Coverage Report

Created: 2026-02-14 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjxl/lib/jxl/base/rational_polynomial-inl.h
Line
Count
Source
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
// Fast SIMD evaluation of rational polynomials for approximating functions.
7
8
#if defined(LIB_JXL_BASE_RATIONAL_POLYNOMIAL_INL_H_) == \
9
    defined(HWY_TARGET_TOGGLE)
10
#ifdef LIB_JXL_BASE_RATIONAL_POLYNOMIAL_INL_H_
11
#undef LIB_JXL_BASE_RATIONAL_POLYNOMIAL_INL_H_
12
#else
13
#define LIB_JXL_BASE_RATIONAL_POLYNOMIAL_INL_H_
14
#endif
15
16
#include <jxl/types.h>
17
#include <stddef.h>
18
19
#include <hwy/highway.h>
20
HWY_BEFORE_NAMESPACE();
21
namespace jxl {
22
namespace HWY_NAMESPACE {
23
namespace {
24
25
// These templates are not found via ADL.
26
using hwy::HWY_NAMESPACE::ApproximateReciprocal;
27
using hwy::HWY_NAMESPACE::Div;
28
using hwy::HWY_NAMESPACE::MulAdd;
29
30
// Primary template: default to actual division.
31
template <typename T, class V>
32
struct FastDivision {
33
  HWY_INLINE V operator()(const V n, const V d) const { return n / d; }
34
};
35
// Partial specialization for float vectors.
36
template <class V>
37
struct FastDivision<float, V> {
38
  // One Newton-Raphson iteration.
39
  static HWY_INLINE V ReciprocalNR(const V x) {
40
    const auto rcp = ApproximateReciprocal(x);
41
    const auto sum = Add(rcp, rcp);
42
    const auto x_rcp = Mul(x, rcp);
43
    return NegMulAdd(x_rcp, rcp, sum);
44
  }
45
46
73.9M
  V operator()(const V n, const V d) const {
47
#if JXL_TRUE  // Faster on SKX
48
73.9M
    return Div(n, d);
49
#else
50
    return n * ReciprocalNR(d);
51
#endif
52
73.9M
  }
quant_weights.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Line
Count
Source
46
2.88M
  V operator()(const V n, const V d) const {
47
#if JXL_TRUE  // Faster on SKX
48
2.88M
    return Div(n, d);
49
#else
50
    return n * ReciprocalNR(d);
51
#endif
52
2.88M
  }
Unexecuted instantiation: enc_xyb.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: enc_ma.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
stage_from_linear.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Line
Count
Source
46
68.9M
  V operator()(const V n, const V d) const {
47
#if JXL_TRUE  // Faster on SKX
48
68.9M
    return Div(n, d);
49
#else
50
    return n * ReciprocalNR(d);
51
#endif
52
68.9M
  }
Unexecuted instantiation: stage_to_linear.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: stage_tone_mapping.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: splines.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: butteraugli.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: enc_ac_strategy.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: enc_adaptive_quantization.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: enc_cluster.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Unexecuted instantiation: enc_lz77.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
jxl_cms.cc:jxl::N_SCALAR::(anonymous namespace)::FastDivision<float, hwy::N_SCALAR::Vec1<float> >::operator()(hwy::N_SCALAR::Vec1<float>, hwy::N_SCALAR::Vec1<float>) const
Line
Count
Source
46
2.09M
  V operator()(const V n, const V d) const {
47
#if JXL_TRUE  // Faster on SKX
48
2.09M
    return Div(n, d);
49
#else
50
    return n * ReciprocalNR(d);
51
#endif
52
2.09M
  }
53
};
54
55
// Approximates smooth functions via rational polynomials (i.e. dividing two
56
// polynomials). Evaluates polynomials via Horner's scheme, which is faster than
57
// Clenshaw recurrence for Chebyshev polynomials. LoadDup128 allows us to
58
// specify constants (replicated 4x) independently of the lane count.
59
template <size_t NP, size_t NQ, class D, class V, typename T>
60
HWY_INLINE HWY_MAYBE_UNUSED V EvalRationalPolynomial(const D d, const V x,
61
                                                     const T (&p)[NP],
62
74.2M
                                                     const T (&q)[NQ]) {
63
74.2M
  constexpr size_t kDegP = NP / 4 - 1;
64
74.2M
  constexpr size_t kDegQ = NQ / 4 - 1;
65
74.2M
  auto yp = LoadDup128(d, &p[kDegP * 4]);
66
74.2M
  auto yq = LoadDup128(d, &q[kDegQ * 4]);
67
  // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
68
  // compiler warning that the index is out of bounds since we are already
69
  // checking that it is not out of bounds with (kDegP >= n) and the access
70
  // will be optimized away. Similarly with q and kDegQ.
71
74.2M
  HWY_FENCE;
72
74.2M
  if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
73
74.2M
  if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
74
74.2M
  HWY_FENCE;
75
74.2M
  if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
76
74.2M
  if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
77
74.2M
  HWY_FENCE;
78
74.2M
  if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
79
74.2M
  if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
80
74.2M
  HWY_FENCE;
81
74.2M
  if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
82
74.2M
  if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
83
74.2M
  HWY_FENCE;
84
74.2M
  if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
85
74.2M
  if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
86
74.2M
  HWY_FENCE;
87
74.2M
  if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
88
74.2M
  if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
89
74.2M
  HWY_FENCE;
90
74.2M
  if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
91
74.2M
  if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
92
93
74.2M
  static_assert(kDegP < 8, "Polynomial degree is too high");
94
74.2M
  static_assert(kDegQ < 8, "Polynomial degree is too high");
95
96
74.2M
  return FastDivision<T, V>()(yp, yq);
97
74.2M
}
quant_weights.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Line
Count
Source
62
2.88M
                                                     const T (&q)[NQ]) {
63
2.88M
  constexpr size_t kDegP = NP / 4 - 1;
64
2.88M
  constexpr size_t kDegQ = NQ / 4 - 1;
65
2.88M
  auto yp = LoadDup128(d, &p[kDegP * 4]);
66
2.88M
  auto yq = LoadDup128(d, &q[kDegQ * 4]);
67
  // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
68
  // compiler warning that the index is out of bounds since we are already
69
  // checking that it is not out of bounds with (kDegP >= n) and the access
70
  // will be optimized away. Similarly with q and kDegQ.
71
2.88M
  HWY_FENCE;
72
2.88M
  if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
73
2.88M
  if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
74
2.88M
  HWY_FENCE;
75
2.88M
  if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
76
2.88M
  if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
77
2.88M
  HWY_FENCE;
78
2.88M
  if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
79
2.88M
  if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
80
2.88M
  HWY_FENCE;
81
2.88M
  if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
82
2.88M
  if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
83
2.88M
  HWY_FENCE;
84
2.88M
  if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
85
2.88M
  if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
86
2.88M
  HWY_FENCE;
87
2.88M
  if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
88
2.88M
  if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
89
2.88M
  HWY_FENCE;
90
2.88M
  if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
91
2.88M
  if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
92
93
2.88M
  static_assert(kDegP < 8, "Polynomial degree is too high");
94
2.88M
  static_assert(kDegQ < 8, "Polynomial degree is too high");
95
96
2.88M
  return FastDivision<T, V>()(yp, yq);
97
2.88M
}
Unexecuted instantiation: enc_xyb.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul])
Unexecuted instantiation: enc_xyb.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: enc_ma.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
stage_from_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul])
Line
Count
Source
62
69.2M
                                                     const T (&q)[NQ]) {
63
69.2M
  constexpr size_t kDegP = NP / 4 - 1;
64
69.2M
  constexpr size_t kDegQ = NQ / 4 - 1;
65
69.2M
  auto yp = LoadDup128(d, &p[kDegP * 4]);
66
69.2M
  auto yq = LoadDup128(d, &q[kDegQ * 4]);
67
  // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
68
  // compiler warning that the index is out of bounds since we are already
69
  // checking that it is not out of bounds with (kDegP >= n) and the access
70
  // will be optimized away. Similarly with q and kDegQ.
71
69.2M
  HWY_FENCE;
72
69.2M
  if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
73
69.2M
  if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
74
69.2M
  HWY_FENCE;
75
69.2M
  if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
76
69.2M
  if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
77
69.2M
  HWY_FENCE;
78
69.2M
  if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
79
69.2M
  if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
80
69.2M
  HWY_FENCE;
81
69.2M
  if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
82
69.2M
  if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
83
69.2M
  HWY_FENCE;
84
69.2M
  if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
85
69.2M
  if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
86
69.2M
  HWY_FENCE;
87
69.2M
  if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
88
69.2M
  if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
89
69.2M
  HWY_FENCE;
90
69.2M
  if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
91
69.2M
  if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
92
93
69.2M
  static_assert(kDegP < 8, "Polynomial degree is too high");
94
69.2M
  static_assert(kDegQ < 8, "Polynomial degree is too high");
95
96
69.2M
  return FastDivision<T, V>()(yp, yq);
97
69.2M
}
Unexecuted instantiation: stage_from_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: stage_to_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul])
Unexecuted instantiation: stage_to_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: stage_tone_mapping.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul])
Unexecuted instantiation: stage_tone_mapping.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: splines.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: butteraugli.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: enc_ac_strategy.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: enc_adaptive_quantization.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: enc_cluster.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
Unexecuted instantiation: enc_lz77.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
jxl_cms.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul])
Line
Count
Source
62
2.09M
                                                     const T (&q)[NQ]) {
63
2.09M
  constexpr size_t kDegP = NP / 4 - 1;
64
2.09M
  constexpr size_t kDegQ = NQ / 4 - 1;
65
2.09M
  auto yp = LoadDup128(d, &p[kDegP * 4]);
66
2.09M
  auto yq = LoadDup128(d, &q[kDegQ * 4]);
67
  // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
68
  // compiler warning that the index is out of bounds since we are already
69
  // checking that it is not out of bounds with (kDegP >= n) and the access
70
  // will be optimized away. Similarly with q and kDegQ.
71
2.09M
  HWY_FENCE;
72
2.09M
  if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
73
2.09M
  if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
74
2.09M
  HWY_FENCE;
75
2.09M
  if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
76
2.09M
  if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
77
2.09M
  HWY_FENCE;
78
2.09M
  if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
79
2.09M
  if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
80
2.09M
  HWY_FENCE;
81
2.09M
  if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
82
2.09M
  if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
83
2.09M
  HWY_FENCE;
84
2.09M
  if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
85
2.09M
  if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
86
2.09M
  HWY_FENCE;
87
2.09M
  if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
88
2.09M
  if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
89
2.09M
  HWY_FENCE;
90
2.09M
  if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
91
2.09M
  if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
92
93
2.09M
  static_assert(kDegP < 8, "Polynomial degree is too high");
94
2.09M
  static_assert(kDegQ < 8, "Polynomial degree is too high");
95
96
2.09M
  return FastDivision<T, V>()(yp, yq);
97
2.09M
}
Unexecuted instantiation: jxl_cms.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul])
98
99
}  // namespace
100
// NOLINTNEXTLINE(google-readability-namespace-comments)
101
}  // namespace HWY_NAMESPACE
102
}  // namespace jxl
103
HWY_AFTER_NAMESPACE();
104
#endif  // LIB_JXL_BASE_RATIONAL_POLYNOMIAL_INL_H_