97 | 74.2M | } quant_weights.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) Line | Count | Source | 62 | 2.88M | const T (&q)[NQ]) { | 63 | 2.88M | constexpr size_t kDegP = NP / 4 - 1; | 64 | 2.88M | constexpr size_t kDegQ = NQ / 4 - 1; | 65 | 2.88M | auto yp = LoadDup128(d, &p[kDegP * 4]); | 66 | 2.88M | auto yq = LoadDup128(d, &q[kDegQ * 4]); | 67 | | // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a | 68 | | // compiler warning that the index is out of bounds since we are already | 69 | | // checking that it is not out of bounds with (kDegP >= n) and the access | 70 | | // will be optimized away. Similarly with q and kDegQ. | 71 | 2.88M | HWY_FENCE; | 72 | 2.88M | if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4))); | 73 | 2.88M | if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4))); | 74 | 2.88M | HWY_FENCE; | 75 | 2.88M | if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4))); | 76 | 2.88M | if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4))); | 77 | 2.88M | HWY_FENCE; | 78 | 2.88M | if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4))); | 79 | 2.88M | if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4))); | 80 | 2.88M | HWY_FENCE; | 81 | 2.88M | if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4))); | 82 | 2.88M | if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4))); | 83 | 2.88M | HWY_FENCE; | 84 | 2.88M | if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4))); | 85 | 2.88M | if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4))); | 86 | 2.88M | HWY_FENCE; | 87 | 2.88M | if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4))); | 88 | 2.88M | if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4))); | 89 | 2.88M | HWY_FENCE; | 90 | 2.88M | if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4))); | 91 | 2.88M | if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4))); | 92 | | | 93 | 2.88M | static_assert(kDegP < 8, "Polynomial degree is too high"); | 94 | 2.88M | static_assert(kDegQ < 8, "Polynomial degree is too high"); | 95 | | | 96 | 2.88M | return FastDivision<T, V>()(yp, yq); | 97 | 2.88M | } |
Unexecuted instantiation: enc_xyb.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul]) Unexecuted instantiation: enc_xyb.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) Unexecuted instantiation: enc_ma.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) stage_from_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul]) Line | Count | Source | 62 | 69.2M | const T (&q)[NQ]) { | 63 | 69.2M | constexpr size_t kDegP = NP / 4 - 1; | 64 | 69.2M | constexpr size_t kDegQ = NQ / 4 - 1; | 65 | 69.2M | auto yp = LoadDup128(d, &p[kDegP * 4]); | 66 | 69.2M | auto yq = LoadDup128(d, &q[kDegQ * 4]); | 67 | | // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a | 68 | | // compiler warning that the index is out of bounds since we are already | 69 | | // checking that it is not out of bounds with (kDegP >= n) and the access | 70 | | // will be optimized away. Similarly with q and kDegQ. | 71 | 69.2M | HWY_FENCE; | 72 | 69.2M | if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4))); | 73 | 69.2M | if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4))); | 74 | 69.2M | HWY_FENCE; | 75 | 69.2M | if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4))); | 76 | 69.2M | if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4))); | 77 | 69.2M | HWY_FENCE; | 78 | 69.2M | if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4))); | 79 | 69.2M | if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4))); | 80 | 69.2M | HWY_FENCE; | 81 | 69.2M | if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4))); | 82 | 69.2M | if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4))); | 83 | 69.2M | HWY_FENCE; | 84 | 69.2M | if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4))); | 85 | 69.2M | if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4))); | 86 | 69.2M | HWY_FENCE; | 87 | 69.2M | if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4))); | 88 | 69.2M | if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4))); | 89 | 69.2M | HWY_FENCE; | 90 | 69.2M | if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4))); | 91 | 69.2M | if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4))); | 92 | | | 93 | 69.2M | static_assert(kDegP < 8, "Polynomial degree is too high"); | 94 | 69.2M | static_assert(kDegQ < 8, "Polynomial degree is too high"); | 95 | | | 96 | 69.2M | return FastDivision<T, V>()(yp, yq); | 97 | 69.2M | } |
Unexecuted instantiation: stage_from_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) Unexecuted instantiation: stage_to_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul]) Unexecuted instantiation: stage_to_linear.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) Unexecuted instantiation: stage_tone_mapping.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul]) Unexecuted instantiation: stage_tone_mapping.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) Unexecuted instantiation: splines.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) Unexecuted instantiation: butteraugli.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) Unexecuted instantiation: enc_ac_strategy.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) Unexecuted instantiation: enc_adaptive_quantization.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) Unexecuted instantiation: enc_cluster.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) Unexecuted instantiation: enc_lz77.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) jxl_cms.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<20ul, 20ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [20ul], float const (&) [20ul]) Line | Count | Source | 62 | 2.09M | const T (&q)[NQ]) { | 63 | 2.09M | constexpr size_t kDegP = NP / 4 - 1; | 64 | 2.09M | constexpr size_t kDegQ = NQ / 4 - 1; | 65 | 2.09M | auto yp = LoadDup128(d, &p[kDegP * 4]); | 66 | 2.09M | auto yq = LoadDup128(d, &q[kDegQ * 4]); | 67 | | // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a | 68 | | // compiler warning that the index is out of bounds since we are already | 69 | | // checking that it is not out of bounds with (kDegP >= n) and the access | 70 | | // will be optimized away. Similarly with q and kDegQ. | 71 | 2.09M | HWY_FENCE; | 72 | 2.09M | if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4))); | 73 | 2.09M | if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4))); | 74 | 2.09M | HWY_FENCE; | 75 | 2.09M | if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4))); | 76 | 2.09M | if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4))); | 77 | 2.09M | HWY_FENCE; | 78 | 2.09M | if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4))); | 79 | 2.09M | if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4))); | 80 | 2.09M | HWY_FENCE; | 81 | 2.09M | if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4))); | 82 | 2.09M | if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4))); | 83 | 2.09M | HWY_FENCE; | 84 | 2.09M | if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4))); | 85 | 2.09M | if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4))); | 86 | 2.09M | HWY_FENCE; | 87 | 2.09M | if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4))); | 88 | 2.09M | if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4))); | 89 | 2.09M | HWY_FENCE; | 90 | 2.09M | if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4))); | 91 | 2.09M | if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4))); | 92 | | | 93 | 2.09M | static_assert(kDegP < 8, "Polynomial degree is too high"); | 94 | 2.09M | static_assert(kDegQ < 8, "Polynomial degree is too high"); | 95 | | | 96 | 2.09M | return FastDivision<T, V>()(yp, yq); | 97 | 2.09M | } |
Unexecuted instantiation: jxl_cms.cc:hwy::N_SCALAR::Vec1<float> jxl::N_SCALAR::(anonymous namespace)::EvalRationalPolynomial<12ul, 12ul, hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float>(hwy::N_SCALAR::Simd<float, 1ul, 0>, hwy::N_SCALAR::Vec1<float>, float const (&) [12ul], float const (&) [12ul]) |