Coverage Report

Created: 2025-09-08 07:52

/src/aom/av1/common/warped_motion.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <stdio.h>
13
#include <stdlib.h>
14
#include <memory.h>
15
#include <math.h>
16
#include <assert.h>
17
18
#include "config/av1_rtcd.h"
19
20
#include "av1/common/av1_common_int.h"
21
#include "av1/common/warped_motion.h"
22
#include "av1/common/scale.h"
23
24
// For warping, we really use a 6-tap filter, but we do blocks of 8 pixels
25
// at a time. The zoom/rotation/shear in the model are applied to the
26
// "fractional" position of each pixel, which therefore varies within
27
// [-1, 2) * WARPEDPIXEL_PREC_SHIFTS.
28
// We need an extra 2 taps to fit this in, for a total of 8 taps.
29
/* clang-format off */
30
const WarpedFilterCoeff av1_warped_filter[WARPEDPIXEL_PREC_SHIFTS * 3 + 1]
31
                                         [8] = {
32
  // [-1, 0)
33
  { 0,   0, 127,   1,   0, 0, 0, 0 }, { 0, - 1, 127,   2,   0, 0, 0, 0 },
34
  { 1, - 3, 127,   4, - 1, 0, 0, 0 }, { 1, - 4, 126,   6, - 2, 1, 0, 0 },
35
  { 1, - 5, 126,   8, - 3, 1, 0, 0 }, { 1, - 6, 125,  11, - 4, 1, 0, 0 },
36
  { 1, - 7, 124,  13, - 4, 1, 0, 0 }, { 2, - 8, 123,  15, - 5, 1, 0, 0 },
37
  { 2, - 9, 122,  18, - 6, 1, 0, 0 }, { 2, -10, 121,  20, - 6, 1, 0, 0 },
38
  { 2, -11, 120,  22, - 7, 2, 0, 0 }, { 2, -12, 119,  25, - 8, 2, 0, 0 },
39
  { 3, -13, 117,  27, - 8, 2, 0, 0 }, { 3, -13, 116,  29, - 9, 2, 0, 0 },
40
  { 3, -14, 114,  32, -10, 3, 0, 0 }, { 3, -15, 113,  35, -10, 2, 0, 0 },
41
  { 3, -15, 111,  37, -11, 3, 0, 0 }, { 3, -16, 109,  40, -11, 3, 0, 0 },
42
  { 3, -16, 108,  42, -12, 3, 0, 0 }, { 4, -17, 106,  45, -13, 3, 0, 0 },
43
  { 4, -17, 104,  47, -13, 3, 0, 0 }, { 4, -17, 102,  50, -14, 3, 0, 0 },
44
  { 4, -17, 100,  52, -14, 3, 0, 0 }, { 4, -18,  98,  55, -15, 4, 0, 0 },
45
  { 4, -18,  96,  58, -15, 3, 0, 0 }, { 4, -18,  94,  60, -16, 4, 0, 0 },
46
  { 4, -18,  91,  63, -16, 4, 0, 0 }, { 4, -18,  89,  65, -16, 4, 0, 0 },
47
  { 4, -18,  87,  68, -17, 4, 0, 0 }, { 4, -18,  85,  70, -17, 4, 0, 0 },
48
  { 4, -18,  82,  73, -17, 4, 0, 0 }, { 4, -18,  80,  75, -17, 4, 0, 0 },
49
  { 4, -18,  78,  78, -18, 4, 0, 0 }, { 4, -17,  75,  80, -18, 4, 0, 0 },
50
  { 4, -17,  73,  82, -18, 4, 0, 0 }, { 4, -17,  70,  85, -18, 4, 0, 0 },
51
  { 4, -17,  68,  87, -18, 4, 0, 0 }, { 4, -16,  65,  89, -18, 4, 0, 0 },
52
  { 4, -16,  63,  91, -18, 4, 0, 0 }, { 4, -16,  60,  94, -18, 4, 0, 0 },
53
  { 3, -15,  58,  96, -18, 4, 0, 0 }, { 4, -15,  55,  98, -18, 4, 0, 0 },
54
  { 3, -14,  52, 100, -17, 4, 0, 0 }, { 3, -14,  50, 102, -17, 4, 0, 0 },
55
  { 3, -13,  47, 104, -17, 4, 0, 0 }, { 3, -13,  45, 106, -17, 4, 0, 0 },
56
  { 3, -12,  42, 108, -16, 3, 0, 0 }, { 3, -11,  40, 109, -16, 3, 0, 0 },
57
  { 3, -11,  37, 111, -15, 3, 0, 0 }, { 2, -10,  35, 113, -15, 3, 0, 0 },
58
  { 3, -10,  32, 114, -14, 3, 0, 0 }, { 2, - 9,  29, 116, -13, 3, 0, 0 },
59
  { 2, - 8,  27, 117, -13, 3, 0, 0 }, { 2, - 8,  25, 119, -12, 2, 0, 0 },
60
  { 2, - 7,  22, 120, -11, 2, 0, 0 }, { 1, - 6,  20, 121, -10, 2, 0, 0 },
61
  { 1, - 6,  18, 122, - 9, 2, 0, 0 }, { 1, - 5,  15, 123, - 8, 2, 0, 0 },
62
  { 1, - 4,  13, 124, - 7, 1, 0, 0 }, { 1, - 4,  11, 125, - 6, 1, 0, 0 },
63
  { 1, - 3,   8, 126, - 5, 1, 0, 0 }, { 1, - 2,   6, 126, - 4, 1, 0, 0 },
64
  { 0, - 1,   4, 127, - 3, 1, 0, 0 }, { 0,   0,   2, 127, - 1, 0, 0, 0 },
65
66
  // [0, 1)
67
  { 0,  0,   0, 127,   1,   0,  0,  0}, { 0,  0,  -1, 127,   2,   0,  0,  0},
68
  { 0,  1,  -3, 127,   4,  -2,  1,  0}, { 0,  1,  -5, 127,   6,  -2,  1,  0},
69
  { 0,  2,  -6, 126,   8,  -3,  1,  0}, {-1,  2,  -7, 126,  11,  -4,  2, -1},
70
  {-1,  3,  -8, 125,  13,  -5,  2, -1}, {-1,  3, -10, 124,  16,  -6,  3, -1},
71
  {-1,  4, -11, 123,  18,  -7,  3, -1}, {-1,  4, -12, 122,  20,  -7,  3, -1},
72
  {-1,  4, -13, 121,  23,  -8,  3, -1}, {-2,  5, -14, 120,  25,  -9,  4, -1},
73
  {-1,  5, -15, 119,  27, -10,  4, -1}, {-1,  5, -16, 118,  30, -11,  4, -1},
74
  {-2,  6, -17, 116,  33, -12,  5, -1}, {-2,  6, -17, 114,  35, -12,  5, -1},
75
  {-2,  6, -18, 113,  38, -13,  5, -1}, {-2,  7, -19, 111,  41, -14,  6, -2},
76
  {-2,  7, -19, 110,  43, -15,  6, -2}, {-2,  7, -20, 108,  46, -15,  6, -2},
77
  {-2,  7, -20, 106,  49, -16,  6, -2}, {-2,  7, -21, 104,  51, -16,  7, -2},
78
  {-2,  7, -21, 102,  54, -17,  7, -2}, {-2,  8, -21, 100,  56, -18,  7, -2},
79
  {-2,  8, -22,  98,  59, -18,  7, -2}, {-2,  8, -22,  96,  62, -19,  7, -2},
80
  {-2,  8, -22,  94,  64, -19,  7, -2}, {-2,  8, -22,  91,  67, -20,  8, -2},
81
  {-2,  8, -22,  89,  69, -20,  8, -2}, {-2,  8, -22,  87,  72, -21,  8, -2},
82
  {-2,  8, -21,  84,  74, -21,  8, -2}, {-2,  8, -22,  82,  77, -21,  8, -2},
83
  {-2,  8, -21,  79,  79, -21,  8, -2}, {-2,  8, -21,  77,  82, -22,  8, -2},
84
  {-2,  8, -21,  74,  84, -21,  8, -2}, {-2,  8, -21,  72,  87, -22,  8, -2},
85
  {-2,  8, -20,  69,  89, -22,  8, -2}, {-2,  8, -20,  67,  91, -22,  8, -2},
86
  {-2,  7, -19,  64,  94, -22,  8, -2}, {-2,  7, -19,  62,  96, -22,  8, -2},
87
  {-2,  7, -18,  59,  98, -22,  8, -2}, {-2,  7, -18,  56, 100, -21,  8, -2},
88
  {-2,  7, -17,  54, 102, -21,  7, -2}, {-2,  7, -16,  51, 104, -21,  7, -2},
89
  {-2,  6, -16,  49, 106, -20,  7, -2}, {-2,  6, -15,  46, 108, -20,  7, -2},
90
  {-2,  6, -15,  43, 110, -19,  7, -2}, {-2,  6, -14,  41, 111, -19,  7, -2},
91
  {-1,  5, -13,  38, 113, -18,  6, -2}, {-1,  5, -12,  35, 114, -17,  6, -2},
92
  {-1,  5, -12,  33, 116, -17,  6, -2}, {-1,  4, -11,  30, 118, -16,  5, -1},
93
  {-1,  4, -10,  27, 119, -15,  5, -1}, {-1,  4,  -9,  25, 120, -14,  5, -2},
94
  {-1,  3,  -8,  23, 121, -13,  4, -1}, {-1,  3,  -7,  20, 122, -12,  4, -1},
95
  {-1,  3,  -7,  18, 123, -11,  4, -1}, {-1,  3,  -6,  16, 124, -10,  3, -1},
96
  {-1,  2,  -5,  13, 125,  -8,  3, -1}, {-1,  2,  -4,  11, 126,  -7,  2, -1},
97
  { 0,  1,  -3,   8, 126,  -6,  2,  0}, { 0,  1,  -2,   6, 127,  -5,  1,  0},
98
  { 0,  1,  -2,   4, 127,  -3,  1,  0}, { 0,  0,   0,   2, 127,  -1,  0,  0},
99
100
  // [1, 2)
101
  { 0, 0, 0,   1, 127,   0,   0, 0 }, { 0, 0, 0, - 1, 127,   2,   0, 0 },
102
  { 0, 0, 1, - 3, 127,   4, - 1, 0 }, { 0, 0, 1, - 4, 126,   6, - 2, 1 },
103
  { 0, 0, 1, - 5, 126,   8, - 3, 1 }, { 0, 0, 1, - 6, 125,  11, - 4, 1 },
104
  { 0, 0, 1, - 7, 124,  13, - 4, 1 }, { 0, 0, 2, - 8, 123,  15, - 5, 1 },
105
  { 0, 0, 2, - 9, 122,  18, - 6, 1 }, { 0, 0, 2, -10, 121,  20, - 6, 1 },
106
  { 0, 0, 2, -11, 120,  22, - 7, 2 }, { 0, 0, 2, -12, 119,  25, - 8, 2 },
107
  { 0, 0, 3, -13, 117,  27, - 8, 2 }, { 0, 0, 3, -13, 116,  29, - 9, 2 },
108
  { 0, 0, 3, -14, 114,  32, -10, 3 }, { 0, 0, 3, -15, 113,  35, -10, 2 },
109
  { 0, 0, 3, -15, 111,  37, -11, 3 }, { 0, 0, 3, -16, 109,  40, -11, 3 },
110
  { 0, 0, 3, -16, 108,  42, -12, 3 }, { 0, 0, 4, -17, 106,  45, -13, 3 },
111
  { 0, 0, 4, -17, 104,  47, -13, 3 }, { 0, 0, 4, -17, 102,  50, -14, 3 },
112
  { 0, 0, 4, -17, 100,  52, -14, 3 }, { 0, 0, 4, -18,  98,  55, -15, 4 },
113
  { 0, 0, 4, -18,  96,  58, -15, 3 }, { 0, 0, 4, -18,  94,  60, -16, 4 },
114
  { 0, 0, 4, -18,  91,  63, -16, 4 }, { 0, 0, 4, -18,  89,  65, -16, 4 },
115
  { 0, 0, 4, -18,  87,  68, -17, 4 }, { 0, 0, 4, -18,  85,  70, -17, 4 },
116
  { 0, 0, 4, -18,  82,  73, -17, 4 }, { 0, 0, 4, -18,  80,  75, -17, 4 },
117
  { 0, 0, 4, -18,  78,  78, -18, 4 }, { 0, 0, 4, -17,  75,  80, -18, 4 },
118
  { 0, 0, 4, -17,  73,  82, -18, 4 }, { 0, 0, 4, -17,  70,  85, -18, 4 },
119
  { 0, 0, 4, -17,  68,  87, -18, 4 }, { 0, 0, 4, -16,  65,  89, -18, 4 },
120
  { 0, 0, 4, -16,  63,  91, -18, 4 }, { 0, 0, 4, -16,  60,  94, -18, 4 },
121
  { 0, 0, 3, -15,  58,  96, -18, 4 }, { 0, 0, 4, -15,  55,  98, -18, 4 },
122
  { 0, 0, 3, -14,  52, 100, -17, 4 }, { 0, 0, 3, -14,  50, 102, -17, 4 },
123
  { 0, 0, 3, -13,  47, 104, -17, 4 }, { 0, 0, 3, -13,  45, 106, -17, 4 },
124
  { 0, 0, 3, -12,  42, 108, -16, 3 }, { 0, 0, 3, -11,  40, 109, -16, 3 },
125
  { 0, 0, 3, -11,  37, 111, -15, 3 }, { 0, 0, 2, -10,  35, 113, -15, 3 },
126
  { 0, 0, 3, -10,  32, 114, -14, 3 }, { 0, 0, 2, - 9,  29, 116, -13, 3 },
127
  { 0, 0, 2, - 8,  27, 117, -13, 3 }, { 0, 0, 2, - 8,  25, 119, -12, 2 },
128
  { 0, 0, 2, - 7,  22, 120, -11, 2 }, { 0, 0, 1, - 6,  20, 121, -10, 2 },
129
  { 0, 0, 1, - 6,  18, 122, - 9, 2 }, { 0, 0, 1, - 5,  15, 123, - 8, 2 },
130
  { 0, 0, 1, - 4,  13, 124, - 7, 1 }, { 0, 0, 1, - 4,  11, 125, - 6, 1 },
131
  { 0, 0, 1, - 3,   8, 126, - 5, 1 }, { 0, 0, 1, - 2,   6, 126, - 4, 1 },
132
  { 0, 0, 0, - 1,   4, 127, - 3, 1 }, { 0, 0, 0,   0,   2, 127, - 1, 0 },
133
  // dummy (replicate row index 191)
134
  { 0, 0, 0,   0,   2, 127, - 1, 0 },
135
};
136
137
/* clang-format on */
138
139
133k
#define DIV_LUT_PREC_BITS 14
140
133k
#define DIV_LUT_BITS 8
141
#define DIV_LUT_NUM (1 << DIV_LUT_BITS)
142
143
static const uint16_t div_lut[DIV_LUT_NUM + 1] = {
144
  16384, 16320, 16257, 16194, 16132, 16070, 16009, 15948, 15888, 15828, 15768,
145
  15709, 15650, 15592, 15534, 15477, 15420, 15364, 15308, 15252, 15197, 15142,
146
  15087, 15033, 14980, 14926, 14873, 14821, 14769, 14717, 14665, 14614, 14564,
147
  14513, 14463, 14413, 14364, 14315, 14266, 14218, 14170, 14122, 14075, 14028,
148
  13981, 13935, 13888, 13843, 13797, 13752, 13707, 13662, 13618, 13574, 13530,
149
  13487, 13443, 13400, 13358, 13315, 13273, 13231, 13190, 13148, 13107, 13066,
150
  13026, 12985, 12945, 12906, 12866, 12827, 12788, 12749, 12710, 12672, 12633,
151
  12596, 12558, 12520, 12483, 12446, 12409, 12373, 12336, 12300, 12264, 12228,
152
  12193, 12157, 12122, 12087, 12053, 12018, 11984, 11950, 11916, 11882, 11848,
153
  11815, 11782, 11749, 11716, 11683, 11651, 11619, 11586, 11555, 11523, 11491,
154
  11460, 11429, 11398, 11367, 11336, 11305, 11275, 11245, 11215, 11185, 11155,
155
  11125, 11096, 11067, 11038, 11009, 10980, 10951, 10923, 10894, 10866, 10838,
156
  10810, 10782, 10755, 10727, 10700, 10673, 10645, 10618, 10592, 10565, 10538,
157
  10512, 10486, 10460, 10434, 10408, 10382, 10356, 10331, 10305, 10280, 10255,
158
  10230, 10205, 10180, 10156, 10131, 10107, 10082, 10058, 10034, 10010, 9986,
159
  9963,  9939,  9916,  9892,  9869,  9846,  9823,  9800,  9777,  9754,  9732,
160
  9709,  9687,  9664,  9642,  9620,  9598,  9576,  9554,  9533,  9511,  9489,
161
  9468,  9447,  9425,  9404,  9383,  9362,  9341,  9321,  9300,  9279,  9259,
162
  9239,  9218,  9198,  9178,  9158,  9138,  9118,  9098,  9079,  9059,  9039,
163
  9020,  9001,  8981,  8962,  8943,  8924,  8905,  8886,  8867,  8849,  8830,
164
  8812,  8793,  8775,  8756,  8738,  8720,  8702,  8684,  8666,  8648,  8630,
165
  8613,  8595,  8577,  8560,  8542,  8525,  8508,  8490,  8473,  8456,  8439,
166
  8422,  8405,  8389,  8372,  8355,  8339,  8322,  8306,  8289,  8273,  8257,
167
  8240,  8224,  8208,  8192,
168
};
169
170
// Decomposes a divisor D such that 1/D = y/2^shift, where y is returned
171
// at precision of DIV_LUT_PREC_BITS along with the shift.
172
2.94k
static int16_t resolve_divisor_64(uint64_t D, int16_t *shift) {
173
2.94k
  int64_t f;
174
2.94k
  *shift = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32
175
2.94k
                               : get_msb((unsigned int)D));
176
  // e is obtained from D after resetting the most significant 1 bit.
177
2.94k
  const int64_t e = D - ((uint64_t)1 << *shift);
178
  // Get the most significant DIV_LUT_BITS (8) bits of e into f
179
2.94k
  if (*shift > DIV_LUT_BITS)
180
2.94k
    f = ROUND_POWER_OF_TWO_64(e, *shift - DIV_LUT_BITS);
181
0
  else
182
0
    f = e << (DIV_LUT_BITS - *shift);
183
2.94k
  assert(f <= DIV_LUT_NUM);
184
2.94k
  *shift += DIV_LUT_PREC_BITS;
185
  // Use f as lookup into the precomputed table of multipliers
186
2.94k
  return div_lut[f];
187
2.94k
}
188
189
130k
static int16_t resolve_divisor_32(uint32_t D, int16_t *shift) {
190
130k
  int32_t f;
191
130k
  *shift = get_msb(D);
192
  // e is obtained from D after resetting the most significant 1 bit.
193
130k
  const int32_t e = D - ((uint32_t)1 << *shift);
194
  // Get the most significant DIV_LUT_BITS (8) bits of e into f
195
130k
  if (*shift > DIV_LUT_BITS)
196
130k
    f = ROUND_POWER_OF_TWO(e, *shift - DIV_LUT_BITS);
197
77
  else
198
77
    f = e << (DIV_LUT_BITS - *shift);
199
130k
  assert(f <= DIV_LUT_NUM);
200
130k
  *shift += DIV_LUT_PREC_BITS;
201
  // Use f as lookup into the precomputed table of multipliers
202
130k
  return div_lut[f];
203
130k
}
204
205
130k
static int is_affine_valid(const WarpedMotionParams *const wm) {
206
130k
  const int32_t *mat = wm->wmmat;
207
130k
  return (mat[2] > 0);
208
130k
}
209
210
static int is_affine_shear_allowed(int16_t alpha, int16_t beta, int16_t gamma,
211
130k
                                   int16_t delta) {
212
130k
  if ((4 * abs(alpha) + 7 * abs(beta) >= (1 << WARPEDMODEL_PREC_BITS)) ||
213
130k
      (4 * abs(gamma) + 4 * abs(delta) >= (1 << WARPEDMODEL_PREC_BITS)))
214
1.32k
    return 0;
215
129k
  else
216
129k
    return 1;
217
130k
}
218
219
#ifndef NDEBUG
220
// Check that the given warp model satisfies the relevant constraints for
221
// its stated model type
222
static void check_model_consistency(WarpedMotionParams *wm) {
223
  switch (wm->wmtype) {
224
    case IDENTITY:
225
      assert(wm->wmmat[0] == 0);
226
      assert(wm->wmmat[1] == 0);
227
      AOM_FALLTHROUGH_INTENDED;
228
    case TRANSLATION:
229
      assert(wm->wmmat[2] == 1 << WARPEDMODEL_PREC_BITS);
230
      assert(wm->wmmat[3] == 0);
231
      AOM_FALLTHROUGH_INTENDED;
232
    case ROTZOOM:
233
      assert(wm->wmmat[4] == -wm->wmmat[3]);
234
      assert(wm->wmmat[5] == wm->wmmat[2]);
235
      AOM_FALLTHROUGH_INTENDED;
236
    case AFFINE: break;
237
    default: assert(0 && "Bad wmtype");
238
  }
239
}
240
#endif  // NDEBUG
241
242
// Returns 1 on success or 0 on an invalid affine set
243
130k
int av1_get_shear_params(WarpedMotionParams *wm) {
244
#ifndef NDEBUG
245
  // Check that models have been constructed sensibly
246
  // This is a good place to check, because this function does not need to
247
  // be called until after model construction is complete, but must be called
248
  // before the model can be used for prediction.
249
  check_model_consistency(wm);
250
#endif  // NDEBUG
251
252
130k
  const int32_t *mat = wm->wmmat;
253
130k
  if (!is_affine_valid(wm)) return 0;
254
255
130k
  wm->alpha =
256
130k
      clamp(mat[2] - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX);
257
130k
  wm->beta = clamp(mat[3], INT16_MIN, INT16_MAX);
258
130k
  int16_t shift;
259
130k
  int16_t y = resolve_divisor_32(abs(mat[2]), &shift) * (mat[2] < 0 ? -1 : 1);
260
130k
  int64_t v = ((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) * y;
261
130k
  wm->gamma =
262
130k
      clamp((int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift), INT16_MIN, INT16_MAX);
263
130k
  v = ((int64_t)mat[3] * mat[4]) * y;
264
130k
  wm->delta = clamp(mat[5] - (int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift) -
265
130k
                        (1 << WARPEDMODEL_PREC_BITS),
266
130k
                    INT16_MIN, INT16_MAX);
267
268
130k
  wm->alpha = ROUND_POWER_OF_TWO_SIGNED(wm->alpha, WARP_PARAM_REDUCE_BITS) *
269
130k
              (1 << WARP_PARAM_REDUCE_BITS);
270
130k
  wm->beta = ROUND_POWER_OF_TWO_SIGNED(wm->beta, WARP_PARAM_REDUCE_BITS) *
271
130k
             (1 << WARP_PARAM_REDUCE_BITS);
272
130k
  wm->gamma = ROUND_POWER_OF_TWO_SIGNED(wm->gamma, WARP_PARAM_REDUCE_BITS) *
273
130k
              (1 << WARP_PARAM_REDUCE_BITS);
274
130k
  wm->delta = ROUND_POWER_OF_TWO_SIGNED(wm->delta, WARP_PARAM_REDUCE_BITS) *
275
130k
              (1 << WARP_PARAM_REDUCE_BITS);
276
277
130k
  if (!is_affine_shear_allowed(wm->alpha, wm->beta, wm->gamma, wm->delta))
278
1.32k
    return 0;
279
280
129k
  return 1;
281
130k
}
282
283
#if CONFIG_AV1_HIGHBITDEPTH
284
/* Note: For an explanation of the warp algorithm, and some notes on bit widths
285
    for hardware implementations, see the comments above av1_warp_affine_c
286
*/
287
void av1_highbd_warp_affine_c(const int32_t *mat, const uint16_t *ref,
288
                              int width, int height, int stride, uint16_t *pred,
289
                              int p_col, int p_row, int p_width, int p_height,
290
                              int p_stride, int subsampling_x,
291
                              int subsampling_y, int bd,
292
                              ConvolveParams *conv_params, int16_t alpha,
293
11.1k
                              int16_t beta, int16_t gamma, int16_t delta) {
294
11.1k
  int32_t tmp[15 * 8];
295
11.1k
  const int reduce_bits_horiz = conv_params->round_0;
296
11.1k
  const int reduce_bits_vert = conv_params->is_compound
297
11.1k
                                   ? conv_params->round_1
298
11.1k
                                   : 2 * FILTER_BITS - reduce_bits_horiz;
299
11.1k
  const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz;
300
11.1k
  const int offset_bits_horiz = bd + FILTER_BITS - 1;
301
11.1k
  const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz;
302
11.1k
  const int round_bits =
303
11.1k
      2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
304
11.1k
  const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
305
11.1k
  (void)max_bits_horiz;
306
11.1k
  assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
307
308
  // Check that, even with 12-bit input, the intermediate values will fit
309
  // into an unsigned 16-bit intermediate array.
310
11.1k
  assert(bd + FILTER_BITS + 2 - conv_params->round_0 <= 16);
311
312
24.1k
  for (int i = p_row; i < p_row + p_height; i += 8) {
313
35.0k
    for (int j = p_col; j < p_col + p_width; j += 8) {
314
      // Calculate the center of this 8x8 block,
315
      // project to luma coordinates (if in a subsampled chroma plane),
316
      // apply the affine transformation,
317
      // then convert back to the original coordinates (if necessary)
318
22.0k
      const int32_t src_x = (j + 4) << subsampling_x;
319
22.0k
      const int32_t src_y = (i + 4) << subsampling_y;
320
22.0k
      const int64_t dst_x =
321
22.0k
          (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0];
322
22.0k
      const int64_t dst_y =
323
22.0k
          (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1];
324
22.0k
      const int64_t x4 = dst_x >> subsampling_x;
325
22.0k
      const int64_t y4 = dst_y >> subsampling_y;
326
327
22.0k
      const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS);
328
22.0k
      int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
329
22.0k
      const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS);
330
22.0k
      int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
331
332
22.0k
      sx4 += alpha * (-4) + beta * (-4);
333
22.0k
      sy4 += gamma * (-4) + delta * (-4);
334
335
22.0k
      sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
336
22.0k
      sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
337
338
      // Horizontal filter
339
352k
      for (int k = -7; k < 8; ++k) {
340
330k
        const int iy = clamp(iy4 + k, 0, height - 1);
341
342
330k
        int sx = sx4 + beta * (k + 4);
343
2.97M
        for (int l = -4; l < 4; ++l) {
344
2.64M
          int ix = ix4 + l - 3;
345
2.64M
          const int offs = ROUND_POWER_OF_TWO(sx, WARPEDDIFF_PREC_BITS) +
346
2.64M
                           WARPEDPIXEL_PREC_SHIFTS;
347
2.64M
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
348
2.64M
          const WarpedFilterCoeff *coeffs = av1_warped_filter[offs];
349
350
2.64M
          int32_t sum = 1 << offset_bits_horiz;
351
23.8M
          for (int m = 0; m < 8; ++m) {
352
21.1M
            const int sample_x = clamp(ix + m, 0, width - 1);
353
21.1M
            sum += ref[iy * stride + sample_x] * coeffs[m];
354
21.1M
          }
355
2.64M
          sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz);
356
2.64M
          assert(0 <= sum && sum < (1 << max_bits_horiz));
357
2.64M
          tmp[(k + 7) * 8 + (l + 4)] = sum;
358
2.64M
          sx += alpha;
359
2.64M
        }
360
330k
      }
361
362
      // Vertical filter
363
198k
      for (int k = -4; k < AOMMIN(4, p_row + p_height - i - 4); ++k) {
364
176k
        int sy = sy4 + delta * (k + 4);
365
1.58M
        for (int l = -4; l < AOMMIN(4, p_col + p_width - j - 4); ++l) {
366
1.41M
          const int offs = ROUND_POWER_OF_TWO(sy, WARPEDDIFF_PREC_BITS) +
367
1.41M
                           WARPEDPIXEL_PREC_SHIFTS;
368
1.41M
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
369
1.41M
          const WarpedFilterCoeff *coeffs = av1_warped_filter[offs];
370
371
1.41M
          int32_t sum = 1 << offset_bits_vert;
372
12.7M
          for (int m = 0; m < 8; ++m) {
373
11.2M
            sum += tmp[(k + m + 4) * 8 + (l + 4)] * coeffs[m];
374
11.2M
          }
375
376
1.41M
          if (conv_params->is_compound) {
377
339k
            CONV_BUF_TYPE *p =
378
339k
                &conv_params
379
339k
                     ->dst[(i - p_row + k + 4) * conv_params->dst_stride +
380
339k
                           (j - p_col + l + 4)];
381
339k
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
382
339k
            if (conv_params->do_average) {
383
173k
              uint16_t *dst16 =
384
173k
                  &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
385
173k
              int32_t tmp32 = *p;
386
173k
              if (conv_params->use_dist_wtd_comp_avg) {
387
75.3k
                tmp32 = tmp32 * conv_params->fwd_offset +
388
75.3k
                        sum * conv_params->bck_offset;
389
75.3k
                tmp32 = tmp32 >> DIST_PRECISION_BITS;
390
98.0k
              } else {
391
98.0k
                tmp32 += sum;
392
98.0k
                tmp32 = tmp32 >> 1;
393
98.0k
              }
394
173k
              tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) -
395
173k
                      (1 << (offset_bits - conv_params->round_1 - 1));
396
173k
              *dst16 =
397
173k
                  clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp32, round_bits), bd);
398
173k
            } else {
399
166k
              *p = sum;
400
166k
            }
401
1.07M
          } else {
402
1.07M
            uint16_t *p =
403
1.07M
                &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
404
1.07M
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
405
1.07M
            assert(0 <= sum && sum < (1 << (bd + 2)));
406
1.07M
            *p = clip_pixel_highbd(sum - (1 << (bd - 1)) - (1 << bd), bd);
407
1.07M
          }
408
1.41M
          sy += gamma;
409
1.41M
        }
410
176k
      }
411
22.0k
    }
412
13.0k
  }
413
11.1k
}
414
415
void highbd_warp_plane(WarpedMotionParams *wm, const uint16_t *const ref,
416
                       int width, int height, int stride, uint16_t *const pred,
417
                       int p_col, int p_row, int p_width, int p_height,
418
                       int p_stride, int subsampling_x, int subsampling_y,
419
11.1k
                       int bd, ConvolveParams *conv_params) {
420
11.1k
  const int32_t *const mat = wm->wmmat;
421
11.1k
  const int16_t alpha = wm->alpha;
422
11.1k
  const int16_t beta = wm->beta;
423
11.1k
  const int16_t gamma = wm->gamma;
424
11.1k
  const int16_t delta = wm->delta;
425
426
11.1k
  av1_highbd_warp_affine(mat, ref, width, height, stride, pred, p_col, p_row,
427
11.1k
                         p_width, p_height, p_stride, subsampling_x,
428
11.1k
                         subsampling_y, bd, conv_params, alpha, beta, gamma,
429
11.1k
                         delta);
430
11.1k
}
431
#endif  // CONFIG_AV1_HIGHBITDEPTH
432
433
/* The warp filter for ROTZOOM and AFFINE models works as follows:
434
   * Split the input into 8x8 blocks
435
   * For each block, project the point (4, 4) within the block, to get the
436
     overall block position. Split into integer and fractional coordinates,
437
     maintaining full WARPEDMODEL precision
438
   * Filter horizontally: Generate 15 rows of 8 pixels each. Each pixel gets a
439
     variable horizontal offset. This means that, while the rows of the
440
     intermediate buffer align with the rows of the *reference* image, the
441
     columns align with the columns of the *destination* image.
442
   * Filter vertically: Generate the output block (up to 8x8 pixels, but if the
443
     destination is too small we crop the output at this stage). Each pixel has
444
     a variable vertical offset, so that the resulting rows are aligned with
445
     the rows of the destination image.
446
447
   To accomplish these alignments, we factor the warp matrix as a
448
   product of two shear / asymmetric zoom matrices:
449
   / a b \  = /   1       0    \ * / 1+alpha  beta \
450
   \ c d /    \ gamma  1+delta /   \    0      1   /
451
   where a, b, c, d are wmmat[2], wmmat[3], wmmat[4], wmmat[5] respectively.
452
   The horizontal shear (with alpha and beta) is applied first,
453
   then the vertical shear (with gamma and delta) is applied second.
454
455
   The only limitation is that, to fit this in a fixed 8-tap filter size,
456
   the fractional pixel offsets must be at most +-1. Since the horizontal filter
457
   generates 15 rows of 8 columns, and the initial point we project is at (4, 4)
458
   within the block, the parameters must satisfy
459
   4 * |alpha| + 7 * |beta| <= 1   and   4 * |gamma| + 4 * |delta| <= 1
460
   for this filter to be applicable.
461
462
   Note: This function assumes that the caller has done all of the relevant
463
   checks, ie. that we have a ROTZOOM or AFFINE model, that wm[4] and wm[5]
464
   are set appropriately (if using a ROTZOOM model), and that alpha, beta,
465
   gamma, delta are all in range.
466
467
   TODO(rachelbarker): Maybe support scaled references?
468
*/
469
/* A note on hardware implementation:
470
    The warp filter is intended to be implementable using the same hardware as
471
    the high-precision convolve filters from the loop-restoration and
472
    convolve-round experiments.
473
474
    For a single filter stage, considering all of the coefficient sets for the
475
    warp filter and the regular convolution filter, an input in the range
476
    [0, 2^k - 1] is mapped into the range [-56 * (2^k - 1), 184 * (2^k - 1)]
477
    before rounding.
478
479
    Allowing for some changes to the filter coefficient sets, call the range
480
    [-64 * 2^k, 192 * 2^k]. Then, if we initialize the accumulator to 64 * 2^k,
481
    we can replace this by the range [0, 256 * 2^k], which can be stored in an
482
    unsigned value with 8 + k bits.
483
484
    This allows the derivation of the appropriate bit widths and offsets for
485
    the various intermediate values: If
486
487
    F := FILTER_BITS = 7 (or else the above ranges need adjusting)
488
         So a *single* filter stage maps a k-bit input to a (k + F + 1)-bit
489
         intermediate value.
490
    H := ROUND0_BITS
491
    V := VERSHEAR_REDUCE_PREC_BITS
492
    (and note that we must have H + V = 2*F for the output to have the same
493
     scale as the input)
494
495
    then we end up with the following offsets and ranges:
496
    Horizontal filter: Apply an offset of 1 << (bd + F - 1), sum fits into a
497
                       uint{bd + F + 1}
498
    After rounding: The values stored in 'tmp' fit into a uint{bd + F + 1 - H}.
499
    Vertical filter: Apply an offset of 1 << (bd + 2*F - H), sum fits into a
500
                     uint{bd + 2*F + 2 - H}
501
    After rounding: The final value, before undoing the offset, fits into a
502
                    uint{bd + 2}.
503
504
    Then we need to undo the offsets before clamping to a pixel. Note that,
505
    if we do this at the end, the amount to subtract is actually independent
506
    of H and V:
507
508
    offset to subtract = (1 << ((bd + F - 1) - H + F - V)) +
509
                         (1 << ((bd + 2*F - H) - V))
510
                      == (1 << (bd - 1)) + (1 << bd)
511
512
    This allows us to entirely avoid clamping in both the warp filter and
513
    the convolve-round experiment. As of the time of writing, the Wiener filter
514
    from loop-restoration can encode a central coefficient up to 216, which
515
    leads to a maximum value of about 282 * 2^k after applying the offset.
516
    So in that case we still need to clamp.
517
*/
518
void av1_warp_affine_c(const int32_t *mat, const uint8_t *ref, int width,
519
                       int height, int stride, uint8_t *pred, int p_col,
520
                       int p_row, int p_width, int p_height, int p_stride,
521
                       int subsampling_x, int subsampling_y,
522
                       ConvolveParams *conv_params, int16_t alpha, int16_t beta,
523
9.95k
                       int16_t gamma, int16_t delta) {
524
9.95k
  int32_t tmp[15 * 8];
525
9.95k
  const int bd = 8;
526
9.95k
  const int reduce_bits_horiz = conv_params->round_0;
527
9.95k
  const int reduce_bits_vert = conv_params->is_compound
528
9.95k
                                   ? conv_params->round_1
529
9.95k
                                   : 2 * FILTER_BITS - reduce_bits_horiz;
530
9.95k
  const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz;
531
9.95k
  const int offset_bits_horiz = bd + FILTER_BITS - 1;
532
9.95k
  const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz;
533
9.95k
  const int round_bits =
534
9.95k
      2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
535
9.95k
  const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
536
9.95k
  (void)max_bits_horiz;
537
9.95k
  assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
538
9.95k
  assert(IMPLIES(conv_params->do_average, conv_params->is_compound));
539
540
22.7k
  for (int i = p_row; i < p_row + p_height; i += 8) {
541
36.7k
    for (int j = p_col; j < p_col + p_width; j += 8) {
542
      // Calculate the center of this 8x8 block,
543
      // project to luma coordinates (if in a subsampled chroma plane),
544
      // apply the affine transformation,
545
      // then convert back to the original coordinates (if necessary)
546
24.0k
      const int32_t src_x = (j + 4) << subsampling_x;
547
24.0k
      const int32_t src_y = (i + 4) << subsampling_y;
548
24.0k
      const int64_t dst_x =
549
24.0k
          (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0];
550
24.0k
      const int64_t dst_y =
551
24.0k
          (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1];
552
24.0k
      const int64_t x4 = dst_x >> subsampling_x;
553
24.0k
      const int64_t y4 = dst_y >> subsampling_y;
554
555
24.0k
      int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS);
556
24.0k
      int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
557
24.0k
      int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS);
558
24.0k
      int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
559
560
24.0k
      sx4 += alpha * (-4) + beta * (-4);
561
24.0k
      sy4 += gamma * (-4) + delta * (-4);
562
563
24.0k
      sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
564
24.0k
      sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
565
566
      // Horizontal filter
567
384k
      for (int k = -7; k < 8; ++k) {
568
        // Clamp to top/bottom edge of the frame
569
360k
        const int iy = clamp(iy4 + k, 0, height - 1);
570
571
360k
        int sx = sx4 + beta * (k + 4);
572
573
3.24M
        for (int l = -4; l < 4; ++l) {
574
2.88M
          int ix = ix4 + l - 3;
575
          // At this point, sx = sx4 + alpha * l + beta * k
576
2.88M
          const int offs = ROUND_POWER_OF_TWO(sx, WARPEDDIFF_PREC_BITS) +
577
2.88M
                           WARPEDPIXEL_PREC_SHIFTS;
578
2.88M
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
579
2.88M
          const WarpedFilterCoeff *coeffs = av1_warped_filter[offs];
580
581
2.88M
          int32_t sum = 1 << offset_bits_horiz;
582
25.9M
          for (int m = 0; m < 8; ++m) {
583
            // Clamp to left/right edge of the frame
584
23.0M
            const int sample_x = clamp(ix + m, 0, width - 1);
585
586
23.0M
            sum += ref[iy * stride + sample_x] * coeffs[m];
587
23.0M
          }
588
2.88M
          sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz);
589
2.88M
          assert(0 <= sum && sum < (1 << max_bits_horiz));
590
2.88M
          tmp[(k + 7) * 8 + (l + 4)] = sum;
591
2.88M
          sx += alpha;
592
2.88M
        }
593
360k
      }
594
595
      // Vertical filter
596
216k
      for (int k = -4; k < AOMMIN(4, p_row + p_height - i - 4); ++k) {
597
192k
        int sy = sy4 + delta * (k + 4);
598
1.72M
        for (int l = -4; l < AOMMIN(4, p_col + p_width - j - 4); ++l) {
599
          // At this point, sy = sy4 + gamma * l + delta * k
600
1.53M
          const int offs = ROUND_POWER_OF_TWO(sy, WARPEDDIFF_PREC_BITS) +
601
1.53M
                           WARPEDPIXEL_PREC_SHIFTS;
602
1.53M
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
603
1.53M
          const WarpedFilterCoeff *coeffs = av1_warped_filter[offs];
604
605
1.53M
          int32_t sum = 1 << offset_bits_vert;
606
13.8M
          for (int m = 0; m < 8; ++m) {
607
12.2M
            sum += tmp[(k + m + 4) * 8 + (l + 4)] * coeffs[m];
608
12.2M
          }
609
610
1.53M
          if (conv_params->is_compound) {
611
392k
            CONV_BUF_TYPE *p =
612
392k
                &conv_params
613
392k
                     ->dst[(i - p_row + k + 4) * conv_params->dst_stride +
614
392k
                           (j - p_col + l + 4)];
615
392k
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
616
392k
            if (conv_params->do_average) {
617
166k
              uint8_t *dst8 =
618
166k
                  &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
619
166k
              int32_t tmp32 = *p;
620
166k
              if (conv_params->use_dist_wtd_comp_avg) {
621
58.6k
                tmp32 = tmp32 * conv_params->fwd_offset +
622
58.6k
                        sum * conv_params->bck_offset;
623
58.6k
                tmp32 = tmp32 >> DIST_PRECISION_BITS;
624
108k
              } else {
625
108k
                tmp32 += sum;
626
108k
                tmp32 = tmp32 >> 1;
627
108k
              }
628
166k
              tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) -
629
166k
                      (1 << (offset_bits - conv_params->round_1 - 1));
630
166k
              *dst8 = clip_pixel(ROUND_POWER_OF_TWO(tmp32, round_bits));
631
225k
            } else {
632
225k
              *p = sum;
633
225k
            }
634
1.14M
          } else {
635
1.14M
            uint8_t *p =
636
1.14M
                &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
637
1.14M
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
638
1.14M
            assert(0 <= sum && sum < (1 << (bd + 2)));
639
1.14M
            *p = clip_pixel(sum - (1 << (bd - 1)) - (1 << bd));
640
1.14M
          }
641
1.53M
          sy += gamma;
642
1.53M
        }
643
192k
      }
644
24.0k
    }
645
12.7k
  }
646
9.95k
}
647
648
void warp_plane(WarpedMotionParams *wm, const uint8_t *const ref, int width,
649
                int height, int stride, uint8_t *pred, int p_col, int p_row,
650
                int p_width, int p_height, int p_stride, int subsampling_x,
651
9.95k
                int subsampling_y, ConvolveParams *conv_params) {
652
9.95k
  const int32_t *const mat = wm->wmmat;
653
9.95k
  const int16_t alpha = wm->alpha;
654
9.95k
  const int16_t beta = wm->beta;
655
9.95k
  const int16_t gamma = wm->gamma;
656
9.95k
  const int16_t delta = wm->delta;
657
9.95k
  av1_warp_affine(mat, ref, width, height, stride, pred, p_col, p_row, p_width,
658
9.95k
                  p_height, p_stride, subsampling_x, subsampling_y, conv_params,
659
9.95k
                  alpha, beta, gamma, delta);
660
9.95k
}
661
662
void av1_warp_plane(WarpedMotionParams *wm, int use_hbd, int bd,
663
                    const uint8_t *ref, int width, int height, int stride,
664
                    uint8_t *pred, int p_col, int p_row, int p_width,
665
                    int p_height, int p_stride, int subsampling_x,
666
21.0k
                    int subsampling_y, ConvolveParams *conv_params) {
667
21.0k
#if CONFIG_AV1_HIGHBITDEPTH
668
21.0k
  if (use_hbd)
669
11.1k
    highbd_warp_plane(wm, CONVERT_TO_SHORTPTR(ref), width, height, stride,
670
11.1k
                      CONVERT_TO_SHORTPTR(pred), p_col, p_row, p_width,
671
11.1k
                      p_height, p_stride, subsampling_x, subsampling_y, bd,
672
11.1k
                      conv_params);
673
9.95k
  else
674
9.95k
    warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width,
675
9.95k
               p_height, p_stride, subsampling_x, subsampling_y, conv_params);
676
#else
677
  (void)use_hbd;
678
  (void)bd;
679
  warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width,
680
             p_height, p_stride, subsampling_x, subsampling_y, conv_params);
681
#endif
682
21.0k
}
683
684
9.46k
#define LS_MV_MAX 256  // max mv in 1/8-pel
685
// Use LS_STEP = 8 so that 2 less bits needed for A, Bx, By.
686
65.4k
#define LS_STEP 8
687
688
// Assuming LS_MV_MAX is < MAX_SB_SIZE * 8,
689
// the precision needed is:
690
//   (MAX_SB_SIZE_LOG2 + 3) [for sx * sx magnitude] +
691
//   (MAX_SB_SIZE_LOG2 + 4) [for sx * dx magnitude] +
692
//   1 [for sign] +
693
//   LEAST_SQUARES_SAMPLES_MAX_BITS
694
//        [for adding up to LEAST_SQUARES_SAMPLES_MAX samples]
695
// The value is 23
696
#define LS_MAT_RANGE_BITS \
697
  ((MAX_SB_SIZE_LOG2 + 4) * 2 + LEAST_SQUARES_SAMPLES_MAX_BITS)
698
699
// Bit-depth reduction from the full-range
700
21.8k
#define LS_MAT_DOWN_BITS 2
701
702
// bits range of A, Bx and By after downshifting
703
#define LS_MAT_BITS (LS_MAT_RANGE_BITS - LS_MAT_DOWN_BITS)
704
#define LS_MAT_MIN (-(1 << (LS_MAT_BITS - 1)))
705
#define LS_MAT_MAX ((1 << (LS_MAT_BITS - 1)) - 1)
706
707
// By setting LS_STEP = 8, the least 2 bits of every elements in A, Bx, By are
708
// 0. So, we can reduce LS_MAT_RANGE_BITS(2) bits here.
709
#define LS_SQUARE(a)                                          \
710
6.23k
  (((a) * (a)*4 + (a)*4 * LS_STEP + LS_STEP * LS_STEP * 2) >> \
711
6.23k
   (2 + LS_MAT_DOWN_BITS))
712
#define LS_PRODUCT1(a, b)                                           \
713
9.35k
  (((a) * (b)*4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP) >> \
714
9.35k
   (2 + LS_MAT_DOWN_BITS))
715
#define LS_PRODUCT2(a, b)                                               \
716
6.23k
  (((a) * (b)*4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP * 2) >> \
717
6.23k
   (2 + LS_MAT_DOWN_BITS))
718
719
#define USE_LIMITED_PREC_MULT 0
720
721
#if USE_LIMITED_PREC_MULT
722
723
#define MUL_PREC_BITS 16
724
static uint16_t resolve_multiplier_64(uint64_t D, int16_t *shift) {
725
  int msb = 0;
726
  uint16_t mult = 0;
727
  *shift = 0;
728
  if (D != 0) {
729
    msb = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32
730
                              : get_msb((unsigned int)D));
731
    if (msb >= MUL_PREC_BITS) {
732
      mult = (uint16_t)ROUND_POWER_OF_TWO_64(D, msb + 1 - MUL_PREC_BITS);
733
      *shift = msb + 1 - MUL_PREC_BITS;
734
    } else {
735
      mult = (uint16_t)D;
736
      *shift = 0;
737
    }
738
  }
739
  return mult;
740
}
741
742
static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) {
743
  int32_t ret;
744
  int16_t mshift;
745
  uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift);
746
  int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1);
747
  shift -= mshift;
748
  if (shift > 0) {
749
    return (int32_t)clamp(ROUND_POWER_OF_TWO_SIGNED(v, shift),
750
                          -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
751
                          WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
752
  } else {
753
    return (int32_t)clamp(v * (1 << (-shift)),
754
                          -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
755
                          WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
756
  }
757
  return ret;
758
}
759
760
static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) {
761
  int16_t mshift;
762
  uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift);
763
  int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1);
764
  shift -= mshift;
765
  if (shift > 0) {
766
    return (int32_t)clamp(
767
        ROUND_POWER_OF_TWO_SIGNED(v, shift),
768
        (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
769
        (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
770
  } else {
771
    return (int32_t)clamp(
772
        v * (1 << (-shift)),
773
        (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
774
        (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
775
  }
776
}
777
778
#else
779
780
5.89k
static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) {
781
5.89k
  int64_t v = Px * (int64_t)iDet;
782
5.89k
  return (int32_t)clamp64(ROUND_POWER_OF_TWO_SIGNED_64(v, shift),
783
5.89k
                          -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
784
5.89k
                          WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
785
5.89k
}
786
787
5.89k
static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) {
788
5.89k
  int64_t v = Px * (int64_t)iDet;
789
5.89k
  return (int32_t)clamp64(
790
5.89k
      ROUND_POWER_OF_TWO_SIGNED_64(v, shift),
791
5.89k
      (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
792
5.89k
      (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
793
5.89k
}
794
#endif  // USE_LIMITED_PREC_MULT
795
796
static int find_affine_int(int np, const int *pts1, const int *pts2,
797
                           BLOCK_SIZE bsize, int mvy, int mvx,
798
2.98k
                           WarpedMotionParams *wm, int mi_row, int mi_col) {
799
2.98k
  int32_t A[2][2] = { { 0, 0 }, { 0, 0 } };
800
2.98k
  int32_t Bx[2] = { 0, 0 };
801
2.98k
  int32_t By[2] = { 0, 0 };
802
803
2.98k
  const int bw = block_size_wide[bsize];
804
2.98k
  const int bh = block_size_high[bsize];
805
2.98k
  const int rsuy = bh / 2 - 1;
806
2.98k
  const int rsux = bw / 2 - 1;
807
2.98k
  const int suy = rsuy * 8;
808
2.98k
  const int sux = rsux * 8;
809
2.98k
  const int duy = suy + mvy;
810
2.98k
  const int dux = sux + mvx;
811
812
  // Assume the center pixel of the block has exactly the same motion vector
813
  // as transmitted for the block. First shift the origin of the source
814
  // points to the block center, and the origin of the destination points to
815
  // the block center added to the motion vector transmitted.
816
  // Let (xi, yi) denote the source points and (xi', yi') denote destination
817
  // points after origin shfifting, for i = 0, 1, 2, .... n-1.
818
  // Then if  P = [x0, y0,
819
  //               x1, y1
820
  //               x2, y1,
821
  //                ....
822
  //              ]
823
  //          q = [x0', x1', x2', ... ]'
824
  //          r = [y0', y1', y2', ... ]'
825
  // the least squares problems that need to be solved are:
826
  //          [h1, h2]' = inv(P'P)P'q and
827
  //          [h3, h4]' = inv(P'P)P'r
828
  // where the affine transformation is given by:
829
  //          x' = h1.x + h2.y
830
  //          y' = h3.x + h4.y
831
  //
832
  // The loop below computes: A = P'P, Bx = P'q, By = P'r
833
  // We need to just compute inv(A).Bx and inv(A).By for the solutions.
834
  // Contribution from neighbor block
835
6.14k
  for (int i = 0; i < np; i++) {
836
3.15k
    const int dx = pts2[i * 2] - dux;
837
3.15k
    const int dy = pts2[i * 2 + 1] - duy;
838
3.15k
    const int sx = pts1[i * 2] - sux;
839
3.15k
    const int sy = pts1[i * 2 + 1] - suy;
840
    // (TODO)yunqing: This comparison wouldn't be necessary if the sample
841
    // selection is done in find_samples(). Also, global offset can be removed
842
    // while collecting samples.
843
3.15k
    if (abs(sx - dx) < LS_MV_MAX && abs(sy - dy) < LS_MV_MAX) {
844
3.11k
      A[0][0] += LS_SQUARE(sx);
845
3.11k
      A[0][1] += LS_PRODUCT1(sx, sy);
846
3.11k
      A[1][1] += LS_SQUARE(sy);
847
3.11k
      Bx[0] += LS_PRODUCT2(sx, dx);
848
3.11k
      Bx[1] += LS_PRODUCT1(sy, dx);
849
3.11k
      By[0] += LS_PRODUCT1(sx, dy);
850
3.11k
      By[1] += LS_PRODUCT2(sy, dy);
851
3.11k
    }
852
3.15k
  }
853
854
  // Just for debugging, and can be removed later.
855
2.98k
  assert(A[0][0] >= LS_MAT_MIN && A[0][0] <= LS_MAT_MAX);
856
2.98k
  assert(A[0][1] >= LS_MAT_MIN && A[0][1] <= LS_MAT_MAX);
857
2.98k
  assert(A[1][1] >= LS_MAT_MIN && A[1][1] <= LS_MAT_MAX);
858
2.98k
  assert(Bx[0] >= LS_MAT_MIN && Bx[0] <= LS_MAT_MAX);
859
2.98k
  assert(Bx[1] >= LS_MAT_MIN && Bx[1] <= LS_MAT_MAX);
860
2.98k
  assert(By[0] >= LS_MAT_MIN && By[0] <= LS_MAT_MAX);
861
2.98k
  assert(By[1] >= LS_MAT_MIN && By[1] <= LS_MAT_MAX);
862
863
  // Compute Determinant of A
864
2.98k
  const int64_t Det = (int64_t)A[0][0] * A[1][1] - (int64_t)A[0][1] * A[0][1];
865
2.98k
  if (Det == 0) return 1;
866
867
2.94k
  int16_t shift;
868
2.94k
  int16_t iDet = resolve_divisor_64(llabs(Det), &shift) * (Det < 0 ? -1 : 1);
869
2.94k
  shift -= WARPEDMODEL_PREC_BITS;
870
2.94k
  if (shift < 0) {
871
0
    iDet <<= (-shift);
872
0
    shift = 0;
873
0
  }
874
875
2.94k
  int64_t Px[2], Py[2];
876
  // These divided by the Det, are the least squares solutions
877
2.94k
  Px[0] = (int64_t)A[1][1] * Bx[0] - (int64_t)A[0][1] * Bx[1];
878
2.94k
  Px[1] = -(int64_t)A[0][1] * Bx[0] + (int64_t)A[0][0] * Bx[1];
879
2.94k
  Py[0] = (int64_t)A[1][1] * By[0] - (int64_t)A[0][1] * By[1];
880
2.94k
  Py[1] = -(int64_t)A[0][1] * By[0] + (int64_t)A[0][0] * By[1];
881
882
2.94k
  wm->wmmat[2] = get_mult_shift_diag(Px[0], iDet, shift);
883
2.94k
  wm->wmmat[3] = get_mult_shift_ndiag(Px[1], iDet, shift);
884
2.94k
  wm->wmmat[4] = get_mult_shift_ndiag(Py[0], iDet, shift);
885
2.94k
  wm->wmmat[5] = get_mult_shift_diag(Py[1], iDet, shift);
886
887
2.94k
  const int isuy = (mi_row * MI_SIZE + rsuy);
888
2.94k
  const int isux = (mi_col * MI_SIZE + rsux);
889
  // Note: In the vx, vy expressions below, the max value of each of the
890
  // 2nd and 3rd terms are (2^16 - 1) * (2^13 - 1). That leaves enough room
891
  // for the first term so that the overall sum in the worst case fits
892
  // within 32 bits overall.
893
2.94k
  const int32_t vx = mvx * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
894
2.94k
                     (isux * (wm->wmmat[2] - (1 << WARPEDMODEL_PREC_BITS)) +
895
2.94k
                      isuy * wm->wmmat[3]);
896
2.94k
  const int32_t vy = mvy * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
897
2.94k
                     (isux * wm->wmmat[4] +
898
2.94k
                      isuy * (wm->wmmat[5] - (1 << WARPEDMODEL_PREC_BITS)));
899
2.94k
  wm->wmmat[0] =
900
2.94k
      clamp(vx, -WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1);
901
2.94k
  wm->wmmat[1] =
902
2.94k
      clamp(vy, -WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1);
903
2.94k
  return 0;
904
2.98k
}
905
906
int av1_find_projection(int np, const int *pts1, const int *pts2,
907
                        BLOCK_SIZE bsize, int mvy, int mvx,
908
2.98k
                        WarpedMotionParams *wm_params, int mi_row, int mi_col) {
909
2.98k
  assert(wm_params->wmtype == AFFINE);
910
911
2.98k
  if (find_affine_int(np, pts1, pts2, bsize, mvy, mvx, wm_params, mi_row,
912
2.98k
                      mi_col))
913
40
    return 1;
914
915
  // check compatibility with the fast warp filter
916
2.94k
  if (!av1_get_shear_params(wm_params)) return 1;
917
918
2.64k
  return 0;
919
2.94k
}