/src/libavif/src/colrconvert.c
Line | Count | Source |
1 | | // Copyright 2023 Google LLC |
2 | | // SPDX-License-Identifier: BSD-2-Clause |
3 | | |
4 | | #include "avif/internal.h" |
5 | | |
6 | | #include <math.h> |
7 | | |
8 | | static const double epsilon = 1e-12; |
9 | | |
10 | | static avifBool avifXyToXYZ(const float xy[2], double XYZ[3]) |
11 | 0 | { |
12 | 0 | if (fabsf(xy[1]) < epsilon) { |
13 | 0 | return AVIF_FALSE; |
14 | 0 | } |
15 | | |
16 | 0 | const double factor = 1.0 / xy[1]; |
17 | 0 | XYZ[0] = xy[0] * factor; |
18 | 0 | XYZ[1] = 1; |
19 | 0 | XYZ[2] = (1 - xy[0] - xy[1]) * factor; |
20 | |
|
21 | 0 | return AVIF_TRUE; |
22 | 0 | } |
23 | | |
24 | | // Computes I = M^-1. Returns false if M seems to be singular. |
25 | | static avifBool avifMatInv(double M[3][3], double I[3][3]) |
26 | 0 | { |
27 | 0 | double det = M[0][0] * (M[1][1] * M[2][2] - M[2][1] * M[1][2]) - M[0][1] * (M[1][0] * M[2][2] - M[1][2] * M[2][0]) + |
28 | 0 | M[0][2] * (M[1][0] * M[2][1] - M[1][1] * M[2][0]); |
29 | 0 | if (fabs(det) < epsilon) { |
30 | 0 | return AVIF_FALSE; |
31 | 0 | } |
32 | 0 | det = 1.0 / det; |
33 | |
|
34 | 0 | I[0][0] = (M[1][1] * M[2][2] - M[2][1] * M[1][2]) * det; |
35 | 0 | I[0][1] = (M[0][2] * M[2][1] - M[0][1] * M[2][2]) * det; |
36 | 0 | I[0][2] = (M[0][1] * M[1][2] - M[0][2] * M[1][1]) * det; |
37 | 0 | I[1][0] = (M[1][2] * M[2][0] - M[1][0] * M[2][2]) * det; |
38 | 0 | I[1][1] = (M[0][0] * M[2][2] - M[0][2] * M[2][0]) * det; |
39 | 0 | I[1][2] = (M[1][0] * M[0][2] - M[0][0] * M[1][2]) * det; |
40 | 0 | I[2][0] = (M[1][0] * M[2][1] - M[2][0] * M[1][1]) * det; |
41 | 0 | I[2][1] = (M[2][0] * M[0][1] - M[0][0] * M[2][1]) * det; |
42 | 0 | I[2][2] = (M[0][0] * M[1][1] - M[1][0] * M[0][1]) * det; |
43 | |
|
44 | 0 | return AVIF_TRUE; |
45 | 0 | } |
46 | | |
47 | | // Computes C = A*B |
48 | | static void avifMatMul(double A[3][3], double B[3][3], double C[3][3]) |
49 | 0 | { |
50 | 0 | C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0] + A[0][2] * B[2][0]; |
51 | 0 | C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1] + A[0][2] * B[2][1]; |
52 | 0 | C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2] * B[2][2]; |
53 | 0 | C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0] + A[1][2] * B[2][0]; |
54 | 0 | C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1] + A[1][2] * B[2][1]; |
55 | 0 | C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2] * B[2][2]; |
56 | 0 | C[2][0] = A[2][0] * B[0][0] + A[2][1] * B[1][0] + A[2][2] * B[2][0]; |
57 | 0 | C[2][1] = A[2][0] * B[0][1] + A[2][1] * B[1][1] + A[2][2] * B[2][1]; |
58 | 0 | C[2][2] = A[2][0] * B[0][2] + A[2][1] * B[1][2] + A[2][2] * B[2][2]; |
59 | 0 | } |
60 | | |
61 | | // Set M to have values of d on the leading diagonal, and zero elsewhere. |
62 | | static void avifMatDiag(const double d[3], double M[3][3]) |
63 | 0 | { |
64 | 0 | M[0][0] = d[0]; |
65 | 0 | M[0][1] = 0; |
66 | 0 | M[0][2] = 0; |
67 | 0 | M[1][0] = 0; |
68 | 0 | M[1][1] = d[1]; |
69 | 0 | M[1][2] = 0; |
70 | 0 | M[2][0] = 0; |
71 | 0 | M[2][1] = 0; |
72 | 0 | M[2][2] = d[2]; |
73 | 0 | } |
74 | | |
75 | | // Computes y = M.x |
76 | | static void avifVecMul(double M[3][3], const double x[3], double y[3]) |
77 | 0 | { |
78 | 0 | y[0] = M[0][0] * x[0] + M[0][1] * x[1] + M[0][2] * x[2]; |
79 | 0 | y[1] = M[1][0] * x[0] + M[1][1] * x[1] + M[1][2] * x[2]; |
80 | 0 | y[2] = M[2][0] * x[0] + M[2][1] * x[1] + M[2][2] * x[2]; |
81 | 0 | } |
82 | | |
83 | | // Bradford chromatic adaptation matrix |
84 | | // from https://www.researchgate.net/publication/253799640_A_uniform_colour_space_based_upon_CIECAM97s |
85 | | static double avifBradford[3][3] = { |
86 | | { 0.8951, 0.2664, -0.1614 }, |
87 | | { -0.7502, 1.7135, 0.0367 }, |
88 | | { 0.0389, -0.0685, 1.0296 }, |
89 | | }; |
90 | | |
91 | | // LMS values for D50 whitepoint |
92 | | static const double avifLmsD50[3] = { 0.996284, 1.02043, 0.818644 }; |
93 | | |
94 | | avifBool avifColorPrimariesComputeRGBToXYZD50Matrix(avifColorPrimaries colorPrimaries, double coeffs[3][3]) |
95 | 0 | { |
96 | 0 | float primaries[8]; |
97 | 0 | avifColorPrimariesGetValues(colorPrimaries, primaries); |
98 | |
|
99 | 0 | double whitePointXYZ[3]; |
100 | 0 | AVIF_CHECK(avifXyToXYZ(&primaries[6], whitePointXYZ)); |
101 | | |
102 | 0 | double rgbPrimaries[3][3] = { |
103 | 0 | { primaries[0], primaries[2], primaries[4] }, |
104 | 0 | { primaries[1], primaries[3], primaries[5] }, |
105 | 0 | { 1.0 - primaries[0] - primaries[1], 1.0 - primaries[2] - primaries[3], 1.0 - primaries[4] - primaries[5] } |
106 | 0 | }; |
107 | |
|
108 | 0 | double rgbPrimariesInv[3][3]; |
109 | 0 | AVIF_CHECK(avifMatInv(rgbPrimaries, rgbPrimariesInv)); |
110 | | |
111 | 0 | double rgbCoefficients[3]; |
112 | 0 | avifVecMul(rgbPrimariesInv, whitePointXYZ, rgbCoefficients); |
113 | |
|
114 | 0 | double rgbCoefficientsMat[3][3]; |
115 | 0 | avifMatDiag(rgbCoefficients, rgbCoefficientsMat); |
116 | |
|
117 | 0 | double rgbXYZ[3][3]; |
118 | 0 | avifMatMul(rgbPrimaries, rgbCoefficientsMat, rgbXYZ); |
119 | | |
120 | | // ICC stores primaries XYZ under PCS. |
121 | | // Adapt using linear bradford transform |
122 | | // from https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119021780.app3 |
123 | 0 | double lms[3]; |
124 | 0 | avifVecMul(avifBradford, whitePointXYZ, lms); |
125 | 0 | for (int i = 0; i < 3; ++i) { |
126 | 0 | if (fabs(lms[i]) < epsilon) { |
127 | 0 | return AVIF_FALSE; |
128 | 0 | } |
129 | 0 | lms[i] = avifLmsD50[i] / lms[i]; |
130 | 0 | } |
131 | | |
132 | 0 | double adaptation[3][3]; |
133 | 0 | avifMatDiag(lms, adaptation); |
134 | |
|
135 | 0 | double tmp[3][3]; |
136 | 0 | avifMatMul(adaptation, avifBradford, tmp); |
137 | |
|
138 | 0 | double bradfordInv[3][3]; |
139 | 0 | if (!avifMatInv(avifBradford, bradfordInv)) { |
140 | 0 | return AVIF_FALSE; |
141 | 0 | } |
142 | 0 | avifMatMul(bradfordInv, tmp, adaptation); |
143 | |
|
144 | 0 | avifMatMul(adaptation, rgbXYZ, coeffs); |
145 | |
|
146 | 0 | return AVIF_TRUE; |
147 | 0 | } |
148 | | |
149 | | avifBool avifColorPrimariesComputeXYZD50ToRGBMatrix(avifColorPrimaries colorPrimaries, double coeffs[3][3]) |
150 | 0 | { |
151 | 0 | double rgbToXyz[3][3]; |
152 | 0 | AVIF_CHECK(avifColorPrimariesComputeRGBToXYZD50Matrix(colorPrimaries, rgbToXyz)); |
153 | 0 | AVIF_CHECK(avifMatInv(rgbToXyz, coeffs)); |
154 | 0 | return AVIF_TRUE; |
155 | 0 | } |
156 | | |
157 | | avifBool avifColorPrimariesComputeRGBToRGBMatrix(avifColorPrimaries srcColorPrimaries, |
158 | | avifColorPrimaries dstColorPrimaries, |
159 | | double coeffs[3][3]) |
160 | 0 | { |
161 | | // Note: no special casing for srcColorPrimaries == dstColorPrimaries to allow |
162 | | // testing that the computation actually produces the identity matrix. |
163 | 0 | double srcRGBToXYZ[3][3]; |
164 | 0 | AVIF_CHECK(avifColorPrimariesComputeRGBToXYZD50Matrix(srcColorPrimaries, srcRGBToXYZ)); |
165 | 0 | double xyzToDstRGB[3][3]; |
166 | 0 | AVIF_CHECK(avifColorPrimariesComputeXYZD50ToRGBMatrix(dstColorPrimaries, xyzToDstRGB)); |
167 | | // coeffs = xyzToDstRGB * srcRGBToXYZ |
168 | | // i.e. srcRGB -> XYZ -> dstRGB |
169 | 0 | avifMatMul(xyzToDstRGB, srcRGBToXYZ, coeffs); |
170 | 0 | return AVIF_TRUE; |
171 | 0 | } |
172 | | |
173 | | // Converts a linear RGBA pixel to a different color space. This function actually works for gamma encoded |
174 | | // RGB as well but linear gives better results. Also, for gamma encoded values, it would be |
175 | | // better to clamp the output to [0, 1]. Linear values don't need clamping because values |
176 | | // > 1.0 are valid for HDR transfer curves, and the gamma compression function will do the |
177 | | // clamping as necessary. |
178 | | void avifLinearRGBConvertColorSpace(float rgb[4], double coeffs[3][3]) |
179 | 0 | { |
180 | 0 | const double rgbDouble[3] = { rgb[0], rgb[1], rgb[2] }; |
181 | 0 | double converted[3]; |
182 | 0 | avifVecMul(coeffs, rgbDouble, converted); |
183 | 0 | rgb[0] = (float)converted[0]; |
184 | 0 | rgb[1] = (float)converted[1]; |
185 | 0 | rgb[2] = (float)converted[2]; |
186 | 0 | } |