x] = make_pixel(v, 1, guess);
313
0
      }
314
0
    }
315
3.88k
  } else if (!uses_lz77 && is_wp_only && channel.w > 8) {
316
0
    JXL_DEBUG_V(8, "WP fast track.");
317
0
    weighted::State wp_state(wp_header, channel.w, channel.h);
318
0
    Properties properties(1);
319
0
    for (size_t y = 0; y < channel.h; y++) {
320
0
      pixel_type *JXL_RESTRICT r = channel.Row(y);
321
0
      const pixel_type *JXL_RESTRICT rtop = (y ? channel.Row(y - 1) : r - 1);
322
0
      const pixel_type *JXL_RESTRICT rtoptop =
323
0
          (y > 1 ? channel.Row(y - 2) : rtop);
324
0
      const pixel_type *JXL_RESTRICT rtopleft =
325
0
          (y ? channel.Row(y - 1) - 1 : r - 1);
326
0
      const pixel_type *JXL_RESTRICT rtopright =
327
0
          (y ? channel.Row(y - 1) + 1 : r - 1);
328
0
      size_t x = 0;
329
0
      {
330
0
        size_t offset = 0;
331
0
        pixel_type_w left = y ? rtop[x] : 0;
332
0
        pixel_type_w toptop = y ? rtoptop[x] : 0;
333
0
        pixel_type_w topright = (x + 1 < channel.w && y ? rtop[x + 1] : left);
334
0
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
335
0
            x, y, channel.w, left, left, topright, left, toptop, &properties,
336
0
            offset);
337
0
        uint32_t pos =
338
0
            kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
339
0
                                      kPropRangeFast - 1);
340
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
341
0
        uint64_t v =
342
0
            reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
343
0
        r[x] = make_pixel(v, 1, guess);
344
0
        wp_state.UpdateErrors(r[x], x, y, channel.w);
345
0
      }
346
0
      for (x = 1; x + 1 < channel.w; x++) {
347
0
        size_t offset = 0;
348
0
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
349
0
            x, y, channel.w, rtop[x], r[x - 1], rtopright[x], rtopleft[x],
350
0
            rtoptop[x], &properties, offset);
351
0
        uint32_t pos =
352
0
            kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
353
0
                                      kPropRangeFast - 1);
354
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
355
0
        uint64_t v =
356
0
            reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
357
0
        r[x] = make_pixel(v, 1, guess);
358
0
        wp_state.UpdateErrors(r[x], x, y, channel.w);
359
0
      }
360
0
      {
361
0
        size_t offset = 0;
362
0
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
363
0
            x, y, channel.w, rtop[x], r[x - 1], rtop[x], rtopleft[x],
364
0
            rtoptop[x], &properties, offset);
365
0
        uint32_t pos =
366
0
            kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
367
0
                                      kPropRangeFast - 1);
368
0
        uint32_t ctx_id = tree_lut.context_lookup[pos];
369
0
        uint64_t v =
370
0
            reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
371
0
        r[x] = make_pixel(v, 1, guess);
372
0
        wp_state.UpdateErrors(r[x], x, y, channel.w);
373
0
      }
374
0
    }
375
3.88k
  } else if (!tree_has_wp_prop_or_pred) {
376
    // special optimized case: the weighted predictor and its properties are not
377
    // used, so no need to compute weights and properties.
378
2.86k
    JXL_DEBUG_V(8, "Slow track.");
379
2.86k
    MATreeLookup tree_lookup(tree);
380
2.86k
    Properties properties = Properties(num_props);
381
2.86k
    const intptr_t onerow = channel.plane.PixelsPerRow();
382
2.86k
    JXL_ASSIGN_OR_RETURN(
383
2.86k
        Channel references,
384
2.86k
        Channel::Create(memory_manager,
385
2.86k
                        properties.size() - kNumNonrefProperties, channel.w));
386
127k
    for (size_t y = 0; y < channel.h; y++) {
387
124k
      pixel_type *JXL_RESTRICT p = channel.Row(y);
388
124k
      PrecomputeReferences(channel, y, *image, chan, &references);
389
124k
      InitPropsRow(&properties, static_props, y);
390
124k
      if (y > 1 && channel.w > 8 && references.w == 0) {
391
346k
        for (size_t x = 0; x < 2; x++) {
392
231k
          PredictionResult res =
393
231k
              PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
394
231k
                              tree_lookup, references);
395
231k
          uint64_t v =
396
231k
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
397
231k
          p[x] = make_pixel(v, res.multiplier, res.guess);
398
231k
        }
399
15.0M
        for (size_t x = 2; x < channel.w - 2; x++) {
400
14.8M
          PredictionResult res =
401
14.8M
              PredictTreeNoWPNEC(&properties, channel.w, p + x, onerow, x, y,
402
14.8M
                                 tree_lookup, references);
403
14.8M
          uint64_t v = reader->ReadHybridUintClusteredInlined<uses_lz77>(
404
14.8M
              res.context, br);
405
14.8M
          p[x] = make_pixel(v, res.multiplier, res.guess);
406
14.8M
        }
407
346k
        for (size_t x = channel.w - 2; x < channel.w; x++) {
408
231k
          PredictionResult res =
409
231k
              PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
410
231k
                              tree_lookup, references);
411
231k
          uint64_t v =
412
231k
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
413
231k
          p[x] = make_pixel(v, res.multiplier, res.guess);
414
231k
        }
415
115k
      } else {
416
408k
        for (size_t x = 0; x < channel.w; x++) {
417
399k
          PredictionResult res =
418
399k
              PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
419
399k
                              tree_lookup, references);
420
399k
          uint64_t v = reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(
421
399k
              res.context, br);
422
399k
          p[x] = make_pixel(v, res.multiplier, res.guess);
423
399k
        }
424
8.81k
      }
425
124k
    }
426
2.86k
  } else {
427
1.02k
    JXL_DEBUG_V(8, "Slowest track.");
428
1.02k
    MATreeLookup tree_lookup(tree);
429
1.02k
    Properties properties = Properties(num_props);
430
1.02k
    const intptr_t onerow = channel.plane.PixelsPerRow();
431
1.02k
    JXL_ASSIGN_OR_RETURN(
432
1.02k
        Channel references,
433
1.02k
        Channel::Create(memory_manager,
434
1.02k
                        properties.size() - kNumNonrefProperties, channel.w));
435
1.02k
    weighted::State wp_state(wp_header, channel.w, channel.h);
436
98.9k
    for (size_t y = 0; y < channel.h; y++) {
437
97.8k
      pixel_type *JXL_RESTRICT p = channel.Row(y);
438
97.8k
      InitPropsRow(&properties, static_props, y);
439
97.8k
      PrecomputeReferences(channel, y, *image, chan, &references);
440
97.8k
      if (!uses_lz77 && y > 1 && channel.w > 8 && references.w == 0) {
441
288k
        for (size_t x = 0; x < 2; x++) {
442
192k
          PredictionResult res =
443
192k
              PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
444
192k
                            tree_lookup, references, &wp_state);
445
192k
          uint64_t v =
446
192k
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
447
192k
          p[x] = make_pixel(v, res.multiplier, res.guess);
448
192k
          wp_state.UpdateErrors(p[x], x, y, channel.w);
449
192k
        }
450
18.3M
        for (size_t x = 2; x < channel.w - 2; x++) {
451
18.2M
          PredictionResult res =
452
18.2M
              PredictTreeWPNEC(&properties, channel.w, p + x, onerow, x, y,
453
18.2M
                               tree_lookup, references, &wp_state);
454
18.2M
          uint64_t v = reader->ReadHybridUintClusteredInlined<uses_lz77>(
455
18.2M
              res.context, br);
456
18.2M
          p[x] = make_pixel(v, res.multiplier, res.guess);
457
18.2M
          wp_state.UpdateErrors(p[x], x, y, channel.w);
458
18.2M
        }
459
288k
        for (size_t x = channel.w - 2; x < channel.w; x++) {
460
192k
          PredictionResult res =
461
192k
              PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
462
192k
                            tree_lookup, references, &wp_state);
463
192k
          uint64_t v =
464
192k
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
465
192k
          p[x] = make_pixel(v, res.multiplier, res.guess);
466
192k
          wp_state.UpdateErrors(p[x], x, y, channel.w);
467
192k
        }
468
96.3k
      } else {
469
304k
        for (size_t x = 0; x < channel.w; x++) {
470
302k
          PredictionResult res =
471
302k
              PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
472
302k
                            tree_lookup, references, &wp_state);
473
302k
          uint64_t v =
474
302k
              reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
475
302k
          p[x] = make_pixel(v, res.multiplier, res.guess);
476
302k
          wp_state.UpdateErrors(p[x], x, y, channel.w);
477
302k
        }
478
1.59k
      }
479
97.8k
    }
480
1.02k
  }
481
3.88k
  return true;
482
3.88k
}
483
}  // namespace detail
484
485
Status DecodeModularChannelMAANS(BitReader *br, ANSSymbolReader *reader,
486
                                 const std::vector<uint8_t> &context_map,
487
                                 const Tree &global_tree,
488
                                 const weighted::Header &wp_header,
489
                                 pixel_type chan, size_t group_id,
490
                                 TreeLut<uint8_t, false, false> &tree_lut,
491
                                 Image *image, uint32_t &fl_run,
492
192k
                                 uint32_t &fl_v) {
493
192k
  if (reader->UsesLZ77()) {
494
8.94k
    return detail::DecodeModularChannelMAANS</*uses_lz77=*/true>(
495
8.94k
        br, reader, context_map, global_tree, wp_header, chan, group_id,
496
8.94k
        tree_lut, image, fl_run, fl_v);
497
183k
  } else {
498
183k
    return detail::DecodeModularChannelMAANS</*uses_lz77=*/false>(
499
183k
        br, reader, context_map, global_tree, wp_header, chan, group_id,
500
183k
        tree_lut, image, fl_run, fl_v);
501
183k
  }
502
192k
}
503
504
95.9k
GroupHeader::GroupHeader() { Bundle::Init(this); }
505
506
Status ValidateChannelDimensions(const Image &image,
507
25.3k
                                 const ModularOptions &options) {
508
25.3k
  size_t nb_channels = image.channel.size();
509
50.6k
  for (bool is_dc : {true, false}) {
510
50.6k
    size_t group_dim = options.group_dim * (is_dc ? kBlockDim : 1);
511
50.6k
    size_t c = image.nb_meta_channels;
512
440k
    for (; c < nb_channels; c++) {
513
392k
      const Channel &ch = image.channel[c];
514
392k
      if (ch.w > options.group_dim || ch.h > options.group_dim) break;
515
392k
    }
516
77.1k
    for (; c < nb_channels; c++) {
517
26.5k
      const Channel &ch = image.channel[c];
518
26.5k
      if (ch.w == 0 || ch.h == 0) continue;  // skip empty
519
26.5k
      bool is_dc_channel = std::min(ch.hshift, ch.vshift) >= 3;
520
26.5k
      if (is_dc_channel != is_dc) continue;
521
13.2k
      size_t tile_dim = group_dim >> std::max(ch.hshift, ch.vshift);
522
13.2k
      if (tile_dim == 0) {
523
0
        return JXL_FAILURE("Inconsistent transforms");
524
0
      }
525
13.2k
    }
526
50.6k
  }
527
25.3k
  return true;
528
25.3k
}
529
530
Status ModularDecode(BitReader *br, Image &image, GroupHeader &header,
531
                     size_t group_id, ModularOptions *options,
532
                     const Tree *global_tree, const ANSCode *global_code,
533
                     const std::vector<uint8_t> *global_ctx_map,
534
31.4k
                     const bool allow_truncated_group) {
535
31.4k
  if (image.channel.empty()) return true;
536
25.3k
  JxlMemoryManager *memory_manager = image.memory_manager();
537
538
  // decode transforms
539
25.3k
  Status status = Bundle::Read(br, &header);
540
25.3k
  if (!allow_truncated_group) JXL_RETURN_IF_ERROR(status);
541
25.3k
  if (status.IsFatalError()) return status;
542
25.3k
  if (!br->AllReadsWithinBounds()) {
543
    // Don't do/undo transforms if header is incomplete.
544
0
    header.transforms.clear();
545
0
    image.transform = header.transforms;
546
0
    for (auto &ch : image.channel) {
547
0
      ZeroFillImage(&ch.plane);
548
0
    }
549
0
    return Status(StatusCode::kNotEnoughBytes);
550
0
  }
551
552
25.3k
  JXL_DEBUG_V(3, "Image data underwent %" PRIuS " transformations: ",
553
25.3k
              header.transforms.size());
554
25.3k
  image.transform = header.transforms;
555
25.3k
  for (Transform &transform : image.transform) {
556
13.3k
    JXL_RETURN_IF_ERROR(transform.MetaApply(image));
557
13.3k
  }
558
25.3k
  if (image.error) {
559
0
    return JXL_FAILURE("Corrupt file. Aborting.");
560
0
  }
561
25.3k
  JXL_RETURN_IF_ERROR(ValidateChannelDimensions(image, *options));
562
563
25.3k
  size_t nb_channels = image.channel.size();
564
565
25.3k
  size_t num_chans = 0;
566
25.3k
  size_t distance_multiplier = 0;
567
221k
  for (size_t i = 0; i < nb_channels; i++) {
568
197k
    Channel &channel = image.channel[i];
569
197k
    if (!channel.w || !channel.h) {
570
1.95k
      continue;  // skip empty channels
571
1.95k
    }
572
195k
    if (i >= image.nb_meta_channels && (channel.w > options->max_chan_size ||
573
194k
                                        channel.h > options->max_chan_size)) {
574
1.38k
      break;
575
1.38k
    }
576
194k
    if (channel.w > distance_multiplier) {
577
36.9k
      distance_multiplier = channel.w;
578
36.9k
    }
579
194k
    num_chans++;
580
194k
  }
581
25.3k
  if (num_chans == 0) return true;
582
583
25.1k
  size_t next_channel = 0;
584
25.1k
  auto scope_guard = MakeScopeGuard([&]() {
585
2.03k
    for (size_t c = next_channel; c < image.channel.size(); c++) {
586
1.97k
      ZeroFillImage(&image.channel[c].plane);
587
1.97k
    }
588
53
  });
589
  // Do not do anything if truncated groups are not allowed.
590
25.1k
  if (allow_truncated_group) scope_guard.Disarm();
591
592
  // Read tree.
593
25.1k
  Tree tree_storage;
594
25.1k
  std::vector<uint8_t> context_map_storage;
595
25.1k
  ANSCode code_storage;
596
25.1k
  const Tree *tree = &tree_storage;
597
25.1k
  const ANSCode *code = &code_storage;
598
25.1k
  const std::vector<uint8_t> *context_map = &context_map_storage;
599
25.1k
  if (!header.use_global_tree) {
600
3.75k
    uint64_t max_tree_size = 1024;
601
33.8k
    for (size_t i = 0; i < nb_channels; i++) {
602
30.1k
      Channel &channel = image.channel[i];
603
30.1k
      if (i >= image.nb_meta_channels && (channel.w > options->max_chan_size ||
604
29.5k
                                          channel.h > options->max_chan_size)) {
605
0
        break;
606
0
      }
607
30.1k
      uint64_t pixels = channel.w * channel.h;
608
30.1k
      max_tree_size += pixels;
609
30.1k
    }
610
3.75k
    max_tree_size = std::min(static_cast<uint64_t>(1 << 20), max_tree_size);
611
3.75k
    JXL_RETURN_IF_ERROR(
612
3.75k
        DecodeTree(memory_manager, br, &tree_storage, max_tree_size));
613
3.73k
    JXL_RETURN_IF_ERROR(DecodeHistograms(memory_manager, br,
614
3.73k
                                         (tree_storage.size() + 1) / 2,
615
3.73k
                                         &code_storage, &context_map_storage));
616
21.4k
  } else {
617
21.4k
    if (!global_tree || !global_code || !global_ctx_map ||
618
21.4k
        global_tree->empty()) {
619
1
      return JXL_FAILURE("No global tree available but one was requested");
620
1
    }
621
21.4k
    tree = global_tree;
622
21.4k
    code = global_code;
623
21.4k
    context_map = global_ctx_map;
624
21.4k
  }
625
626
  // Read channels
627
50.3k
  JXL_ASSIGN_OR_RETURN(ANSSymbolReader reader,
628
50.3k
                       ANSSymbolReader::Create(code, br, distance_multiplier));
629
50.3k
  auto tree_lut = jxl::make_unique<TreeLut<uint8_t, false, false>>();
630
50.3k
  uint32_t fl_run = 0;
631
50.3k
  uint32_t fl_v = 0;
632
219k
  for (; next_channel < nb_channels; next_channel++) {
633
195k
    Channel &channel = image.channel[next_channel];
634
195k
    if (!channel.w || !channel.h) {
635
1.95k
      continue;  // skip empty channels
636
1.95k
    }
637
193k
    if (next_channel >= image.nb_meta_channels &&
638
193k
        (channel.w > options->max_chan_size ||
639
192k
         channel.h > options->max_chan_size)) {
640
1.27k
      break;
641
1.27k
    }
642
192k
    JXL_RETURN_IF_ERROR(DecodeModularChannelMAANS(
643
192k
        br, &reader, *context_map, *tree, header.wp_header, next_channel,
644
192k
        group_id, *tree_lut, &image, fl_run, fl_v));
645
646
    // Truncated group.
647
192k
    if (!br->AllReadsWithinBounds()) {
648
33
      if (!allow_truncated_group) return JXL_FAILURE("Truncated input");
649
0
      return Status(StatusCode::kNotEnoughBytes);
650
33
    }
651
192k
  }
652
653
  // Make sure no zero-filling happens even if next_channel < nb_channels.
654
25.1k
  scope_guard.Disarm();
655
656
25.1k
  if (!reader.CheckANSFinalState()) {
657
0
    return JXL_FAILURE("ANS decode final state failed");
658
0
  }
659
25.1k
  return true;
660
25.1k
}
661
662
Status ModularGenericDecompress(BitReader *br, Image &image,
663
                                GroupHeader *header, size_t group_id,
664
                                ModularOptions *options, bool undo_transforms,
665
                                const Tree *tree, const ANSCode *code,
666
                                const std::vector<uint8_t> *ctx_map,
667
31.4k
                                bool allow_truncated_group) {
668
31.4k
  std::vector<std::pair<uint32_t, uint32_t>> req_sizes;
669
31.4k
  req_sizes.reserve(image.channel.size());
670
100k
  for (const auto &c : image.channel) {
671
100k
    req_sizes.emplace_back(c.w, c.h);
672
100k
  }
673
31.4k
  GroupHeader local_header;
674
31.4k
  if (header == nullptr) header = &local_header;
675
31.4k
  size_t bit_pos = br->TotalBitsConsumed();
676
31.4k
  auto dec_status = ModularDecode(br, image, *header, group_id, options, tree,
677
31.4k
                                  code, ctx_map, allow_truncated_group);
678
31.4k
  if (!allow_truncated_group) JXL_RETURN_IF_ERROR(dec_status);
679
31.3k
  if (dec_status.IsFatalError()) return dec_status;
680
31.3k
  if (undo_transforms) image.undo_transforms(header->wp_header);
681
31.3k
  if (image.error) return JXL_FAILURE("Corrupt file. Aborting.");
682
31.3k
  JXL_DEBUG_V(4,
683
31.3k
              "Modular-decoded a %" PRIuS "x%" PRIuS " nbchans=%" PRIuS
684
31.3k
              " image from %" PRIuS " bytes",
685
31.3k
              image.w, image.h, image.channel.size(),
686
31.3k
              (br->TotalBitsConsumed() - bit_pos) / 8);
687
31.3k
  JXL_DEBUG_V(5, "Modular image: %s", image.DebugString().c_str());
688
31.3k
  (void)bit_pos;
689
  // Check that after applying all transforms we are back to the requested
690
  // image sizes, otherwise there's a programming error with the
691
  // transformations.
692
31.3k
  if (undo_transforms) {
693
19.3k
    JXL_ENSURE(image.channel.size() == req_sizes.size());
694
97.5k
    for (size_t c = 0; c < req_sizes.size(); c++) {
695
78.2k
      JXL_ENSURE(req_sizes[c].first == image.channel[c].w);
696
78.2k
      JXL_ENSURE(req_sizes[c].second == image.channel[c].h);
697
78.2k
    }
698
19.3k
  }
699
31.3k
  return dec_status;
700
31.3k
}
701
702
}  // namespace jxl