Coverage Report

Created: 2026-02-14 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjxl/lib/jxl/enc_cluster.cc
Line
Count
Source
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
#include "lib/jxl/enc_cluster.h"
7
8
#include <algorithm>
9
#include <cstddef>
10
#include <cstdint>
11
#include <limits>
12
#include <map>
13
#include <numeric>
14
#include <queue>
15
#include <tuple>
16
#include <vector>
17
18
#include "lib/jxl/base/status.h"
19
#include "lib/jxl/enc_ans_params.h"
20
21
#undef HWY_TARGET_INCLUDE
22
#define HWY_TARGET_INCLUDE "lib/jxl/enc_cluster.cc"
23
#include <hwy/foreach_target.h>
24
#include <hwy/highway.h>
25
26
#include "lib/jxl/base/fast_math-inl.h"
27
HWY_BEFORE_NAMESPACE();
28
namespace jxl {
29
namespace HWY_NAMESPACE {
30
31
// These templates are not found via ADL.
32
using hwy::HWY_NAMESPACE::AllTrue;
33
using hwy::HWY_NAMESPACE::Eq;
34
using hwy::HWY_NAMESPACE::GetLane;
35
using hwy::HWY_NAMESPACE::IfThenZeroElse;
36
using hwy::HWY_NAMESPACE::SumOfLanes;
37
using hwy::HWY_NAMESPACE::Zero;
38
39
template <class V>
40
0
V Entropy(V count, V inv_total, V total) {
41
0
  const HWY_CAPPED(float, Histogram::kRounding) d;
42
0
  const auto zero = Set(d, 0.0f);
43
  // TODO(eustas): why (0 - x) instead of Neg(x)?
44
0
  return IfThenZeroElse(
45
0
      Eq(count, total),
46
0
      Sub(zero, Mul(count, FastLog2f(d, Mul(inv_total, count)))));
47
0
}
48
49
0
void HistogramCondition(Histogram& a) {
50
0
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
51
0
  const auto kZero = Zero(di);
52
0
  auto total = kZero;
53
0
  int nz_pos = -static_cast<int>(Lanes(di));
54
0
  for (size_t i = 0; i < a.counts.size(); i += Lanes(di)) {
55
0
    const auto counts = LoadU(di, &a.counts[i]);
56
0
    const bool nz = !AllTrue(di, Eq(counts, kZero));
57
0
    total = Add(total, counts);
58
0
    if (nz) nz_pos = i;
59
0
  }
60
0
  a.counts.resize(nz_pos + Lanes(di));
61
0
  a.total_count = GetLane(SumOfLanes(di, total));
62
0
}
63
64
0
void HistogramEntropy(const Histogram& a) {
65
0
  a.entropy = 0.0f;
66
0
  if (a.total_count == 0) return;
67
68
0
  const HWY_CAPPED(float, Histogram::kRounding) df;
69
0
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
70
71
0
  const auto inv_tot = Set(df, 1.0f / a.total_count);
72
0
  auto entropy_lanes = Zero(df);
73
0
  auto total = Set(df, a.total_count);
74
75
0
  for (size_t i = 0; i < a.counts.size(); i += Lanes(di)) {
76
0
    const auto counts = LoadU(di, &a.counts[i]);
77
0
    entropy_lanes =
78
0
        Add(entropy_lanes, Entropy(ConvertTo(df, counts), inv_tot, total));
79
0
  }
80
0
  a.entropy += GetLane(SumOfLanes(df, entropy_lanes));
81
0
}
82
83
0
float HistogramDistance(const Histogram& a, const Histogram& b) {
84
0
  if (a.total_count == 0 || b.total_count == 0) return 0;
85
86
0
  const HWY_CAPPED(float, Histogram::kRounding) df;
87
0
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
88
89
0
  const auto inv_tot = Set(df, 1.0f / (a.total_count + b.total_count));
90
0
  auto distance_lanes = Zero(df);
91
0
  auto total = Set(df, a.total_count + b.total_count);
92
93
0
  for (size_t i = 0; i < std::max(a.counts.size(), b.counts.size());
94
0
       i += Lanes(di)) {
95
0
    const auto a_counts =
96
0
        a.counts.size() > i ? LoadU(di, &a.counts[i]) : Zero(di);
97
0
    const auto b_counts =
98
0
        b.counts.size() > i ? LoadU(di, &b.counts[i]) : Zero(di);
99
0
    const auto counts = ConvertTo(df, Add(a_counts, b_counts));
100
0
    distance_lanes = Add(distance_lanes, Entropy(counts, inv_tot, total));
101
0
  }
102
0
  const float total_distance = GetLane(SumOfLanes(df, distance_lanes));
103
0
  return total_distance - a.entropy - b.entropy;
104
0
}
105
106
constexpr const float kInfinity = std::numeric_limits<float>::infinity();
107
108
0
float HistogramKLDivergence(const Histogram& actual, const Histogram& coding) {
109
0
  if (actual.total_count == 0) return 0;
110
0
  if (coding.total_count == 0) return kInfinity;
111
112
0
  const HWY_CAPPED(float, Histogram::kRounding) df;
113
0
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;
114
115
0
  const auto coding_inv = Set(df, 1.0f / coding.total_count);
116
0
  auto cost_lanes = Zero(df);
117
118
0
  for (size_t i = 0; i < actual.counts.size(); i += Lanes(di)) {
119
0
    const auto counts = LoadU(di, &actual.counts[i]);
120
0
    const auto coding_counts =
121
0
        coding.counts.size() > i ? LoadU(di, &coding.counts[i]) : Zero(di);
122
0
    const auto coding_probs = Mul(ConvertTo(df, coding_counts), coding_inv);
123
0
    const auto neg_coding_cost = BitCast(
124
0
        df,
125
0
        IfThenZeroElse(Eq(counts, Zero(di)),
126
0
                       IfThenElse(Eq(coding_counts, Zero(di)),
127
0
                                  BitCast(di, Set(df, -kInfinity)),
128
0
                                  BitCast(di, FastLog2f(df, coding_probs)))));
129
0
    cost_lanes = NegMulAdd(ConvertTo(df, counts), neg_coding_cost, cost_lanes);
130
0
  }
131
0
  const float total_cost = GetLane(SumOfLanes(df, cost_lanes));
132
0
  return total_cost - actual.entropy;
133
0
}
134
135
// First step of a k-means clustering with a fancy distance metric.
136
Status FastClusterHistograms(const std::vector<Histogram>& in,
137
                             size_t max_histograms, std::vector<Histogram>* out,
138
0
                             std::vector<uint32_t>* histogram_symbols) {
139
0
  const size_t prev_histograms = out->size();
140
0
  out->reserve(max_histograms);
141
0
  histogram_symbols->clear();
142
0
  histogram_symbols->resize(in.size(), max_histograms);
143
144
0
  std::vector<float> dists(in.size(), std::numeric_limits<float>::max());
145
0
  size_t largest_idx = 0;
146
0
  for (size_t i = 0; i < in.size(); i++) {
147
0
    if (in[i].total_count == 0) {
148
0
      (*histogram_symbols)[i] = 0;
149
0
      dists[i] = 0.0f;
150
0
      continue;
151
0
    }
152
0
    HistogramEntropy(in[i]);
153
0
    if (in[i].total_count > in[largest_idx].total_count) {
154
0
      largest_idx = i;
155
0
    }
156
0
  }
157
158
0
  if (prev_histograms > 0) {
159
0
    for (size_t j = 0; j < prev_histograms; ++j) {
160
0
      HistogramEntropy((*out)[j]);
161
0
    }
162
0
    for (size_t i = 0; i < in.size(); i++) {
163
0
      if (dists[i] == 0.0f) continue;
164
0
      for (size_t j = 0; j < prev_histograms; ++j) {
165
0
        dists[i] = std::min(HistogramKLDivergence(in[i], (*out)[j]), dists[i]);
166
0
      }
167
0
    }
168
0
    auto max_dist = std::max_element(dists.begin(), dists.end());
169
0
    if (*max_dist > 0.0f) {
170
0
      largest_idx = max_dist - dists.begin();
171
0
    }
172
0
  }
173
174
0
  constexpr float kMinDistanceForDistinct = 48.0f;
175
0
  while (out->size() < max_histograms) {
176
0
    (*histogram_symbols)[largest_idx] = out->size();
177
0
    out->push_back(in[largest_idx]);
178
0
    dists[largest_idx] = 0.0f;
179
0
    largest_idx = 0;
180
0
    for (size_t i = 0; i < in.size(); i++) {
181
0
      if (dists[i] == 0.0f) continue;
182
0
      dists[i] = std::min(HistogramDistance(in[i], out->back()), dists[i]);
183
0
      if (dists[i] > dists[largest_idx]) largest_idx = i;
184
0
    }
185
0
    if (dists[largest_idx] < kMinDistanceForDistinct) break;
186
0
  }
187
188
0
  for (size_t i = 0; i < in.size(); i++) {
189
0
    if ((*histogram_symbols)[i] != max_histograms) continue;
190
0
    size_t best = 0;
191
0
    float best_dist = std::numeric_limits<float>::max();
192
0
    for (size_t j = 0; j < out->size(); j++) {
193
0
      float dist = j < prev_histograms ? HistogramKLDivergence(in[i], (*out)[j])
194
0
                                       : HistogramDistance(in[i], (*out)[j]);
195
0
      if (dist < best_dist) {
196
0
        best = j;
197
0
        best_dist = dist;
198
0
      }
199
0
    }
200
0
    JXL_ENSURE(best_dist < std::numeric_limits<float>::max());
201
0
    if (best >= prev_histograms) {
202
0
      (*out)[best].AddHistogram(in[i]);
203
0
      HistogramEntropy((*out)[best]);
204
0
    }
205
0
    (*histogram_symbols)[i] = best;
206
0
  }
207
0
  return true;
208
0
}
209
210
// NOLINTNEXTLINE(google-readability-namespace-comments)
211
}  // namespace HWY_NAMESPACE
212
}  // namespace jxl
213
HWY_AFTER_NAMESPACE();
214
215
#if HWY_ONCE
216
namespace jxl {
217
HWY_EXPORT(FastClusterHistograms);  // Local function
218
HWY_EXPORT(HistogramEntropy);       // Local function
219
HWY_EXPORT(HistogramCondition);     // Local function
220
221
0
void Histogram::Condition() { HWY_DYNAMIC_DISPATCH(HistogramCondition)(*this); }
222
223
0
float Histogram::ShannonEntropy() const {
224
0
  HWY_DYNAMIC_DISPATCH(HistogramEntropy)(*this);
225
0
  return entropy;
226
0
}
227
228
namespace {
229
// -----------------------------------------------------------------------------
230
// Histogram refinement
231
232
// Reorder histograms in *out so that the new symbols in *symbols come in
233
// increasing order.
234
void HistogramReindex(std::vector<Histogram>* out, size_t prev_histograms,
235
0
                      std::vector<uint32_t>* symbols) {
236
0
  std::vector<Histogram> tmp(*out);
237
0
  std::map<int, int> new_index;
238
0
  for (size_t i = 0; i < prev_histograms; ++i) {
239
0
    new_index[i] = i;
240
0
  }
241
0
  int next_index = prev_histograms;
242
0
  for (uint32_t symbol : *symbols) {
243
0
    if (new_index.find(symbol) == new_index.end()) {
244
0
      new_index[symbol] = next_index;
245
0
      (*out)[next_index] = tmp[symbol];
246
0
      ++next_index;
247
0
    }
248
0
  }
249
0
  out->resize(next_index);
250
0
  for (uint32_t& symbol : *symbols) {
251
0
    symbol = new_index[symbol];
252
0
  }
253
0
}
254
255
}  // namespace
256
257
// Clusters similar histograms in 'in' together, the selected histograms are
258
// placed in 'out', and for each index in 'in', *histogram_symbols will
259
// indicate which of the 'out' histograms is the best approximation.
260
Status ClusterHistograms(const HistogramParams& params,
261
                         const std::vector<Histogram>& in,
262
                         size_t max_histograms, std::vector<Histogram>* out,
263
0
                         std::vector<uint32_t>* histogram_symbols) {
264
0
  size_t prev_histograms = out->size();
265
0
  max_histograms = std::min(max_histograms, params.max_histograms);
266
0
  max_histograms = std::min(max_histograms, in.size());
267
0
  if (params.clustering == HistogramParams::ClusteringType::kFastest) {
268
0
    max_histograms = std::min(max_histograms, static_cast<size_t>(4));
269
0
  }
270
271
0
  JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(FastClusterHistograms)(
272
0
      in, prev_histograms + max_histograms, out, histogram_symbols));
273
274
0
  if (prev_histograms == 0 &&
275
0
      params.clustering == HistogramParams::ClusteringType::kBest) {
276
0
    for (auto& histo : *out) {
277
0
      JXL_ASSIGN_OR_RETURN(histo.entropy, histo.ANSPopulationCost());
278
0
    }
279
0
    uint32_t next_version = 2;
280
0
    std::vector<uint32_t> version(out->size(), 1);
281
0
    std::vector<uint32_t> renumbering(out->size());
282
0
    std::iota(renumbering.begin(), renumbering.end(), 0);
283
284
    // Try to pair up clusters if doing so reduces the total cost.
285
286
0
    struct HistogramPair {
287
      // validity of a pair: p.version == max(version[i], version[j])
288
0
      float cost;
289
0
      uint32_t first;
290
0
      uint32_t second;
291
0
      uint32_t version;
292
      // We use > because priority queues sort in *decreasing* order, but we
293
      // want lower cost elements to appear first.
294
0
      bool operator<(const HistogramPair& other) const {
295
0
        return std::make_tuple(cost, first, second, version) >
296
0
               std::make_tuple(other.cost, other.first, other.second,
297
0
                               other.version);
298
0
      }
299
0
    };
300
301
    // Create list of all pairs by increasing merging cost.
302
0
    std::priority_queue<HistogramPair> pairs_to_merge;
303
0
    for (uint32_t i = 0; i < out->size(); i++) {
304
0
      for (uint32_t j = i + 1; j < out->size(); j++) {
305
0
        Histogram histo;
306
0
        histo.AddHistogram((*out)[i]);
307
0
        histo.AddHistogram((*out)[j]);
308
0
        JXL_ASSIGN_OR_RETURN(float cost, histo.ANSPopulationCost());
309
0
        cost -= (*out)[i].entropy + (*out)[j].entropy;
310
        // Avoid enqueueing pairs that are not advantageous to merge.
311
0
        if (cost >= 0) continue;
312
0
        pairs_to_merge.push(
313
0
            HistogramPair{cost, i, j, std::max(version[i], version[j])});
314
0
      }
315
0
    }
316
317
    // Merge the best pair to merge, add new pairs that get formed as a
318
    // consequence.
319
0
    while (!pairs_to_merge.empty()) {
320
0
      uint32_t first = pairs_to_merge.top().first;
321
0
      uint32_t second = pairs_to_merge.top().second;
322
0
      uint32_t ver = pairs_to_merge.top().version;
323
0
      pairs_to_merge.pop();
324
0
      if (ver != std::max(version[first], version[second]) ||
325
0
          version[first] == 0 || version[second] == 0) {
326
0
        continue;
327
0
      }
328
0
      (*out)[first].AddHistogram((*out)[second]);
329
0
      JXL_ASSIGN_OR_RETURN((*out)[first].entropy,
330
0
                           (*out)[first].ANSPopulationCost());
331
0
      for (uint32_t& item : renumbering) {
332
0
        if (item == second) {
333
0
          item = first;
334
0
        }
335
0
      }
336
0
      version[second] = 0;
337
0
      version[first] = next_version++;
338
0
      for (uint32_t j = 0; j < out->size(); j++) {
339
0
        if (j == first) continue;
340
0
        if (version[j] == 0) continue;
341
0
        Histogram histo;
342
0
        histo.AddHistogram((*out)[first]);
343
0
        histo.AddHistogram((*out)[j]);
344
0
        JXL_ASSIGN_OR_RETURN(float merge_cost, histo.ANSPopulationCost());
345
0
        merge_cost -= (*out)[first].entropy + (*out)[j].entropy;
346
        // Avoid enqueueing pairs that are not advantageous to merge.
347
0
        if (merge_cost >= 0) continue;
348
0
        pairs_to_merge.push(
349
0
            HistogramPair{merge_cost, std::min(first, j), std::max(first, j),
350
0
                          std::max(version[first], version[j])});
351
0
      }
352
0
    }
353
0
    std::vector<uint32_t> reverse_renumbering(out->size(), -1);
354
0
    size_t num_alive = 0;
355
0
    for (size_t i = 0; i < out->size(); i++) {
356
0
      if (version[i] == 0) continue;
357
0
      (*out)[num_alive++] = (*out)[i];
358
0
      reverse_renumbering[i] = num_alive - 1;
359
0
    }
360
0
    out->resize(num_alive);
361
0
    for (uint32_t& item : *histogram_symbols) {
362
0
      item = reverse_renumbering[renumbering[item]];
363
0
    }
364
0
  }
365
366
  // Convert the context map to a canonical form.
367
0
  HistogramReindex(out, prev_histograms, histogram_symbols);
368
0
  return true;
369
0
}
370
371
}  // namespace jxl
372
#endif  // HWY_ONCE