Coverage Report

Created: 2025-09-08 07:52

/src/libjxl/lib/jxl/base/rational_polynomial-inl.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
// Fast SIMD evaluation of rational polynomials for approximating functions.
7
8
#if defined(LIB_JXL_BASE_RATIONAL_POLYNOMIAL_INL_H_) == \
9
    defined(HWY_TARGET_TOGGLE)
10
#ifdef LIB_JXL_BASE_RATIONAL_POLYNOMIAL_INL_H_
11
#undef LIB_JXL_BASE_RATIONAL_POLYNOMIAL_INL_H_
12
#else
13
#define LIB_JXL_BASE_RATIONAL_POLYNOMIAL_INL_H_
14
#endif
15
16
#include <jxl/types.h>
17
#include <stddef.h>
18
19
#include <hwy/highway.h>
20
HWY_BEFORE_NAMESPACE();
21
namespace jxl {
22
namespace HWY_NAMESPACE {
23
namespace {
24
25
// These templates are not found via ADL.
26
using hwy::HWY_NAMESPACE::Div;
27
using hwy::HWY_NAMESPACE::MulAdd;
28
29
// Primary template: default to actual division.
30
template <typename T, class V>
31
struct FastDivision {
32
  HWY_INLINE V operator()(const V n, const V d) const { return n / d; }
33
};
34
// Partial specialization for float vectors.
35
template <class V>
36
struct FastDivision<float, V> {
37
  // One Newton-Raphson iteration.
38
  static HWY_INLINE V ReciprocalNR(const V x) {
39
    const auto rcp = ApproximateReciprocal(x);
40
    const auto sum = Add(rcp, rcp);
41
    const auto x_rcp = Mul(x, rcp);
42
    return NegMulAdd(x_rcp, rcp, sum);
43
  }
44
45
110M
  V operator()(const V n, const V d) const {
46
#if JXL_TRUE  // Faster on SKX
47
110M
    return Div(n, d);
48
#else
49
    return n * ReciprocalNR(d);
50
#endif
51
110M
  }
quant_weights.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Line
Count
Source
45
3.55M
  V operator()(const V n, const V d) const {
46
#if JXL_TRUE  // Faster on SKX
47
3.55M
    return Div(n, d);
48
#else
49
    return n * ReciprocalNR(d);
50
#endif
51
3.55M
  }
Unexecuted instantiation: enc_xyb.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: enc_ma.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
stage_from_linear.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Line
Count
Source
45
107M
  V operator()(const V n, const V d) const {
46
#if JXL_TRUE  // Faster on SKX
47
107M
    return Div(n, d);
48
#else
49
    return n * ReciprocalNR(d);
50
#endif
51
107M
  }
Unexecuted instantiation: stage_to_linear.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: stage_tone_mapping.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: splines.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: butteraugli.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: enc_ac_strategy.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: enc_adaptive_quantization.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: enc_ans.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: enc_cluster.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
jxl_cms.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Line
Count
Source
45
163
  V operator()(const V n, const V d) const {
46
#if JXL_TRUE  // Faster on SKX
47
163
    return Div(n, d);
48
#else
49
    return n * ReciprocalNR(d);
50
#endif
51
163
  }
52
};
53
54
// Approximates smooth functions via rational polynomials (i.e. dividing two
55
// polynomials). Evaluates polynomials via Horner's scheme, which is faster than
56
// Clenshaw recurrence for Chebyshev polynomials. LoadDup128 allows us to
57
// specify constants (replicated 4x) independently of the lane count.
58
template <size_t NP, size_t NQ, class D, class V, typename T>
59
HWY_INLINE HWY_MAYBE_UNUSED V EvalRationalPolynomial(const D d, const V x,
60
                                                     const T (&p)[NP],
61
110M
                                                     const T (&q)[NQ]) {
62
110M
  constexpr size_t kDegP = NP / 4 - 1;
63
110M
  constexpr size_t kDegQ = NQ / 4 - 1;
64
110M
  auto yp = LoadDup128(d, &p[kDegP * 4]);
65
110M
  auto yq = LoadDup128(d, &q[kDegQ * 4]);
66
  // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
67
  // compiler warning that the index is out of bounds since we are already
68
  // checking that it is not out of bounds with (kDegP >= n) and the access
69
  // will be optimized away. Similarly with q and kDegQ.
70
110M
  HWY_FENCE;
71
110M
  if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
72
110M
  if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
73
110M
  HWY_FENCE;
74
110M
  if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
75
110M
  if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
76
110M
  HWY_FENCE;
77
110M
  if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
78
110M
  if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
79
110M
  HWY_FENCE;
80
110M
  if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
81
110M
  if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
82
110M
  HWY_FENCE;
83
110M
  if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
84
110M
  if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
85
110M
  HWY_FENCE;
86
110M
  if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
87
110M
  if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
88
110M
  HWY_FENCE;
89
110M
  if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
90
110M
  if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
91
92
110M
  static_assert(kDegP < 8, "Polynomial degree is too high");
93
110M
  static_assert(kDegQ < 8, "Polynomial degree is too high");
94
95
110M
  return FastDivision<T, V>()(yp, yq);
96
110M
}
quant_weights.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Line
Count
Source
61
3.55M
                                                     const T (&q)[NQ]) {
62
3.55M
  constexpr size_t kDegP = NP / 4 - 1;
63
3.55M
  constexpr size_t kDegQ = NQ / 4 - 1;
64
3.55M
  auto yp = LoadDup128(d, &p[kDegP * 4]);
65
3.55M
  auto yq = LoadDup128(d, &q[kDegQ * 4]);
66
  // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
67
  // compiler warning that the index is out of bounds since we are already
68
  // checking that it is not out of bounds with (kDegP >= n) and the access
69
  // will be optimized away. Similarly with q and kDegQ.
70
3.55M
  HWY_FENCE;
71
3.55M
  if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
72
3.55M
  if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
73
3.55M
  HWY_FENCE;
74
3.55M
  if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
75
3.55M
  if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
76
3.55M
  HWY_FENCE;
77
3.55M
  if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
78
3.55M
  if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
79
3.55M
  HWY_FENCE;
80
3.55M
  if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
81
3.55M
  if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
82
3.55M
  HWY_FENCE;
83
3.55M
  if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
84
3.55M
  if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
85
3.55M
  HWY_FENCE;
86
3.55M
  if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
87
3.55M
  if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
88
3.55M
  HWY_FENCE;
89
3.55M
  if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
90
3.55M
  if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
91
92
3.55M
  static_assert(kDegP < 8, "Polynomial degree is too high");
93
3.55M
  static_assert(kDegQ < 8, "Polynomial degree is too high");
94
95
3.55M
  return FastDivision<T, V>()(yp, yq);
96
3.55M
}
Unexecuted instantiation: enc_xyb.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul])
Unexecuted instantiation: enc_xyb.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: enc_ma.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
stage_from_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul])
Line
Count
Source
61
106M
                                                     const T (&q)[NQ]) {
62
106M
  constexpr size_t kDegP = NP / 4 - 1;
63
106M
  constexpr size_t kDegQ = NQ / 4 - 1;
64
106M
  auto yp = LoadDup128(d, &p[kDegP * 4]);
65
106M
  auto yq = LoadDup128(d, &q[kDegQ * 4]);
66
  // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
67
  // compiler warning that the index is out of bounds since we are already
68
  // checking that it is not out of bounds with (kDegP >= n) and the access
69
  // will be optimized away. Similarly with q and kDegQ.
70
106M
  HWY_FENCE;
71
106M
  if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
72
106M
  if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
73
106M
  HWY_FENCE;
74
107M
  if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
75
107M
  if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
76
106M
  HWY_FENCE;
77
107M
  if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
78
107M
  if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
79
106M
  HWY_FENCE;
80
107M
  if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
81
107M
  if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
82
106M
  HWY_FENCE;
83
106M
  if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
84
106M
  if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
85
106M
  HWY_FENCE;
86
106M
  if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
87
106M
  if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
88
106M
  HWY_FENCE;
89
106M
  if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
90
106M
  if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
91
92
106M
  static_assert(kDegP < 8, "Polynomial degree is too high");
93
106M
  static_assert(kDegQ < 8, "Polynomial degree is too high");
94
95
106M
  return FastDivision<T, V>()(yp, yq);
96
106M
}
Unexecuted instantiation: stage_from_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: stage_to_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul])
Unexecuted instantiation: stage_to_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: stage_tone_mapping.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul])
Unexecuted instantiation: stage_tone_mapping.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: splines.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: butteraugli.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: enc_ac_strategy.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: enc_adaptive_quantization.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: enc_ans.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: enc_cluster.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
jxl_cms.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul])
Line
Count
Source
61
163
                                                     const T (&q)[NQ]) {
62
163
  constexpr size_t kDegP = NP / 4 - 1;
63
163
  constexpr size_t kDegQ = NQ / 4 - 1;
64
163
  auto yp = LoadDup128(d, &p[kDegP * 4]);
65
163
  auto yq = LoadDup128(d, &q[kDegQ * 4]);
66
  // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
67
  // compiler warning that the index is out of bounds since we are already
68
  // checking that it is not out of bounds with (kDegP >= n) and the access
69
  // will be optimized away. Similarly with q and kDegQ.
70
163
  HWY_FENCE;
71
163
  if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
72
163
  if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
73
163
  HWY_FENCE;
74
163
  if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
75
163
  if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
76
163
  HWY_FENCE;
77
163
  if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
78
163
  if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
79
163
  HWY_FENCE;
80
163
  if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
81
163
  if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
82
163
  HWY_FENCE;
83
163
  if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
84
163
  if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
85
163
  HWY_FENCE;
86
163
  if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
87
163
  if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
88
163
  HWY_FENCE;
89
163
  if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
90
163
  if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
91
92
163
  static_assert(kDegP < 8, "Polynomial degree is too high");
93
163
  static_assert(kDegQ < 8, "Polynomial degree is too high");
94
95
163
  return FastDivision<T, V>()(yp, yq);
96
163
}
Unexecuted instantiation: jxl_cms.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
97
98
}  // namespace
99
// NOLINTNEXTLINE(google-readability-namespace-comments)
100
}  // namespace HWY_NAMESPACE
101
}  // namespace jxl
102
HWY_AFTER_NAMESPACE();
103
#endif  // LIB_JXL_BASE_RATIONAL_POLYNOMIAL_INL_H_